概率论与数理统计(事情的独立性)

合集下载

概率与统计中的事件独立性

概率与统计中的事件独立性

概率与统计中的事件独立性概率与统计是数学领域中重要的分支之一,它研究的是事物发生的可能性以及事物之间的关联程度。

在概率与统计中,事件独立性是一个重要的概念。

本文将介绍事件独立性的定义、性质以及相关的应用。

一、定义事件独立性是指在一系列随机试验中,某一事件的发生与其他事件的发生无关。

具体地说,对于两个事件A和B,如果事件A发生与否不会对事件B的发生产生任何影响,或者说事件B的发生与否不会对事件A的发生产生任何影响,那么我们称事件A和事件B是相互独立的。

二、性质1. 互逆性:如果事件A和事件B相互独立,那么事件A的补事件和事件B也相互独立。

2. 自反性:任意事件与自身都是相互独立的。

3. 偶然性:事件A和事件B相互独立,并不意味着它们是不可能发生的,它们仍然可以同时发生或者同时不发生。

4. 独立性传递性:如果事件A和事件B相互独立,事件B和事件C 相互独立,那么事件A和事件C也相互独立。

三、应用事件独立性在概率与统计中有广泛的应用,以下是几个常见的应用场景:1. 抛硬币:在抛硬币的过程中,每一次的抛硬币都是一个独立事件。

无论前一次抛硬币结果是正面还是反面,对于下一次抛硬币的结果都没有影响,每次抛硬币的概率仍然是50%。

2. 掷骰子:与抛硬币类似,每一次掷骰子的结果都是独立事件。

无论前一次掷骰子的点数是多少,对于下一次掷骰子的结果都没有影响。

3. 抽样调查:在进行抽样调查的时候,每一次的抽样都是独立事件。

例如,在进行市场调研时,每一次的问卷发放都是独立的,一个人接收到问卷并填写与其他人接收到问卷并填写之间没有关联性。

4. 生活中的决策:在日常生活中,我们经常需要根据过去的经验和信息做出决策。

如果我们认为某个事件的发生与其他事件是独立的,我们可以根据概率和统计的知识来进行决策。

总结起来,概率与统计中的事件独立性是一个重要的概念。

它可以帮助我们理解和分析随机事件之间的关系,并且在实际应用中有着广泛的用途。

概率论与数理统计复习资料

概率论与数理统计复习资料

自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。

结论:随机现象是不确定现象之一。

2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。

E2:掷一枚骰子,观察出现的点数。

E3:记录110报警台一天接到的报警次数。

E4:在一批灯泡中任意抽取一个,测试它的寿命。

E5:记录某物理量(长度、直径等)的测量误差。

E6:在区间[0,1]上任取一点,记录它的坐标。

随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。

样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。

所有样本点的集合称为样本空间,记作。

举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。

3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。

只包含一个样本点的单点子集{}称为基本事件。

必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。

(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。

性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。

注:与集合包含的区别。

相等:若且,则称事件A与事件B相等,记作A=B。

(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案完整

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案完整

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布求a.解答:由分布律性质∑i⋅jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732. (4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性对应X的值,将每行的概率相加,可得P{X=i}.对应Y的值(最上边的一行), 将每列的概率相加,可得P{Y=j}.(2)当Y=51时,X的条件分布律为P{X=k∣Y=51}=P{X=k,y=51}P{Y=51}=pk,510.28, k=51,52,53,54,55.列表如下:故(1)在Y=1条件下,X的条件分布律为(2)在X=2的条件下,Y的条件分布律为表(a)表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为亦即表P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12。

判断随机事件独立性的方法

判断随机事件独立性的方法

判断随机事件独立性的方法随机事件独立性是概率论与数理统计中的一个重要概念。

判断随机事件是否独立对于许多实际问题的解决具有重要意义。

本文将介绍判断随机事件独立性的方法及其应用。

1. 什么是随机事件独立性在概率论中,独立性是指两个或多个事件的发生不受彼此影响的性质。

具体来说,如果事件A的发生与事件B的发生没有任何关联,即事件A的发生概率与事件B的发生概率的乘积等于事件A与B同时发生的概率,那么事件A和事件B就是独立的。

数学上,可以用以下条件来判断两个事件A和B是否独立: - P(A ∩ B) = P(A) * P(B),即事件A与事件B同时发生的概率等于事件A的发生概率乘以事件B的发生概率。

2. 判断随机事件独立性的方法2.1. 基于条件概率的方法基于条件概率的方法是判断随机事件独立性的常用方法之一。

根据条件概率的定义,可以使用以下条件来判断两个事件A和B是否独立: - P(A|B) = P(A),即事件A在事件B发生的条件下的概率等于事件A的概率。

如果满足以上条件,那么可以认为事件A和事件B是独立的。

否则,事件A 和事件B不满足独立性条件。

2.2. 基于频率统计的方法基于频率统计的方法是另一种常用的判断随机事件独立性的方法。

该方法基于大数定律,通过实际观察和统计事件发生的频率来判断事件之间是否独立。

具体操作时,可以进行一系列独立的实验,统计事件A和事件B同时发生的次数。

如果事件A和事件B的同时发生次数与事件A的发生次数乘以事件B的发生次数之积接近,那么可以认为事件A和事件B是独立的。

否则,事件A和事件B不满足独立性条件。

2.3. 基于协方差的方法基于协方差的方法是另一种常用的判断随机事件独立性的方法。

协方差是衡量两个随机变量之间关联程度的指标,可以通过计算事件A和事件B的协方差来判断它们是否独立。

具体操作时,可以通过以下条件来判断事件A和事件B是否独立: - 协方差(A, B) = 0,即事件A和事件B的协方差为0。

概率论与数理统计 第一章-4-事件的独立性

概率论与数理统计 第一章-4-事件的独立性
下面四个结论中,正确的是:
1. P(B|A)>0, 3. P(A|B)=0 ,
2. P(A|B)=P(A), 4. P(AB)=P(A)P(B)。
定理4.3 若两事件A、B相互独立,则 A与B, A与B, A与B也相互独立。
证明: 仅证A与 B 独立。
P(AB) P(A B) P(A AB)
概率论与数理统计
张保田 第一章 概率论的基本概念
第四节 事件的独立性
一、两事件的独立性 先看一个例子:
将一颗均匀骰子连掷两次,

B ={第二次掷出6点},
A={第一次掷出6点},
显然 P(B A) 1 P(B) 6
6
66
这就是说:已知事件A发生,并不影响事
件B发生的概率,这时称事件B独立于事件A。
= P(A) -P(AB) = P(A) - P(A) P(B)
A、B独立
=P(A)[1 -P(B)]
=P(A)P( B ),
故A与 B 独立。
二、多个事件的独立性 将两事件独立的定义推广到三个事件:
定义4.4 对于三个事件A、B、C,若
P(AB)= P(A)P(B),
P(AC)= P(A)P(C) ,
例如:
甲、乙两人向同一目标射击,记 A={甲命中}, B={乙命中},A与B是否独立?
由于“甲命中”并不影响“乙命中”的概率,
故认为A、B独立 。
(即一事件发生与否并不影响另一事件发生的概率)。
再如: 一批产品共n件,从中抽取2件,设
A1={第1件是合格品}, A2={第2件是合格品} (1) 若抽取是有放回的, 则A1与A2独立。
P(B A) P(B) P(AB) P(B)
P( A)

概率论与数理统计第6节 随机事件的独立性和伯努利概型

概率论与数理统计第6节 随机事件的独立性和伯努利概型
P(C) P(A B) P(A) P(B) P(AB) P(A) P(B) P(A)P(B) 0.6 0.7 0.6 0.7 0.88;
目录 上页 下页 返回 结束
练习答案
3.解 (2)设每人射击 n次,Ai表示“甲第 i次击中目标”, Bi表示“乙第 i次击中目标”, i 1,2,.n,
目录 上页 下页 返回 结束
客人们不知布丰先生要干什么,只好客随主意, 一个个加入了试验的行列。一把小针扔完了,把 它捡起来又扔。而布丰先生本人则不停地在一旁 数着、记着,如此这般地忙碌了将近一个钟头。 最后,布丰先生高声宣布:“先生们,我这里记 录了诸位刚才的投针结果,共投针2212次,其 中与平行线相交的有704次。总数2212与相交数 704的比值为3.142。”说到这里,布丰先生故 意停了停,并对大家报以神秘的一笑,接着有意 提高声调说:“先生们,这就是圆周率π的近似 值!”
目录 上页 下页 返回 结束
d
d/2
目录 上页 下页 返回 结束
一、两个事件的独立性
定义1 设A, B是两个事件,且 P(B) 0,若 P(A B) P(A),
则称事件A与B相互独立。
根据条件概率公式,有:P(A B)=
P( AB) P(B)
如果A与B相互独立,有 P(A B) P(A),
结论若A1, A2 ,, An相互独立,则将这 n个事件中若干个 Ai换作对立事件,则所得 的n个事件仍然是独立事件 。
目录 上页 下页 返回 结束
二、多个事件的独立性
例2 三人独立地破译一份密码,已知各人能 译出的概率分别为1 ,1 ,1 ,求这密码能被破译的概率。
534
解1 设Ai 第i个人译出密码 ,i 1,2,3, B 密码能被破译 ,显然B A1 A2 A3, 于是有

概率论与数理统计完整公式

概率论与数理统计完整公式

概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。

在概率论与数理统计的学习中,有许多重要的公式需要掌握。

以下是概率论与数理统计的完整公式。

一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。

4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。

2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。

1.5独立性及伯努利概型 《概率论与数理统计》课件

1.5独立性及伯努利概型 《概率论与数理统计》课件
则称 A1,A2,An 相互独立.
n 个事件相互独立,则必须满足 2n n1个等式.
显然 n 个事件相互独立,则它们中的任意
m (2 mn)个事件也相互独立.
2.事件独立性的性质
定理1.5.1 四对事件{A、B},{ A , B },{A,B }、
{ A 、B }中有一对相互独立,则其它三对也相互独立.
证明 不失一般性.设事件 A 与 B 独立,仅证 A 与 B
相互独立,其余情况类似证明 因为 P ( A B ) P ( B A ) P ( B A ) P B ( B ) P ( A )B
又 A 与 B 独立,所以 P (A)B P (A )P (B )
从而 P ( A B ) P ( B ) P ( A ) P ( B ) P ( B ) 1 P ( ( A ) P ) ( A ) P ( B ) 所以, A 与 B 相互独立.
AB={(男、女),(女、男)}
于是
P(A)= 1 , P(B)= 3 , P(AB)= 1
2
4
2
由此可知 P(AB) P(A) P(B).
所以 A与B 不独立.
2)有三个小孩的家庭,样本空间Ω={(男、
男、男),(男、男、女),(男、女、男),
(女、男、男)(男、女、女),(女、女、男),
(女、男、女),(女、女、女)}
= 1 P(A1A2An) = 1 P(A 1)P(A 2)P(A n)
这个公式比起非独立的场合,要简便的多,它 在实际问题中经常用到.
例1.5.6 假若每个人血清中含有肝炎病的概率为 0.4%,混合100个人的血清,求此血清中含有肝炎病 毒的概率?
解: 设 A i={第 i 个人血清中含有肝炎病毒}

概率论与数理统计的独立性与条件概率研究

概率论与数理统计的独立性与条件概率研究

概率论与数理统计的独立性与条件概率研究概率论与数理统计是数学中的重要分支,它们的研究对象是随机事件和随机变量,通过对事件和变量的概率分布进行研究,可以揭示出事件和变量之间的规律。

在概率论与数理统计的研究中,独立性和条件概率是两个重要的概念。

首先,我们来探讨概率论与数理统计中的独立性。

独立性是指两个或多个事件之间的发生与否不相互影响。

在概率论中,如果事件A和事件B是独立的,那么它们的联合概率等于各自概率的乘积。

换句话说,P(A∩B) = P(A) * P(B)。

这个公式可以用来计算两个独立事件同时发生的概率。

独立性在实际生活中有很多应用。

例如,假设有一批产品,每个产品的质量是否合格是一个独立事件。

如果每个产品合格的概率是0.9,那么同时有两个产品合格的概率就是0.9 * 0.9 = 0.81。

这个概率可以帮助我们评估产品质量的可靠性。

然而,并不是所有的事件都是独立的。

有些事件之间存在一定的关联关系,这就引出了条件概率的概念。

条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

在概率论与数理统计中,条件概率可以用来计算事件之间的依赖关系。

条件概率的计算方法是通过已知条件来确定事件发生的概率。

假设事件A和事件B之间存在依赖关系,那么在已知事件B发生的条件下,事件A发生的概率可以表示为P(A|B)。

根据概率的定义,P(A|B) = P(A∩B) / P(B)。

这个公式可以用来计算在已知事件B发生的情况下,事件A同时发生的概率。

条件概率在实际中也有广泛的应用。

例如,在医学诊断中,医生需要根据病人的症状和检查结果来判断病人是否患有某种疾病。

这时,医生会根据已知的症状和检查结果计算疾病的概率,以帮助做出正确的诊断。

除了独立性和条件概率,概率论与数理统计还包括其他重要的概念和方法,如随机变量、概率分布、期望值等等。

这些概念和方法在现代科学和工程领域中有广泛的应用。

例如,在金融领域中,概率论与数理统计可以用来对股票价格的波动进行建模和预测,以帮助投资者做出决策。

概率论与数理统计 随机变量的独立性

概率论与数理统计 随机变量的独立性






g ( xi , y j ) f ( x, y)dxdy
概率论与数理统计
例9
求E(X),E(Y),E(XY).
E ( XY ) xi y j pij
j 1 i 1
解 X,Y的边缘分布为
1 3 (1 0) 0 (3 0) 3 (1 1) 3 (3 1) 0 1 E ( X ) xi pi 18 3 8 , 4 4 2 i 1 3 1 9 (1 2) (3 2) 0 3 (1 3) 0 (3 3) . 1 8 0 1 2 3 3 1 3 , 8 4 E (Y ) y j p j 8 8 8 8 2 j 1
E X i E( X i )
n i 1 n i 1
概率论与数理统计
例10

设随机变量Xi为
则X=X1+ X2+ …+ X10 故 E(X)=E(X1)+ E(X2)+ …+ E(X10) 而E(Xi)=1-(9/10)20 i=1,2,…,10
9 20 E( X ) E ( X i ) E ( X i ) 10 ] 8.784 [1 10 i 1 i 1
概率论与数理统计
若(X,Y)是二维离散型随机变量,Z=g(X,Y), 且E(Z)存在,则
E (Z ) E[ g ( X , Y )] g ( xi , y j ) pij
j 1 i 1


若(X,Y)是二维连续型随机变量,Z=g(X,Y), 且E(Z)存在,则
E (Z ) E[ g ( X , Y )]
概率论与数理统计

自考概率论与数理统计(经管类)自学资料

自考概率论与数理统计(经管类)自学资料

自考概率论与数理统计(经管类)自学资料第一章随机事件与随机事件的概率1.1 随机事件例一,掷两次硬币,其可能结果有:{上上;上下;下上;下下}则出现两次面向相同的事件A与两次面向不同的事件B都是可能出现,也可能不出现的。

引例二,掷一次骰子,其可能结果的点数有:{1,2,3,4,5,6}则出现偶数点的事件A,点数≤4的事件B都是可能出现,也可能不出现的事件。

从引例一与引例二可见,有些事件在一次试验中,有可能出现,也可能不出现,即它没有确定性结果,这样的事件,我们叫随机事件。

(一)随机事件:在一次试验中,有可能出现,也可能不出现的事件,叫随机事件,习惯用A、B、C表示随机事件。

由于本课程只讨论随机事件,因此今后我们将随机事件简称事件。

虽然我们不研究在一次试验中,一定会出现的事件或者一定不出现的事件,但是有时在演示过程中要利用它,所以我们也介绍这两种事件。

必然事件:在一次试验中,一定出现的事件,叫必然事件,习惯用Ω表示必然事件。

例如,掷一次骰子,点数≤6的事件一定出现,它是必然事件。

不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用φ表示不可能事件。

例如,掷一次骰子,点数>6的事件一定不出现,它是不可能事件。

(二)基本(随机)事件随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,习惯用ω表示基本事件。

例如,掷一次骰子,点数1,2,3,4,5,6分别是基本事件,或叫样本点。

全部基本事件叫基本事件组或叫样本空间,记作Ω,当然Ω是必然事件。

(三)随机事件的关系(1)事件的包含:若事件A发生则必然导致事件B发生,就说事件B包含事件A ,记作。

例如,掷一次骰子,A表示掷出的点数≤2,B表示掷出的点数≤3。

∴A={1,2},B={1,2,3}。

所以A发生则必然导致B 发生。

显然有(2)事件的相等:若,且就记A=B,即A与B相等,事件A等于事件B,表示A与B实际上是同一事件。

概率论与数理统计 第三节 条件概率与独立性

概率论与数理统计 第三节 条件概率与独立性

一、条件概率
4. 条件概率的计算
P ( AB ) 1) 用定义计算 P ( A | B ) P( B)
2)用缩减的样本空间计算
例:A={掷出2点}, B={掷出偶数点} 掷骰子
1 P(A|B) = 3
B发生后的 缩减样本空间 所含样本点总数 在缩减样本空间 中A所含样本点 个数
一、条件概率
例1 掷两颗均匀骰子,已知第一颗掷出6点,问“掷 出点数之和不小于10”的概率是多少?
一、条件概率
2. 条件概率的定义
设A、B是两个事件,且P(B)>0,则称 P ( AB ) (1) P( A | B) P( B)
为在事件B发生的条件下,事件A的条件概率.
若事件B已发生, 则为使 A 也发生 , 试验结果必须是既在 B 中又在A中的样本点 , 即此 点必属于AB. 由于我们已经知 道B已发生, 故B变成了新的样 本空间 , 于是有(1).
A={取到一等品}, B={取到正品} P(A ) =3/10,
3 10 P ( AB ) 3 P(A|B) 7 10 P( B) 7
一、条件概率
A={取到一等品}, B={取到正品}
P(A)=3/10, P(A|B)=3/7 本例中,计算P(A)时,依据的前提条件是10件 产品中一等品的比例. 计算P(A|B)时,这个前提条件未变,只是加上 “事件B已发生”这个新的条件. 这好象给了我们一个“情报”,使我们得以在 某个缩小了的范围内来考虑问题.
故抓阄与次序无关.
二、乘法公式
练习3 设某光学仪器厂制造的透镜, 第一次落下时 打破的概率为1/2,若第一次落下未打破, 第二次落下 打破的概率为7/10 , 若前两次落下未打破, 第三次落 下打破的概率为9/10.试求透镜落下三次而未打破的 概率.

概率论与数理统计:事件的独立性与相关性.ppt

概率论与数理统计:事件的独立性与相关性.ppt

由于 P( ABC ) 1 1 P( A)P(B)P(C ), 48
因此 A,B,C 不相互独立.
三 相互独立事件的性质
性质1 如果 n 个事件 A1, A2,, An 相互独立,则 将其中任何 m(1 m n)个事件改为相应的对立事 件,形成新的 n 个事件仍然相互独立. 性质2 如果 n 个事件 A1, A2,, An 相互独立,则有
Ai (i =1,2,…,100 ).

100
A Ai
i 1
100
P(A) 1 1P(Ai ) i 1 1 (1 0.004)100 0.33
若Bn表示 n 个人的血清混合液中含有肝炎病毒,则
P(Bn) 1 (1 )n, 0 1 n 1,2,
lim
n
P
(
Bn
)
1
—— 不能忽视小概率事件, 小概率事件迟早要发生
例5 甲、乙、丙三人同时对飞机进行射击, 三人 击中的概率分别为 0.4, 0.5, 0.7, 飞机被一人击中 而被击落的概率为0.2 ,被两人击中而被击落的概 率为 0.6 , 若三人都击中飞机必定被击落, 求飞机 被击落的概率.
n
n
n
P( Ai ) 1 P( Ai ) 1 (1 P( Ai ))
i 1
i 1
i 1
例4 设每个人的血清中含肝炎病毒的概率为0.4%, 求来自不同地区的100个人的血清混合液中含有肝 炎病毒的概率.
解:设这100 个人的血清混合液中含有肝炎病毒为
事件 A, 第 i 个人的血清中含有肝炎病毒为事件
注意: 从直观上讲,n个事件相互独立就是其中任何一个 事件出现的概率不受其余一个或几个事件出现与否的 影响.
伯恩斯坦反例

《概率论与数理统计》-课件 独立性

《概率论与数理统计》-课件 独立性
发生与事件 B 发生的概率无关.
3.三事件两两相互独立的概念
定义 设 A, B,C 是三个事件,如果满足等式
P( AB) P( A)P(B),
P(
BC
)
P(
B)P(C
),
P( AC ) P( A)P(C ),
则称事件 A, B, C 两两相互独立.
4.三事件相互独立的概念
定义 设 A, B,C 是三个事件,如果满足等式
3 p3(1 2
p) 4 p3(1 2
p)2 .
由于 p2 p1 p2(6 p3 15 p2 12 p 3)
3 p2( p 1)2(2 p 1).

p
1 时, 2
p2
p1;

p
1 时, 2
p2
p1
1. 2
故当 p 1 时, 对甲来说采用五局三胜制有利 . 2
当 p 1 时, 两种赛制甲最终获胜的概率是 2
例7 甲、乙两人进行乒乓球比赛, 每局甲胜的 概率为 p( p 1 2),问对甲而言, 采用三局二胜制 有利, 还是采用五局三胜制有利. 设各局胜负相 互独立. 解 采用三局二胜制,甲最终获胜,
胜局情况可能是:
“甲甲”, “乙甲甲”, “甲乙甲”;
由于这三种情况互不相 容, 于是,由独立性得甲最终获胜的概率为:
又因为 A、B 相互独立, 所以有 P( AB) P( A)P(B),
因而 P( AB) P( A) P( A)P(B) P( A)(1 P(B))
P( A)P(B). 从而 A 与 B 相互独立.
两个结论
1 . 若事件 A1 , A2 , , An (n 2) 相互独立 , 则 其中任意 k (2 k n)个事件也是相互独立.

概率论与数理统计 1总结

概率论与数理统计   1总结

② P(AC)= P(A)P(C) ④ P(ABC)=P(A)P(B)P(C)
多个事件相互独立的必要条件:
P( A1 A2 An ) P( A1 ) P( A2 ) P( An )
3. n个独立事件和的概率
n个独立事件“至少有一个发生”的概率为
P ( A1 A2 An ) 1 P ( A1 ) P ( A2 )„P ( An )
二、样本空间和样本点
样本点:把随机试验中每一个基本事件用只包含一个 元素的单元素集合 { }来表示.这样的元素 ω 称为样本点.
样本空间:由试验的所有样本点组成的集合. 用 Ω表示.
事件
一一对应
集合
样本空间:由所有样本点组成的全集.
Ω={1 , 2 ,, n ,}
基本事件:单元素集合 {1 },{2 },,{n },
练习: 设A、B为互斥事件,且 P(A)>0 , P(B)>0 ,下面四 个结论中,正确的是: 1. P(B|A)>0 3. P(A|B)=0 2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
设A、B为独立事件,且 P(A)>0 , P(B)>0 ,下面四 个结论中,正确的是: 1. P(B|A)>0 3. P(A|B)=0 2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
A
A与Φ互斥
P ( A ) P ( A) P () A与Φ独立
若 P( A) 0 或 P( B) 0 ,则独立且互斥
独立性简化了乘法公式
P(AB)=P(A)P(B|A) → P(AB)=P(A)P(B)
互斥性简化了加法公式
P(A+B)=P(A)+P(B)-P(AB) → P(A+B)=P(A)+P(B)

概率论与数理统计-基于R 第一章 第四节 事件的独立性

概率论与数理统计-基于R 第一章 第四节 事件的独立性

2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
定理1.3:若两事件A、B独立,则
A与B, A与B, A与B也相互独立.
证明:由已知A P(A-B) =P(A-AB)= P(A)- P(AB)
=P(A)- P(A)P (B) =P(A)[1- P (B)] =P(A) P (B).
(1)此密码能被译出的概率为
P( A B) P( A) P(B) P( AB) 0.55.
(2)密码恰好被一个人译出的概率为
P(AB AB) P(AB) P(AB)
P( A)P(B) P( A)P(B) 0.45.
二、多个事件的独立性
定义1.9对于三个事件A、B、C,若
课堂练习
1. 设A、B为互斥事件,且P(A)>0,P(B)>0,
下面四个结论中,正确的是:
1. P(B|A)>0 3. P(A|B)=0
2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
2. 设A、B为独立事件,且P(A)>0,P(B)>0,
下面四个结论中,正确的是:
1. P(B|A)>0 3. P(A|B)=0
n
n
P( A) 1 P Ak k1
1
k 1
P ( Ak )
1 (0.99)n
(2) P( A) 0.5 0.99n 0.5
n lg 2 2 lg 99
684.16.
例:有4个独立元件构成的系统(如图),设每个元 件能正常运行的概率为p,求系统正常运行的
由此可见两事件相互独立,但两事件不互斥.
14
若 P( A) 1 , P(B) 1

1-6概率论与数理统计

1-6概率论与数理统计

中找两个事件,它们既相 问:能否在样本空间Ω中找两个事件 它们既相 互独立又互斥? 互独立又互斥
φ 不难发现, 与任何事件既独立又互斥. 不难发现, 与任何事件既独立又互斥
φ A=φ
A

P( φ A) = 0 =P( φ )P(A)
前面我们看到独立与互斥的区别和联系, 前面我们看到独立与互斥的区别和联系, 练习 1.设A、B为互斥事件,且P(A)>0,P(B)>0, 设 为互斥事件, 为互斥事件 下面四个结论中,正确的是: 下面四个结论中,正确的是: A. P(B|A)>0 C. P(A|B)=0 B. P(A|B)=P(A) D. P(AB)=P(A)P(B)
性质 2 若 A, B 相互独立 , 则下列各对事件 , A 与 B , A 与 B , A 与 B 也相互独立 . 证明: 证明
先证 A 与 B 独立 .
因为 A = AB U A B 且 ( AB )( A B ) = ∅ , 所以 P ( A) = P ( AB ) + P ( A B ), 即 P( AB) = P( A) − P( AB).
则称 A1 , A2 ,L , An 为相互独立的事件 .
有兴趣的同学可以计算一下,上式中要成立的等式个数?
n 个事件相互独立
n个事件两两独立 个事件两两独立
下面我们来举一个右不能推出左的例子。 下面我们来举一个右不能推出左的例子。
伯恩斯坦反例 一个均匀的正四面体, 其第一面染成红色, 例 一个均匀的正四面体, 其第一面染成红色, 第三面染成黑色, 第二面染成白色 , 第三面染成黑色,而第四面同 时染上红、 黑三种颜色.现以 时染上红、白、黑三种颜色 现以 A , B,C 分别 , 记投一次四面体出现红、 黑颜色朝下的事件, 记投一次四面体出现红、白、黑颜色朝下的事件, 是否相互独立? 问 A,B,C是否相互独立 , , 是否相互独立 解 由于在四面体中红、 白、黑分别出现两面, 由于在四面体中红、 黑分别出现两面, 1 因此 P ( A) = P ( B ) = P ( C ) = , 2 1 又由题意知 P ( AB ) = P ( BC ) = P ( AC ) = , 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 又由题意知 P( AB) P(BC ) P( AC ) 1 ,
4
1.6.1 事件的独立性
故有
P(
AB)
P( A)P(B)
1, 4
P( P(
BC AC
) )
P(B)P(C P( A)P(C
) )
1
4 1
4
, ,
则三事件 A, B, C 两两独立.
由于P( ABC ) 1 1 P( A)P(B)P(C ), 48
P(AB ) = P( A )P( B )
P(BC ) = P( B )P(C )
P(AC ) = P(A)P(C )
P(ABC ) = P(A )P(B )P(C )
都成立,则称事件A,B,C相互独立
注意 三个事件相互独立
三个事件两两相互独立
另外,仅由P(ABC)=P(A)P(B)P(C),既不能保证A、B、 C两两相互独立,更不能保证三事件相互独立.
与互不相容并存.
两事件相互独立 P( AB) P( A)P(B) 二者之间没
两事件互不相容 AB
有必然联系
1.6.1 事件的独立性
【例1.19】证明若事件A与B相互独立,则下列各 对事件也相互独立: A与 B,B与 A ,A 与 B
证:因为 A A(B B ) AB AB 所以 P( A) P( AB AB ) P( AB) P( AB )
则有 P(B A) P(B), 它表示 A 的发生并不影响 B 发生的可能性大小.
由P(B A) P(B) P( AB) P( A)P(B)
1.6.1 事件的独立性
一般地,有下面定义: 定义1.7 设A,B是两个事件,如果P(AB)=
P(A)P(B),则称A与B相互独立. 显然,当P(A)>0时,A与B相互独立当且仅当
第1章 概率论基础
1.6 独立性
1.6.1 事件的独立性
1.两个事件的独立性
我们知道条件概率P(B|A)与无条件概率P(B)不一 定相等,但是在一些特殊情况下它们相等. 例如 盒中有5个球(3绿2红), 每次取出一个, 有放回
地 取 两 次.记 A “第一次抽取, 取到绿球”, B “第二次抽取, 取到绿球”,
因此 A,B,C 不相互独立.
1.6.1 事件的独立性
另一个反例(略) 【例1.21】设一口袋中有100个球,其中有7个是 红的,25个是黄的,24个是黄蓝两色的,1个是红 黄蓝三色的,其余43个是无色的.现从中任取一 个球,以A、B、C分别表示取得的球有红色的、 有黄色的、有蓝色的事件.
1.6.1 事件的独立性
1.6.1 事件的独立性
事实上:
当P(A)P(B) > 0时,
A与B独立等价于P(B|A)=P(B)且P(A|B)= P(A),
说明A,B是否发生互相没有影响,因此A与B独立
一定不是互不相容的,反之A与B互不相容一定不 独立.
当A,B之一为Ф时,
P(AB) = P(A)P(B)与A∩B = Ф同时成立,即独立
显然,P( A) 2 , P(B) 1 , P(C ) 1 , P( AB) 1 ,
25
2
4
100
P(BC) 1 , 4
P( AC ) 1 , 100
P( ABC ) 1 , 100
故P(ABC) = P(A)P(B)P(C). 显然又有 P(AB) P(A)P(B)
P(AC) P(A)P(C)
P(BC) P(B)P(C)
即A、B、C不是两两相互独立的.更不是相互独 立的.
1.6.1 事件的独立性
定义推广:如果事件A1,A2,…,An(n 2)中任 意k(2 k n)个事件积事件的概率都等于各个 事件的概率之积,则称A1,A2,…,An相互独立;
如 果 A1,A2,…,An 中 任 意 两 个 事 件 相 互 独 立 , 则称A1,A2,…,An两两独立.
但 AB ,
可见两事件相互独立,但两事件不是互不相容的!
1.6.1 事件的独立性
再看例子
若 P( A) 1 , P(B) 1 , AB ,
2
2
则 P( AB) 0, P( A)P(B) 1 , 4
故 P( AB) P( A)P(B).
可见两事件互不相容但不独立.
B A
所以,相互独立和互不相容是两个不同的 概念,不要把它们相容相混淆.
n 个事件相互独立
n个事件两两相互独立
1.6.1 事件的独立性
两个结论
( 1) 若事件 A1, A2 , , An (n 2) 相互独立, 则 其中任意k (2 k n)个事件也是相互独立. ( 2) 若 n 个事 件 A1 , A2 , , An (n 2)相互 独立, 则 将 A1 , A2 , , An 中 任 意 多 个 事 件 换 成 它们 的 对 立事件, 所得的n 个事件仍相互独立.
P( A)P(B) P( AB ) P( AB ) P( A)[1 P(B)] P( A)P(B )
即A与 B 相互独立. 由此可推出 A 与 B 相互独立, 再由B B又推出B与 A 相互独立.
1.6.1 事件的独立性
2.多个事件的独立性 定义1.8 设A,B,C 为三个事件,如果等式
1.6.1 事件的独立性
在实际应用中,事件的独立性常常根据事件 的实际意义去判断.
一般情况下,若各事件之间没有关联或关联 很弱,就可以认为它们是相互独立的.
1.6.1 事件的独立性
【例1.22】设某地区某时间每人的血清中含有肝炎 病毒的概率为0.4%,混合100个人的血清,求血清 中含有肝炎病毒的概率.
P(B|A) = P(B). 显然,当P(B)>0时,A与B相互独立当且仅当
P(A|B) = P(A).
1.6.1 事件的独立性
请思考: 两事件相互独立
两事件互不相容
P( AB) P( A)P(B) AB
二者之间 的关系?
请看例子
B
AB A
若 P( A) 1 , P(B) 1 ,
2
2
则 P( AB) P( A恩斯坦反例 【例1.20】一个均匀的正四面体, 其第一面染成 红色,第二面染成黄色 , 第三面染成蓝色,而第 四面同时染上红、黄、蓝三种颜色.现以 A ,B,C 分别记投一次四面体出现红、黄、蓝颜色朝下的事 件, 问 A,B,C是否相互独立?
解 由于在四面体中红、黄、蓝分别出现两面, 因此P( A) P(B) P(C ) 1 ,
相关文档
最新文档