大学物理教程第二版课后答案
《大学物理》 第二版 课后习题答案 第十章
习题精解10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。
设振源的振动方程为cos 2y A t πω⎛⎫=+ ⎪⎝⎭ ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x x πϕπϕππλλ∆∆∆==∆== (2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3) 1212343411,,,24223,,,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-2 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=∙的速度沿x 轴的正方向传播,试写出波动方程。
解 根据题意可知,波源振动的相位为32ϕπ= 2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=∙ 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。
解 (1)比较系数法 将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======∙=∙=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-∙ 所以1max 0.0510 1.57()v m s π-=⨯=∙ 各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-∙ 所以22max 0.05(10)49.3()a m s π-=⨯=∙10-4 设在某一时刻的横波波形曲线的一部分如图10.1所示。
《大学物理学》第二版上册习题解答
大学物理学习题答案习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt =各代表什么运动?(6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt =及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,na 、ta 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为:0(/)2ave x v m s t ∆===∆t 时刻的瞬时速度为:()44dxv t t dt ==-s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆(3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt -===-。
大学物理课后习题册答案 第二版王建邦主编
参考答案 第一章1-1 已知质点运动学方程分量式为2x t =262y t =- (1)求轨道方程,并画出轨迹图;(2)求1t =到2t =之间的∆r ,r ∆和v ;(本题中x ,y的单位是m ,t 的单位是s ,v 的单位为1s m -⋅。
)[答案] (1)262x y =-,(2)26-i j ,0,26-i j .(1)由质点在水平方向、竖直方向的位置-时间函数关系:2x t=262y t =-消去t ,得轨道方程为262x y =-轨迹为抛物线,如题1-1图所示。
(2)将质点的位矢分量式:2x t =262y t =-代入位矢()()()t x t y t ==+r r i j ,可得质点的位置矢量22(62)t t =+-r i j 。
代入时间参量t ,得质点在某一时刻的位置r 。
由质点位移和平均速度的定义,可求得21∆=-r r r 21r r r ∆=- t∆=∆r v1-2 如图1-2所示,一足球运动员在正对球门前25.0m 处以120.0m s -⋅的初速/y率罚任意球,已知球门高为3.44m 。
若要在垂直于球门竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球(足球可视为质点)?[答案] 171.1169.92θ≥≥,127.9218.89θ≥≥. 以踢球点为坐标原点取平面坐标系xOy 。
按高中物理,设斜抛小球初速度0v ,斜抛仰角0θ,写出小球水平方向、竖直方向的位置-时间函数关系:00cos x v t θ= (1)2001sin 2y v t gt θ=- (2)消去t 得足球的轨迹方程 202200tan 2cos gy x x v θθ=-依题意以25.0x m =,120.0v m s -=⋅及3.440m y ≥≥代入后,可解得 171.1169.92θ≥≥ 127.9218.89θ≥≥。
1-3 一质点在xy 平面内运动,在某一时刻它的位置矢量(45)m =-+r i j ,经5s t ∆=后,其位移(68)m ∆=-r i j 。
大学物理教程第二版课后答案
引言:大学物理教程是一本经典的物理教材,旨在帮助学生理解和掌握物理学的基本原理和概念。
课后习题是帮助学生巩固所学知识的重要部分。
本文将提供《大学物理教程第二版》课后答案,以帮助学生检查和纠正他们的理解,提高物理学习的效果与成绩。
概述:物理学是自然科学的重要分支,研究物质、能量和它们之间相互作用的规律。
大学物理教程第二版是一本全面介绍物理学的教材,内容涵盖了力学、热学、电磁学等领域。
通过解答课后习题,学生可以深入理解课堂教学中所介绍的物理学原理,提高问题解决能力和科学思维。
正文:一、力学1.速度和加速度的关系2.运动中的力和加速度3.牛顿三定律的应用4.匀速运动和变速运动的区别5.质点和刚体的运动分析二、热学1.理想气体定律的应用2.热传导和传热的方式3.热量和能量的转化4.热力学循环和效率5.热力学第一定律和第二定律的概念三、电磁学1.电场和电势的关系2.高斯定律和库仑定律的应用3.磁场的产生和性质4.安培定律和法拉第电磁感应定律的应用5.电磁波的特性和传播四、光学1.光的折射和反射2.物体成像的方式3.凸透镜和凹透镜的工作原理4.光的波粒二象性的解释5.干涉和衍射现象的解释五、量子物理1.微观粒子的波函数和几率分布2.波粒二象性的测量3.斯特恩盖拉赫实验和双缝干涉实验4.原子和分子的结构5.量子力学的基本原理和数学表达总结:通过解答《大学物理教程第二版》的课后习题,学生可以深入理解物理学的基本原理和概念。
力学、热学、电磁学、光学和量子物理是大学物理的重要领域,通过系统学习和练习,学生可以提高问题解决能力和科学思维。
课后答案的提供可以帮助学生检查自己的理解,并及时纠正错误,提高物理学习的效果与成绩。
希望本文所提供的《大学物理教程第二版》课后答案能对学生的学习起到一定的帮助和指导作用。
大学物理教程第二版-第1章答案
1 -5 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算.题 1-5 图解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a1 -6 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r题 1-6 图1 -9 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和txd d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0vv v得 03314v v +-=t t (1)由⎰⎰=txx t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -10 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vvvv得石子速度 )e 1(Bt BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)e 1(d d Bt BAt y --==v 并考虑初始条件有 t BA y t Bt y d )e 1(d 00⎰⎰--= 得石子运动方程)1(e 2-+=-Bt BAt B A y 1 -12 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr=v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即tt te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ.解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 22222s m 0.4d d d d )(-⋅-=+=tyt x t则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t ttt e e e a 222s1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv1 -18 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为22s2s m 30.2-=⋅==ωr a t n2s2s m 80.4d d -=⋅==tωra t t(2) 当22212/t n t a a a a +==时,有223nt a a =,即 ()()422212243t r rt =得 3213=t此时刻的角位置为rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt =t =0.55s。
《大学物理学》(赵近芳 主编)第二版 课后习题答案物理答案2第七单元
习题七7-1下列表述是否正确?为什么?并将错误更正.(1)A E Q ∆+∆=∆ (2)⎰+=V p E Q d(3)121Q Q -≠η (4)121Q Q -<不可逆η 解:(1)不正确,A E Q +∆=(2)不正确,⎰+=Vp E Q d Δ(3)不正确,121Q Q -=η(4)不正确,121Q Q -=不可逆η7-2 V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高?答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关.7-3 如题7-3图所示,有三个循环过程,指出每一循环过程所作的功是正的、负的,还是零,说明理由.解:各图中所表示的循环过程作功都为0.因为各图中整个循环分两部分,各部分面积大小相等,而循环方向一个为逆时针,另一个为顺时针,整个循环过程作功为0.题7-3图7-4 用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题7-4图解:1.由热力学第一定律有 A E Q +∆=若有两个交点a 和b ,则 经等温b a →过程有0111=-=∆A Q E 经绝热b a →过程012=+∆A E 022<-=∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.2.若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 7-5 一循环过程如题7-5图所示,试指出: (1)ca bc ab ,,各是什么过程;(2)画出对应的V p -图; (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积? (5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数.解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率 由vRT pV = 得 K vR p =故bc 过程为等压过程 ca 是等温过程(2)V p -图如题57'-图题57'-图(3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形.(5)ab ca bc abQ Q Q Q e -+=题7-5图 题7-6图7-6 两个卡诺循环如题7-6图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同. 7-7 评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程. 答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功; (2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是 可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程 虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 7-8 热力学系统从初平衡态A 经历过程P 到末平衡态B .如果P 为可逆过程,其熵变为:⎰=-BA AB T Q S S 可逆d ,如果P 为不可逆过程,其熵变为⎰=-B A A B T Q S S 不可逆d ,你说对吗?哪一个表述要修改,如何修改?答:不对.熵是状态函数,熵变只与初末状态有关,如果过程P 为可逆过程其熵变为:⎰=-BA AB T Q S S 可逆d ,如果过程P 为不可逆过程,其熵变为 ⎰>-B A A B T Q S S 不可逆d7-9 根据⎰=-B A A B T Q S S 可逆d 及⎰>-B A A B T Q S S 不可逆d ,这是否说明可逆过程的熵变大于不可逆过程熵变?为什么?说明理由.答:这不能说明可逆过程的熵变大于不可逆过程熵变,熵是状态函数,熵变只与初末状态有关,如果可逆过程和不可逆过程初末状态相同,具有相同的熵变.只能说在不可逆过程中,系统的热温比之和小于熵变.7-10 如题7-10图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统作功126 J .(1)若沿adb 时,系统作功42 J ,问有多少热量传入系统?(2)若系统由状态b 沿曲线ba 返回状态a 时,外界对系统作功为84 J ,试问系统是吸热还是放热?热量传递是多少?题7-10图解:由abc 过程可求出b 态和a 态的内能之差 A E Q +∆=224126350=-=-=∆A Q E J abd 过程,系统作功42=A J26642224=+=+∆=A E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=A E Q J 系统放热7-11 1 mol 单原子理想气体从300 K 加热到350 K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功? (1)体积保持不变; (2)压力保持不变. 解:(1)等体过程由热力学第一定律得E Q ∆= 吸热)(2)(1212V T T R iT T C E Q -=-=∆=υυ25.623)300350(31.823=-⨯⨯=∆=E Q J对外作功 0=A (2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ吸热75.1038)300350(31.825=-⨯⨯=Q J)(12V T T C E -=∆υ内能增加 25.623)300350(31.823=-⨯⨯=∆E J对外作功 5.4155.62375.1038=-=∆-=E Q A J 7-12 一个绝热容器中盛有摩尔质量为mol M ,比热容比为γ的理想气体,整个容器以速度v 运动,若容器突然停止运动,求气体温度的升高量(设气体分子的机械能全部转变为内能).解:整个气体有序运动的能量为221mu ,转变为气体分子无序运动使得内能增加,温度变化2V 21mu T C M m E =∆=∆ )1(211212mol V 2mol -==∆γu M R C u M T 7-13 0.01 m 3氮气在温度为300 K 时,由0.1 MPa(即1 atm)压缩到10 MPa .试分别求氮气经等温及绝热压缩后的(1)体积;(2)温度;(3)各过程对外所作的功. 解:(1)等温压缩 300=T K 由2211V p V p = 求得体积3211210101.0101-⨯=⨯==p V p V 3m对外作功21112ln lnp pV p V V VRT A ==01.0ln 01.010013.115⨯⨯⨯⨯= 31067.4⨯-=J(2)绝热压缩R C 25V =57=γ由绝热方程 γγ2211V p V p =γγ/12112)(p V p V =1121/12112)()(V p p p V p V γγγ==3411093.101.0)101(-⨯=⨯=m由绝热方程γγγγ---=22111p T p T 得K 579)10(30024.04.1111212=⨯==--T p p T T γγγγ热力学第一定律A E Q +∆=,0=Q 所以)(12molT T C M MA V --=RT M MpV mol =,)(2512111T T R RT V p A --= 35105.23)300579(25300001.010013.1⨯-=-⨯⨯⨯⨯-=A J7-14 理想气体由初状态),(11V p 经绝热膨胀至末状态),(22V p .试证过程中气体所作的功为12211--=γV p V p A ,式中γ为气体的比热容比.答:证明: 由绝热方程C V p V p pV ===γγγ2211 得γγV V p p 111=⎰=21d V V Vp A⎰-----==21)11(1d 11121111V V r V V V p v v V p A γγγγγ]1)[(112111---=-γγV VV p又 )(1111211+-+----=γγγγV V V p A112221111--=+-+-γγγγγV V p V V p 所以 12211--=γV p V p A7-15 1 mol 的理想气体的T-V 图如题7-15图所示,ab 为直线,延长线通过原点O .求ab过程气体对外做的功.题7-15图解:设KV T =由图可求得直线的斜率K 为002V T K =得过程方程V V T K 002=由状态方程 RT pV υ=得VRTp υ=ab 过程气体对外作功⎰=002d V v Vp A⎰⎰⎰====000020002202d 2d 2d V V V v V V RTV V RT VV V T V R V V RT A7-16 某理想气体的过程方程为a a Vp ,2/1=为常数,气体从1V 膨胀到2V .求其所做的功.解:气体作功⎰=21d V v Vp A⎰-=-==-2121)11()(d 2121222V V V VV V a V a V V a A7-17 设有一以理想气体为工质的热机循环,如题7-17图所示.试证其循环效率为1112121---=p p V V γη答:等体过程 吸热)(12V 1T T C Q -='υ)(1221V 11R V p R V p C Q Q -='= 绝热过程 03='Q等压压缩过程放热)(12p 2T T C Q -='υ)(2212P R V p R V p C -=循环效率 121Q Q-=η )1/()1/(1)()(1121212221V 2212p 12---=---=-=p p V p V p C V p V p C Q Q ννγηη题7-17图 题7-19图7-18 一卡诺热机在1000 K 和300 K 的两热源之间工作,试计算 (1)热机效率;(2)若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少? (3)若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少?解:(1)卡诺热机效率121T T -=η%7010003001=-=η(2)低温热源温度不变时,若%8030011=-=T η要求 15001=T K ,高温热源温度需提高500K(3)高温热源温度不变时,若%80100012=-=T η要求 2002=T K ,低温热源温度需降低100K7-19 如题7-19图所示是一理想气体所经历的循环过程,其中AB 和CD 是等压过程,BC 和DA 为绝热过程,已知B 点和C 点的温度分别为2T 和3T .求此循环效率.这是卡诺循环吗?解:(1)热机效率121Q Q -=η AB 等压过程 )(12P 1T T C Q -='υ 吸热)(P mo 1A B lT T C M MQ -=CD 等压过程 )(12P 2T T vC Q -='放热)(P mol22D C T T C M MQ Q -='-=)/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--=根据绝热过程方程得到AD 绝热过程 γγγγ----=D D A A T p T p 11 BC 绝热过程 γγγγ----=C C B B T p T p 111又B C D DC BA T T T T p p p p ===231T T -=η(2)不是卡诺循环,因为不是工作在两个恒定的热源之间. 7-20 (1)用一卡诺循环的致冷机从7℃的热源中提取1000 J 的热量传向27℃的热源,需要多少功?从-173℃向27℃呢?(2)一可逆的卡诺机,作热机使用时,如果工作的两热源的温度差愈大,则对于作功就愈有利.当作致冷机使用时,如果两热源的温度差愈大,对于致冷是否也愈有利?为什么? 解:(1)卡诺循环的致冷机2122T T T A Q e -==静 7℃→27℃时,需作功 4.71100028028030022211=⨯-=-=Q T T T A J173-℃→27℃时,需作功 2000100010010030022212=⨯-=-=Q T T T A J(2)从上面计算可看到,当高温热源温度一定时,低温热源温度越低,温度差愈大,提取同样的热量,则所需作功也越多,对致冷是不利的.7-21 如题7-21图所示,1 mol 双原子分子理想气体,从初态K 300,L 2011==T V 经历三种不同的过程到达末态K 300,L 4022==T V . 图中1→2为等温线,1→4为绝热线,4→2为等压线,1→3为等压线,3→2为等体线.试分别沿这三种过程计算气体的熵变.题7-21图 解:21→熵变等温过程 A Q d d = , V p A d d =,RT pV =⎰⎰==-21111221d 1d V V V V RT T T Q S S76.52ln ln!212===-R V V R S S J 1K -⋅321→→熵变⎰⎰+=-312312d d T QT Q S S32V 13p V p 12ln ln d d 2331T TC T T C T T C T TC S S T T T T +=+=-⎰⎰31→等压过程 31p p = 3211T V T V =1213V V T T =23→等体过程 2233T p T p =3232p p T T = 1232p p T T =12V 12P 12ln ln p pC V V C S S +=-在21→等温过程中 2211V p V p =所以2ln ln ln ln1212V 12P 12R V VR V V C V V C S S ===-241→→熵变⎰⎰+=-412412d d T QT Q S S41p 42p p 12ln lnd 024T TC T T C TT C S S T T ==+=-⎰41→绝热过程111441144111----==γγγγV V T T V T V T γγγγ/121/141144411)()(,p pp p V V V p V p ===在21→等温过程中 2211V p V p =γγγ/112/121/14114)()()(V V p p p p V V ===γγ11241)(-=V V T T2ln ln 1ln12P 41P 12R V V C T T C S S =-==-γγ7-22 有两个相同体积的容器,分别装有1 mol 的水,初始温度分别为1T 和2T ,1T >2T ,令其进行接触,最后达到相同温度T .求熵的变化,(设水的摩尔热容为mol C ). 解:两个容器中的总熵变⎰⎰+=-TT T T lT T C T T C S S 12d d mo mol 0 212mol 21mol ln)ln (ln T T T C T T T T C =+=因为是两个相同体积的容器,故)()(1mol 2mol T T C T T C -=- 得212T T T += 21212mol 04)(lnT T T T C S S +=-7-23 把0℃的0.5kg 的冰块加热到它全部溶化成0℃的水,问:(1)水的熵变如何?(2)若热源是温度为20 ℃的庞大物体,那么热源的熵变化多大? (3)水和热源的总熵变多大?增加还是减少?(水的熔解热334=λ1g J -⋅) 解:(1)水的熵变612273103345.031=⨯⨯==∆T Q S J 1K -⋅(2)热源的熵变570293103345.032-=⨯⨯-==∆T Q S J 1K -⋅(3)总熵变4257061221=-=∆+∆=∆S S S J 1K -⋅熵增加。
《大学物理学》第二版下册习题解答
第九章 静电场中的导体9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B)2εσ. (C) 0εσh . (D) 02εσh. [ A ]9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B)dq04επ.(C)R q 04επ-. (D) )11(4Rd q -πε. [ D ]9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ B ]9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ B ]9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零. [ D ]9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势.解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布.(2) 面上感生电荷的总电荷.解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为σ.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()024cos 0220=++=⊥εσεθb r q E P π 2分 ∴ ()2/3222/b r qb +-=πσ 1分(2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()2/322/d d b r qbrdr S Q +-==σ总电荷为 ()q brrdrqb dS Q S-=+-==⎰⎰∞2/322σ 2分O9.9 如图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为q A 和q B 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净带电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为σ. ()()0004///4/d εεσπ++π⋅==⎰⎰a q a q R S U U B A S P A∵0d =⋅⎰⎰AS S σ∴ ()()04///επ+=a q a q U B A P9.10三个电容器如图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C第十章 静电场中的电介质10.1 关于D的高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零.(B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ C ]10.2一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ]10.3 一平行板电容器中充满相对介电常量为εr 的各向同性均匀电介质.已知介质表面极化电荷面密度为±σ′,则极化电荷在电容器中产生的电场强度的大小为:(A) 0εσ'. (B) r εεσ0'. (C) 02εσ'. (D)rεσ'. [ A ]10.4一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则(A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=. [ B ]10.5如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定. [ B ]q10.6将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示. 则由于介质板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与介质板相对极板的位置无关. (B) 储能减少,且与介质板相对极板的位置有关. (C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关. [ A ]介质板10.7静电场中,关系式 P E D+=0ε(A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质.(D) 适用于任何电介质. [ D ]10.8一半径为R 的带电介质球体,相对介电常量为εr ,电荷体密度分布ρ = k / r 。
《大学物理》第二版课后习题答案第七章
习题精解7-1一条无限长直导线在一处弯折成半径为R 的圆弧,如图所示,若已知导线中电流强度为I,试利用比奥—萨伐尔定律求:(1)当圆弧为半圆周时,圆心O 处的磁感应强度;(2)当圆弧为1/4圆周时,圆心O 处的磁感应强度。
解(1)如图所示,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。
因为圆心O 位于直线电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。
根据比奥—萨伐尔定律,半圆弧上任一电流元在O 点产生的磁感应强度为 024IdldB R μπ=方向垂直纸面向内。
半圆弧在O 点产生的磁感应强度为 00022444RIIdl I B R R R Rπμμμπππ===⎰方向垂直纸面向里。
(2)如图(b )所示,同理,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。
因为圆心O 位于电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。
根据毕奥—萨伐尔定理,1/4圆弧上任一电流元在O 点产生的磁感应强度为 024Idl dB R μπ=方向垂直纸面向内,1/4圆弧电流在O 点产生的磁感应强度为0002224428RIIdl I R B R R Rπμμμπππ===⎰方向垂直纸面向里。
如图所示,有一被折成直角的无限长直导线有20A 电流,P 点在折线的延长线上,设a 为,试求P 点磁感应强度。
解 P 点的磁感应强度可看作由两段载流直导线AB 和BC 所产生的磁场叠加而成。
AB 段在P 点所产生的磁感应强度为零,BC 段在P 点所产生的磁感应强度为0120(cos cos )4IB r μθθπ=- 式中120,,2r a πθθπ=== 。
所以500(cos cos ) 4.010()42I B T a μπππ=-=⨯ 方向垂直纸面向里。
大学物理课后习题答案,大学物理第二版课后习题答案
解:vx?vx0?
?adt??3sint
z
t
vy?vy0??aydt?4?4cost0?4cost
t
t
则x?x0?
?
t
?3sintdt?3?3cost0?3cost
t
同理y?4sint
x2y2
所以有2?2?1质点的轨迹为一椭圆。
34
4、一质点沿着半径为R的圆周运动,在t=0时经过P点,此后的速率按
解:dvdt?0,即?0质点做匀速直线运动(包括静止)
?
?
dvdt?0,即at?0质点做匀速率运动(包括上一种及匀速圆周运动)
4、物体在某一时刻开始运动,在?t时间后,经任一路径回到出发点,此时的速度大小与开始时相同,但方向不同,试问:在?t时间内,平均速度是否为零?平均速率是否为零?平均加速度是否为零?
cos??cos??
?v2(sin??
L
cos?)H
车速至少如上时,货物刚好不会被雨水淋着。
6、如图1.5所示,在倾角为??30?的斜坡上,以初速度v0发射炮弹,设v0与斜坡的夹角为
??
??60?。求炮弹落地点离发射点的距离L。
解:
图1.5
12t2
12t
2
由上图可知?0t?方法一:由右图
12t2
?x?v0cos300t??y?vsin300t?1gt2
Bt2
?
?
雨滴下落的速度v2的方向与铅直方向夹角为θ,偏向于汽
车前进的方向,今在汽车后放一长方形物体(长为L)。问,车速v1为躲大时,此物体刚好不会被雨水淋着?解:
雨相对于车的速度2?2?1由右图可得:所以
《大学物理学》(赵近芳主编)第二版课后习题答案物理
习题七7-1下列表述是否正确?为什么?并将错误更正.(1)A E Q ∆+∆=∆ (2)⎰+=V p E Q d(3)121Q Q -≠η (4)121Q Q -<不可逆η 解:(1)不正确,A E Q +∆=(2)不正确,⎰+=Vp E Q d Δ(3)不正确,121Q Q -=η(4)不正确,121Q Q -=不可逆η7-2 V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高?答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关.7-3 如题7-3图所示,有三个循环过程,指出每一循环过程所作的功是正的、负的,还是零,说明理由.解:各图中所表示的循环过程作功都为0.因为各图中整个循环分两部分,各部分面积大小相等,而循环方向一个为逆时针,另一个为顺时针,整个循环过程作功为0.题7-3图7-4 用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题7-4图解:1.由热力学第一定律有 A E Q +∆=若有两个交点a 和b ,则 经等温b a →过程有0111=-=∆A Q E 经绝热b a →过程012=+∆A E 022<-=∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.2.若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 7-5 一循环过程如题7-5图所示,试指出: (1)ca bc ab ,,各是什么过程;(2)画出对应的V p -图; (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数. 解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率 由vRT pV = 得 K vR p =故bc 过程为等压过程 ca 是等温过程(2)V p -图如题57'-图题57'-图(3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形.(5)ab ca bc abQ Q Q Q e -+=题7-5图 题7-6图7-6 两个卡诺循环如题7-6图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同. 7-7 评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程. 答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功; (2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是 可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程 虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 7-8 热力学系统从初平衡态A 经历过程P 到末平衡态B .如果P 为可逆过程,其熵变为:⎰=-BA AB T Q S S 可逆d ,如果P 为不可逆过程,其熵变为⎰=-B A A B T Q S S 不可逆d ,你说对吗?哪一个表述要修改,如何修改?答:不对.熵是状态函数,熵变只与初末状态有关,如果过程P 为可逆过程其熵变为:⎰=-BA AB T Q S S 可逆d ,如果过程P 为不可逆过程,其熵变为⎰>-B A A B T Q S S 不可逆d7-9 根据⎰=-B A A B T Q S S 可逆d 及⎰>-B A A B T Q S S 不可逆d ,这是否说明可逆过程的熵变大于不可逆过程熵变?为什么?说明理由.答:这不能说明可逆过程的熵变大于不可逆过程熵变,熵是状态函数,熵变只与初末状态有关,如果可逆过程和不可逆过程初末状态相同,具有相同的熵变.只能说在不可逆过程中,系统的热温比之和小于熵变.7-10 如题7-10图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统作功126 J .(1)若沿adb 时,系统作功42 J ,问有多少热量传入系统?(2)若系统由状态b 沿曲线ba 返回状态a 时,外界对系统作功为84 J ,试问系统是吸热还是放热?热量传递是多少?题7-10图解:由abc 过程可求出b 态和a 态的内能之差 A E Q +∆=224126350=-=-=∆A Q E J abd 过程,系统作功42=A J26642224=+=+∆=A E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=A E Q J 系统放热7-11 1 mol 单原子理想气体从300 K 加热到350 K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功? (1)体积保持不变; (2)压力保持不变. 解:(1)等体过程由热力学第一定律得E Q ∆= 吸热)(2)(1212V T T R iT T C E Q -=-=∆=υυ25.623)300350(31.823=-⨯⨯=∆=E Q J对外作功 0=A (2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ吸热75.1038)300350(31.825=-⨯⨯=Q J )(12V T T C E -=∆υ内能增加 25.623)300350(31.823=-⨯⨯=∆E J对外作功 5.4155.62375.1038=-=∆-=E Q A J 7-12 一个绝热容器中盛有摩尔质量为mol M ,比热容比为γ的理想气体,整个容器以速度v 运动,若容器突然停止运动,求气体温度的升高量(设气体分子的机械能全部转变为内能).解:整个气体有序运动的能量为221mu ,转变为气体分子无序运动使得内能增加,温度变化2V 21mu T C M m E =∆=∆ )1(211212mol V 2mol -==∆γu M R C u M T7-13 0.01 m 3氮气在温度为300 K 时,由0.1 MPa(即1 atm)压缩到10 MPa .试分别求氮气经等温及绝热压缩后的(1)体积;(2)温度;(3)各过程对外所作的功. 解:(1)等温压缩 300=T K 由2211V p V p = 求得体积3211210101.0101-⨯=⨯==p V p V 3m对外作功21112ln lnp pV p V V VRT A ==01.0ln 01.010013.115⨯⨯⨯⨯=31067.4⨯-=J(2)绝热压缩R C 25V =57=γ由绝热方程 γγ2211V p V p =γγ/12112)(p V p V =1121/12112)()(V p pp V p V γγγ==3411093.101.0)101(-⨯=⨯=m由绝热方程γγγγ---=22111p T p T 得K 579)10(30024.04.1111212=⨯==--T p p T T γγγγ热力学第一定律A E Q +∆=,0=Q 所以)(12molT T C M MA V --=RT M MpV mol =,)(2512111T T R RT V p A --= 35105.23)300579(25300001.010013.1⨯-=-⨯⨯⨯⨯-=A J7-14 理想气体由初状态),(11V p 经绝热膨胀至末状态),(22V p .试证过程中气体所作的功为12211--=γV p V p A ,式中γ为气体的比热容比.答:证明: 由绝热方程C V p V p pV ===γγγ2211 得γγV V p p 111=⎰=21d V V Vp A⎰-----==21)11(1d 11121111V V r V V V p v v V p A γγγγγ]1)[(112111---=-γγV VV p又 )(1111211+-+----=γγγγV V V p A 112221111--=+-+-γγγγγV V p V V p 所以 12211--=γV p V p A7-15 1 mol 的理想气体的T-V 图如题7-15图所示,ab 为直线,延长线通过原点O .求ab过程气体对外做的功.题7-15图解:设KV T =由图可求得直线的斜率K 为002V T K =得过程方程V V T K 002=由状态方程 RT pV υ= 得VRTp υ=ab 过程气体对外作功⎰=002d V v Vp A⎰⎰⎰====000020002202d 2d 2d V V V v V V RTV V RT VV V T V R V V RT A7-16 某理想气体的过程方程为a a Vp ,2/1=为常数,气体从1V 膨胀到2V .求其所做的功.解:气体作功⎰=21d V v Vp A⎰-=-==-2121)11()(d 2121222V V V VV V a V a V V a A7-17 设有一以理想气体为工质的热机循环,如题7-17图所示.试证其循环效率为1112121---=p p VV γη答:等体过程 吸热)(12V 1T T C Q -='υ)(1221V 11R V p R V p C Q Q -='= 绝热过程 03='Q等压压缩过程放热)(12p 2T T C Q -='υ)(2212P R V p R V p C -=循环效率 121Q Q-=η )1/()1/(1)()(1121212221V 2212p 12---=---=-=p p V p V p C V p V p C Q Q ννγηη题7-17图 题7-19图7-18 一卡诺热机在1000 K 和300 K 的两热源之间工作,试计算 (1)热机效率;(2)若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少? (3)若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少?解:(1)卡诺热机效率121T T -=η%7010003001=-=η(2)低温热源温度不变时,若%8030011=-=T η要求 15001=T K ,高温热源温度需提高500K(3)高温热源温度不变时,若%80100012=-=T η要求 2002=T K ,低温热源温度需降低100K7-19 如题7-19图所示是一理想气体所经历的循环过程,其中AB 和CD 是等压过程,BC 和DA 为绝热过程,已知B 点和C 点的温度分别为2T 和3T .求此循环效率.这是卡诺循环吗?解:(1)热机效率121Q Q -=η AB 等压过程 )(12P 1T T C Q -='υ 吸热)(P mo 1A B lT T C M MQ -=CD 等压过程 )(12P 2T T vC Q -='放热)(P mol22D C T T C M MQ Q -='-=)/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--=根据绝热过程方程得到AD 绝热过程 γγγγ----=D D A A T p T p 11 BC 绝热过程 γγγγ----=C C B B T p T p 111又B C D DC BA T T T T p p p p ===231T T -=η(2)不是卡诺循环,因为不是工作在两个恒定的热源之间. 7-20 (1)用一卡诺循环的致冷机从7℃的热源中提取1000 J 的热量传向27℃的热源,需要多少功?从-173℃向27℃呢?(2)一可逆的卡诺机,作热机使用时,如果工作的两热源的温度差愈大,则对于作功就愈有利.当作致冷机使用时,如果两热源的温度差愈大,对于致冷是否也愈有利?为什么? 解:(1)卡诺循环的致冷机2122T T T A Q e -==静 7℃→27℃时,需作功 4.71100028028030022211=⨯-=-=Q T T T A J173-℃→27℃时,需作功 2000100010010030022212=⨯-=-=Q T T T A J(2)从上面计算可看到,当高温热源温度一定时,低温热源温度越低,温度差愈大,提取同样的热量,则所需作功也越多,对致冷是不利的.7-21 如题7-21图所示,1 mol 双原子分子理想气体,从初态K 300,L 2011==T V 经历三种不同的过程到达末态K 300,L 4022==T V . 图中1→2为等温线,1→4为绝热线,4→2为等压线,1→3为等压线,3→2为等体线.试分别沿这三种过程计算气体的熵变.题7-21图解:21→熵变等温过程 A Q d d = , V p A d d =,RT pV =⎰⎰==-21111221d 1d V V V V RT T T Q S S76.52ln ln!212===-R V V R S S J 1K -⋅321→→熵变⎰⎰+=-312312d d T QT Q S S32V 13p V p 12ln ln d d 2331T TC T T C T T C T TC S S T T T T +=+=-⎰⎰31→等压过程 31p p = 3211T V T V =1213V V T T = 23→等体过程 2233T p T p =3232p p T T = 1232p p T T =12V 12P 12ln ln p pC V V C S S +=-在21→等温过程中 2211V p V p =所以2ln ln ln ln1212V 12P 12R V VR V V C V V C S S ===-241→→熵变⎰⎰+=-412412d d T QT Q S S41p 42p p 12ln lnd 024T TC T T C TT C S S T T ==+=-⎰41→绝热过程111441144111----==γγγγV V T T V T V T γγγγ/121/141144411)()(,p pp p V V V p V p ===在21→等温过程中 2211V p V p =γγγ/112/121/14114)()()(V V p p p p V V ===γγ11241)(-=V V T T2ln ln 1ln12P 41P 12R V V C T T C S S =-==-γγ7-22 有两个相同体积的容器,分别装有1 mol 的水,初始温度分别为1T 和2T ,1T >2T ,令其进行接触,最后达到相同温度T .求熵的变化,(设水的摩尔热容为mol C ). 解:两个容器中的总熵变⎰⎰+=-TT T T lT T C T T C S S 12d d mo mol 0 212mol 21mol ln)ln (ln T T T C T T T T C =+=因为是两个相同体积的容器,故)()(1mol 2mol T T C T T C -=- 得212T T T += 21212mol 04)(lnT T T T C S S +=-7-23 把0℃的0.5kg 的冰块加热到它全部溶化成0℃的水,问:(1)水的熵变如何?(2)若热源是温度为20 ℃的庞大物体,那么热源的熵变化多大? (3)水和热源的总熵变多大?增加还是减少?(水的熔解热334=λ1g J -⋅) 解:(1)水的熵变612273103345.031=⨯⨯==∆T Q S J 1K -⋅(2)热源的熵变570293103345.032-=⨯⨯-==∆T Q S J 1K -⋅(3)总熵变4257061221=-=∆+∆=∆S S S J 1K -⋅熵增加。
大学物理学教程第二(马文蔚)练习册答案4第四章 刚体转动
v人地 v人盘 +v盘地 1 + R
J m0 Rv人地 0
J m0 R 1 0
m0 R J m0 R
0.0952 rad/s
J m0R m0R
第 四 章 习 题 分 析
4-21 长为 L 质量为 m 的均质杆,可绕垂直于纸面的 O 4-21 轴转动,令杆至水平位置有静止下摆,在铅直位置 与质量为0.5m的物体发生完全非弹性碰撞,碰后物 体沿摩擦因数为的水平面滑动,试求此物体滑过的 距离s ? 解:细杆下摆过程机械能守恒
m1g T1 m1a1 R r R T ' 1 B : T2 m2 g m2 a2 T2 ' 轮: T1 ' R T2 ' r J1 J 2 B T1 T2 其中: T1 ' T1 T2 ' T2 B A a r a1 R 2 a2 a1
A:
3g L m 碰撞过程角动量守恒。 J J ' v ' L v L 2 12 1 2 3g 1 2 v ' m 2 gL mL mL v ' L v ' 25 3 L 3 L 2 6L 滑动过程 1 mv '2 mgs s 25 2
1 1 1 2 2 mgL mL 2 2 3
4-13 飞轮质量为60kg,直径为0.5m,转速为1000r/min, 现用一闸瓦使其在5s内停止转动,求制动力F。设闸瓦 第 与飞轮间的摩擦因数为0.4,飞轮的质量全部分布在轮 四 缘上。 章 解: 由细杆力矩平衡
习 题 分 析
FL Nl
N
F
FL 1.25F f N 2.5F l 0.5 又飞轮与闸瓦间的摩擦力 f N F
《大学物理学》第二版上册课后答案之欧阳术创编
大学物理学习题答案习题一答案习题一1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt =各代表什么运动?(6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt= 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =及 a = 你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dx v t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3)s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt -===-。
大学物理第二版上册课后习题答案
大学物理第二版上册课后习题答案【篇一:物理学教程第二版马文蔚上册课后答案完整版】 (a) |v|= v,||=(b) |v|≠v,||≠ (c) |v|= v,||≠(d) |v|≠v,||=,即||≠.但由于|dr|=ds,故drdt?dsdt,即||=.由此可见,应选(c).1 -2 一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即 (1)drdt; (2)drdt; (3)dsdt; (4)?dx??dy???????dt??dt?22.下述判断正确的是( )(a) 只有(1)(2)正确 (b) 只有(2)正确 (c) 只有(2)(3)正确 (d) 只有(3)(4)正确分析与解drdt表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常drdt用符号vr表示,这是速度矢量在位矢方向上的一个分量;dsdt表示速度矢量;在自然坐标系中?dx??dy???????dt??dt?22速度大小可用公式v?选(d).计算,在直角坐标系中则可由公式v?求解.故1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列表达式,即(1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at.下述判断正确的是( )(a) 只有(1)、(4)是对的 (b) 只有(2)、(4)是对的 (c) 只有(2)是对的(d) 只有(3)是对的分析与解dvdt表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方drdt向的一个分量,起改变速度大小的作用;dsdt在极坐标系中表示径向速率vr(如题1 -2 所述);dvdt在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(d). 1 -4 一个质点在做圆周运动时,则有( ) (a) 切向加速度一定改变,法向加速度也改变 (b) 切向加速度可能不变,法向加速度一定改变 (c) 切向加速度可能不变,法向加速度不变 (d) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(b).231 -5 已知质点沿x 轴作直线运动,其运动方程为x?2?6t?2t,式中x 的单位为m,t 的单位为 s.求:(1) 质点在运动开始后4.0 s内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t=4 s时质点的速度和加速度.的大小和路程就不同了.为此,需根据dxdt?0来确定其运动方向改变的时刻tp ,求出0~tp 和dxdt质点速度和加速度可用和dxdt22两式计算.题 1-5 图解 (1) 质点在4.0 s内位移的大小dxdt(2) 由得知质点的换向时刻为?0tp?2s (t=0不合题意)则所以,质点在4.0 s时间间隔内的路程为(3) t=4.0 s时v?dxdt2t?4.0s??48m?s?1a?dxdt2t?4.0s2??36m.s?21 -6 已知质点的运动方程为r?2ti?(2?t)j,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;y?2?14x2这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为r0?2j , r2?4i?2j图(a)中的p、q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得22?5.66m x2?y2?22?r2?r0?x0?y0?2.47m22题 1-6 图1 -7 质点的运动方程为x??10t?30t2y?15t?20t2式中x,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为vx?vy?dxdtdydt??10?60t ?15?40tv0?v0x?v0y22?18.0m?s?1v0yv0x??32(2) 加速度的分量式为ax?dvxdt?60m?s?2, ay?dvydt?2则加速度的大小为a?ax?ay22?72.1m?s?2ayax??23分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为y1?v0t?12at 12gt22y2?h?v0t?当螺丝落至底面时,有y1 =y2 ,即v0t?12at2?h?v0t?12gt2t?2hg?a?0.705s(2) 螺丝相对升降机外固定柱子下降的距离为d?h?y2??v0t?12gt2解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有0?h?12(g?a)t2t?2hg?a?0.705s(2) 由于升降机在t 时间内上升的高度为h??v0t?12at2则 d?h?h??0.716m【篇二:物理学教程(第二版)上册课后习题答案详解】s=txt>第一章质点运动学(a) |v|= v,||=(b) |v|≠v,||≠ (c) |v|= v,||≠(d) |v|≠v,||=但由于|dr|=ds,故drds?,即||=.由此可见,应选(c). dtdt1 -2dr(1)dt一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即; (2)drdt;ds(3)dt; (4)?dx??dy???????dt??dt?22.下述判断正确的是( )(a) 只有(1)(2)正确 (b) 只有(2)正确(c) 只有(2)(3)正确 (d) 只有(3)(4)正确分析与解drdt表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号vr表示,drdt表示速度矢量;在自然坐标系中速度大小可用公式v22?ds计dt?dx??dy?算,在直角坐标系中则可由公式v???????dt??dt?求解.故选(d).1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列表达式,即(1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at.下述判断正确的是( )(a) 只有(1)、(4)是对的 (b) 只有(2)、(4)是对的 (c) 只有(2)是对的(d) 只有(3)是对的分析与解dvdt表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;drdt在极坐标系中表示径向速率vr(如题1 -2 所述);dsdt在自然坐标系中表示质点的速率v;而dvdt表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(d).1 -4 一个质点在做圆周运动时,则有( ) (a) 切向加速度一定改变,法向加速度也改变 (b) 切向加速度可能不变,法向加速度一定改变 (c) 切向加速度可能不变,法向加速度不变 (d) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(b). 1 -5 已知质点沿x 轴作直线运动,其运动方程为s.求:(1) 质点在运动开始后4.0 s内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t=4 s时质点的速度和加速度.x?2?6t2?2t3,式中x 的单位为m,t 的单位为?xt?x0,而在求路程时,就必dx?0来dt须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据dxd2xs??x1??x2,如图所示,至于t =4.0 s 时质点速度和加速度可用和2两式计算.dtdt题 1-5 图解 (1) 质点在4.0 s内位移的大小(2) 由得知质点的换向时刻为dx?0 dttp?2s (t=0不合题意)则所以,质点在4.0 s时间间隔内的路程为(3) t=4.0 s时v?dx??48m?s?1dtt?4.0sd2xa?2??36m.s?2dtt?4.0s1 -6 已知质点的运动方程为r(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;?2ti?(2?t2)j,式中r 的单位为m,t 的单位为s.求:y?2?这是一个抛物线方程,轨迹如图(a)所示.12x 4(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为r0?2j , r2?4i?2j图(a)中的p、q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得其中位移大小2222?r2?r0?x2?y2?x0?y0?2.47m题 1-6 图1 -7 质点的运动方程为x??10t?30t2y?15t?20t2式中x,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为vx?dx??10?60t dtdyvy??15?40tdt-1当t =0 时, v0x =-10 m2s , v0y =15 m2s ,则初速度大小为-1v0?v0x?v0y?18.0m?s?122v0yv0x??3 2(2) 加速度的分量式为ax?则加速度的大小为dvdvx?60m?s?2 , ay?y??40m?s?2 dtdta?ax?ay?72.1m?s?2ayax??2 3-11 -8 一升降机以加速度1.22 m2s上升,当上升速度为2.44 m2s时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m.计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =-2y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为1y1?v0t?at221y2?h?v0t?gt22当螺丝落至底面时,有y1 =y2 ,即11v0t?at2?h?v0t?gt222t?2h?0.705sg?a12gt?0.716m 2(2) 螺丝相对升降机外固定柱子下降的距离为d?h?y2??v0t?解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有10?h?(g?a)t22t?(2) 由于升降机在t 时间内上升的高度为2h?0.705sg?a1h??v0t?at22则 d?h?h??0.716m【篇三:物理学教程第二版马文蔚上册课后答案完整版】(1) 根据上述情况,则必有( )(2) 根据上述情况,则必有( )(a) |v|= v,||=(b) |v|≠v,||≠(c) |v|= v,||≠(d) |v|≠v,||=个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当但由于|dr|=ds,故drds?,即||=.由此可见,应选(c). dtdt1 -2 一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即 drdrds?dx??dy?(1); (2); (3);(4)?????. dtdtdt?dt??dt?下述判断正确的是( )(a) 只有(1)(2)正确 (b) 只有(2)正确(c) 只有(2)(3)正确 (d) 只有(3)(4)正确 22dr表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常dtdr用符号vr表示,这是速度矢量在位矢方向上的一个分量;表示速度矢量;在自然坐标系中dt分析与解ds?dx??dy?速度大小可用公式v?计算,在直角坐标系中则可由公式v??????求解.故dt?dt??dt?选(d).1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列表达式,即(1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at.下述判断正确的是( )(a) 只有(1)、(4)是对的 (b) 只有(2)、(4)是对的(c) 只有(2)是对的(d) 只有(3)是对的 22dv表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方dtdr向的一个分量,起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所述);dt分析与解dsdv在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度at.因dtdt此只有(3) 式表达是正确的.故选(d).1 -4 一个质点在做圆周运动时,则有( )(a) 切向加速度一定改变,法向加速度也改变(b) 切向加速度可能不变,法向加速度一定改变(c) 切向加速度可能不变,法向加速度不变(d) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(b).231 -5 已知质点沿x 轴作直线运动,其运动方程为x?2?6t?2t,式中x 的单位为m,t 的单位为 s.求:(1) 质点在运动开始后4.0 s内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t=4 s时质点的速度和加速度.分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位的大小和路程就不同了.为此,需根据dx?0来确定其运动方向改变的时刻tp ,求出0~tp 和dtdtdt题 1-5 图解 (1) 质点在4.0 s内位移的大小(2) 由得知质点的换向时刻为 dx?0 dttp?2s (t=0不合题意)则所以,质点在4.0 s时间间隔内的路程为(3) t=4.0 s时v?dx??48m?s?1 dtt?4.0sd2xa?2??36m.s?2 dtt?4.0s1 -6 已知质点的运动方程为r?2ti?(2?t2)j,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;分析质点的轨迹方程为y =f(x),可由运动方程的两个分量式x(t)和y(t)中消去t 即可得解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为y?2?这是一个抛物线方程,轨迹如图(a)所示. 12x 4(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为r0?2j , r2?4i?2j图(a)中的p、q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得?r2?r0?题 1-6 图1 -7 质点的运动方程为x??10t?30t2y?15t?20t2式中x,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为vx?dx??10?60t dtdyvy??15?40t dtv0x3?? 2(2) 加速度的分量式为ax?dvdvx?60m?s?2 , ay?y??40m?s?2 dtdt则加速度的大小为a?ax?ay?72.1m?s?2花板上松脱,天花板与升降机的底面相距2.74 m.计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为1y1?v0t?at2 21y2?h?v0t?gt2 2当螺丝落至底面时,有y1 =y2 ,即11v0t?at2?h?v0t?gt2 22t?2h?0.705s g?a12gt?0.716m 2 (2) 螺丝相对升降机外固定柱子下降的距离为d?h?y2??v0t?解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有10?h?(g?a)t2 2t?2h?0.705s g?a(2) 由于升降机在t 时间内上升的高度为 1h??v0t?at2 2则 d?h?h??0.716m。
大学物理学第二版 习题解答
大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等 (2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么 (4) 质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) r ∆v 和r ∆v 有区别吗v ∆v 和v ∆v有区别吗0dv dt =v 和0d v dt=v 各代表什么运动 (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变 (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。
大学物理第二版答案(北京邮电大学出版社)
习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--= (3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V As ;/。
(5) 前4秒平均加速度 )s m (43704204-⋅=-=--=∆∆=j j V V t V a(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tva t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1)由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y mx 5411==[4,5]m: ︒===3.51,25.1ααxy tg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i tVa j i tr V8d d ,28d d ==+== 故t =1s 时的速度和加速度分别为2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s 1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h vm/s 2.17= 同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v s h s tl h l l t s v +-=-== 负号表示船在水面上向岸靠近. 船的加速度为3202022d d d d d d s v h t l v hl ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--==负号表示a 的方向指向岸边,因而船向岸边加速运动. 1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-102m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为习题1-9图 习题1-10图习题1-7图m /s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h += 电梯下降的距离为2021at t v h +=' 又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t 而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11人地风人风地v v v +=画出速度矢量合成图(a)又人地风人风地02v v v+'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22== (2)22212u v vLu v L u v L t t t -=++-=+=1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L向西,由速度合成可得飞机对地速度(3)v Lv L t t t '+'=+=21,如图所示风速u 由东v u v+=',则22u v V -='.2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +=' V 的大小由图1.7示可得αβcos cos u V V +'=习题1-12图习题1-11图即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t β AB 两点之距βββsin cos DDctg S ==将式(1)、(2)代入可得m)(1268)33(=-=D S(2)由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即2/,0c o s παα==故船头应与岸垂直,航时最短. 将α值代入(3)式得最短航时为s)(500105.021012/sin 101333min=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''==欲使l 最短,应满足极值条件.a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a 即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短. 将α'值代入(4)式得最小航程为222222min 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm )(5.1m 105.13=⨯=AB 两点最短距离为km)(12.115.122min min =-=-=D l S第二章 质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x 向:0cos max min =-f F θ y 向:0sin min =--Mg F N θ 还有N f s max μ=解以上三式可得要推动木箱所需力F 的最小值为θμθμsin cos s s min -=MgF在木箱做匀速运动情况下,如上类似分析可得所需力F 的大小为θμθμsin cos k k min -=MgF(2)在上面min F 的表示式中,如果0sin cos s →-θμθ,则∞→min F ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是0sin cos s ≤-θμθ由此得θ的最小值为s1arctanμθ=2-2 (1)对小球,由牛顿第二定律x 向:ma N T =-θθsin cos y 向:0cos sin =-+mg N T θθ 联立解此二式,可得N)(32.3)30sin 8.930cos 2(5.0)sin cos (=︒+︒⨯⨯=+=ααg a m T N)(74.3)30sin 230cos 8.9(5.0)sin cos (=︒-︒⨯⨯=+=ααa g m N由牛顿第三定律,小球对斜面的压力N)(74.3=='N N(2)小球刚要脱离斜面时N =0,则上面牛顿第二定律方程为mgT ma T ==θθsin ,cos由此二式可解得2m /s 0.1730tan /8.9tan /=︒==θg a2-3 要使物体A 与小车间无相对滑动,三物体必有同一加速度a ,且挂吊B 的绳应向后倾斜。
物理学教程(第二版)上册课后答案
第一章质点运动学之马矢奏春创作时间:二O二一年七月二十九日1 -1质点作曲线运动,在时刻t质点的位矢为r,速度为v ,速率为v,t至(t +Δt)时间内的位移为Δr, 路程为Δs, 位矢年夜小的变动量为Δr ( 或称Δ|r|),平均速度为,平均速率为.(1) 根据上述情况,则必有()(A) |Δr|= Δs = Δr(B) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= ds ≠ dr(C) |Δr|≠ Δr ≠ Δs,当Δt→0 时有|dr|= dr ≠ ds(D) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= dr = ds(2) 根据上述情况,则必有()(A) ||= ,||= (B) ||≠,||≠(C) ||= ,||≠ (D) ||≠,||=分析与解(1) 质点在t 至(t +Δt)时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs=PP′, 位移年夜小|Δr|=PP′,而Δr=|r|-|r|暗示质点位矢年夜小的变动量,三个量的物理含义分歧,在曲线运动中年夜小也不相等(注:在直线运动中有相等的可能).但当Δt→0 时,点P′无限趋近P点,则有|dr|=ds,但却不即是dr.故选(B).(2) 由于|Δr|≠Δs,故,即||≠.但由于|dr|=ds,故,即||=.由此可见,应选(C).1 -2 一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的年夜小有四种意见,即(1);(2);(3);(4).下述判断正确的是()(A) 只有(1)(2)正确(B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解暗示质点到坐标原点的距离随时间的变动率,在极坐标系中叫径向速率.通经常使用符号vr暗示,这是速度矢量在位矢方向上的一个分量;暗示速度矢量;在自然坐标系中速度年夜小可用公式计算,在直角坐标系中则可由公式求解.故选(D).1 -3质点作曲线运动,r暗示位置矢量,v暗示速度,a暗示加速度,s 暗示路程, at暗示切向加速度.对下列表达式,即(1)dv /dt=;(2)dr/dt=v;(3)ds/dt=v;(4)dv /dt|=a t.下述判断正确的是()(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解暗示切向加速度at,它暗示速度年夜小随时间的变动率,是加速度矢量沿速度方向的一个分量,起改变速度年夜小的作用;在极坐标系中暗示径向速率vr(如题1 -2 所述);在自然坐标系中暗示质点的速率v;而暗示加速度的年夜小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有()(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解加速度的切向分量at起改变速度年夜小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不竭改变,相应法向加速度的方向也在不竭改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -5 已知质点沿x轴作直线运动,其运动方程为,式中x 的单元为m,t的单元为 s.求:(1) 质点在运动开始后4.0 s内的位移的年夜小;(2) 质点在该时间内所通过的路程;(3) t=4 s时质点的速度和加速度.分析位移和路程是两个完全分歧的概念.只有当质点作直线运动且运动方向不改变时,位移的年夜小才会与路程相等.质点在t 时间内的位移Δx的年夜小可直接由运动方程获得:,而在求路程时,就必需注意到质点在运动过程中可能改变运动方向,此时,位移的年夜小和路程就分歧了.为此,需根据来确定其运动方向改变的时刻tp ,求出0~tp和tp~t内的位移年夜小Δx1、Δx2,则t 时间内的路程,如图所示,至于t=4.0 s 时质点速度和加速度可用和两式计算.题 1-5 图解(1) 质点在4.0 s内位移的年夜小(2) 由得知质点的换向时刻为(t=0分歧题意)则所以,质点在4.0 s时间间隔内的路程为(3) t=4.0 s时已知质点的运动方程为6,-1的单元为式中m,t的r单元为s.求:(1) 质点的运动轨迹;(2) t=0 及t=2s时,质点的位矢;(3) 由t=0 到t=2s内质点的位移Δr和径向增量Δr;分析质点的轨迹方程为y=f(x),可由运动方程的两个分量式x(t)和y(t)中消去t即可获得.对r、Δr、Δr、Δs来说,物理含义分歧,(详见题1-1分析).解(1) 由x(t)和y(t)中消去t 后得质点轨迹方程为这是一个抛物线方程,轨迹如图(a)所示.(2) 将t=0s和t=2s分别代入运动方程,可得相应位矢分别为,图(a)中的P、Q 两点,即为t=0s和t=2s时质点所在位置.(3) 由位移表达式,得其中位移年夜小而径向增量题 1-6 图1 -7 质点的运动方程为式中x,y的单元为m,t的单元为s.试求:(1) 初速度的年夜小和方向;(2) 加速度的年夜小和方向.分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的年夜小和方向.解(1) 速度的分量式为当t=0 时,v0x=-10 m·s-1 ,v0y=15 m·s-1 ,则初速度年夜小为设v0与x轴的夹角为α,则α=123°41′(2) 加速度的分量式为,则加速度的年夜小为设a 与x轴的夹角为β,则β=-33°41′(或326°19′)1 -8一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m.计算:(1)螺丝从天花板落究竟面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析在升降机与螺丝之间有相对运动的情况下,一种处置方法是取空中为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1=y1(t)和y2=y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,可是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1(1) 以空中为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为当螺丝落至底面时,有y1=y2 ,即(2) 螺丝相对升降机外固定柱子下降的距离为解2(1)以升降机为参考系,此时,螺丝相对它的加速度年夜小a′=g+a,螺丝落至底面时,有(2) 由于升降机在t 时间内上升的高度为则题 1-8 图1 -9 质点沿直线运动,加速度a=4 -t2 ,式中a的单元为m·s-2 ,t的单元为s.如果当t =3s时,x=9 m,v=2 m·s-1 ,求质点的运动方程.分析本题属于运动学第二类问题,即已知加速度求速度和运动方程,必需在给定条件下用积分方法解决.由和可得和.如a=a(t)或v=v(t),则可两边直接积分.如果a 或v不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学把持后再做积分.解由分析知,应有得 (1)由得 (2)将t=3s时,x=9 m,v=2 m·s-1代入(1)、(2)得v0=-1 m·s-1,x0=0.75 m于是可得质点运动方程为1 -10 一石子从空中由静止下落,由于空气阻力,石子其实不是作自由落体运动,现测得其加速度a=A -Bv,式中A、B 为正恒量,求石子下落的速度和运动方程.分析本题亦属于运动学第二类问题,与上题分歧之处在于加速度,因此,的函数v是速度=后再分离变量为a(v)dt需将式dv两边积分.解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知(1) 用分离变量法把势(1)改写为 (2)将式(2)两边积分并考虑初始条件,有 得石子速度通常称为极限速度或收尾速,为一常量,时,t→∞由此可知当度.(2) 再由并考虑初始条件有得石子运动方程1 -11 一质点具有恒定加速度a =6i +4j,式中a 的单元为m·s-2.在t =0时,其速度为零,位置矢量r0=10 mi .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.题 1-11 图分析 与上两题分歧处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量ax 和ay 分别积分,从而获得运动方程r 的两个分量式x(t)和y(t).由于本题中质点加速度为恒矢量,和即,故两次积分后所得运动方程为固定形式运动.读者无妨自己两个分运动均为匀变速直线,验证一下.解 由加速度界说式,根据初始条件t0=0时v0=0,积分可得积分可得(10 m)i,=,r0时0 =t 及初始条件又由 由上述结果可得质点运动方程的分量式,即x =10+3t2y =2t2消去参数t,可得运动的轨迹方程3y =2x-20 m这是一个直线方程.直线斜率,α=33°41′.轨迹如图所示.1 -12 质点在Oxy 平面内运动,其运动方程为r=2.0ti+(19.0 -2.0t2 )j,式中r的单元为m,t的单元为s.求:(1)质点的轨迹方程;(2) 在t1=1.0s 到t2=2.0s 时间内的平均速度;(3) t1=1.0s时的速度及切向和法向加速度;(4) t=1.0s 时质点所在处轨道的曲率半径ρ.分析根据运动方程可直接写出其分量式x=x(t)和y=y(t),从中消去参数t,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变动率,即,它与时间间隔Δt的年夜小有关,当Δt→0 时,平均速度的极限即瞬时速度.切向和法向加速度是指在自然坐标下的分矢量at和an ,前者只反映质点在切线方向速度年夜小的变动率,即,后者只反映质点速度方向的变动,它可由总加速度a和at获得.在求得t1时刻质点的速度和法向加速度的年夜小后,可由公式求ρ.解(1) 由参数方程消去t得质点的轨迹方程:(3) 质点在任意时刻的速度和加速度分别为切向和法向加速度分别为则1 -13 飞机以100 m·s-1的速度沿水平直线飞行,在离空中高为100 m时,驾驶员要把物品空投到前方某一空中目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为几多?题 1-13 图分析物品空投后作平抛运动.忽略空气阻力的条件下,由运动自力性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.达到空中目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.另外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特按时刻t时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特按时刻t,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量vx、vy求出,这样,也就可将重力加速度g 的切向和法向分量求得.解(1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x=vt,y=1/2 gt2飞机水平飞行速度v=100 m·s-1 ,飞机离空中的高度y=100 m,由上述两式可得目标在飞机正下方前的距离(2) 视线和水平线的夹角为(3) 在任意时刻物品的速度与水平轴的夹角为取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为1 -14为迎接香港回归,特技演员柯受良在1997年6月1日驾车飞越黄河壶口,如图所示,柯驾车从跑道东端启动,达到跑道终端时速度年夜小为他随即以仰角,冲出57 m,平安着飞越跨度达,陆在西岸木桥上,求:题 1-14 图(1)柯飞车跨越黄河用了多长时间?(2)若起飞点高出河面10 m,柯驾车飞行的最高点距河面为几米?(3)西岸木桥和起飞点的高度差为几多?分析由题意知,飞车作斜上抛运动,对包括抛体在内的一般曲线运动来说,运用叠加原理是求解此类问题的普适方法,把持法式是:建立一个恰当的直角坐标系,将运动分解为两个相互正交的直线运动,由于在抛体运动中,质点的加速度恒为g,故两个分运动均为匀变速直线运动或其中一个为匀速直线运动,直接列出相关运动规律方程即可求解,本题可建立图示坐标系,图中分别暗示飞车的最年夜高度和飞跃跨度.解在图示坐标系中,有(1)(2)(3)1(1))由式(得飞跃时间m,令,s3)2()由式(,,得飞行到最年夜高度所需时间令代入式(将2)得飞行最年夜高度,m则飞车在最高点时距河面距离为m m)将3得西岸木桥位置为s(,代入式()2y= - 4.22 m“-”号暗示木桥在飞车起飞点的下方.讨论本题也可以水面为坐标系原点,则飞车在y方向上的运动方程应为m +1 -15如图所示,从山坡底端将小球抛出,已知该山坡有恒定倾角,球的抛射角,设球被抛出时的速率v0=19.6 m·s-1,忽略空气阻力,问球落在山坡上处离山坡底真个距离为几多?此过程经历多长时间?题 1-15 图分析求解方法与上题类似,但本题可将运动按两种方式分解,如图(a)和图(b)所示.在图(a)坐标系中,两个分运动均为匀减速g-直线运动,加速度年夜小分别为和g-,但求,看似复杂解本题确较方便,因为落地时有y=0,对应的时间t和x的值即为本题所求.在图(b)坐标系中,分运动看似简单,但求解本题还需将落地址P的坐标y与x的关系列出来.解 1由分析知,在图(a)坐标系中,有(1)(2)落地时,有y=0,由式(2)解得飞行时间为s将t值代入式(1),得m解 2由分析知,在图(b)坐标系中,)(对小球1(2)P(对点3)由式(1)、(2)可得球的轨道方程为()4,落地时应有即,解之得落地址P的x坐标为(5)则m联解式(1)和式(5)可得飞行时间s讨论比力两种解法,你对如何灵活运用叠加原理有什么体会?b 、,v0运动的圆周按规律R 一质点沿半径为 16-1 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上即是b ?(3) 当加速度达到b 时,质点已沿圆周运行了几多圈?分析 在自然坐标中,s 暗示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s(t),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为an =v2 /R .这样,总加速度为a =a te t+anen .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs=st -s0.因圆周长为2πR,质点所转过的圈数自然可求得.解(1) 质点作圆周运动的速率为其加速度的切向分量和法向分量分别为 ,故加速度的年夜小为其方向与切线之间的夹角为 可得由b,|=a 要使|(2) (3) 从t =0 开始到t =v0 /b 时,质点经过的路程为因此质点运行的圈数为1 -17 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt2.依据角量与线量的关系由特按时刻的速度值可得相应的角速度,从而求出式中的比例系数k,ω=ω(t)确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可获得特按时刻的角加速度、切向加速度和角位移.解 因ωR=v,由题意ω∝t2得比例系数 所以则t′=0.5s时的角速度、角加速度和切向加速度分别为 总加速度1 -18 一质点在半径为0.10 m 的圆周上运动,其角位置为s2.0=t 求在(1) 的单元为s.rad,t 的单元为θ式中,时质点的法向加速度和切向加速度.(2) 当切向加速度的年夜小恰即是总加速度年夜小的一半时,θ 值为几多?(3) t 为几多时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可获得.解(1) 由于,则角速度.在t =2 s时,法向加速度和切向加速度的数值分别为即,有,那时(2) 得此时刻的角位置为 则有,要使(3)1 -19 一无风的下雨天,一列火车以v1=20.0 m·s-1的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨淌下落的速度v2.(设下降的雨滴作匀速运动)题 1-19 图分析 这是一个相对运动的问题.设雨滴为研究对象,空中为静止参考系S,火车为动参考系S′.v1为S′相对S的速度,v2为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以空中为参考系,火车相对空中运动的速度为v1 ,雨滴相对空中竖直下落的速度为v2 ,旅客看到雨淌下落的速度v2′为相对速度,它们之间的于是可得),如图所示( 关系为 1 -20 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v1 ,下落雨滴的速度方向偏于竖直方向之前θ角,速率为v2′,若车后有一长方形物体,问车速v1为多年夜时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,空中为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对汽车的运动速度v2′的方向)应满足.再由相对速度的矢量关系,即可求出所需车速v1.题 1-20 图由解(b)[图]有,而要使则,时间:二O二一年七月二十九日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言:
大学物理教程是一本经典的物理教材,旨在帮助学生理解和掌握物理学的基本原理和概念。
课后习题是帮助学生巩固所学知识的重要部分。
本文将提供《大学物理教程第二版》课后答案,以帮助学生检查和纠正他们的理解,提高物理学习的效果与成绩。
概述:
物理学是自然科学的重要分支,研究物质、能量和它们之间相互作用的规律。
大学物理教程第二版是一本全面介绍物理学的教材,内容涵盖了力学、热学、电磁学等领域。
通过解答课后习题,学生可以深入理解课堂教学中所介绍的物理学原理,提高问题解决能力和科学思维。
正文:
一、力学
1.速度和加速度的关系
2.运动中的力和加速度
3.牛顿三定律的应用
4.匀速运动和变速运动的区别
5.质点和刚体的运动分析
二、热学
1.理想气体定律的应用
2.热传导和传热的方式
3.热量和能量的转化
4.热力学循环和效率
5.热力学第一定律和第二定律的概念
三、电磁学
1.电场和电势的关系
2.高斯定律和库仑定律的应用
3.磁场的产生和性质
4.安培定律和法拉第电磁感应定律的应用
5.电磁波的特性和传播
四、光学
1.光的折射和反射
2.物体成像的方式
3.凸透镜和凹透镜的工作原理
4.光的波粒二象性的解释
5.干涉和衍射现象的解释
五、量子物理
1.微观粒子的波函数和几率分布
2.波粒二象性的测量
3.斯特恩盖拉赫实验和双缝干涉实验
4.原子和分子的结构
5.量子力学的基本原理和数学表达
总结:
通过解答《大学物理教程第二版》的课后习题,学生可以深入理解物理学的基本原理和概念。
力学、热学、电磁学、光学和量子物理是大学物理的重要领域,通过系统学习和练习,学生可以提高问题解决能力和科学思维。
课后答案的提供可以帮助学生检查自己的理解,并及时纠正错误,提高物理学习的效果与成绩。
希望本文所提供的《大学物理教程第二版》课后答案能对学生的学习起到一定的帮助和指导作用。