201x年中考数学专题复习小练习专题11反比例函数
中考数学《反比例函数》专项复习综合练习题-附含答案
中考数学《反比例函数》专项复习综合练习题-附含答案一、单选题1.已知反比例函数y=- 12x,则()A.y随x的增大而增大B.当x>-3且x≠0时,y>4C.图象位于一、三象限D.当y<-3时,0<x<42.甲、乙、丙三位同学分别正确指出了某一个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:每第一个象限内 y值随x值的增大而减小.根据他们的描述这个函数表达式可能是()A.y=2x B.y= 2x C.y=﹣1xD.y=2x23.反比例函数y=kx(k>0)在第一象限内的图象如图,点M是图象上一点 MP垂直x轴于点P 如果△MOP 的面积为1 那么k的值是( )A.1 B.2 C.4 D.√24.如图,反比例函数y=kx(x<0)交边长为10的等边△ OAB的两边于C、D两点,OC=3BD,则k的值()A.−9√3B.9√3C.-10√3D.10√35.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y= a+b+cx在同一坐标系内的图象大致为()A.B.C.D.√3 6.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=√3∠BDC=120°S△BCD=92 (x<0)的图象经过C、D两点,则k的值是()若反比例函数y=kxA.−6√3B.-6 C.−12√3D.-127.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=1(x<0)图象上一点,AO的延长x(x>0 k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x 线交函数y=k2x轴的对称点为C′,交于x轴于点B 连结AB AA′、 A′C′.若△ABC的面积等于6,则由线段AC CC′C′A′ A′A所围成的图形的面积等于()A.8 B.10 C.3√10D.4√68.如图,反比例函数y=kx与一次函数y=kx﹣k+2在同一直角坐标系中的图象相交于A B两点其中A(﹣1 3)直线y=kx﹣k+2与坐标轴分别交于C D两点下列说法:①k<0;②点B的坐标为(3 ﹣1);③当x<﹣1时kx <kx﹣k+2;④tan∠OCD=﹣1k其中正确的是()A.①③B.①②④C.①③④D.①②③④二、填空题9.已知反比例函数y=﹣2x若y≤1,则自变量x的取值范围是.10.在平面直角坐标系中若一条平行于x轴的直线l分别交双曲线y=﹣6x 和y= 2x于A B两点 P是x轴上的任意一点,则△ABP的面积等于11.如图,在平面直角坐标系中正方形ABCD的面积为20 顶点A在y轴上顶点C在x轴上顶点D在双曲线y=kx(x>0)的图象上边CD交y轴于点E 若CE=ED,则k的值为.12.如图,点 P 是反比例函数图象上的一点 过点 P 向 x 轴作垂线 垂足为 M 连结 PO 若阴影部分面积为 6 ,则这个反比例函数的关系式是 .13.如图,已知A ( 12 y 1) B (2 y 2)为反比例函数y = 1x 图象上的两点 动点P (x 0)在x 轴正半轴上运动 当线段AP 与线段BP 之差达到最大时 点P 的坐标是 .三、解答题14.如图,反比例函数y =kx (x >0)的图像分别交正方形OABC 的边AB 、BC 于点D 、E 若A 点坐标为(1,0) 若△ODE 是等边三角形 求k 的值.15.某水果生产基地在气温较低时 用装有恒温系统的大棚栽培一种新品种水果 如图是试验阶段的某天恒温系统从开启到关闭后 大棚内的温度y(℃)与时间x(ℎ)之间的函数关系 其中线段AB 、BC 表示恒温系统开启后阶段 双曲线的一部分CD 表示恒温系统关闭阶段........... 请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y(℃)与时间x(ℎ)之间的函数表达式;(3)若大棚内的温度低于10℃时 蔬菜会受到伤害.问:这天内恒温系统最多可以关闭多少小时 才能避免水果生长受到影响?16.如图,已知点A在反比函数y=kx(k<0)的图象上点B在直线y=x−3的图象上点B的纵坐标为-1 AB⊥x轴且S△OAB=4.(1)求点A的坐标和k的值;(2)若点P在反比例函数y=kx(k<0)的图象上点Q在直线y=x−3的图象上P、Q两点关于y轴对称设点P的坐标为(m,n)求nm +mn的值.17.如图,点A在反比例函数y=kx(x>0)的图象上AB⊥x轴于点B AB的垂直平分线PD交双曲线与点P.(1)若点A的坐标为(1 8),则点P的坐标为.(2)若AP⊥BP点A的横坐标为m.①求k与m之间的关系式;②连接OA OP若△AOP的面积为6 求k的值.18.如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2 m) B(n ﹣2)两点.过点B作BC⊥x轴垂足为C 且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件请直接写出不等式k1x+b>k2x的解集;(3)若P(p y1) Q(﹣2 y2)是函数y=k2x 图象上的两点且y1≥y2求实数p的取值范围.答案1.D 2.B 3.B 4.A 5.D 6.C 7.B 8.C9.x ≤﹣2或x >0 10.4 11.4 12.y =−12x 13.(52, 0)14.解:由题意可得△OAD ≅△OCE 设AD =x ,则:DB =EB =1−x 因为OD 2=x 2+1 且△ODE 是等边三角形所以 x 2+1=(1−x)2+(1−x)2 x 1=2+√3 x 2=2−√3 2+√3>1舍去 所以x =2−√3则K =1∗(2−√3)=2−√315.(1)解:设线段AB 表达式为y =kx +b(k ≠0) ∵线段AB 过点(0,10) (2,14)∴{b =102k +b =14解得{b =10k =2∴线段AB 的表达式为:y =2x +10(0≤x ≤5) 当x =5时 y =2×5+10=20 ∴恒定温度为:20℃; (2)解:由(1)可知:线段AB 的表达式为:y =2x +10(0≤x ≤5) B 坐标为(5,20) ∴根据图象可知线段BC 的表达式为:y =20(5<x ≤10)设双曲线CD 解析式为:y =m x(m ≠0)∵C(10,20)∴可得:m10=20 解得:m =200∴双曲线CD 的解析式为:y =200x(10<x ≤24)∴y 关于x 的函数表达式为:y ={2x +10(0≤x ≤5)20(5<x ≤10)200x (10<x ≤24);(3)解:把y =10代入y =200x中得10=200x解得:x =20∴20−10=10(小时)∴恒温系统最多可以关闭10小时. 16.(1)解:由题意B(2,−1)∵12×2×AB =4 ∴AB =4∵AB//y 轴∴A(2,−5)∵A(2,−5)在y =kx 的图象上 ∴k =−10.(2)解:设P(m ,−10m ),则Q(−m ,−10m ) ∵点Q 在y =x −3上∴−10m=−m −3 整理得:m 2+3m −10=0 解得m =−5或2 当m =−5 n =2时 n m +m n =−2910 当m =2 n =−5时 nm +m n=−2910故n m +m n=−2910.17.(1)(2 4)(2)解:①由题意得 点A 的纵坐标为km 即AB =km ∵PD 垂直平分AB ∴PA =PB ∵AP ⊥BP∴△PAB 是等腰直角三角形 ∴∠PAB =∠PBA =45° ∵PD ⊥AB∴△DAP 和△DBP 是等腰直角三角形 ∴DA =DB =DP =k2m ∴P (m +k2m ,k 2m )将P (m +k2m ,k2m )代入y =kx 可得:(m +k2m )⋅k2m =k 整理得:k =2m 2;②过点P 作PC ⊥x 轴于点C ,则四边形PABC 是梯形∵S △AOB =S △POC =k2 ∴S △AOE =S 四边形PEBC ∴S △AOP =S 梯形PABC =6 ∴(k 2m +k m )⋅k2m2=6 整理得:k 2=16m 2∵k =2m 2 ∴k 2=8k解得:k =8或k =0(舍去) ∴k =8.18.(1)把 A(2,m) B(n ,−2) 代入 y =k 2x得: k 2=2m =−2n即m=−n则A(2,−n)过A作AE⊥x轴于E过B作BF⊥y轴于F延长AE、BF交于D ∵A(2,−n)B(n,−2)∴BD=2−n AD=−n+2BC=|−2|=2∵SΔABC=12·BC·BD∴12×2×(2−n)=5解得:n=−3即A(2,3)B(−3,−2)把A(2,3)代入y=k2x得:k2=6即反比例函数的解析式是y=6x;把A(2,3)B(−3,−2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b解得:k1=1b=1即一次函数的解析式是y=x+1;(2)∵A(2,3)B(−3,−2)∴不等式k1x+b>k2x的解集是−3<x<0或x>2;(3)分为两种情况:当点P在第三象限时要使y1⩾y2实数p的取值范围是p⩽−2当点P在第一象限时要使y1⩾y2实数p的取值范围是p>0即P的取值范围是p⩽−2或p>0。
中考数学复习 专题靶向练 反比例函数 专题
中考数学复习为专题靶向练(《反比例函数》专题)一、选择题。
题号 1 2 3 4 5 6 7 8 选项1. 一反比例函数的图象经过点(-2,3),则此函数的图象也经过点( ) A .(2,-3) B .(-3,-3) C .(2,3) D .(-4,6)2. 若反比例函数y =ax 的图象分布在第一、三象限,则a 的值可以是( )A. -3B. 2C. 0D. -1 3. 在同一直角坐标系中,函数y =kx -k 与y =k|x |(k ≠0)的大致图象是( )A. ①②B. ②③C. ②④D. ③④4. 如图,点A 在反比例函数y =kx (x >0)的图象上,AB ⊥x 轴于点B ,C 是OB 的中点,连接AO ,AC ,若△AOC 的面积为2,则k =( )A. 4B. 8 C .12 D. 165. 在同一平面直角坐标系中,一次函数y 1=k 1x +b 与反比例函数y 2=k 2x (x >0)的图象如图所示,则当y 1>y 2时,自变量x 的取值范围为( )A. x <1B. x >3C. 0<x <1D. 1<x <3 6. 如图,点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,AC x ⊥轴于点C ,BD x ⊥轴于点D ,BE y ⊥轴于点E ,连结AE .若1OE =,23OC OD =,AC AE =,则k 的值为( )A .2B .322C .94D .227. 已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A. 函数解析式为I =13RB. 蓄电池的电压是18 VC. 当I ≤10 A 时,R ≥3.6 ΩD. 当R =6 Ω时,I =4 A8. 如图,在平面直角坐标系中,点A 、B 在函数y =k x(k >0,x >0)的图象上,过点A 作x 轴的垂线,与函数y =-k x(x >0)的图象交于点C ,连接BC 交x 轴于点D.若点A 的横坐标为1,BC =3BD ,则点B 的横坐标为( )A. 32B. 2C. 52D. 39. 如图,△AOB 和△ACD 均为等边三角形,且顶点B 、D 均在反比例函数y =k x(x >0)的图象上,若图中S △OBP =23,则k 的值为( )A. 4B. 6C. 2 3D. 3 3 二、填空题。
中考数学专题复习-反比例函数专题复习-反比例函数K的几何意义专项练习试卷 含解析
反比例函数k 的几何意义专项练习一.选择题(共10小题)1.过反比例函数222m m y x+-=图象上一点向A 分别向x 轴作垂线,垂足为B ,若三角形OAB 的面积为3,则此函数图象必经过点( )A .(4,3)B .(2,3)--C .(1,3)-D .(3,1)-2.如图,已知A 为反比例函数(0)k y x x=<的图象上一点,过点A 作AB y ⊥轴,垂足为B .若OAB ∆的面积为1,则k 的值为( )A .2B .2-C .4D .4-3.如图,点A 在反比例函数8(0)y x x=>的图象上,过点A 作AB x ⊥轴,垂足为B ,点C 在y 轴上,则ABC ∆的面积为( )A .16B .8C .4D .24.在平面直角坐标系中,O 为坐标原点,点A 在第一象限,点B 在x 轴正半轴上,OAB ∆的面积是9,P 是AB 的中点,若函数(0)k y x x =>的图象经过点A ,P ,则k 的值为( ) A .6 B .4 C .3 D .25.如图,点A 是反比例函数k y x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B ,点C 为y 轴上的一点,连接AC 、BC ,若ABC ∆的面积为2,则k 的值是( )A .4B .4-C .2-D .26.如图,A ,B 两点在双曲线4(0)y x x=>上,分别过A ,B 两点向坐标轴作垂线段,若阴影部分的面积为1.7,则12S S +的值为( )A .4.6B .4.2C .4D .57.如图,在平面直角坐标系中,函数2(0)y x x=>的图象经过矩形OABC 的边BC 的中点D ,且与边AB 相交于点E ,则四边形ODBE 的面积为( )A .32B .2C .3D .48.如图,AOB ∆和ACD ∆均为正三角形,且顶点B 、D 均在双曲线(0)k y x x =>上,若图中4OBP S ∆=,则k 的值为( )A .23B .23-C .4-D .49.如图,点A 在反比例函数3(0)y x x =-<的图象上,点B 在反比例函数3(0)y x x=>的图象上,点C 在x 轴的正半轴上,则平行四边形ABCO 的面积是( )A .6B .5C .4D .310.如图,在平面直角坐标系中,矩形OABC 的面积为10,反比例函数(0)k y x x =>与AB 、BC 分别交于点D 、E ,若2AD BD =,则k 的值为( )A .53B .103C .203D .52二.填空题(共8小题)11.如图,在ABCD Y 的面积为6,(4,)A a ,(6,)B b ,反比例函数k y x=的图象经过点A 与点C ,则k 的值为 .12.如图,OAB ∆的顶点A 在双曲线8(0)y x x =>上,顶点B 在双曲线6(0)y x x=-<上,AB 中点P 恰好落在y 轴上,则OAB ∆的面积为 .13.如图,已知双曲线(0)k y x x =>经过矩形OABC 的边AB 、BC 上的点F 、E ,其中13CE CB =,13AF AB =,且四边形OEBF 的面积为6,则k 的值为 .14.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x =≠上,//AB x 轴,分别过点A ,B 向x 轴作垂线,垂足分别为D ,C ,若矩形ABCD 的面积是9,则k 的值为 .15.如图,点A 、B 都在反比例函数(0)k y k x=>的图象上,过点B 作//BC x 轴交y 轴于点C ,连接AC 并延长交x 轴于点D ,连接BD ,3DA DC =,6ABD S ∆=.则k 的值为 .16.如图,平行于x 轴的直线与函数11(0k y k x =>,0)x >和22(0k y k x =>,0)x >的图象分别相交于A ,B 两点.点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC ∆的面积为4,则12k k -的值为 .17.如图,在平面直角坐标系中,菱形形ABCD 的顶点A 、B 在反比例函数(0,0)k y k x x =>>的图象上,横坐标分别为1,4,对角线//BD x 轴,若菱形ABCD 的面积为9.则k 的值为 .18.如图,已知点A 是一次函数1(0)3y x x =…图象上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数(0)k y x x=>的图象过点B ,C ,若OAB ∆的面积为8,则ABC ∆的面积是 .三.解答题(共8小题)19.如图,Rt ABC ∆的顶点B 在反比例函数12y x =的图象上,AC 边在x 轴上,已知90ACB ∠=︒,30A ∠=︒,4BC =,求图中阴影部分的面积.20.如图,在矩形OABC 中,5OA =,4OC =,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数(0)k y k x=>的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的表达式;(2)当k 为何值时,EFA ∆的面积最大,最大面积是多少?21.如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且(0,4)D ,(6,0)B .若反比例函数(0)k y x x=>的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F . (1)求反比例函数;(2)求OEF ∆的面积.22.如图,在平面直角坐标系中,菱形ABDC 的顶点D ,C 在反比例函数k y x=上(0,0)k x >>,横坐标分别为12和2,对角线//BC x 轴,菱形ABDC 的面积为9. (1)求k 的值及直线CD 的解析式;(2)连接OD ,OC ,求OCD ∆的面积.23.如图,已知90AOB ∠=︒,30OAB ∠=︒,反比例函数3(0)y x x=-<的图象过点(3,)B a -,反比例函数(0)k y x x=>的图象过点A . (1)求a 和k 的值;(2)过点B 作//BC x 轴,与双曲线k y x=交于点C .求OAC ∆的面积.。
第11讲 反比例函数 2023年中考数学一轮复习专题训练(浙江专用)(含解析)
第11讲反比例函数 2023年中考数学一轮复习专题训练(浙江专用)一、单选题1.(2022·金东模拟)如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(−10,0),对角线AC,BO相交于点D,双曲线y=k x(x<0)经过点D,AD+OD=6√5,AD<OD,k的值为()A.16B.32C.64D.8 2.(2022·桐乡模拟)已知点A(−√2,y1),B(1,y2),C(√3,y3)都在反比例函数y=−2x的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y2<y 3<y13.(2022·路桥模拟)如图,直线y=kx+b(k≠0)和双曲线y=ax(a≠0)相交于点A,B,则关于x的不等式kx+b>ax的解集是()A.x>0.5B.−1<x<0.5C.x>0.5或−1<x<0D.x<−1或0<x<0.5 4.(2022·鹿城模拟)如图,在直角坐标系中,点C(2,0),点A在第一象限(横坐标大于2),AB⊥y 轴于点B,且AC=AB,双曲线y=kx(k>0,x>0)经过AC中点D,并交AB于点E. 若BE=310AB,则k的值为()A.12B.18C.24D.30 5.(2022·龙湾模拟)某气球内充满一定质量的气体,温度不变时,气球内气体的压强p(kPa)与气体的体积V(m3)的关系是如图所示的反比例函数.当气球内气体的压强大于200kPa,气球就会爆炸.为了不让气球爆炸,则气球内气体的体积V需满足的取值范围是()A.V<0.5B.V>0.5C.V≤0.5D.V≥0.56.(2022·杭州模拟)如图,AB⊥OA于点A,AB交反比例函数y=k x(x<0)的图象于点C,且AC:BC=1:3,若S△AOB=4,则k=()A.4B.﹣4C.2D.﹣27.(2022·西湖模拟)如图,是三个反比例函数y1=k1x,y2=k2x,y3=k3x在y轴右侧的图象,则()A.k1>k2>k3B.k2>k1>k3C.k3>k2>k1D.k3> k1>k28.(2022·鄞州模拟)如图,一次函数y1=k1x+b的图象与反比例函数y2=k2x的图象交于点A(1,m),B(4,n).当y1>y2时,x的取值范围是()A.1<x<4B.0<x<1或x>4C.x<0或1<x<4D.x<0或x>4 9.(2022·富阳模拟)若点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y 2>y110.(2022·宁波模拟)已知正比例函数y=k1x和反比例函数y=k2x,在同一直角坐标系下的图象如图所示,其中符合k1•k2>0的是()A.①②B.①④C.②③D.③④二、填空题11.(2022·衢州)如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=kx(x>0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC=6,则k=.12.(2022·湖州)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,tan∠ABO=3,以AB为边向上作正方形ABCD.若图象经过点C的反比例函数的解析式是y= 1x,则图象经过点D的反比例函数的解析式是.13.(2022·江干模拟)某函数满足当x>1时,函数随x的增大而减小,且过点(1,2),写出一个满足条件的函数表达式.14.(2022·舟山)如图,在直角坐标系中,△ABC的顶点C与原点O重合,点A在反比例函数y= kx(k>0,x>0)的图象上,点B的坐标为(4,3),AB与y轴平行,若AB=BC,则k=.15.(2022·乐清模拟)如图,点A ,B 在反比例函数y =k x(k >0,x >0)的图象上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,连接OA ,AB ,若OC =3BD =6,OA =AB ,则k 的值为 .16.(2022·宁波模拟)在平面直角坐标系中, 对于不在坐标轴上的任意一点A(x ,y) , 我们把点 B(1y ,1x ) 称为点 A 的“逆倒数点”.如图, 正方形 OCDE 的顶点 C 为 (4,0) , 顶点 E 在 y 轴正半轴上, 函数 y =kx(x >0) 的图象经过顶点D 和点 A , 连结 OA 交正方形 OCDE 的一边于点 B , 若点 B 是点 A 的 “逆倒数点”, 则点 A 的坐标为 .17.(2022·洞头模拟)如图,在平面直角坐标系中,点A 是反比例函数y =k x图象在第一象限的一点,连结OA 并延长使AB=OA ,过点B 作BC ⊥x 轴,交反比例函数图象交于点D ,连结AD ,且S ΔABD =3,则k 的值为 .18.(2022·瓯海模拟)如图,在平面直角坐标系中,△ABC 为等腰直角三角形,∠ABC=90°,AC∥x轴,经过点B的反比例函数y= kx(k>0)交AC于点D,过点D 作DE⊥x轴于点E,若AD=3CD,DE=6,则k=19.(2022·建德模拟)已知反比例函数的表达式为y=1+2mx,A(x1,y1)和B(x2,y2)是反比例函数图象上两点,若x1<0<x2时,y1<y2,则m的取值范围是.20.(2022·玉环模拟)如图,反比例函数y=k x的图象经过点A(−1,−1),则当函数值y≥1时,自变量x的取值范围为.三、综合题21.(2022·台州)如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y (单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式;(2)若火焰的像高为3cm ,求小孔到蜡烛的距离.22.(2022·宁波)如图,正比例函数y= −23x的图象与反比例函数y= kx(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式.(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.23.(2022·杭州)设函数y1= k1x,函数y2=k2x+b(k1,k2,b是常数,k1≠0,k2≠0).(1)若函数y1和函数y2的图象交于点A(1,m),点B(3,1),①求函数y1,y2的表达式:②当2<x<3时,比较y1与y2的大小(直接写出结果).(2)若点C(2,n)在函数y1的图象上,点C先向下平移2个单位,再向左平移4个单位,得点D,点D恰好落在函数y1的图象上,求n的值,24.(2022·温州)已知反比例函数y=k x(k≠0)的图象的一支如图所示,它经过点(3,-2).(1)求这个反比例函数的表达式,并补画该函数图象的另一支.(2)求当y≤5,且y≠0时自变量x的取值范围.25.(2022·桐乡模拟)某校对教室采用药薰法进行灭蚊.根据药品使用说明,药物燃烧时,室内每立方米空气中含药量y(mg/m3)与药物点燃后的时间x(min)成正比例关系,药物燃尽后,y与x成反比例关系(如图).已知药物点燃8min燃尽,此时室内每立方米空气中含药量为6mg.(1)分别求药物燃烧时和药物燃尽后,y与x之间函数的表达式.(2)根据灭蚊药品使用说明,当每立方米空气中含药量低于1.6mg时,对人体是安全的,那么从开始药薰,至少经过多少时间后,学生才能进教室?(3)根据灭蚊药品使用说明,当每立方米空气中含药量不低于3mg且持续时间不低于10min时,才能有效杀灭室内的蚊虫,那么此次灭蚊是否有效?为什么?26.(2022·江干模拟)在一次矿难事件的调查中发现,矿井内一氧化碳浓度y(mg/m3)和时间x(ℎ)的关系如图所示:从零时起,井内空气中一氧化碳浓度达到30mg/m3,此后浓度呈直线增加,在第6小时达到最高值发生爆炸,之后y与x 成反比例关系.请根据题中相关信息回答下列问题:(1)求爆炸前后y与x的函数关系式,并写出相应的自变量取值范围;(2)当空气中浓度上升到60mg/m3时,井下3km深处的矿工接到自动报警信号,若要在爆炸前撤离到地面,问他们的逃生速度至少要多少km/ℎ?(3)矿工需要在空气中一氧化碳浓度下降到30mg/m3及以下时,才能回到矿井开展生产自救,则矿工至少要在爆炸多少小时后才能下井?答案解析部分1.【答案】B【解析】【解答】解:如图,过点D作DE⊥AO于点E,∵四边形ABCO是菱形,A(-10,0),∴AD⊥OD,AO=10,∴AD2+OD2=AO2,∵AD+OD=6√5,∴AD=6√5-OD,∴(6√5-OD)2+OD2=100,∴OD=4√5或OD=2√5,∵AD<OD,∴OD=4√5,AD=2√5,∵S△AOD=12AD·OD=12AO·DE,∴DE=4,∴OE=8,∴D(-8,-4),∵点D在双曲线y=kx上,∴k=32.故答案为:B.【分析】过点D作DE⊥AO于点E,根据菱形的性质得出AD⊥OD,根据勾股定理得出OD=4√5,AD=2√5,从而得出DE=4,OE=8,得出D(-8,-4),再根据点D在双曲线y=kx上,即可得出k=32.2.【答案】D【解析】【解答】解:因为点A(−√2,y1),B(1,y2),C(√3,y3)都在反比例函数y=−2x的图象上,所以可得:y1=−√2=√2;y2=−21=−2;y3=2√3=−2√33,∵√2>−2√33>−2,∴y1>y3>y2.故答案为:D.【分析】分别将x=−√2、x=1、x=√3代入反比例函数解析式中求出y1、y2、y3的值,然后进行比较即可.3.【答案】C【解析】【解答】解:∵直线y=kx+b(k≠0)和双曲线y=ax(a≠0)相交于点A,B两点,点A、B的横坐标分别为-1与0.5,∴不等式kx+b>ax的解集为-1<x<0或x>0.5.故答案为:C.【分析】根据图象,找出一次函数图象在反比例函数图象上方部分所对应的x的范围即可.4.【答案】B【解析】【解答】解:如图,过点D作DH⊥x轴于点H,过点A作AG⊥x轴于点G,∵D为AC中点,∴DH为△ACG的中位线,∴CH=GH,DH∥AG,∴DH:AG=1:2,设CH=GH=a,则CG=2a,∵C (2,0),∴OH=2+a ,OG=2(1+a ),∴AB=AC=2(1+a ),∵BE=310AB ,AB ⊥y 轴于点B , ∴BE=35(1+a ), 又∵双曲线y=k x经过点D ,交AB 于点E , ∴AG=y E =5k 3(1+a ),DH=k 2+a , ∴k 2+a :5k 3(1+a )=1:2, 整理,解得:a=4,∴BE=3,CG=2CH=8,AB=AC=10,∴在Rt △ACG 中,AG=√102−82=6,∴E (3,6),∴k=3×6=18.故答案为:B.【分析】如图,过点D 作DH ⊥x 轴于点H ,过点A 作AG ⊥x 轴于点G ,推出DH 为△ACG 的中位线,得CH=GH ,DH ∥AG ,从而得DH :AG=1:2,设CH=GH=a ,则CG=2a ,进而表示OH=2+a ,OG=2(1+a ),AB=AC=2(1+a ),再由BE=310AB ,AB ⊥y 轴于点B ,可得BE=35(1+a ),从而可表示AG=y E =5k 3(1+a ),DH=k 2+a ,列出k 和a 的比例式求得a=4,得BE=3,CG=2CH=8,AB=AC=10,在Rt △ACG 中,由勾股定理求得AG=6,从而得E (3,6),进而求出k 值即可.5.【答案】D【解析】【解答】解:设P 与V 的函数关系为P=k V, ∵当V=0.8时,P=125,∴k=125×0.8=100,∴P=100V, ∴当P=200时V=0.5,∴当P≤200时,V≤0.5.故答案为:D.【分析】设P与V的函数关系为P=kV,把V=0.8,P=125代入解析式,求出k=100,再把P=200代入解析式求出V=0.5,根据反比例函数图象的性质即可得出答案.6.【答案】D【解析】【解答】解:∵AC:BC=1:3,设AC=m(m>0),BC=3m,则AB=4m,∵S△AOB=12OA×AB=12×OA×4m=4,解得OA=2m,∴C(-2m,m),∴k=xy=m×(-2m)=-2.故答案为:D.【分析】根据AC:BC=1:3,设AC=m(m>0),BC=3m,得出AB=4m,然后根据S△AOB=4列等式表示出OA,从而求出C点坐标,代入反比例函数式求解即可. 7.【答案】C【解析】【解答】解:∵反比例函数y2=k2x和y3=k3x部分图象在第一象限,且y3=k3x离原点更远,∴k3>k2>0,∵y1=k1x的部分图象在第四象限,∴k1<0 ,∴k3>k2>k1.故答案为:C.【分析】根据k>0时,k越大,则反比例函数图象越远离原点,可判断k3>k2>0,再根据y1=k1x的部分图象在第四象限,则k<0,即可得出k3>k2>k1.8.【答案】C【解析】【解答】解:当y1>y2时,一次函数的图象在反比例函数的图象上方,由图可知x的取值范围为x<0或1<x<4.故答案为:C.【分析】由于A(1,m),B(4,m),观察图象可知当x<0或1<x<4时,一次函数的图象在反比例函数的图象上方,据此即得结论.9.【答案】C【解析】【解答】解:∵点A(−1,y1),B(2,y1),C(3,y3)在反比例函数y=−6x 的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,∵−3<−2<6,∴y1>y3>y2.故答案为:C.【分析】分别将x=-1、x=2、x=3代入反比例函数解析式中求出y1、y2、y3的值,然后进行比较即可.10.【答案】B【解析】【解答】解:①∵k1>0,k2>0,∴k1·k2>0,∴①符合题意;②∵k1<0,k2>0,∴k1·k2<0,∴②不符合题意;③∵k1>0,k2<0,∴k1·k2<0,∴③不符合题意;④∵k1<0,k2<0,∴k1·k2>0,∴④符合题意,∴符合k1·k2>0的是:①④.故答案为:B.【分析】根据各个小题中的函数图象,可以得到k1和k2的正负情况,从而可以判断k 1·k 2的正负情况,即可得出符合题意的答案.11.【答案】125【解析】【解答】解:过点C 作CM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N ,∵点C 在反比例函数图象上,设点C (m ,k m ) ∴MO =m ,CM =k m , ∵CM ∥DN ∥OE ,AE=CE ,CD=2BD ,∴OA OM =AE EC =1,BN BM =DN CM =BD CB =13, ∴OA=OM=m ,DN =k 3m, ∴k 3m =k x解之:x=3m ,∴ON=3m ,MN=3m-m=2m ,∴BN=m ,∴AB=m+m+2m+m=5m ,∵S △ABC =6=12×5m ×k m解之:k =125. 故答案为:125. 【分析】过点C 作CM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N ,设点C (m ,k m ),可得到OM ,CM 的长;再利用CM ∥DN ∥OE ,AE=CE ,CD=2BD ,利用平行线分线段成比例定理可表示出OA ,DN 的长,由此可得到关于x 的方程,解方程表示出x ,即可表示出ON ,MN ,BN ,AB 的长,然后利用△ABC 的面积为6,可求出k 的值.12.【答案】y= −3x【解析】【解答】解:如图,过点C 作CE ⊥y 轴交于点E ,过点D 作DF ⊥x 轴交于点F ,∵tan ∠ABO=3,∴AO=3OB ,设OB=a ,则AO=3a ,∵∠ABC=90°,∴∠ABO+∠OAB=∠ABO+∠CBE ,∴∠OAB=∠CBE ,又∵AB=BC ,∠AOB=∠BCE=90°,∴Rt △AOB ≌Rt △BCE (AAS ),∴CE=OB=a ,BE=AO=3a ,∴OE=BE-BO=3a-a=2a ,∴点C (a ,2a ),∵点C 在反比例函数y=1x 图象上, ∴2a 2=1,解得a 1=√22,a 2=-√22(舍去), ∴CE=OB=√22,BE=AO=3√22, 同理可证:Rt △AFD ≌Rt △AOB (AAS ),∴DF=AO=3√22,AF=BO=√22, ∴FO=√2,∴D (-√2,3√22),设经过D 点的反比例函数解析式为y=d x(d≠0), ∴d=-√2×3√22=-3, ∴y=-3x. 【分析】如图,过点C 作CE ⊥y 轴交于点E ,过点D 作DF ⊥x 轴交于点F ,由tan ∠ABO=3得AO=3OB ,设OB=a ,则AO=3a ,由“AAS”定理证出Rt △AOB ≌Rt △BCE ,从而得CE=OB=a ,BE=AO=3a ,进而得OE=2a ,即点C (a ,2a ),由点C 在反比例函数y=1x 图象上,列出关于a 的方程,解之得CE=OB=√22,BE=AO=3√22,同理可证:Rt △AFD ≌Rt △AOB (AAS ),从而得DF=AO=3√22,AF=BO=√22,FO=√2,即D (-√2,3√22),设经过D 点的反比例函数解析式为y=d x (d≠0),代入点D 坐标求解即可. 13.【答案】y =2x【解析】【解答】解: y =2x,当 x =1 时, y =2 且函数y 的值始终随自变量x 的增大而减小,故答案为: y =2x. 【分析】对于y=k x,当k>0时,图象位于一、三象限,且在每一象限内,y 随x 的增大而减小,将(1,2)代入求出k 的值,据此可得函数表达式.14.【答案】32【解析】【解答】解:∵AB ∥y 轴,B (4,3),点A 在反比例函数y=k x(k>0,x>0)的图象上,∴点A (4,k 4), ∵△ABC 的顶点C 与原点O 重合,∴BC=OB=√42+32=5,∵AB=BC ,∴5=k 4-3, ∴k=32.故答案为:32.【分析】由AB ∥y 轴,B (4,3),点A 在反比例函数y=k x(k>0,x>0)的图象上,得点A (4,k 4),再由勾股定理求得OB 的长,结合AB=BC ,从而得5=k 4-3,解之即可确定k 的值.15.【答案】4√15【解析】【解答】解:∵OC =3BD =6,∴BD =2,∵点A ,B 在y =k x上, ∴A (6,k 6),B (2,k 2), ∵OA=OB ,∴OA 2=OB 2,∴(6−0)2+(k 6−0)2=(6−2)2+(k 6−k 2)2, 整理得,k 212=20, 解得:k 1=4√15,k 2=−4√15,∵k >0,∴k =4√15,故答案为:4√15.【分析】由已知条件可得BD=2,设A (6,k 6),B (2,k 2),根据OA=OB 可得OA 2=OB 2,结合两点间距离公式可得k 的值,由反比例函数图象所在的象限可得k>0,据此解答.16.【答案】(64,14) 或 (14,64) 【解析】【解答】解:∵正方形OCDE ,C (4,0)∴D (4,4),将点(4,4)代入到y =k x得k=16 ∴y =16x , 令A (a ,16a) ∵点B 是点A 的 “逆倒数点”∴B(a16,1 a)当B在ED上时,1a=4,得a=14;当B在CD上时,a16=4,得a=64;∴综上所述,A的坐标为(64,14)或(14,64).【分析】先通过正方形上C点的坐标,可得D(4,4),代入反比例函数,求得K的值,从而求出反比例函数的解析式,先假设A点坐标,即可得B点坐标,若B在ED 上,那么B的纵坐标为4,若B在CD上,那么B的横坐标为4,据此即可求解. 17.【答案】4【解析】【解答】解:连接OD,作AE∥OC.∵OA=AB,∴S△OAD=S△ABD=3,∵S△ODC=12OC⋅DC=12D x⋅D y=12|k|,∵反比例函数图象在第一象限,∴k>0,∴S△ODC=12k,∵AE∥OC且OA=AB,∴AE是△OBC的中位线,∴OC=2AE,BC=2EC,∴S△OBC=12⋅OC⋅BC=12⋅2AE⋅2EC=2⋅A x⋅A y=2k,∵S△OBC=S△ABD+S△OAD+S△ODC,∴3+3+12k=2k,解得:k =4.故答案为:k =4.【分析】连接OD ,作AE ∥OC ,根据OA=AB 可得S △OAD =S △ABD =3,根据反比例函数k 的几何意义可得S △ODC =k 2,易得AE 是△OBC 的中位线,则OC=2AE ,BC=2EC ,根据三角形的面积公式可S △OBC =2k ,然后根据S △OBC =S △ABO +S △OAD +S △ODC 就可求出k 的值.18.【答案】27【解析】【解答】解:如图,过B 作BF ⊥x 轴于点F ,交AC 于点H ,设CD=m ,∴AD=3CD=3m ,AC=4m ,∵AC ∥x 轴, DE=6,∴D (3m ,6),∵△ABC 为等腰直角三角形,∴AB=BC ,∠ABC=90°,∴AH=CH=HB=2m ,∴B (2m ,2m+6),∵点B ,D 在双曲线y=k x上, ∴k=18m=2m (2m+6),∴m=32, ∴k=27.故答案为:27.【分析】过B作BF⊥x轴于点F,交AC于点H,设CD=m,根据题意得出D(3m,6),B(2m,2m+6),再根据点B,D在双曲线y=kx上,得出k=18m=2m(2m+6),求出m的值,即可得出k的值.19.【答案】m>−1 2【解析】【解答】解:∵点A(x1,y1),B(x2,y2)为反比例函数y=1+2mx图象上两点,当x1<0<x2时,y1<y2,∴该反比例函数的图象的两个分支分别在第一、第三象限∴1+2m>0,解得m>−1 2,故m的取值范围是m>−1 2 .故答案为:m>−1 2 .【分析】根据题意可得:反比例函数的图象的两个分支分别在第一、第三象限,则1+2m>0,求解可得m的范围.20.【答案】0<x≤1【解析】【解答】解:∵反比例函数y=kx的图象经过点A(-1,-1),∴k=-1×(-1)=1>0,图象也经过点(1,1),∴在第一、三象限内y随x的增大而减小,∴当y≥1时,0<x≤1.故答案为:0<x≤1.【分析】先由反比例函数y=kx的图象经过点A(-1,-1),求得k值及关于原点对称的点(1,1),由y≥1,结合反比例函数性质可得0<x≤1,即可求解. 21.【答案】(1)解:∵y是关于x的反比例函数,设y与x之间的函数解析式为y=k x,当x=6时y=2∴k=2×6=12;∴函数解析式为y=12 x(2)∵y=12 x当y=3时3x=12,解之:x=4答:若火焰的像高为3cm ,小孔到蜡烛的距离为4cm.【解析】【分析】(1)利用y是关于x的反比例函数,因此y与x之间的函数解析式为y=k x,将x=6,y=2代入函数解析式求出k的值,可得到反比例函数解析式.(2)将y=3代入函数解析式求出对应的x的值,即可求解.22.【答案】(1)解:把A(a,2)的坐标代入y= −23x,得2= −23a,解得a=-3,∴A (-3,2),把A (-3,2)的坐标代入y= kx,得2= k−3,解得k=-6,∴反比例函数的表达式为y= −6 x;(2)n的范围为n>2或n<-2.【解析】【解答】解:(2)∵点P(m,n)在反比例函数图象上,且它到y轴距离小于3,∴-3<m<0或0<m<3,当m=-3时,n=−6−3=2,当m=3时,n=−63=-2,∴若点P (m,n)在该反比例函数图象上,且它到y轴距离小于3,n的范围为n>2或n<-2.【分析】(1)把A(a,2)代入正比例函数式求出A点坐标,然后利用待定系数法求反比例函数式即可;(2)观察图象先确定出m的范围,再结合函数关系式和图象确定出n的取值范围即可. 23.【答案】(1)解:①由题意,得k1=3×1=3,∴函数y1= 3x∵函数y1的图象过点A(1,m),∴m=3,由题意,得{3=k2+b,1=3k2+b,解得{k2=−1,b=4,∴y2=-x+4.②y1<y2.(2)解:由题意,得点D的坐标为(-2,n-2),∴-2(n-2)=2n,解得n=1.【解析】【分析】(1)①将点B的坐标代入反比例函数解析式,可求出k1的值;再求出m的值,可得到点A的坐标;将点A,B的坐标代入一次函数解析式,建立关于k,b的方程组,解方程组求出k,b的值,可得到两函数解析式;②利用反比例函数和一次函数的性质,可得到2<x<3时,比较y1与y2的大小.(2)利用点的坐标平移规律:上加下减,左减右加,可得到点D的坐标,再将点D 代入函数y1的解析式,可得到关于n的方程,解方程求出n的值.24.【答案】(1)解:把点(3,−2)代入表达式y=k x(k≠0),得−2=k3,∴k=−6,∴反比例函数的表达式是y=−6 x.反比例函数图象的另一支如图所示.(2)解:当y=5时,5=−6 x,解得x=−65.由图象可知,当y≤5,且y≠0时,自变量x的取值范围是x≤−65或x>0.【解析】【分析】(1)将点(3,-2)代入反比例函数解析式求出k的值,可得到反比例函数解析式;再利用描点法画出反比例函数的另一支图象.(2)将y=5代入函数解析式求出对应的x的值;观察函数图象可得到当y≤5且y≠0时的x的取值范围.25.【答案】(1)解:设药物燃烧时y关于x的函数关系式是y=kx(k≠0),将点(8,6)代入,得k=3 4,所以药物燃烧时y关于x的函数关系式是y=34x,自变量x的取值范围是0≤x≤8;设药物燃烧后y关于x的函数关系式是y= m x,把(8,6)代入得:m=48,所以药物燃烧后y与x的函数关系式为y=48 x,(2)解:当y=1.6时,代入y=48 x,得x=30,那么从药薰开始,至少需要经过30分钟后,学生才能回到教室;(3)解:此次灭蚊有效,将y=3分别代入y=34x,y=48x,得,x=4和x=16,那么持续时间是16−4=12(min)>10min,所以能有效杀灭室内的蚊虫.【解析】【分析】(1)设药物燃烧时y关于x的函数关系式是y=kx,将(8,6)代入求出k的值,据此可得对应的函数关系式;设药物燃烧后y关于x的函数关系式是y=mx,将(8,6)代入求出m的值,据此可得对应的函数表达式;(2)将y=1.6代入反比例函数解析式中求出x的值即可;(3)将y=3代入(1)中的关系式中求出x的值,然后作差,再与10进行比较即可判断.26.【答案】(1)解:∵爆炸前浓度呈直线型增加,∴可设y与x的函数关系式为y=k1x+b(k1≠0),由图象知y=k1x+b过点(0,30),(6,75),∴{30=b75=6k1+b,解得{k1=152b=30∴y=152x+30,此时自变量x的取值范围是0≤x≤6,∵爆炸后浓度成反比例下降,∴可设y与x的函数关系式为y=k2x(k2≠0).由图象知y=k2x过点(6,75),∴k26=75,∴k2=450,∴y=450x,此时自变量x的取值范围是x>6;(2)解:当y=60时,由y=152x+30得:152x+30=60,解得x=4,∴撤离的最长时间为6−4=2(小时).∴撤离的最小速度为3÷2=1.5(km/ℎ);(3)解:当y=30时,由y=450x得,x=15,15−6=9(小时).∴矿工至少在爆炸后9小时才能下井.【解析】【分析】(1)由图象可得:爆炸前浓度呈直线型增加,设y=k1x+b,将(0,30)、(6,75)代入求出k1、b的值,据此可得函数关系式;爆炸后浓度成反比例下降,设y=k2x,将(6,75)代入求出k2的值,据此可得对应的函数关系式;(2)令爆炸前对应的函数关系式中的y=60,求出x的值,然后求出撤离的时间,进而可得撤离的最小速度;(3)令爆炸后对应的函数关系式中的y=30,求出x的值,据此求解。
中考数学总复习《反比例函数的性质》练习题及答案
中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。
D.当y增大时,BE·DF的值不变。
8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。
中考数学专题练习:反比例函数(含答案)
中考数学专题练习:反比例函数(含答案)1.(·海南)已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于( )A.二、三象限B.一、三象限C.三、四象限D.二、四象限2.(·哈尔滨)已知反比例函数y=2k-3x的图象经过点(1,1),则k的值为( )A.-1 B.0 C.1 D.23.(·湖州)如图,已知直线y=k1x(k1≠0)与反比例函数y=k2x(k2≠0)的图象交于M,N两点,若点M的坐标是(1,2),则点N的坐标是( )A.(-1,-2) B.(-1,2)C.(1,-2) D.(-2,-1)4.(·临沂)如图,正比例函数y1=k1x与反比例函数y2=k2x的图象相交于A、B两点,其中点A的横坐标为1,当y1<y2时,x的取值范围是( )A.x<-1或x>1B.-1<x<0或x>1 C.-1<x<0或0<x<1 D.x<-1或0<x<15.(·无锡)已知点P(a,m)、Q(b,n)都在反比例函数y=-2x的图象上,且a<0<b,则下列结论一定成立的是( ) A .m +n<0B .m +n>0C .m<nD .m>n6.(原创)如图是反比例函数y =kx图象的一支,则一次函数y =-kx +k 的图象大致是( )7.(·怀化)函数y =kx -3与y =kx(k≠0)在同一坐标系内的图象可能是( )8.(·安庆一模)对于反比例函数y =2x ,下列说法不正确...的是( ) A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限 C .当x >0时,y 随x 的增大而增大 D .当x <0时,y 随x 的增大而减小9.(·郴州) 如图,A,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .110.(·嘉兴) 如图,点C 在反比例函数y =kx (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A 、B,且AB =BC,△AOB 的面积为1.则k 的值为( )A .1B .2C .3D .411.(·台州)如图,点 A,B 在反比例函数y =1x (x>0)的图象上,点 C,D 在反比例函数y =kx (k>0)的图象上, AC∥BD∥y 轴. 已知点 A,B 的横坐标分别为 1,2,△OAC 与△ABD 的面积之和为32,则 k 的值为( )A .4B .3C .2D. 3212.(·重庆B 卷)如图,菱形ABCD 的边AD⊥y 轴,垂足为点E,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y =kx (k≠0,x >0)的图象同时经过顶点C,D.若点C 的横坐标为5,BE=3DE,则k 的值为( )A.52B.3 C.154D.513.(·南京)已知反比例函数y=kx的图象经过点(-3,-1),则k=________.14.(·云南省卷)已知点P(a,b)在反比例函数y=2x的图象上,则ab=________.15.(·宜宾)已知:点P(m,n)在直线 y=-x+2上,也在双曲线 y =-1x上,则m2+n2的值为________.16.(·随州)如图,一次函数y=x-2的图象与反比例函数y=kx(k>0)的图象相交于A、B两点,与x轴交于点C,若tan∠AOC=13,则k的值为________.17.(·泰安)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=mx的图象经过点E,与AB交于点F.(1)若点B的坐标为(-6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF-AE=2,求反比例函数的表达式.18.(·杭州)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时). (1)求v 关于t 的函数表达式;(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?19.(·山西)如图,一次函数y 1=k 1x +b(k 1≠0)的图象分别与x 轴,y 轴相交于点A,B,与反比例函数y 2=k 2x (k 2≠0)的图象相交于点C(-4,-2),D(2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.20.(·甘肃省卷)如图,一次函数y=x+4的图象与反比例函数y=kx(k为常数且k≠0)的图象交于A(-1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP =32S△BOC,求点P的坐标.21.(·绵阳)如图,一次函数y=-12x+52的图象与反比例函数y=kx(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM的面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点的坐标.22.(·改编)某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:年度2014 2015 2016 2017投入技改资金x(万元) 2.5 3 4 4.5产品成本y(万元/件) 7.2 6 4.5 4(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其表达式;(2)按照这种变化规律,若2018年已投入资金5万元. ①预计生产成本每件比2017年降低多少万元?②若打算在2018年把每件产品成本降低到3.2万元,则还需要投入资金多少万元?(结果精确到0.01万元).1.(·瑶海区二模)如图,已知点A 是反比例函数y =1x (x>0)的图象上的一个动点,连接OA,OB⊥OA ,且OB =2OA.那么经过点B 的反比例函数图象的表达式为( )A .y =-2xB .y =2xC .y =-4xD .y =4x2.(·宿迁)如图,在平面直角坐标系中,反比例函数y=2x(x>0)的图象与正比例函数y=kx,y=1kx(k>1)的图象分别交于点A,B.若∠AOB=45°,则△AOB的面积是________.3.(·北京)在平面直角坐标系xOy中,函数y=kx(x>0)的图象G经过点A(4,1),直线l:y=14x+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=-1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.4.(·杭州)设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(-1,-1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值;(3)已知点C(x 1,y 1),D(x 2,y 2)在该一次函数图象上,设m =(x 1-x 2)(y 1-y 2),判断反比例函数y =m +1x 的图象所在的象限,说明理由.参考答案【基础训练】1.D 2.D 3.A 4.D 5.D 6.A 7.B 8.C 9.B 10.D 11.B 12.C13.3 14.2 15.6 16.317.解:(1)∵B(-6,0),AD =3,AB =8,E 为CD 的中点, ∴E(-3,4),A(-6,8).∵反比例函数的图象过点E(-3,4), ∴m=-3×4=-12.设图象经过A 、E 两点的一次函数表达式为:y =kx +b,∴⎩⎨⎧-6k +b =8,-3k +b =4,解得⎩⎨⎧k =-43,b =0,∴y=-43x ;(2)∵AD=3,DE =4,∴AE=5. ∵AF-AE =2,∴AF=7.∴BF=1.设E 点坐标为(a,4),则F 点坐标为(a -3,1). ∵E ,F 两点在y =mx的图象上,∴4a=a -3,解得a =-1.∴E(-1,4),∴m=-4,∴y=-4x .18.解:(1)根据题意,得vt =100 (t>0),所以v =100t (t>0);(2)由题意知,v =100t (0<t ≤5),而100>0,所以当t>0 时,v 随着t 的增大而减小,当0<t≤5时,v≥1005=20,所以平均每小时至少要卸货20吨.19.解:(1)∵一次函数y 1=k 1x +b(k 1≠0)的图象经过点C(-4,-2),D(2,4),∴⎩⎨⎧-2=-4k 1+b 4=2k 1+b ,解得:⎩⎨⎧k1=1b =2,∴一次函数的表达式为:y 1=x +2.∵反比例函数y 2=k 2x (k 2≠0)的图象经过点D(2,4),∴4=k 22,即k 2=8,∴反比例函数的表达式为:y 2=8x ;(2)令y 1=x +2中y 1>0,即x +2>0,解得x >-2,∴当x >-2时,y 1>0;(3)由图象可知:当x <-4或0<x <2时,y 1<y 2.20.解:(1)把点A(-1,a)代入y =x +4,得a =3,∴ A(-1,3).把A(-1,3)代入反比例函数y =k x ,得k =-3,∴ 反比例函数的表达式为y =-3x ;(2)联立两个函数表达式得 ⎩⎨⎧y =x +4,y =-3x , 解得⎩⎨⎧x =-1,y =3,⎩⎨⎧x =-3,y =1.∴ 点B 的坐标为B(-3,1).当y =x +4=0时,得x =-4.∴ 点C(-4,0).设点P 的坐标为(x,0).∵S △ACP =32S △BOC ,∴12×3×|x-(-4)|=32×12×4×1.即|x +4|=2,解得 x 1=-6,x 2=-2.∴ 点P(-6,0)或(-2,0).21.解:(1)∵△AOM 的面积为1,∴12||k =1,∵k>0,∴k=2.∴y=2x ;(2)如解图,作点A 关于y 轴的对称点C,连接BC 交y 轴于P 点.∵A ,B 是两个函数图象的交点,第21题解图∴⎩⎪⎨⎪⎧y =2x ,y =-12x +52,解得:⎩⎨⎧x 1=1,y 1=2,⎩⎨⎧x 2=4,y 2=12.∴A(1,2),B(4,12).∴C(-1,2).设y BC =kx +b,则⎩⎨⎧-k +b =2,4k +b =12, 解得⎩⎪⎨⎪⎧k =-310,b =1710,∴y=-310x +1710,∴P(0,1710),∴PA+PB =BC =52+(32)2=1092.22.解:(1)∵2.5×7.2=18,3×6=18,4×4.5=18,4.5×4=18,∴x 与y 的乘积为定值18,∴反比例函数能表示其变化规律,其表达式为y =18x ;(2)①当x =5时,y =3.6.4-3.6=0.4(万元),∴生产成本每件比2017年降低0.4万元.②当y =3.2时,3.2=18x ,x =5.625≈5.63,5.63-5=0.63(万元).∴还需投入0.63万元.【拔高训练】1.C 2.23.解:(1)∵点A(4,1)在y =kx (x>0)的图象上.∴k4=1,∴k=4.(2)① 3个.(1,0),(2,0),(3,0).② a.如解图1,当直线过(4,0)时:14×4+b =0,解得b =-1, b .如解图2,当直线过(5,0)时:14×5+b =0,解得b =-54,c .如解图3,当直线过(1,2)时,14×1+b =2,解得b =74, d .如解图4,当直线过(1,3)时14×1+b =3,解得b =114,∴综上所述:-54≤b<-1或74<b≤114. 4.解:(1)将A(1,3),B(-1,-1)的坐标分别代入y =kx +b,得⎩⎨⎧k +b =3,-k +b =-1,解得⎩⎨⎧k =2,b =1, 故一次函数的表达式为y =2x +1.(2)∵点(2a +2,a 2)在该一次函数图象上,∴a 2=2(2a +2)+1,∴a 2-4a -5=0,解得a1=5,a2=-1.(3)由题意知,y1-y2=(2x1+1)-(2x2+1)=2(x1-x2).∴m=(x1-x2)(y1-y2)=2(x1-x2)2≥0,∴m+1≥1>0,∴反比例函数y=m+1x的图象在第一、三象限.。
中考数学综合题专题复习【反比例函数】专题解析附答案
一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.3.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。
中考数学反比例函数专题训练(含答案)
中考数学反比例函数专题训练(含答案)一、反比例函数的图象与性质1.已知反比例函数的解析式为y=( |a|-2 ) / x,则a 的取值范围是( )A. a ≠2B. a ≠-2C. a ≠±2D. a=±22.反比例函数y=-3 / x,下列说法不正确的是( )A. 图象经过点(1,-3)B. 图象位于第二、四象限C. 图象关于直线y=x 对称D. y 随x 的增大而增大3.下列各点中,与点(-3,4) 在同一个反比例函数图象上的点的是( )A. (2,-3)B. (3,4)C. (2,-6)D. (-3,-4)4.点M(a,2a) 在反比例函数y=8 / x 的图象上,那么a 的值是( )A. 4B. -4C. 2D. ±25.如果反比例函数y=(a-2) / x ( a 是常数) 的图象在第一、三象限,那么a 的取值范围是( )A. a<0B. a>0C. a<2D. a>26.若点A(-3,y1),B(-2,y2),C(1,y3) 都在反比例函数y=-12 / x 的图象上,则y1,y2,y3 的大小关系是( )A. y2<y1<y3B. y3<y1<y2C. y1<y2<y3D. y3<y2<y17.反比例函数y=k / x 的图象经过点A(-1,2),则当x>1 时,函数值y 的取值范围是( )A. y>-1B. -1<y<0C. y<-2D. -2<y<08.若点A(a,b) 在反比例函数y=3 / x 的图象上,则代数式ab-1 的值为________.9.反比例函数y=(2m-1)xm2-2,x>0时,y 随着x 的增大而增大,则m 的值是________.10.已知一个反比例函数的图象位于第二、四象限内,点P(x0,y0) 在这个反比例函数的图象上,且x0y0>-4.请你写出这个反比例函数的表达式__________.(写出符合题意的一个即可)11.已知A(x1,y1),B(x2,y2) 都在反比例函数y=-2 / x 的图象上.若x1x2=-4,则y1y2 的值为________.12.已知A(1,m),B(2,n) 是反比例函数y=k/x 图象上的两点,若m-n=4,则k 的值为________.13.已知反比例函数的图象经过三个点A(-4,-3)、B(2m,y1)、C(6m,y2).若y1-y2=4,则m 的值为________.14.已知反比例函数y=m / x 在其所在象限内y 随x 的增大而减小,点P(2-m,m+1) 是该反比例函数图象上一点,则m 的值为________.15.已知A(x1,y1),B(x2,y2) 是反比例函数y=k / x 图象上的两点,且x1+x2=-2,x1·x2=2,y1+y2=-4/3,则k=________.16.已知点A(x1,y1)、B(x2,y2) 是反比例函数y=k/x 图象上的两点,且(x1-x2)(y1-y2)=9,3x1=2x2,则k 的值为________.17.在平面直角坐标系xOy 中,点A(a,b) (a>0,b>0) 在双曲线y=k1/x 上,点A 关于x 轴的对称点B 在双曲线y=k2/x 上,则k1+k2 的值为________.18.反比例函数y=k/x 的图象上有一点P(2,n),将点P 向右平移1 个单位,再向下平移1 个单位得到点Q,若点Q 也在该函数的图象上,则k=________.19.已知A、B 两点分别在反比例函数y=(2m-3) / x ( m ≠3/2 ) 和y=(3m-2) / x ( m ≠2/3) 的图象上,且点A 与点B 关于y 轴对称,则m 的值为________.【参考答案】二、反比例函数与几何图形或一次函数结合1.若一次函数y=ax+6 (a≠0) 的图象与反比例函数y=3/x 的图象只有一个交点,则a 的值为________.2.若直线y=-x+m 与双曲线y=n/x (x>0) 交于A(2,a),B(4,b) 两点,则mn 的值为________.3.一次函数y1=-x+6 与反比例函数y2=8/x (x>0) 的图象如图所示,当y1>y2 时,自变量x 的取值范围是________.4. 如图,在平面直角坐标系中,直线y=-x+2 与反比例函数y=1/x 的图象有唯一公共点.若直线y=-x+b 与反比例函数y=1/x 的图象没有公共点,则b 的取值范围是________.5.如图,过x 轴的正半轴上任意一点P,作y 轴的平行线,分别与反比例函数y=3/x (x>0),y=-6/x (x>0) 的图象相交于点A,B,若C 为y 轴上任意一点,连接AC,BC,则△ABC 的面积为________.6.如图,矩形ABCD 的顶点A,C 在反比例函数y=k/x (k>0,x>0) 的图象上,若点A 的坐标为(3,4),AB=2,AD∥x 轴,则点C 的坐标为________.7.如图,正方形ABCD 的边长为2,点B 与原点O 重合,与反比例函数y=k/x 的图象交于E、F 两点,若△DEF 的面积为9/8,则k 的值为________.8.如图,已知反比例函数y=4/x 的图象经过Rt△OAB 斜边OB 的中点D,与直角边AB 相交于点C,则△OBC 的面积为________.9.如图,反比例函数y=k/x 的图象经过平行四边形ABCD 对角线的交点P,已知点A、C、D 在坐标轴上,BD⊥DC,平行四边形ABCD 的面积为6,则k=________.10.如图,点A,C 分别是正比例函数y=x 的图象与反比例函数y=4/x 的图象的交点,过A 点作AD⊥x 轴于点D,过C 点作CB⊥x 轴于点B,则四边形ABCD 的面积为________.11.如图,点A 是反比例函数y=-8/x 图象上的一点,过点A 的直线与y 轴交于点B,与反比例函数y=k/x (x>0) 的图象交于点C、D.若AB=BC=CD,则k 的值为________.12.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=k/x 在第一象限的图象经过点B,若OA2-AB2=8,则k 的值为________.【参考答案】。
2019年中考数学专题复习小练习专题11反比例函数
专题11 反比例函数1.2018·柳州已知反比例函数的解析式为y =|a |-2x,则a 的取值范围是( )A .a ≠2 B.a ≠-2 C .a ≠±2 D.a =±22.2018·绥化已知反比例函数y =3x,下列结论中不正确的是( )A .其图象经过点(3,1)B .其图象分别位于第一、三象限C .当x >0时,y 随x 的增大而减小D .当x >1时,y >33.2018·扬州已知点A (x 1,3),B (x 2,6)都在反比例函数y =-3x的图象上,则下列关系式一定正确的是( )A .x 1<x 2<0B .x 1<0<x 2C .x 2<x 1<0D .x 2<0<x 14.2018·黄石已知一次函数y 1=x -3和反比例函数y 2=4x的图象在平面直角坐标系中交于A ,B 两点,当y 1>y 2时,x 的取值范围是( )A .x <-1或x >4B .-1<x <0或x >4C .-1<x <0或0<x <4D .x <-1或0<x <45.2018·上海已知反比例函数y =k -1x(k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是________.6.2018·邵阳如图Z -11-1所示,A 是反比例函数y =k x的图象上一点,过点A 作AB ⊥x 轴,垂足为B .若△AOB 的面积为2,则k 的值是________.图Z -11-17.2018·随州如图Z -11-2,一次函数y =x -2的图象与反比例函数y =k x(k >0)的图象相交于A ,B 两点,与x 轴交于点C .若tan∠AOC =13,则k 的值为________.图Z -11-28.2018·大庆如图Z -11-3,A (4,3)是反比例函数y =k x在第一象限图象上一点,连接OA ,过点A 作AB ∥x 轴,截取AB =OA (点B 在点A 右侧),连接OB ,交反比例函数y =k x的图象于点P .(1)求反比例函数y =k x的解析式; (2)求点B 的坐标; (3)求△OAP 的面积.图Z -11-3详解详析1.C 2.D 3.A 4.B 5.k<1 6.4 7.38.解:(1)∵A(4,3)是反比例函数y =kx 图象上的一点,∴3=k 4,解得k =12.∴反比例函数的解析式为y =12x.(2)如图,过点A 作AM⊥x 轴于点M.∵A(4,3),∴AM=3,OM =4. 在Rt △AMO 中,OA =AM 2+OM 2=32+42=5. 又∵AB=OA ,∴AB=5.∵AB∥x 轴,∴点B 的坐标为(9,3). (3)设OB 的函数解析式为y =ax , ∴3=9x ,解得x =13,∴y=13x.联立⎩⎪⎨⎪⎧y =12x ,y =13x ,解得⎩⎪⎨⎪⎧x =6,y =2或⎩⎪⎨⎪⎧x =-6,y =-2.∵点P 在第一象限,∴点P 的坐标为(6,2). 过点P 作PN⊥x 轴于点N ,连接AP. ∴PN=2,ON =6. ∴S △OAP =S △OAM +S梯形AMNP-S △OPN =12AM·OM+12(AM +PN)·(ON-OM)-12PN·ON=12×3×4+12×(2+3)×(6-4)-12×2×6=5, 即△OAP 的面积为5.。
中考数学复习《反比例函数》专题练习-附带参考答案
中考数学复习《反比例函数》专题练习-附带参考答案一、选择题1.下列函数关系式中,y 是x 的反比例函数的是( )A .y =x +3B .y =x 3C .y =3x 2D .y =3x 2.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A .6B .﹣2C .﹣3D .3 3.已知反比例函数y =−1x ,下列结论不正确...的是( ) A .该函数图象经过点(−1,1)B .该函数图象位于第二、四象限C .y 的值随着x 值的增大而增大D .该函数图象关于原点成中心对称 4.反比例函数(其中),当时,y 随x 的增大而增大,那么m 的取值范围是( ) A . B .C .D . 5.在同一直角坐标系中,函数y =−kx +k 与y =k x (k ≠0)的大致图象可能为( )A .B .C .D .6.反比例函数y =6x 图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)其中y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1 7.如图,A 、B 是第二象限内双曲线y =k x 上的点,A 、B 两点的横坐标分别是a ,3a ,线段AB 的延长线交x轴于点C ,S △AOC =12.则k 的值为( )A .﹣6B .﹣5C .﹣4D .﹣38.如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.32D.−32二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为.三、解答题14.如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.(1)求一次函数与反比例函数的表达式;(2)请直接写出不等式的解集.15.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“嗐转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:请根据表中的信息解决下列问题:(1)求出y与x之间的函数解析式;(2)若某人蒙上眼睛走出的大圆圈的半径为35米,则其两腿迈出的步长之差是多少厘米?(k>0).16.如图,设反比例函数的解析式为y=3kx(1)若反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若反比例函数的图象与过点M (﹣2,0)的直线l :y =kx+b 的图象交于A 、B 两点,如图,当△ABO 的面积为12时,求直线l 的解析式.17.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第10分钟起每分钟每毫升血液中含药量增加0.3微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1) ; (2)分别求出当和时,y 与x 之间的函数关系式; (3)如果每毫升血液中含药量不低于12微克时是有效的,求一次服药后的有效时间是多少分钟?18.如图,一次函数 y ax b =+ 的图象与反比例函数 k y x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 全等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.参考答案1.B2.C3.C4.A5.D6.C7.A8.B9.k=-610.>11.(-m,-n).12.−413.1014.(1)解:点在反比例函数的图象上反比例函数解析式为;OA=OB,点在轴负半轴上点.把点、代入中得解得:一次函数的解析式为;(2) 15.(1)解:设y 与x 之间的函数解析式为y =k x 将(2,7)代入得7=k 2∴k =14∴y 与x 之间的函数解析式为y =14x . (2)解:当y =35时,即14x =35,解得x =0.4∴某人蒙上眼睛走出的大圆圈的半径为35米,其两腿迈出的步长之差是0.4厘米.16.(1)解:∵反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2 把y =2代入y =2x 求得x =1∴反比例函数与正比例函数y =2x 的图象交点的坐标为(1,2)把(1,2)代入y =3k x (k >0),得到3k =2 ∴k =23;(2)解:把M (﹣2,0)代入y =kx+b ,可得b =2k∴y =kx+2k解{y =3k x y =kx +2k 得{x =−3y =−k 或{x =1y =3k∴B (﹣3,﹣k ),A (1,3k )∵△ABO 的面积为12∴12•2•3k+12•2•k =12解得k =3∴直线l 的解析式为y =3x+6.17.(1)27(2)解:当时,设y 与x 之间的函数关系式为∵经过点 ∴解得:,∴解析式为;当时,y 与x 之间的函数关系式为∵经过点∴解得:∴函数的解析式为; (3)解:令解得:令,解得:∴分钟 ∴服药后能持续175分钟.18.(1)∵点C (1,2)在反比例函数 图象上 ∴k=2∴反比例函数解析式为 2y x= ∵点B (2,m )在反比例函数 图象上 ∴m= 22=1. (2)如图,过点C 作⊥OA 于E ,过点D 作DF ⊥OA 于 Fk y x =2y x =∵C (1,2),D (2,1)∴CE=2,DF=1∵C 、D 在一次函数 的图象上∴221a b a b +=⎧⎨+=⎩解得: 13a b =-⎧⎨=⎩∴一次函数解析式为y=-x+3当y=0时,x=3∴A 点坐标为(3,0)∴OA=3∴DOC S =S △AOC -S △AOD = 1122OA CE OA DF ⋅-⋅ = 11323122⨯⨯-⨯⨯ =1.5.(3)设点P 坐标为(n , 2n )∵C (2,1),D (1,2)∴OC=OD∵△POC 和△POD 全等∴PC=PD ∴222222(1)(2)(2)(1)n n n n -+-=-+-解得: 2n =∴P (, )或P ( 2 , ) ∴双曲线上存在一点P ,使得△POC 和△POD 全等,P ( , )或P ( , ). y ax b =+222-2222。
中考数学反比例函数综合经典题及答案
中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。
中考数学《反比例函数》专项练习题(附带答案)
中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。
中考数学总复习《反比例函数与一次函数综合》专题训练-附答案
中考数学总复习《反比例函数与一次函数综合》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,已知反比例函数()10cy c x=≠和一次函数()20y kx b k =+≠的图象相交于点()2,3A -和()3,B a .(1)求反比例函数和一次函数的表达式;(2)将一次函数2y 向下平移5个单位长度后得到直线3y ,当213y y y >>时,求x 的取值范围. 2.如图,反比例函数()0ky k x=>的图象经过正方形OABC 的顶点B ,一次函数1y x =+经过BC 的中点D .(1)求反比例函数的表达式;(2)将ABD △绕点A 顺时针旋转90︒,点D 的对应点为E ,判断E 点是否落在双曲线上. 3.如图,反比例函数()0ky k x=< 的图象与矩形ABCO 的边相交于D 、E 两点()51E -,,且23AD BD =∶∶,一次函数经过D 、E 两点.(1)求反比例函数与一次函数的解析式; (2)求BDE △的面积.4.对于实数,a b ,我们可以用{}min ,a b 表示,a b 两数中较小的数,例如{}min 3,11-=- {}min 2,22=,类x x⎩⎭(1)求反比例函数的解析式;(2)请直接写出不等式2kx x ->的解集;(3)点P 为反比例函数ky x=图像的任意一点,若3POC AOC S S =△△,求点P 的坐标. 7.如图,一次函数y mx n =+()0m ≠的图象与反比例函数ky x=()0k ≠的图象交于第二、四象限内的点(),3A a 和点()6,B b .过点A 作x 轴的垂线,垂足为点C ,AOC 的面积为3(1)分别求出一次函数y mx n =+()0m ≠与反比例函数ky x=()0k ≠的表达式; (2)结合图象直接写出kmx n x>+的解集; (3)在x 轴正半轴上取点P ,使PA PB -取得最大值时,求出点P 的坐标.8.如图,直线y =2x +6与反比例函数=ky x(k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y =n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM .x,求AOB 的面积;根据图象,请直接写出满足不等式1y kx b =+C ,点A 的坐标为(2)若点E 是点C 关于x 轴的对称点,求ABE 的面积. 11.已知平面直角坐标系中,直线AB 与反比例函数(0)ky x x=>的图象交于点()1,3A 和点()3,B n ,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数的表达式及n 的值;(2)将OCD 沿直线AB 翻折,点O 落在第一象限内的点E 处,EC 与反比例函数的图象交于点F . △请求出点F 的坐标;△将线段BF 绕点B 旋转,在旋转过程中,求线段OF 的最大值. 12.如图,正比例函数(0)y kx k =≠与反比例函数my (m 0)x=≠的图象交于A 、B 两点,A 的横坐标为4-,B 的纵坐标为6-.(1)求反比例函数的表达式. (2)观察图象,直接写出不等式mkx x<的解集. (3)将直线AB 向上平移n 个单位,交双曲线于C 、D 两点,交坐标轴于点E 、F ,连接OD 、BD ,若OBD 的面积为20,求直线CD 的表达式.13.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示.②的面积是OCD.如图,已知一次函数y轴交于点,若ACD的面积为16.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为()1,0,点()44D ,在反比例函数()0k y x x=>的图象上,直线23y x b =+经过点C ,与y 轴交于点E ,与x 轴交于点M ,连接AC 、AE .(1)求k 、b 的值; (2)求ACE △的面积;(3)在x 轴上取点P ,求出使PC PE -取得最大值时点P 的坐标. 17.已知反比例函数1k y x=图象经过点(3,2)A ,直线:(0)l y kx b k =+<,经过点(2,0)C -,经过点A 且垂直于x 轴的直线与直线l 相交于B .(1)求1k 的值;(2)若ABC 的面积等于15,求直线l 的解析式;(3)点G 在反比例函数的图象上,点Q 在x 轴上,问是否存在点G 和点Q ,使以G .Q 及(2)中的C .B 四点为顶点的四边形是平行四边形,若存在,请求出点Q 的坐标,若不存在,请说明理由. 18.(综合与探究)如图,在平面直角坐标系中,已知反比例函数()0ky x x=<的图象过点()4,2C -,点D 的纵坐标为4,直线CD 与x 轴,y 轴分别交于点,A B .Rt AOB直角边上的一个动点,当16PCD AOBS S=时,求点关于y轴的对称点为x轴的对称点为,N 使得以点,,M N为顶点的四边形是平行四边形?若存在,标;若不存在,请说明理由..如图,已知直线y=x参考答案:3.(1)5y x =- 1722y x =+(2)944.(1)B (2)直线1x = 5.(1)1y x =- 2y x= (2)(1,0)C 12x <≤6.(1)3y x= (2)10x -<<或3>x (3)()1,3或()1,3--7.(1)反比例函数的表达式为6y x =-,一次函数表达式为122y x =-+.(2)2x <-或06x << (3)()10,0P 8.(1)8y x= (2)39.(1)反比例函数的表达式为:22y x=-(2)32AOBS=(3)20x -<<或1x >10.(1)一次函数解析式1y x 4=-,反比例函数解析式212y x= (2)32ABE S =△11.(1)3y x= 1n =(2)△F 点坐标为3(4,)4;△线段OF 的最大值为17104+12.(1)24y x=-(2)40x -<<或>4x。
中考数学-反比例函数专题练习(含答案)
中考数学-反比例函数专题练习(含答案)一、单选题1.已知ab<0,点P(a、b)在反比例函数的图象上,则直线y=ax+b不经过(不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象与函数 的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A. ﹣1<x0<0B. 0<x0<1C. 1<x0<2D. 2<x0<33.小兰画了一个函数y= 的图象如图,那么关于x的分式方程的分式方程 =2的解是()A. x=1B. x=2C. x=3D. x=44.反比例函数y= 的图象,在每个象限内,y的值随x值的增大而增大,则k可以为()A. 0B. 1C. 2D. 35.若y=(5+m)x 2+n是反比例函数,则m、n的取值是(的取值是()A. m=﹣5,n=﹣3B. B. m≠m≠﹣5,n=﹣3 C. C. m≠m≠﹣5,n=3 D. D. m≠m≠﹣5,n=﹣4 6.若是反比例函数,则a的取值为的取值为A. 1B. ﹣1C. ±1D. 任意实数任意实数 7.如图,如图,已知点已知点A是函数y=x与y=的图象在第一象限内的交点,点B在x轴负半轴上,轴负半轴上,且且OA=OB,则△AOB的面积为()A. 2B.C. 2D. 48.直线y=﹣ x﹣1与反比例函数与反比例函数 (x<0)的图象交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为()A. ﹣2B. ﹣4C. ﹣6D. ﹣89.如图,直线y=-x与双曲线y=相交于A(-2,1)、B两点,则点B坐标为( )A. (2,-1)B. (1,-2)C. (1,-)D. (,-1)10.已知(x1 , y1),(x2 , y2),(x3 , y3)是反比例函数的图象上的三个点,是反比例函数且x1<x2<0,x3>0,则y1 , y2 , y3的大小关系是()A. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y111.下列关于y与x的表达式中,表示y是x的反比例函数的是(的反比例函数的是( )A. y=4xB. =﹣2C. xy=4D. y=4x﹣312.已知函数y=的图象如图,当x≥﹣1时,y的取值范围是(的取值范围是( )A. y<﹣1B. B. y≤y≤﹣1C. C. y≤y≤﹣1或y>0D. y<﹣1或y≥013.已知反比例函数y= 的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( )A. (﹣6,1)B. (1,6)C. (2,﹣3)D. (3,﹣2)14.某反比例函数(k≠0)的图象经过(-2, 1 ),则它也经过的点是 ( )A. (1,-2)B. (1,2)C. (2,1)D. (4,-2)15.在反比例函数y=图象的每条曲线上,y 都随x 的增大而增大,则k 的取值范围是( )A. k >1B. k >0C. C. k≥1k≥1k≥1D. ﹣l≤k <116.计划修建铁路lkm ,铺轨天数为t (d ),每日铺轨量s (km/d ),则在下列三个结论中,正确的是(确的是( )①当l 一定时,t 是s 的反比例函数;的反比例函数;②当l 一定时,l 是s 的反比例函数;的反比例函数;③当s 一定时,l 是t 的反比例函数.的反比例函数.A. 仅①B. 仅②C. 仅③D. D. ①①,②,③17.根据下表中,反比例函数的自变量x 与函数y 的对应值,可得p 的值为(的值为( )x -2 1y 3 pA. 3B. 1C. -2D. -618.对于函数y= (k >0),下列说法正确的是( )A. y 随x 的增大而减小B. y 随x 的增大而增大的增大而增大C. 当x <0时,y 随x 的增大而减小D. 图象在第二、四象限内图象在第二、四象限内二、填空题19.图象经过点(﹣1,2)的反比例函数的表达式是________.20.如图,△ABC 三个顶点分别在反比例函数三个顶点分别在反比例函数 , 的图像上,若∠C =90°,AC ∥y轴,BC ∥x 轴,S △ABC =8,则k 的值为________.21.一批零件600个,一个工人每小时做15个,用关系式表示人数x 与完成任务所需的时间y 之间的函数关系式为之间的函数关系式为 ________ .22.反比例函数y=﹣ ,当y 的值小于﹣3时,x 的取值范围是________.三、解答题23.当m 为何值时,函数y=(m ﹣3)x 2﹣|m|是反比例函数?当m 为何值时,此函数是正比例函数?函数?24.如图,在平面直角坐标系中,正比例函数y =kx (k >0)与反比例函数y =的图象分别交于A 、C 两点,已知点B 与点D 关于坐标原点O 成中心对称,且点B 的坐标为(m , 0).其中m >0.(1)四边形ABCD 的是________.(填写四边形ABCD 的形状)(2)当点A 的坐标为(n ,3)时,四边形ABCD 是矩形,求mn 的值.的值.(3)试探究:随着k 与m 的变化,四边形ABCD 能不能成为菱形?若能,请直接写出k 的值;若不能,请说明理由.值;若不能,请说明理由.25.如图,已知A (﹣4,2)、B (n ,﹣4)是一次函数y=kx+b 的图象与反比例函数y=的图象的两个交点.象的两个交点.(1)求此反比例函数和一次函数的解析式;)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.的取值范围.26.已知函数已知函数 y=(5m ﹣3)x 2﹣n +(n+m ), (1)当m ,n 为何值时是一次函数?为何值时是一次函数?(2)当m,n为何值时,为正比例函数?为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?为何值时,为反比例函数?27.已知一个长方体的体积是100cm3 , 它的长是ycm,宽是10cm,高是xcm. (1)写出y与x之间的函数关系式;之间的函数关系式;(2)当x=2cm时,求y的值.的值.答案解析部分一、单选题 1.已知ab<0,点P (a 、b )在反比例函数的图象上,则直线y=ax+b 不经过(不经过() A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C【考点】一次函数与系数的关系,反比例函数图象上点的坐标特征【考点】一次函数与系数的关系,反比例函数图象上点的坐标特征【解析】【分析】点P (a 、b)在反比例函数的图象上,b=1,可知a <0,继而即可判断.断.【解答】∵点P (a 、b)在反比例函数的图象上,的图象上, 代入求得:b=1,又ab <0,∴a <0,y=ax+b=ax+1经过一、二和四象限,不经过第三象限.经过一、二和四象限,不经过第三象限.故选C .【点评】本题考查了一次函数图象与系数的关系及反比例函数图象上点的坐标特征,本题考查了一次函数图象与系数的关系及反比例函数图象上点的坐标特征,难度不难度不大,同时注意数形结合思想的应用.大,同时注意数形结合思想的应用.2.方程x 2+3x ﹣1=0的根可视为函数y=x+3的图象与函数的图象与函数 的图象交点的横坐标,那么用此方法可推断出方程x 2+2x ﹣1=0的实数根x 0所在的范围是( )A. ﹣1<x 0<0B. 0<x 0<1C. 1<x 0<2D. 2<x 0<3【答案】B【考点】反比例函数与一次函数的交点问题【考点】反比例函数与一次函数的交点问题【解析】【解答】解:方程x 2+2x-1=0的实数根可以看作函数y=x+2和y=的交点坐标,的交点坐标,函数大体图象如图所示:函数大体图象如图所示:A 、由图可得,第三象限内图象交点的横坐标小于-2,故-1<x 0<0,不符合题意;,不符合题意;B 、当x=1时,y 1=1+2=3,y 2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故,0<x 0<1,符合题意;,符合题意; C 、当x=1时,y 1=1+2=3,y 2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故,1<x 0<2,不符合题意;,不符合题意;D 、当x=2时,y 1=2+2=4,y 2=, 而4>, 根据函数的增减性可知,第一象限内的交点的横坐标小于2,故,2<x 0<3,不符合题意;故答案为:B【分析】【分析】方程x2+2x ﹣1=0,可变为x+2=,根据函数的观点来看它的根可视为y=x+2和y=的交点的横坐标;函数大体图象如图所示:由图像可知第三象限内图象交点的横坐标小于-2,当x=1时,y 1=1+2=3,y 2= =1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,从而即可得出答案。
中考数学总复习《一次函数与反比例函数的实际应用》专题训练-附含答案
中考数学总复习《一次函数与反比例函数的实际应用》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________1.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧进行锻造操作,经过8min 时,材料温度降为600℃.煅烧时温度()y ℃与时间()min x 成一次函数关系;锻造时,温度()y ℃与时间()min x 成反比例函数关系(如图).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y 与x 的函数关系式;(2)根据工艺要求,当材料温度低于480℃时,需停止操作,那么锻造的操作时间有多长?2.已知某蓄电池的电压为定值,使用该蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求出这个反比例函数的解析式;(2)如果以此蓄电池为电源的用电器限制电流不能超过10A,求出用电器可变电阻应控制在什么范围.3.南宁市五象新区有长24000m的新建道路要铺上沥青.(1)写出铺路所需时间t(天)与铺路速度v(m/天)的函数关系式.(2)负责铺路的工程公司现有的铺路机每天最多能铺路400m,预计最快多少天可以完成铺路任务?(3)为加快工程进度,公司决定投入不超过400万元的资金,购进10台更先进的铺路机.现有甲、乙两种机器可供选择,其中每种机器的价格和日铺路能力如下表.在原有的铺路机连续铺路40天后,新购进的10台机器加入铺路,公司要求至少比原来预计的时间提前10天完成任务.问有哪几种方案?请你通过计算说明选择哪种方案所用资金最少.4.张先生以按揭方式(首付一部分,剩余部分按每月分期付款)购买了价格为16万元的汽车,交了首付款之后每月还款y元,x个月结清,y与x之间的函数关系如图所示,根据图象提供的信息解答下列问题.(1)确定y与x之间的函数关系式,并求出首付款的金额.(2)张先生若打算120个月结清余款,每月应付多少元?(3)若打算每月付款不超过1500元,问:张先生至少几个月才能结清余款?5.一工程中,某工程队工人每天需要挖掘20吨土的深沟,整个工程完毕恰好用了6天. (1)在工程结束后,工人需要把所有的土进行回填,在整个回填过程中,平均回填速度v(单位:吨/天)与回填天数t之间有怎样的函数关系?(2)由于遇到紧急情况,要求整个回填工程不超过4天完毕,那么平均每天至少要回填多少吨土?6.通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段;当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要18分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.7.越来越多的人选择骑自行车这种低碳方便又健身的方式出行.某日,一位家住宝山的骑行爱好者打算骑行去上海蟠龙天地,记骑行时间为t小时,平均速度为v千米/小时(骑行速度不超过40千米/小时).根据以往的骑行经验,v、t的一些对应值如下表:v(千米/小时)15202530t(小时)2 1.5 1.21(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)如果这位骑行爱好者上午8:30从家出发,能否在上午9:10之前到达上海蟠龙天地?请说明理由;t≤≤,求平均速度v的取值范围.(3)若骑行到达上海蟠龙天地的行驶时间t满足0.8 1.68.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈,这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的x>),其图象如图所示,半径y(米)是其两腿迈出的步长之差x(厘米)的反比例函数(0请根据图象中的信息解决下列问题:x10.周末,学校组织全体团员进行社会实践活动,活动结束后,李杰要把一份1600字的社会调查报告录入电脑.设他录入文字的速度为v字/分,完成录入所需的时间为t分钟.(1)求t与v之间的函数关系式;(2)当李杰录入文字的速度v为100字/分,完成录入的时间t为多少?11.某公司从2009年开始投入技术改造资金,经技术改进后,其产品的生产成本不断降低,具体数据如表:年度2009201020112012投入技改资金x(万元) 2.534 4.5产品成本y(万元/件)7.26 4.54(1)试判断:从上表中的数据看出,y与x符合你学过的哪个函数模型?请说明理由,并写出它的解析式.(2)按照上述函数模型,若2013年已投入技改资金5万元①预计生产成本每件比2012年降低多少元?①如果打算在2013年把每件产品的成本降低到3.2万元,则还需投入技改资金多少万元?12.如图,学校打算用材料围建一个面积为18平方米的矩形ABCD的生物园,用来饲养小兔,其中矩形ABCD的一边AB靠墙,墙长为8米,设AD的长为y米,CD的长为x米.(1)求y与x之间的函数表达式;(2)若围成矩形ABCD的生物园的三边材料总长不超过18米,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.13.某公司生产一种产品,月销售量为x吨(0x>),每吨售价为7万元,每吨的成本y(万-与月销元)由两部分组成,一部分是原材料费用a固定不变,另一部分人力等费用,y a售量x成反比,市场部研究发现月销售量x吨与月份n(n为1~12的正整数)符合关系式22=-+(k为常数),参考下面给出的数据解决问题.226x n n k月份n(月)12成本y(万元/吨)5 5.6销售量为x(吨/月)120100-与x的函数关系式;(1)求y a(2)求k的值;(3)在这一年12个月中①求月最大利润;m+个月的利润相差最大,直接写出m的值.①若第m个月和第()114.某电子科技公司研发出一套学习软件,并对这套学习软件在24周的销售时间内,做出了下面的预测:设第x周该软件的周销售量为T(单位:千套),当0<x≤8时,T与x+4成反比;当8<x≤24时.T﹣2与x成正比,并预测得到了如表中对应的数据.设第x周销售该软件每千套的利润为K(单位:千元),K与x满足如图中的函数关系图象:x/周824T/千套1026(1)求T与x的函数关系式;(2)观察图象,当12≤x≤24时,K与x的函数关系式为________.(3)设第x周销售该学习软件所获的周利润总额为y(单位:千元),则:①在这24周的销售时间内,是否存在所获周利润总额不变的情况?若存在,求出这个不变的值;若不存在,请说明理由.①该公司销售部门通过大数据模拟分析后认为,最有利于该学习软件提供售后服务和销售的周利润总额的范围是286≤y≤504,求在此范围内对应的周销售量T的最小值和最大值.15.如图,某人对地面的压强p(单位:2N/m)与这个人和地面接触面积S(单位:2m)满足反比例函数关系.10,80,求函数解析式;(1)图象上点A坐标为()(2)如果此人所穿的每只鞋与地面的接触面积大约为2400cm,那么此人双脚站立时对地面的第 11 页 共 13 页 压强有多大?(3)如果某沼泽地面能承受的最大压强为2320N/m ,那么此人应站立在面积至少多大的木板上才不至于下陷(木板的质量忽略不计)?参考答案: 1.(1)燃烧时函数解析式为()1283206y x x =+≤<;锻造时函数解析式为()48006y x x=≥ (2)4min2.(1)48I R = (2)4.8Ω以上的范围内.3.解:(1)铺路所需要的时间t 与铺路速度V 之间的函数关系式是24000vt =. (2)当v=400时,24000400t ==60(天). (3)解:设可以购买甲种机器x 台,则购买乙种机器(10-x )台,则有解之,得3≤x≤5.因此可以购买甲种机器3台、乙种机器7台;甲种机器4台、乙种机器6台;甲种机器5台,乙种机器5台;总共三种方案.第一种方案所花费费用为:45×3+25×7=310万;第二种方案花费为:4×45+6×25=330万;第三种方案花费为:5×45+5×25=350万,因此选择第一种方案花费最少.4.见解析11.(1)反比例函数关系y=第12页共13页(2)44K x=-+;(3)①存在,不变的值为240;①当周利润总额的范围是286≤y≤504时,对应的周销售量T的最小值是11千套,最大值是18千套.15.(1)函数解析式为800 pS =(2)4210N/mp=(3)此人应站立在面积至少22.5mS=大的木板上才不至于下陷。
中考数学压轴题专题复习——反比例函数的综合及答案
中考数学压轴题专题复习——反比例函数的综合及答案一、反比例函数1.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.2.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.【答案】(1)解:(I)当点A在x轴正半轴、点B在y轴负半轴上时:正方形ABCD的边长为.(II)当点A在x轴负半轴、点B在y轴正半轴上时:设正方形边长为a,易得3a= ,解得a= ,此时正方形的边长为.∴所求“伴侣正方形”的边长为或(2)解:如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,易证△ADE≌△BAO≌△CBF.∵点D的坐标为(2,m),m<2,∴DE=OA=BF=m,∴OB=AE=CF=2﹣m.∴OF=BF+OB=2,∴点C的坐标为(2﹣m,2).∴2m=2(2﹣m),解得m=1.∴反比例函数的解析式为y=(3)解:实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;b、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,c、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在d、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,﹣3)时,对应的函数解析式是y=﹣ x2+ ;f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D 的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;故二次函数的解析式分别为:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+【解析】【分析】(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长.(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标,可求出m的值,即可得到反比例函数的解析式.(3)由抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论,即可得到所求的结论.3.【阅读理解】对于任意正实数a、b,因为≥0,所以≥0,所以≥2 ,只有当时,等号成立.【获得结论】在≥2 (a、b均为正实数)中,若为定值,则≥2 ,只有当时,有最小值2 .(1)根据上述内容,回答下列问题:若 >0,只有当 =________时,有最小值________.(2)【探索应用】如图,已知A(-3,0),B(0,-4),P为双曲线(>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.【答案】(1)1;2(2)解:设P(x,),则C(x,0),D(0,),∴CA=x+3,BD= +4,∴S四边形= CA×BD= (x+3)( +4),化简得:S=2(x+ )+12.∵x>0,>0,∴x+ ≥2 ABCD=6,只有当x= ,即x=3时,等号成立,∴S≥2×6+12=24,∴四边形ABCD的面积有最小值24,此时,P(3,4),C(3,0),D(0,4),AB=BC=CD=DA=5,∴四边形ABCD是菱形.【解析】【解答】解:(1)根据题目所给信息可知m+ ≥2 ,且当m= 时等号,∴当m=1时,m+ ≥2,即当m=1时,m+ 有最小值2.故答案为:1,2;【分析】(1)此题是一道阅读题,根据题中所给的信息可知:,只有当m=时等号成立,一个正数只有1和它的倒数相等,从而得出答案;(2)根据双曲线上点的坐标特点设出P点的坐标,根据垂直于坐标轴上的点的坐标特点表示出C,D两点的坐标,从而表示出AC,BD的长,根据对角线互相垂直的四边形的面积等于两对角线积的一半建立出S与x的函数关系式,根据题干提供的信息得出得出,只有在,即x=3时,等号成立,从而得出S的最小值,从而得出P,C,D三点的坐标,进而算出AB=BC=CD=DA=5,根据四边相等的四边形是菱形得出结论。
专题. 反比例函数(中考真题专练)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)
专题11.35反比例函数(中考真题专练)(基础篇)(专项练习)一、单选题1.(2022·天津·统考中考真题)若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x=的图像上,则123,,x x x 的大小关系是()A .123x x x <<B .231x x x <<C .132x x x <<D .213x x x <<2.(2022·四川德阳·统考中考真题)一次函数1y ax =+与反比例函数ay x=-在同一坐标系中的大致图象是()A .B .C .D .3.(2022·湖北武汉·统考中考真题)已知点()11,A x y ,()22,B x y 在反比例函数6y x=的图象上,且120x x <<,则下列结论一定正确的是()A .120y y +<B .120y y +>C .12y y <D .12y y >4.(2022·江苏无锡·统考中考真题)一次函数y =mx +n 的图像与反比例函数y =mx的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m,-2m )、B (m ,1),则△OAB 的面积()A .3B .134C .72D .1545.(2022·湖南怀化·统考中考真题)如图,直线AB 交x 轴于点C ,交反比例函数y =1a x-(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为()A .8B .9C .10D .116.(2022·广西贺州·统考中考真题)已知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为()A .B .C .D .7.(2022·四川内江·统考中考真题)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为()A .38B .22C .﹣7D .﹣228.(2022·吉林长春·统考中考真题)如图,在平面直角坐标系中,点P 在反比例函数ky x=(0k >,0x >)的图象上,其纵坐标为2,过点P 作PQ //y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM .若点M 也在该反比例函数的图象上,则k 的值为()A .32B 3C .23D .49.(2022·山东东营·统考中考真题)如图,一次函数11y k x b =+与反比例函数22k y x=的图象相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为1-,则不等式21k k x b x+<的解集是()A .10x -<<或2x >B .1x <-或02x <<C .1x <-或2x >D .12x -<<10.(2022·贵州贵阳·统考中考真题)如图,在平面直角坐标系中有P ,Q ,M ,N 四个点,其中恰有三点在反比例函数()0ky k x=>的图象上.根据图中四点的位置,判断这四个点中不在函数ky x=的图象上的点是()A .点PB .点QC .点MD .点N二、填空题11.(2022·福建·统考中考真题)已知反比例函数ky x=的图象分别位于第二、第四象限,则实数k 的值可以是______.(只需写出一个符合条件的实数)12.(2022·江苏淮安·统考中考真题)在平面直角坐标系中,将点()2,3A 向下平移5个单位长度得到点B ,若点B 恰好在反比例函数ky x=的图像上,则k 的值是______.13.(2022·四川广元·统考中考真题)如图,已知在平面直角坐标系中,点A 在x 轴负半轴上,点B 在第二象限内,反比例函数ky x=的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是_____.14.(2022·四川内江·统考中考真题)如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点()2,3,P 且与函数()20=>y x x的图象交于点(,)Q m n .若一次函数y 随x 的增大而增大,则m 的取值范围是____.15.(2022·黑龙江齐齐哈尔·统考中考真题)如图,点A 是反比例函数(0)ky x x=<图象上一点,过点A 作AB ⊥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且△ABC 的面积为4,则k =______________.16.(2022·辽宁锦州·统考中考真题)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.17.(2022·辽宁丹东·统考中考真题)如图,四边形OABC 是平行四边形,点O 是坐标原点,点C 在y 轴上,点B 在反比例函数y =3x (x >0)的图象上,点A 在反比例函数y =k x(x >0)的图象上,若平行四边形OABC 的面积是7,则k =______.18.(2022·山东东营·统考中考真题)如图,OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数1(0)y x x=>的图象上,则经过点A 的反比例函数表达式为____________.三、解答题19.(2021·广西玉林·统考中考真题)先化简再求值:()2112a a a a -⎛⎫-+÷ ⎪⎝⎭,其中a 使反比例函数ay x=的图象分别位于第二、四象限.20.(2021·吉林·统考中考真题)如图,在平面直角坐标系中,一次函数423y x=-的图象与y轴相交于点A,与反比例函数kyx=在第一象限内的图象相交于点(),2B m,过点B作BC y⊥轴于点C.(1)求反比例函数的解析式;(2)求ABC的面积.21.(2021·四川德阳·统考中考真题)如图,在平面直角坐标系中,反比例函数ykx=(x>0)的图象经过点A(2,6),将点A向右平移2个单位,再向下平移a个单位得到点B,点B恰好落在反比例函数ykx=(x>0)的图象上,过A,B两点的直线与y轴交于点C.(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,5),连接AD,BD,求△ABD的面积.22.(2021·山东淄博·统考中考真题)如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=相交于()()2,3,,2A B m --两点.(1)求12,y y 对应的函数表达式;(2)过点B 作//BP x 轴交y 轴于点P ,求ABP 的面积;(3)根据函数图象,直接写出关于x 的不等式21k k x b x+<的解集.23.(2022·河南·统考中考真题)如图,反比例函数()0k y x x=>的图像经过点()2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.24.(2021·山东德州·中考真题)已知点A 为函数4(0)y x x=>图象上任意一点,连接OA 并延长至点B ,使AB OA =,过点B 作//BC x 轴交函数图象于点C ,连接OC .(1)如图1,若点A 的坐标为(4,)n ,求点C 的坐标;(2)如图2,过点A 作AD BC ⊥,垂足为D ,求四边形OCDA 的面积.参考答案1.B【分析】将三点坐标分别代入函数解析式求出213x x x 、、,然后进行比较即可.解:将三点坐标分别代入函数解析式8y x=,得:182x =,解得1=4x ;28-1x =,解得2=-8x ;384x =,解得3=2x ;∵-8<2<4,∴231x x x <<,故选:B .【点拨】本题考查反比例函数,关键在于能熟练通过已知函数值求自变量.2.B【分析】A 选项可以根据一次函数与y 轴交点判断,其他选项根据图象判断a 的符号,看一次函数和反比例函数判断出a 的符号是否一致;解:一次函数与y 轴交点为(0,1),A 选项中一次函数与y 轴交于负半轴,故错误;B 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过一、三象限,则-a >0,即a <0,两者一致,故B 选项正确;C 选项中,根据一次函数y 随x 增大而增大可判断a >0,反比例函数过一、三象限,则-a >0,即a <0,两者矛盾,故C 选项错误;D 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过二、四象限,则-a <0,即a >0,两者矛盾,故D 选项错误;故选:B .【点拨】本题考查了一次函数、反比例函数图象共存问题,解决此类题目要熟练掌握一次函数、反比例函数图象与系数的关系.3.C【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系.解:∵点()11,A x y ,()22,B x y )是反比例函数6y x=的图象时的两点,∴11226x y x y ==.∵120x x <<,∴120y y <<.故选:C .【点拨】本题主要考查反比例函数图象上点的坐标特征,掌握图象上点的坐标满足函数解析式是解题的关键.4.D【分析】将点A 的坐标代入可确定反比例函数关系式,进而确定点B 的坐标,再利用待定系数法求出一次函数关系式;求出直线AB 与y 轴交点D 的坐标,确定OD 的长,再根据三角形的面积公式进行计算即可.解:∵A (-1m ,-2m )在反比例函数y =mx的图像上,∴m =(-1m)•(-2m )=2,∴反比例函数的解析式为y =2x,∴B (2,1),A (-12,-4),把B (2,1)代入y =2x +n 得1=2×2+n ,∴n =-3,∴直线AB 的解析式为y =2x -3,直线AB 与y 轴的交点D (0,-3),∴OD =3,∴S △AOB =S △BOD +S △AOD =12×3×2+12×3×12=154.故选:D ..【点拨】本题考查一次函数与反比例函数的交点,把点的坐标代入函数关系式是解决问题常用的方法.5.D 【分析】设1a B m m -⎛⎫ ⎪⎝⎭,,由S △BCD =112a m m -⋅即可求解.解:设1a B m m -⎛⎫ ⎪⎝⎭,,∵BD ⊥y 轴∴S △BCD =112a m m-⋅=5,解得:11a =故选:D .【点拨】本题主要考查反比例函数的应用,掌握反比例函数的相关知识是解题的关键.6.A【分析】根据题意可得0,0k b >>,从而得到一次函数y kx b =-+的图象经过第一、二、四象限,反比函数b y x=的图象位于第一、三象限内,即可求解.解:根据题意得:0,0k b >>,∴0k -<,∴一次函数y kx b =-+的图象经过第一、二、四象限,反比函数b y x=的图象位于第一、三象限内.故选:A【点拨】本题主要考查了一次函数和反比例函数的图象和性质,熟练掌握一次函数和反比例函数的图象和性质是解题的关键.7.D【分析】设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =k a-,则PQ =PM +MQ =k b a -,再根据ab =8,S △POQ =15,列出式子求解即可.解:设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =k a -,∴PQ =PM +MQ =k b a-.∵点P 在反比例函数y =8x 的图象上,∴ab =8.∵S △POQ =15,∴12PQ •OM =15,∴12a (b ﹣k a)=15.∴ab ﹣k =30.∴8﹣k =30,解得:k =﹣22.故选:D .【点拨】本题主要考查了反比例函数与几何综合,熟练掌握反比例函数的相关知识是解题的关键.8.C【分析】作MN ⊥x 轴交于点N ,分别表示出ON 、MN ,利用k 值的几何意义列式即可求出结果.解:作MN ⊥x 轴交于点N ,如图所示,∵P 点纵坐标为:2,∴P 点坐标表示为:(2k ,2),PQ =2,由旋转可知:QM =PQ =2,∠PQM =60°,∴∠MQN =30°,∴MN =112QM =,QN ∴ON MN k = ,即:2k k =,解得:k =故选:C .【点拨】本题主要考查的是k 的几何意义,表示出对应线段是解题的关键.9.A【分析】根据不等式21k k x b x +<的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围进行求解即可.解:由题意得不等式21k k x b x +<的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围,∴不等式21k k x b x +<的解集为10x -<<或2x >,故选A .【点拨】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.10.C【分析】根据反比例函数的性质,在第一象限内y 随x 的增大而减小,用平滑的曲线连接发现M 点不在函数k y x =的图象上解:()0k y k x =>在第一象限内y 随x 的增大而减小,用平滑的曲线连接发现M 点不在函数k y x=的图象上故选C【点拨】本题考查了反比例函数的性质,掌握反比例数图象的性质是解题的关键.11.-5(答案不唯一)【分析】根据反比例函数的图象分别位于第二、四象限可知k <0,进而问题可求解.解:由反比例函数k y x=的图象分别位于第二、第四象限可知k <0,∴实数k 的值可以是-5;故答案为-5(答案不唯一).【点拨】本题主要考查反比例函数的图象,熟练掌握反比例函数的图象是解题的关键.12.4-【分析】将点()2,3A 向下平移5个单位长度得到点B ,再把点B 代入反比例函数k y x=,利用待定系数法进行求解即可.解:将点()2,3A 向下平移5个单位长度得到点B ,则()2,2B -,∵点B 恰好在反比例函数k y x =的图像上,∴()224k =⨯-=-,故答案为:4-.【点拨】本题考查了坐标与图形变化—平移,待定系数法求反比例函数的解析式,熟练掌握知识点是解题的关键.13.-4【分析】过B 作BD OA ⊥于D ,设B m n (,),根据三角形的面积公式求得12OA n=,进而得到点A 的坐标,再求得点C 的坐标,结合一次函数的解析式得到列出方程求解.解:过B 作BD OA ⊥于D ,如下图.∵点B 在反比例函数k y x=的图象上,∴设B m n (,).∵OAB 的面积为6,∴12OA n=,∴12,0A n ⎛⎫- ⎪⎝⎭.∵点C 是AB 的中点,∴12,22mn n C n -⎛⎫ ⎪⎝⎭.∵点C 在反比例函数k y x=的图象上,∴1222mn n mn n -⋅=,∴4mn =-,∴4k =-.故答案为:-4.【点拨】本题考查了反比例函数系数k 的几何意义,三角形的面积公式,中点坐标的求法,正确的理解题意是解题的关键.14.223m <<【分析】分别求出过点P ,且平行于x 轴和y 轴时对应的m 值,即可得到m 的取值范围.解:当PQ 平行于x 轴时,点Q 的坐标为(),3m ,代入2y x =中,可得23m =;当PQ 平行于y 轴时,点Q 的坐标为()2,n ,可得2m =;∵一次函数y 随x 的增大而增大,∴m 的取值范围是223m <<,故答案为:223m <<.【点拨】本题考查一次函数和反比例函数图象的交点问题,找到两个临界是解决本题的关键.15.4-【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,利用()1242=⨯-⨯=ABC k S a a △即可求出k 的值.解:设点,k A a a ⎛⎫ ⎪⎝⎭,∵点D 为线段AB 的中点.AB ⊥y 轴∴22AB AD a ==-,又∵()1242=⨯-⨯=ABC k S a a△,∴4k =-.故答案为:4-【点拨】本题考查利用面积求反比例函数的k 的值,解题的关键是找出()1242=⨯-⨯=ABC k S a a△.16.2【分析】作A 过x 轴的垂线与x 轴交于C ,证明△ADC ≌△BDO ,推出S △OAC =S △OAB =1,由此即可求得答案.解:设A (a ,b ),如图,作A 过x 轴的垂线与x 轴交于C ,则:AC =b ,OC =a ,AC ∥OB ,∴∠ACD =∠BOD =90°,∠ADC =∠BDO ,∴△ADC ≌△BDO ,∴S △ADC =S △BDO ,∴S △OAC =S △AOD +S △ADC =S △AOD +S △BDO =S △OAB =1,∴12×OC ×AC =12ab =1,∴ab =2,∵A (a ,b )在y =k x上,∴k =ab =2.故答案为:2.【点拨】本题考查了反比例函数的性质,三角形的面积公式,全等三角形的判定和性质等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线进行解题.17.-4【分析】连接OB ,根据反比例函数系数k 的几何意义得到|k |+3=7,进而即可求得k 的值.解:连接OB ,∵四边形OABC 是平行四边形,∴AB ∥OC ,∴AB ⊥x 轴,∴S △AOD =12|k |,S △BOD =132=32,∴S △AOB =S △AOD +S △BOD =12|k |+32,∴S 平行四边形OABC =2S △AOB =|k |+3,∵平行四边形OABC 的面积是7,∴|k |=4,∵在第四象限,∴k =-4,故答案为:-4.【点拨】本题考查了反比例系数k 的几何意义、平行四边形的面积,熟知在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |是解答此题的关键.18.1y x=-【分析】如图所示,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,证明△ACO ≌△ODB 得到AC =OD ,OC =BD ,设点B 的坐标为(a ,b ),则点A 的坐标为(-b ,a ),再由点B 在反比例函数1y x =,推出1a b-=-,由此即可得到答案.解:如图所示,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥x 轴于D ,则∠ACO =∠ODB =90°,由题意得OA =OB ,∠AOB =90°,∴∠CAO +∠COA =∠AOC +∠BOD =90°,∴∠CAO =∠DOB ,∴△ACO ≌△ODB (AAS ),∴AC =OD ,OC =BD ,设点B 的坐标为(a ,b ),则AC =OD =a ,OC =BD =b ,∴点A 的坐标为(-b ,a ),∵点B 在反比例函数1y x =,∴1ab =,∴1ab -=-,∴1a b-=-,∴经过点A 的反比例函数表达式为1y x =-,故答案为:1y x=-.【点拨】本题主要考查了反比例函数与几何综合,全等三角形的性质与判定,熟知相关知识是解题的关键.19.1-【分析】由题意易得a<0,然后对分式进化简,然后再求解即可.解:∵a 使反比例函数a y x=的图象分别位于第二、四象限,∴a<0,∴()2112a a a a -⎛⎫-+÷ ⎪⎝⎭=()22211a a a a a -+-⨯-=1-.【点拨】本题主要考查反比例函数的图象与性质及分式的化简求值,熟练掌握反比例函数的图象与性质及分式的运算是解题的关键.20.(1)6y x=;(2)6【分析】(1)因为一次函数与反比例函数交于B 点,将B 代入到一次函数解析式中,可以求得B 点坐标,从而求得k ,得到反比例函数解析式;(2)因为BC y ⊥轴,所以()0,2C ,利用一次函数解析式可以求得它与y 轴交点A 的坐标()0,2-,由A ,B ,C 三点坐标,可以求得AC 和BC 的长度,并且//BC x 轴,所以12ABC S AC BC =⋅V ,即可求解.解:(1)∵B 点是直线与反比例函数交点,∴B 点坐标满足一次函数解析式,∴4223m -=,∴3m =,∴()3,2B ,∴6k =,∴反比例函数的解析式为6y x=;(2)∵BC y ⊥轴,∴()0,2C ,//BC x 轴,∴3BC =,令0x =,则4223y x =-=-,∴()0,2A -,∴4AC =,∴162ABC S AC BC =⋅=△,∴ABC 的面积为6【点拨】本题考查了反比例函数与一次函数交点问题,三角形的面积,同时要注意在平面直角坐标系中如何利用坐标表示水平线段和竖直线段.21.(1)k=12,C (0,9);(2)4【分析】(1)由点(2,6)A 求出反比例函数的解析式为12y x=,可得k 值,进而求得(4,3)B ,由待定系数法求出直线AB 的解析式为392y x =-+,即可求出C 点的坐标;(2)由(1)求出CD ,根据ABD ACD ACD S S S ∆∆∆=-可求得结论.解:(1)把点(2,6)A 代入k y x=,2612k =⨯=,∴反比例函数的解析式为12y x=, 将点A 向右平移2个单位,4x ∴=,当4x =时,1234y ==,(4,3)B ∴,设直线AB 的解析式为y mx n =+,由题意可得6234m n m n=+⎧⎨=+⎩,解得329m n ⎧=-⎪⎨⎪=⎩,392y x ∴=-+,当0x =时,9y =,(0,9)C ∴;(2)由(1)知954CD =-=,1111||||444242222ABD BCD ACD B A S S S CD x CD x ∆∆∆∴=-=⋅-⋅=⨯⨯-⨯⨯=.【点拨】本题考查了反比例函数系数k 的几何意义,待定系数法求函数的解析式,三角形的面积的计算,求得直线AB 的解析式是解题的关键.22.(1)11y x =-+,26y x=-;(2)152ABP S = ;(3)20x -<<或3x >【分析】(1)由题意先求出2y ,然后得到点B 的坐标,进而问题可求解;(2)由(1)可得ABP 以PB 为底,点A 到PB 的距离为高,即为点A 、B 之间的纵坐标之差的绝对值,进而问题可求解;(3)根据函数图象可直接进行求解.解:(1)把点()2,3A -代入反比例函数解析式得:6k =-,∴26y x=-,∵点B 在反比例函数图象上,∴26m -=-,解得:3m =,∴()3,2B -,把点A 、B 作代入直线解析式得:112332k b k b -+=⎧⎨+=-⎩,解得:111k b =-⎧⎨=⎩,∴11y x =-+;(2)由(1)可得:()2,3A -,()3,2B -,∵//BP x 轴,∴3BP =,∴点A 到PB 的距离为()325--=,∴1153522ABP S =⨯⨯= ;(3)由(1)及图象可得:当21k k x b x+<时,x 的取值范围为20x -<<或3x >.【点拨】本题主要考查反比例函数与一次函数的综合,熟练掌握反比例函数与一次函数的图象与性质是解题的关键.23.(1)8y x=;(2)图见分析部分;(3)证明见分析【分析】(1)把点A 的坐标代入反比例函数解析式,即可得出答案;(2)利用基本作图作线段AC 的垂直平分线即可;(3)根据垂直平分线的性质和角平分线的定义可得到BAC DCA ∠=∠,然后利用平行线的判定即可得证.(1)解:∵反比例函数()0k y x x=>的图像经过点()2,4A ,∴当2x =时,42k =,∴8k =,∴反比例函数的表达式为:8y x =;(2)如图,直线EF 即为所作;(3)证明:如图,∵直线EF 是线段AC 的垂直平分线,∴AD CD =,∴DAC DCA ∠=∠,∵AC 平分OAB ∠,∴DAC BAC∠=∠,∴BAC DCA∠=∠,∴CD AB∥.【点拨】本题考查了作图—基本作图,用待定系数法求反比例函数的解析式,垂直平分线的性质,等腰三角形的性质,平行线的判定,角平分线的定义等知识.解题的关键是熟练掌握五种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).24.(1)点C的坐标为(2,2);(2)4【分析】(1)先求出点A的坐标为(4,1),再由AB OA=,可得点B的坐标为(8,2),从而得到点C的纵坐标为2,即可求解;(2)设4(,)A mm,可得点B的坐标为8(2,)mm,从而得到点D的坐标为8(,)mm,(2mC,8m,分别求出△BOC和△ABD的面积,即可求解.(1)解:将点A坐标代入到反比例函数4yx=中得,44n=,1n∴=,∴点A的坐标为(4,1),AB OA=,(0,0)O,∴点B的坐标为(8,2),//BC x轴,∴点C的纵坐标为2,令2y =,则42x=,2x ∴=,∴点C 的坐标为(2,2);(2)设4(,A m m,AB OA = ,∴点B 的坐标为8(2,)m m,//BC x 轴,BC y ∴⊥轴,又AD BC ⊥,//AD y ∴轴,∴点D 的坐标为8(,)m m,//BC x 轴,且点C 在函数图象上,(2m C ∴,8)m ,Δ18434(2)6222OBC m m S BC m m m m =⋅⋅=-⋅=⋅= ,Δ114222ADB S BD AD m m=⋅=⋅=,∴四边形OCDA 的面积为:ΔΔ624OBC ADB S S -=-=.【点拨】本题主要考查了反比函数的图象和性质,熟练掌握反比函数的图象和性质是解题的关键.。
中考数学《反比例函数》专项练习(附答案解析)
中考数学《反比例函数》专项练习(附答案解析)一、综合题1.已知:如图1,函数y1=kx 和y2=xk(k>1)的图象相交于点A和点B .(1)求点A和点B的坐标(用含k的式子表示);(2)如图2,点C的坐标为(1,k),点D是第一象限内函数y1的图象上的动点,且在点A的右侧,直线AC、BC、AD、BD分别与x轴相交于点E、F、G、H .①判定△CEF的形状,并说明理由;②点D在运动的过程中,∠CAD和∠CBD的度数和是否变化?如果变化,说明理由;如果不变,求出∠CAD和∠CBD的度数和.2.在平面直角坐标系中,我们把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(√2,√2),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=nx(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由.3.如图,点A是坐标原点,点D是反比例函数y=6x(x>0)图象上一点,点B在x轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=6x(x>0)图象于点E.(1)平行四边形BCD 的面积等于 ;(2)设D 点横坐标为m ,试用m 表示点E 的坐标;(要有推理和计算过程) (3)求 CE:EB 的值; (4)求 EB 的最小值.4.如图,一次函数y=kx+b 的图象与反比例函数y= mx 的图象交于点A (﹣3,m+8),B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.5.已知双曲线y=1x (x >0),直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y=﹣x+√2. (1)若k=﹣1,求△OAB 的面积S ; (2)若AB=52√2,求k 的值;(3)设N (0,2√2),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM+PN 最小值,并求PM+PN 取得最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB=√(x 1−x 2)2+(y 1−y 2)2)6.已知反比例函数y=1−2mx( m为常数)的图象在一、三象限.(1)求m的取值范围.(2)如图,若该反比例函数的图象经过▱ ABCD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出反比例函数表达式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为▲ .若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为▲ .7.绘制函数y=x+1x的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0;列表﹣﹣描点﹣﹣连线,得到该函数的图象如图所示.x …-4 -3 -2 -1 −12−13−141413121 2 3 4 …y …−414−313−212−2−212−313−4144143132122 212313414…观察函数图象,回答下列问题:(1)函数图象在第象限;(2)函数图象的对称性是A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形(3)在x>0时,当x=时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x=时,函数y有最(大,小)值,且这个最值等于;=−2x+1是否有实数解?说明理由.(4)方程x+1x8.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(k≠0)的图象经过点H,则k= ;(2)若反比例函数y= kx(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;的图象与函数y1的图象相交于点A,且点A的纵坐标为2.(2)若反比例函数y2=kx①求k的值;②结合图象,当y1>y2时,写出x的取值范围.10.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?11.(如图,四边形ABCD在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数y1=nx 与y2=4nx的图象上,对角线AC⊥BD于点P,AC⊥x轴于点N(2,0)(1)若CN=12,试求n的值;(2)当n=2,点P是线段AC的中点时,试判断四边形ABCD的形状,并说明理由;(3)直线AB与y轴相交于E点.当四边形ABCD为正方形时,请求出OE的长度.12.如图点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= √5,反比例函数y= kx(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.13.如图所示,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且与反比例函数y=m的图象在第二象限交于点C,CD⊥x轴,垂足为点D.若OB=2OA=3OD= x12 .(1)求一次函数与反比例函数的解析式;(2)若两函数图象的另一个交点为E,连结DE,求△CDE的面积;(3)直接写出不等式kx+b≤m的解集.x与y2= 14.某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=k1xk2(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:x操作猜想:(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C .当OA=1时,AB=,BC=,BC AB =;当OA=3时,AB=,BC=,BCAB=;当OA=a时,猜想BCAB=(2)在y轴的正方向上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示BCAB的值,并利用图②加以证明.(3)如图③,若k2=12,BCAB =12,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.15.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P 点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.16.如图,双曲线y1=k1x与直线y2=xk2的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=k1x上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=k1x上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.参考答案与解析1.【答案】(1)解:由题意,联立{y=kxy=xk,解得{x=ky=1或{x=−ky=−1,∵点A在第一象限,点B在第二象限,且k>1,∴A(k,1),B(−k,−1)(2)解:①△CEF是等腰直角三角形,理由如下:设直线BC的解析式为y=k0x+b0,将点B(−k,−1),C(1,k)代入得:{−kk0+b0=−1k0+b0=k,解得{k0=1b0=k−1,则直线BC的解析式为y=x+k−1,当y=0时,x+k−1=0,解得x=1−k,即F(1−k,0),同理可得:点E的坐标为E(1+k,0),∴CF=√(1−k−1)2+(0−k)2=√2k,CE=√(1+k−1)2+(0−k)2=√2k,EF=1+k−(1−k)=2k,∴CE=CF,CE2+CF2=4k2=EF2,∴△CEF是等腰直角三角形;②由题意,设点D的坐标为D(m,km),则m>k>1,∵△CEF是等腰直角三角形,∴∠CFE=∠CEF=45°,∴∠BFH=∠AEG=135°,设直线BD的解析式为y=k1x+b1,将点B(−k,−1),D(m,km )代入得:{−kk1+b1=−1mk1+b1=km,解得{k1=1mb1=k−mm,则直线BD的解析式为y=1m x+k−mm,当y=0时,1m x+k−mm=0,解得x=m−k,即H(m−k,0),同理可得:点G的坐标为G(k+m,0),∴DH=√(m−k−m)2+(0−km )2=km√1+m2,DG=√(k+m−m)2+(0−km )2=km√1+m2,∴DH=DG,∴∠DHG=∠DGH,∵∠DHG=∠BHF,∴∠DGH=∠BHF,∴∠CAD+∠CBD=∠AEG+∠DGH+∠CBD,=∠BFH+∠BHF+∠CBD,=180°,即∠CAD与∠CBD的度数和不变,度数和为180°2.【答案】(1)解:根据题意,“梦之点”就是有关函数图象与直线y=x的交点,其坐标就是对应的方程组的解.由题意可得:m=2由点P(2, 2)在反比例函数y=nx图象上,可得n=2×2=4故所求的反比例函数的解析式为y=4x(2)解:由题意可得:(Ⅰ)当k=0时,y=s−1,此时“梦之点”的坐标为(s−1, s−1 ) . (Ⅱ)当k≠0 时, (3k−1)x=1−s显然,此方程的解的情况决定函数y=3kx+s−1的图象上“梦之点”的存在情况,当k=13, s≠1时,方程无解,不存在“梦之点”;当k=13, s=1时,方程有无数个解,此时存在无数个“梦之点”,“梦之点”的坐标可表示为(ℎ,ℎ)(ℎ为任意实数);当k≠13时,得{x=1−s3k−1y=1−s3k−1,即“梦之点”的坐标为(1−s3k−1, 1−s3k−1)3.【答案】(1)12(2)解:由题意D(m,6m),由(1)可知AB=2m,∵四边形ABCD是平行四边形,∴CD=AB=2m,∴C(3m,6m) .∵B(2m,0),C(3m,6m),∴直线BC的解析式为y=6m2x−12m,由{y=6xy=6m2x−12m,解得{x=(√2+1)my=6√2−6m或{x=(1−√2)my=6(1+√2)m(舍弃),∴E((√2+1)m,6√2−6m);(3)解:作EF⊥x轴于F,CG⊥x轴于G . ∵EF//CG,∴CE BE=FG BF=√2+1)m (√2+1)m−2m =√2√2−1=√2 ;(4)解:∵CEBE =√2 ∴BE =√2+1 ,要使得 BE 最小,只要 AD 最小, ∵AD =√m 2+36m 2=√(m −6m )2+12 ,∴AD 的最小值为 2√3 , ∴BE 的最小值为√3√2+1=2√6−2√3 .4.【答案】(1)解:将A (﹣3,m+8)代入反比例函数y= mx 得,m −3=m+8,解得m=﹣6, m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2), 反比例函数解析式为y=﹣ 6x ,将点B (n ,﹣6)代入y=﹣ 6x 得,﹣ 6n =﹣6, 解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得, {−3k +b =2k +b =−6 , 解得 {k =−2b =−4,所以,一次函数解析式为y=﹣2x ﹣4; (2)解:设AB 与x 轴相交于点C , 令﹣2x ﹣4=0解得x=﹣2, 所以,点C 的坐标为(﹣2,0), 所以,OC=2, S △AOB =S △AOC +S △BOC , = 12 ×2×3+ 12 ×2×1,=3+1, =4.5.【答案】(1)解:当k=-1时,l 1:y=﹣x+2√2, 联立得,{y =−x +2√2y =1x ,化简得x 2﹣2√2x+1=0, 解得:x 1=√2﹣1,x 2=√2+1,设直线l 1与y 轴交于点C ,则C (0,2√2). S △OAB =S △AOC ﹣S △BOC =12•2√2•(x 2﹣x 1)=2√2;(2)解:根据题意得:{y −√2=k(x −√2)y =1x 整理得:kx 2+√2(1﹣k )x ﹣1=0(k <0), ∵△=[√2(1﹣k )]2﹣4×k ×(﹣1)=2(1+k 2)>0, ∴x 1、x 2 是方程的两根, ∴{x 1+x 2=√2(k−1)k x 1·x 2=−1k①, ∴AB=√(x 1−x 2)2+(y 1−y 2)2=√(x 1−x 2)2+(1x 1−1x 2)2=√(x 1−x 2)2(1+1x 12·x 22)=√[(x 1+x 2)2−4x 1x 2](1+1x 12·x 22),将①代入得,AB=√2(k 2+1)2k 2=√2(k 2+1)−k (k <0),∴√2(k 2+1)−k =5√22,整理得:2k2+5k+2=0,解得:k=﹣2,或 k=12;(3)解:∵直线l1:y﹣√2=k(x﹣√2)(k<0)过定点F, ∴ F(√2,√2).如图:设P(x,1x ),则M(﹣1x+√2,1x),则PM=x+1x ﹣√2=√(x+1x−√2)2=√x2+1x2−2√2(x+1x)+4,∵PF=√(x−√2)2+(1x −√2)2=√x2+1x2−2√2(x+1x)+4,∴PM=PF.∴PM+PN=PF+PN≥NF=2,当点P在NF上时等号成立,此时NF的方程为y=﹣x+2√2,由(1)知P(√2﹣1,√2+1),∴当P(√2﹣1,√2+1)时,PM+PN最小值是2.6.【答案】(1)解:根据题意,得1−2m>0,解得m<12,∴m的取值范围是m<12.(2)解:①∵四边形ABCD是平行四边形,A(0,3),B(−2,0),∴D(2,3) .把D(2,3)代入y=1−2mx ,得3=1−2m2,∴1−2m=6 .∴反比例函数表达式为y=6x;②(3,2)或(-2,-3)或(-3,-2);4 7.【答案】(1)一、三(2)C(3)1;小;2;−1;大;−2(4)解:方程x + 1x =﹣2x +1没有实数解,理由为:y =x + 1x 与y =﹣2x +1在同一直角坐标系中无交点.8.【答案】(1)解:x 2﹣9x+18=0, (x ﹣3)(x ﹣6)=0, x=3或6, ∵CD >DE , ∴CD=6,DE=3, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AE=EC= √62−32 =3 √3 , ∴∠DCA=30°,∠EDC=60°, Rt △DEM 中,∠DEM=30°, ∴DM= 12 DE= 32 , ∵OM ⊥AB ,∴S 菱形ABCD = 12 AC •BD=CD •OM , ∴12×6√3×6 =6OM ,OM=3 √3 , ∴D (﹣ 32 ,3 √3 ) (2)解:(3)解:如图1,①∵DC=BC ,∠DCB=60°, ∴△DCB 是等边三角形, ∵H 是BC 的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2 √3 =CP,,√3);∴P(92②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6 √3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6 √3,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣92,6 √3),由①知:F(32,2 √3),由F到C的平移规律可得P到Q的平移规律,则P(﹣92﹣3,6 √3﹣√3),即P(﹣152,5 √3);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣92,6 √3),F(32,2 √3),C(92,3 √3),∴P(212,﹣√3);综上所述,点P的坐标为:(92,√3)或(﹣152,5 √3)或(212,﹣√3).9.【答案】(1)解:由题意y1=|x|.函数图象如图所示:(2)解:①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同法当点A在第二象限时,k=−4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<−2时,y1>y2或x>0时,y1>y2.10.【答案】(1)解:由题意得,设前5个月中y= kx,把x=1,y=100代入得,k=100,∴y与x之间的函数关系式为y= 100x(0<x<5,且x为整数),把x=5代入,得y=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,解得:b=-30,∴y与x之间的函数关系式为y=10x-30(x>5且x为整数);(2)解:在函数y=10x−30中,令y=100,得10x−30=100解得:x=13答:到第13个月时,该化工厂月利润再次达到100万元.(3)解:在函数y=100x中,当y=50时,x=2,∵100>0,y随x的增大而减小,∴当y<50时,x>2在函数y=10x−30中,当y<50时,得10x−30<50解得:x<8∴2<x<8且x为整数;∴x可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.11.【答案】(1)解:∵点N的坐标为(2,0),CN⊥x轴,且CN=12,∴点C的坐标为(2,12).∵点C在反比例函数y1=nx的图象上,∴n=2×12=1.(2)解:四边形ABCD为菱形,理由如下:当n=2时,y1=nx=2x,y2=4nx=8x.当x=2时,y1=2x=1,y2=8x=4,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P 的坐标为(2, 52 ). 当y = 52 时, 2x = 52 , 8x = 52 , 解得:x = 45 ,x = 165 ,∴点B 的坐标为( 45 , 52 ),点D 的坐标为( 165 , 52 ), ∴BP =2﹣ 45 = 65 ,DP = 165 ﹣2= 65 , ∴BP =DP .又∵AP =CP ,AC ⊥BD , ∴四边形ABCD 为菱形.(3)解:∵四边形ABCD 为正方形, ∴AC =BD ,且点P 为线段AC 及BD 的中点. 当x =2时,y 1= 12 n ,y 2=2n ,∴点A 的坐标为(2,2n ),点C 的坐标为(2, 12 n ),AC = 32 n , ∴点P 的坐标为(2, 54 n ).同理,点B 的坐标为( 45 , 54 n ),点D 的坐标为( 165 , 54 n ),BD = 125 . ∵AC =BD , ∴32 n = 125 , ∴n = 85 ,∴点A 的坐标为(2, 165 ),点B 的坐标为( 45 ,2). 设直线AB 的解析式为y =kx+b (k ≠0),将A (2, 165 ),B ( 45 ,2)代入y =kx+b ,得: {2k +b =16545k +b =2 ,解得: {b =65k =1 ,∴直线AB 的解析式为y =x+ 65 . 当x =0时,y =x+ 65 = 65 , ∴点E 的坐标为(0, 65 ),∴当四边形ABCD为正方形时,OE的长度为6.512.【答案】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,AO=CD,AB=DA∴Rt△AOB≌Rt△DCA(HL)(2)解:在Rt△ACD中,CD=2,AD= √5,∴AC= =1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),k=3×1=3(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y= 的图象上13.【答案】(1)解:∵OB =2OA =3OD =12 ∴OA =6,OD =4 ∴A(6,0),B(0,12)把 A(6,0),B(0,12) 分别代入 y =kx +b 得: {6k +b =0b =12 ,解之得: m =−4×20=−80 ∴一次函数的解析式为 y =−2x +12 令 x =−4 ,则 y =20 ∴C(−4,20)把 C(−4,20) 代入 y =mx 得:m =−4×20=−80∴反比例函数的解析式为 y =−80x ; (2)解:解方程组 {y =−2x +12y =−80x 得: {x 1=−4y 1=20,{x 2=10y 2=−8∴E(10,−8)∴S ΔCDE =S ΔADC +S ΔADE=12AD ⋅(CD +|y E |)=12×(4+6)×(20+8) =140(3)解:如图:当x <-4时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 −4 ≤ x <0 时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 当0<x <10时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 x ≥10时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 综上可得,不等式 kx +b ≤ mx 的解集为 −4 ≤ x <0 或 x ≥10. 14.【答案】(1)2;4;2;23;43;2;2 数学思考: (2)BCAB =k 2−k 1k 1证明:∵AB ·OA =k 1 , AC ·OA =k 2 , ∴AC ·OA −AB ·OA =BC ·OA =k 2−k 1 ,∴BCAB =BC·OAAB·OA=k2−k1k1.推广应用:(3)解:若四边形ADFB是正方形,设点B的坐标为(a,b)(a>0,b>0),则有DF=DA=AB=a,OA=b,OD=a+b,∴点F的坐标为(a,a+b) .∵k2=12,BCAB =k2−k1k1=12,∴12−k1k1=12,解得:k1=8 .∵点B在y=8x 图象上,点F在y=12x图象上,∴ab=8,a (a+b)=12,∴a2=12−8=4,∴a=2,∴b=4,∴OA=4,点B的坐标为(2,4) .15.【答案】(1)解:由y=2x+2可知A(0,2),即OA=2,∵tan∠AHO=2,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)解:①当AM=AP时,∵A(0,2),M(1,4),∴AM=√5,则AP=AM=√5,∴此时点P的坐标为(0,2﹣√5)或(0,2+ √5);②若AM=PM时,设P(0,y),则PM=√(1−0)2+(4−y)2,∴√(1−0)2+(4−y)2=√5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+ √5),或(0,2﹣√5);(3)解:∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有{m+n=44m+n=1,,解得{m=−1n=5,∴直线MN的解析式为y=﹣x+5.∵点C是直线y=﹣x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ =S△MQC﹣S△NQC=12×QC×4﹣12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m﹣5|=2,∴m=7或3,故答案为7或3.16.【答案】(1)解:把点A(4,1)代入双曲线y1=k1x得k1=4,∴双曲线的解析式为y1=4x;把点A(4,1)代入直线y2=x k2得k2=4,∴直线的解析式为y2=14x(2)解:∵点P(a,b)在y1=4x的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴点P的坐标为(1,4),又∵双曲线y1=4x 与直线y2=14x的图象交于A、B两点,且点A的坐标为(4,1),∴点B的坐标为(−4,−1),过点P作PG∥y轴交AB于点G,如图所示,把x=1代入y2=14x,得到y=14,∴点G的坐标为(1,14),∴PG =4−14=154 , ∴S △ABP =12 PG ( x A −x B )=12×154×8=15 (3)解:PE=PF .理由如下:∵点P ( a , b )在 y 1=4x 的图象上,∴b =4a ,∵点B 的坐标为( −4 , −1 ), 设直线PB 的表达式为 y =mx +n , ∴{am +n =4a −4m +n =−1, ∴{m =1a n =4a −1, ∴直线PB 的表达式为 y =1a x +4a −1 , 当 y =0 时, x =a −4 ,∴E 点的坐标为( a −4 ,0), 同理:直线PA 的表达式为 y =−1a x +4a +1 , 当 y =0 时, x =a +4 ,∴F 点的坐标为( a +4 ,0),过点P 作PH ⊥x 轴于H ,如图所示,∵P 点坐标为(,∴H 点的坐标为( a ,0),∴EH =x H −x E =a −(a −4)=4 , FH =x F −x H =a +4−a =4 , ∴EH=FH ,∴PE=PF .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题11 反比例函数
1.xx·柳州已知反比例函数的解析式为y =|a |-2
x
,则a 的取值范围是( ) A .a ≠2 B .a ≠-2 C .a ≠±2 D.a =±2
2.xx·绥化已知反比例函数y =3
x
,下列结论中不正确的是( )
A .其图象经过点(3,1)
B .其图象分别位于第一、三象限
C .当x >0时,y 随x 的增大而减小
D .当x >1时,y >3
3.xx·扬州已知点A (x 1,3),B (x 2,6)都在反比例函数y =-3
x
的图象上,则下列关系
式一定正确的是( )
A .x 1<x 2<0
B .x 1<0<x 2
C .x 2<x 1<0
D .x 2<0<x 1
4.xx·黄石已知一次函数y 1=x -3和反比例函数y 2=4
x
的图象在平面直角坐标系中交
于A ,B 两点,当y 1>y 2时,x 的取值范围是( )
A .x <-1或x >4
B .-1<x <0或x >4
C .-1<x <0或0<x <4
D .x <-1或0<x <4
5.xx·上海已知反比例函数y =
k -1
x
(k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是________.
6.xx·邵阳如图Z -11-1所示,A 是反比例函数y =k x
的图象上一点,过点A 作AB
⊥x 轴,垂足为B .若△AOB 的面积为2,则k 的值是________.
图Z -11-1
7.xx·随州如图Z -11-2,一次函数y =x -2的图象与反比例函数y =k x
(k >0)的图象相交于A ,B 两点,与x 轴交于点C .若tan∠AOC =1
3
,则k 的值为________.
图Z -11-2
8.xx·大庆如图Z -11-3,A (4,3)是反比例函数y =k x
在第一象限图象上一点,连接
OA ,过点A 作AB ∥x 轴,截取AB =OA (点B 在点A 右侧),连接OB ,交反比例函数y =k
x
的图
象于点P .
(1)求反比例函数y =k x
的解析式; (2)求点B 的坐标; (3)求△OAP 的面积.
图Z -11-3
详解详析
1.C 2.D 3.A 4.B 5.k<1 6.4 7.3
8.解:(1)∵A(4,3)是反比例函数y =k
x 图象上的一点,
∴3=k 4,解得k =12.∴反比例函数的解析式为y =12x
.
(2)如图,过点A 作AM⊥x 轴于点M. ∵A(4,3),∴AM=3,OM =4. 在Rt △AMO 中,
OA =AM 2
+OM 2
=32
+42
=5. 又∵AB=OA ,∴AB=5.
∵AB∥x 轴,∴点B 的坐标为(9,3). (3)设OB 的函数解析式为y =ax , ∴3=9x ,解得x =13,∴y=13x.
联立⎩⎪⎨⎪⎧y =12
x ,y =13x ,解得⎩⎪⎨⎪⎧x =6,y =2或⎩
⎪⎨⎪⎧x =-6,y =-2.
∵点P 在第一象限,∴点P 的坐标为(6,2). 过点P 作PN⊥x 轴于点N ,连接AP. ∴PN=2,ON =6.
∴S △OAP =S △OAM +S 梯形AMNP -S △OPN =12AM·OM+12(AM +PN)·(ON-OM)-12PN·ON=1
2
×3×4+
1 2×(2+3)×(6-4)-
1
2
×2×6=5,
即△OAP的面积为5.
如有侵权请联系告知删除,感谢你们的配合!。