(优选)电磁场中的基本物理量.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I
S
dt时间内,V内流出S的电荷量为dq 由电荷守恒
定律:dt 时间内,V内电荷改变量为 dq
由电流强度定义:
dq I dt S J (r ) ds dt
V
s J (r )
ds
dq dt
d dt
V
(r )dV

J(r)d S
d
(r )dV
S
dt V
电荷守恒定 律积分形式
在等式的左端应用高斯散度定理,将闭合面上的面积分变为体
电磁场中的基本物理量
2.1 电磁场的源量——电荷和电流
一、电荷与电荷密度
自然界中最小的带电粒子包括电子和质子
一般带电体的电荷量通常用q表示
从微观上看,电荷是以离散的方式出现在空间中的 从宏观电磁学的观点上看,大量带电粒子密集出现在某空间范 围内时,可假定电荷是以连续的形式分布在这个范围中
电荷的几种分布方式:空间中-体积电荷体密度 面上-电荷面密度s 线上-电荷线密度l
关于体电流密度的说明
J v 式中: 为空间中电荷体密度,v 为正电荷流动速度
通过截面积S的电流
I SJ d S SJ n d S
反映空间各点电流流动情况的物理量,形成一个空间矢量场
一般是时间t的函数,即J=J(r, t) 。恒定电流是特殊情况
如有N种带电粒子,电荷密度分别为i,平均速度为vi,则
可推得此时面电流密度为:
Js sv
Js是反映薄层中各点电流流动情况的物理量,它形成一个空间矢 量场分布
Js的方向为空间中电流流动的方向 Js在某点的大小为单位时间内垂直通过单位长度的电量 当薄层的厚度趋于零时,面电流称为理想面电流
只有当电流体密度J趋于无穷,理想面电流密度Js才不为零,即
Js
lim hJ
如图,设电流集中在厚度为h
的薄层内流动,薄层的横截面S,
Js
n为表示截面方向的单位矢量。显
然穿过截面的电流为
h S n l
I J S J n hl J h n l J s n l
I dI
J s lim
l0 l dl
关于面电流密度的说明
若表面上电荷密度为 s ,且电荷沿某方向以速度 v 运动,则
引入电流密度 J 来描述电流的分布情况
电荷的几种分布方式:空间中-体积电流体密度J 面上-电流面密度Js 线上-线电流I
体电流密度
电荷在一定体积空间内流动所形成的电流成为体电流
体电流密度 J 定义
如图,设P为空间中的任意点,过P取面积元dS。
设单位体积内有N个带电粒子,所有粒子带有相同的电荷q,且
体电荷密度
体电荷:电荷连续分布在一定体积内形成的电荷体
体电荷密度 (r ) 的定义
在电荷空间V内,任取体积元V ,其中电荷量为 q
则 (r ) lim q dq
V 0 V dV
q V (r )dV
面电荷密度
面电荷:当电荷只存在于一个薄层上时,称电荷为面电荷
面电荷密度s (r ) 的定义
在面电荷上,任取面积元 S ,其中电荷量为q
积分,得
V ( J )dV V t dV
J
J
0
t
t
电荷守恒定 律微分形式
对电流连续性方程的进一步讨论
1、积分形式反映的是电荷变化与电流流动的宏观关系,而微分形 式则描述空间各点电荷变化与电流流动的局部关系
2、当体积V为整个空间时,闭合面S为无穷大界面,将没有电流经
其流出,电流连续性方程可写成
t
都以相同的速度v运动,体积中的总电荷将在 dt 时间内经 dS 流
出柱体,可以得到 dt 时间内通过 dS 的电荷量为
dS v
dQ Nqvdt dS v dSdt J dSdt
通过dS的电流强度为: dI dQ J dS
dQ
dt
J
dt
dI
ej
dS dS
P vdt
物理意义:单位时间内通过垂直电流传播方向单位面积的电量
h0
0
J
线电流和电流元
电荷只在一条线上运动时,形成的电流即为线电流。
电流元Idl :长度为无限小的线电流元。
三、 电流的连续性方程
电荷守恒定律是电磁现象中的基本定律之一。实验证明,电荷 是守恒的,既不能被创造,也不能被消灭,它只能从一个物体转移 到另一个物体,或者从一个地方移动到另一个地方。
取电流流动空间中的任意一个体积V,设在

s (r )
lim
S 0
q S
dq dS
q Baidu NhomakorabeaS s (r )ds
线电荷密度
线电荷:当电荷只分布在一条细线上时,称电荷为线电荷
线电荷密度l (r ) 的定义
在线电荷上,任取线元 l ,其中电荷量为 q

l
(r )
lim
l 0
q l
dq dl
q l l (r )dl
点电荷
当电荷体体积非常小,可忽略其体积时,称为点电荷。点 电荷可看作是电量q无限集中于一个几何点上。
s
S t
dS
J s (n d l ) 0 l
时变面电流 恒定面电流
例 在球面坐标系中,传导电流密度为J=er10r-1.5(A/m), 求:(1)通过半径r=1mm的球面的电流值;(2)在半径r=1mm的球面
上电荷密度的增加率;(3)在半径r=1mm的球体内总电荷的增加率。
解: (1)
I
J dS
S
2 0
10r r 1.5 2
0
sin d d
|r 1mm
40 r 0.5 |r1mm 3.97( A)
N
J ivi
= 0时可能存在电流i。1 如导体中电荷体密度为0,但因正电
荷质量相对于电子大很多,因此近似不动,有
J v v v 0
面电流密度
当电流集中在一个厚度趋于零的薄层(如导体表面)中流动时, 电流被认为是表面电流或面电流,其分布情况用面电流密度矢量
Js 来表示。
面电流密度 J s 定义:
(r ) lim q
V 0 V
0
r0 r 0
二、 电流与电流密度
电流由定向流动的电荷形成,通常用 I 表示,定义为
q dq I lim
t0 t dt
电流的物理意义:单位时间内流过曲面S的电荷量
当电荷速度不随时间变化时,电流也不随时间变化,称为恒定 (稳恒)电流
空间各点电荷的流动除快慢不同外,方向可能不同,仅用穿过 某截面的电荷量无法描述电流的分布情况
V
dV
0
即整个空间的总电荷是守恒的。
3、对于恒定电流,当电流不随时间变化,空间中电荷分布
也不改变,即:
J 0 t
0
t
则恒定电流的电流连续性方程为
J 0
J d S 0
意义:流入闭合面S的电流等S于流出闭合面S的电流——基尔霍
夫电流方程
4、对于面电流,电流连续性方程为:
l JS
(n dl )
相关文档
最新文档