函数展开成幂级数讲解

合集下载

简明微积分函数展开为幂级数

简明微积分函数展开为幂级数
解: f (n)(x) ex,
f (n)(0) 1
n 0f(nn)! (0)xn n 0xnn!1
l lim| an1| lim(n1)!0 n an n 1
收敛半径 R 1 , n! l
收敛区间(为 ,)
对于任x、 何 (0有 1 限 ) 数
第五节 函数展开成幂级数
一、泰勒级数 二、函数展开成幂级数
一、泰勒级数
定义 如果f(x)在点x0的某邻域内具有任意阶导
数,则称幂级数
f(x0)f'(x0)(xx0)f''2(!x0)(xx0)2
f(nn)(!x0)(xx0)n
为f(x)在x0的泰勒级数.
(1)
当x0=0时,泰勒级数为:
得到展开式: e x 1 x x 2 x n ( x ) (6)
2 ! n !
间接展开法 利用一些已知的函数展开式、 幂级数运算(如四则运算、逐项求导、逐项积 分)以及变量代换等,将所给函数展开成幂级 数.
1 1qq2qn1 1q
(-1q1)
(c)利用公式(3)写出麦克劳林级数,
f(0 )f'(0 )xf"(0 )x 2 f(n )x n
2 !
n !
并求出收敛半径R;
(d如 ) 能证明在收敛 (-R区 , R间 )内,余项
Rn(x)0(n),则 (c步 ) 骤写出的幂 就是函f (数 x)的幂级数展. 开式
例 1将函 f(x) 数 ex展开 x的成 幂级
23
n
(1 x 1)
(11)
arctanx x 1x3 1 x5 (1)n1 x2n1
35
2n 1
收敛区间为 [-1,1]

高等数学课件:11-4 函数的幂级数展开式

高等数学课件:11-4 函数的幂级数展开式

n 2k n 2k 1
(k 0, 1, 2,)
得级数:
x
1 3!
x3
1 5!
x5
(1)n1
1 (2n1)!
x2n1
其收敛半径为 R , 对任何有限数 x , 其余项满足
sin(
(n
1)
2
)
(n 1)!
x n 1
n
sin x
x
1 3!
x3
1 5!
x5
(1)n
1 ( 2 n1)!
x 2n1
2. 间接展开法 利用一些已知的函数展开式 及幂级数的运算性质, 将所给函数展开成 幂级数. 例3. 将 f ( x) cos x 展开成为关于x 的幂级数. 解:由于
1 x
( 1 x 1)
1 1 x x2 xn 1 x
(1 x 1)
例6. 求
的麦克劳林级数.
解: sin2 x 1 1 cos 2x 22
1 1 (1)n 1
2 2 n0
( 2n) !
x (, )
1 (1)n
4n
x 2n (1)n1
4n
x 2n
2 n1
( 2n) !
f (0) f (0)x f (0) x2 f (n) (0) xn
2!
n!
两个待解决的问题 1) 对此级数, 它的收敛域是什么 ? 2) 在收敛域上 , 和函数是否为 f (x) ?
泰勒公式
若函数
的某邻域内具有 n + 1 阶导数, 则在
该邻域内有 :
f
(x)
f
(
x0 ) f (x0 )(x x0 ) f (n) (x0 ) (x n!
所以展开式对 x =1 也是成立的, 于是收敛域为

展开成x的幂级数.解

展开成x的幂级数.解

直接得到函数展开成幂级数的结 果。
适用范围
适用于已知函数具有幂级数形式的 简单函数,如正弦函数、余弦函数 等。
举例
将函数f(x)=1/(1+x)展开成x的幂级 数,得到f(x)=x^(-1)-x^(-2)+x^(3)-x^(-4)+...。
间接法
定义
间接法是指通过已知函数的幂级 数展开式,利用函数的运算性质 和幂级数的运算法则,推导出其 他函数的幂级数展开式。
在近似计算中的应用
幂级数展开在近似计算中也有广泛应用。通过将一个复杂函数展开成幂级数,可以快速地近似计算函 数的值,提高计算效率。
例如,在科学计算、工程技术和数值分析等领域中,幂级数展开被广泛应用于近似计算和数值模拟。
04
幂级数展开的收敛性讨论
幂级数展开的收敛半径
01
02
03
幂级数展开的收敛半径是指,当 x在某一定值范围内时,幂级数 展开式是收敛的。
幂级数展开的性质
01
幂级数展开具有唯一性,即一个函数只能展开成唯一的幂级数。
02
幂级数展开具有收敛性,即幂级数在一定区间内收敛于函数值。
幂级数展开具有可导性,即函数的幂级数展开式在一定区间内
03
可导。
02
幂级数展开的常用方法
直接法
定义
直接法是指通过将函数进行逐项 展开,并利用幂级数的运算法则,
05
幂级数展开的实例分析
二项式定理的幂级数展开
二项式定理的幂级数展开式为:(a+b)^n的展开式为:a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n1) + b^n。

11-5函数展开成幂级数

11-5函数展开成幂级数

an
f ( n) (0) n!

n 2k 0, ( k 0,1, 2, ) k ( 1) , n 2k 1 ( 2k 1)!
k 2k 1
x , 2 sin x ~ ( 1) ( 2k 1)! k 0

收敛半径 R .
3° x ( , ), 余项满足
?
答:不一定.
反例:
1 x2 , f ( x ) e 0,
x0 x0

且 f ( n ) (0) 0 ( n 0,1,2,) 在 x = 0点任意可导,
f ( x )的麦克劳林级数为 0 x
n 0 n
该级数在( ,)内收敛,且其和函数S ( x ) 0.
三、函数展开成幂级数的方法
展开方法
直接展开法 — 用泰勒公式
间接展开法 — 用已有展开式
1. 直接展开法
f ( x ) 展开成x的幂级数的步骤:
1º求 f (n)(x) , f (n)(0) , n = 0, 1, 2, · · ·; 2º 写出幂级数
n
f ( n ) ( 0) n x , 并求收敛半径 R ; n! n 0
例3 将
展开成 x 的幂级数
(m: 任意常数) .
解 1 f (0) 1, f (0) m ,
f (0) m( m 1) ,
f ( n ) (0) m( m 1)( m 2) ( m n 1) ,
2° 麦克劳林级数
m( m 1)( m n 1) n m( m 1) 2 F ( x ) 1 mx x x n! 2! x (1,1) an n1 R lim lim 1 n a n 1 n m n

11函数展开成幂级数解读

11函数展开成幂级数解读

0
x
x s ( x ) dx dx , 0 1 x s( x )
得 ln s( x ) ln s(0) ln(1 x ),

ln s( x ) ln(1 x ) ,


s( x ) (1 x ) , x ( 1,1)
(1 x ) ( 1) 2 ( 1)( n 1) n 1 x x x 2! n! 牛顿二项式展开式 注意: 在x 1处收敛性与的取值有关. 1 收敛区间为 (1,1); 1 1 收敛区间为 (1,1]; 1 收敛区间为 [1,1].
xs( x ) x ( 1) x
2
( 1)( n 1)
( n 1)!
xn
利用
( m 1)( m n 1) ( m 1)( m n) m ( m 1)( m n 1) ( n 1)! n! n!
x x0 lim 0, 故 lim Rn ( x ) 0, n ( n 1)! n x ( x 0 R, x 0 R )
可展成点x0的泰勒级数.
二、函数展开成幂级数
1.直接法(泰勒级数法)
步骤: (1) 求a n
f
(n)
( x0 ) ; n!
( 2) 讨论 lim Rn 0 或 f ( n ) ( x ) M ,
1 1 1 3 2 1 3 5 3 n ( 2n 1)!! n 1 x x x ( 1) x 1 x 2 2 4 2 4 6 ( 2n)!! [1,1]
双阶乘
2.间接法 根据唯一性, 利用常见展开式, 通过变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分,复合 等方法,求展开式. 例如 cos x (sin x )

数学物理方法课件解析函数的幂级数展开

数学物理方法课件解析函数的幂级数展开

幂级数展开求解积分方程
幂级数展开求解积分方程 的步骤
首先将积分方程中的未知函数进行幂级数展 开,然后代入积分方程中求解系数,最后得 到积分方程的解。
举例
求解∫(上限1下限0) (x^2+y^2)^(-3/2) * y dx = 1。将y(x)进行幂级数展开,得到
y(x)=∑(n=0,∞) a_n * x^(n+1),然后代入 积分方程中求解系数a_n,得到解。
THANKS
感谢观看
幂级数展开的收敛半径
幂级数展开的收敛半径是指函数在一定区间内可以展开成幂 级数的范围。
收敛半径的大小取决于各项系数的变化规律,可以通过比较 相邻项系数的方法来确定收敛半径。
幂级数展开的收敛区间
幂级数展开的收敛区间是指函数可以精确展开成幂级数的区间,通常是一个闭区 间或者半开半闭区间。
在收敛区间内,幂级数展开可以无限逼近原函数,但在收敛区间的外延,误差会 逐渐增大。
数学物理方法课件解析函 数的幂级数展开
• 幂级数展开的概述 • 幂级数展开的原理 • 幂级数展开的应用 • 幂级数展开的实例解析
01
幂级数展开的概述
幂级数展开的定义
幂级数展开是指将一个函数表示为无 穷级数的方式,其中每一项都是该函 数的幂次与系数的乘积。
幂级数展开的一般形式为:$f(x) = a_0 + a_1x + a_2x^2 + cdots + a_nx^n + cdots$,其中 $a_0, a_1, ldots, a_n$ 是常数,$x$ 是自变量。
幂级数展开求解微分方程
幂级数展开求解微分方程的步骤
首先将微分方程中的未知函数进行幂级数展开,然后代入微分方程中求解系数,最后得 到微分方程的解。

精选数学分析函数的幂级数展开讲解讲义

精选数学分析函数的幂级数展开讲解讲义

,
f (n)(0) (1)n1(n 1)! ,
所以 ln(1 x)的麦克劳林级数是
x x2 x3 x4 (1)n1 xn .
(5)
234
n
用比式判别法容易求得级数(5)的收敛半径 R 1, 且 当 x 1 时收敛, x 1 时发散, 故级数(5)的收敛域 是 (1, 1]. 下面讨论在 (1, 1] 上它的余项的极限. 当 0 x 1 时, 对拉格朗日型余项, 有
x n1 (0
1).
显见
|
Rn (
x)
|
e|x| (n 1)!
|
x
|n1
.
y
对任何实数 x, 都有
6
lim e|x| | x |n1 0,
4
n (n 1)!
2
因而
lim
n
Rn
(
x)
0.
1 O 2
y ex
(n 2) (n 0)
1
2x
ex 1 1 x 1 x2 1 xn , x (, ).
x)(1
)n
x n1 , 0
1.
二、初等函数的幂级数展开式
例2 求k次多项式函数 f ( x) c0 c1x c2 x2
的幂级数展开式. 解 由于
ck xk
f
(
n
)
(0)
n!cn , 0,
n k, n k,
总有
lim
n
Rn
(
x
)
0,
因而
f ( x) f (0) f (0)x f (0) x2 2!
充分条件是: 对一切满足不等式 | x x0 | r的 x , 有
lim

函数展成幂级数的公式

函数展成幂级数的公式

函数展成幂级数的公式在数学中,幂级数是一种特殊的函数表示方法,它可以用无限多个幂次项的和来表示一个函数。

幂级数的形式可以写为:f(x)=a₀+a₁x+a₂x²+a₃x³+...其中,a₀,a₁,a₂,a₃等是系数,可以是实数或复数,x是自变量。

幂级数的展开系数a₀,a₁,a₂,a₃等根据函数的性质不同而有所不同。

下面介绍几个常见函数的幂级数展开公式。

1. 指数函数(exp(x)的幂级数展开):指数函数exp(x)可以展开为无限和的形式:exp(x) = 1 + x + (x²/2!) + (x³/3!) + ...其中,n!表示n的阶乘。

2. 正弦函数(sin(x)的幂级数展开):正弦函数sin(x)可以展开为无限和的形式:sin(x) = x - (x³/3!) + (x⁵/5!) - (x⁷/7!) + ...3. 余弦函数(cos(x)的幂级数展开):余弦函数cos(x)可以展开为无限和的形式:cos(x) = 1 - (x²/2!) + (x⁴/4!) - (x⁶/6!) + ...4. 自然对数函数(ln(x)的幂级数展开):自然对数函数ln(x)可以展开为无限和的形式:ln(x) = (x-1) - (x-1)²/2 + (x-1)³/3 - (x-1)⁴/4 + ...以上仅列举了几个常见函数的幂级数展开公式,实际上,许多其他函数也可以通过幂级数展开来表示,例如三角函数的反函数、双曲函数、指数函数的反函数等。

幂级数展开的优点是可以用有限项的和来近似计算一个函数的值,特别是在自变量比较接近展开点的情况下,保留有限项可以获得较高的精度。

此外,幂级数展开也有助于理解函数的性质和行为。

在实际应用中,幂级数展开在物理、工程、计算机科学等领域有重要的应用,例如在信号处理、图像处理、优化求解等方面都得到了广泛应用。

总之,幂级数是一种重要的函数展示方法,在数学和应用领域都有着重要的地位。

-函数展开成幂级数

-函数展开成幂级数

1 2 1 ln( 2 1) .
2 n1 2n 1
2
在收敛区间内对幂级数逐项求导、逐项 积分后, 得到一个新的幂级数, 且它与原幂级 数具有相同的收敛半径 . 如有必要,可对它连 续进行逐项求导和逐项积分.
就是说, 在收敛区间内幂级数的和函数具 有任意阶的导数及任意次的可积性.
,
(| x|1).
例2

2n 1 n1 2n
之值.

n1
2n 1 2n


n1
2n 1 2n
xn

x1
符 合 积


n1
2n 1 2n


n1
2n 1 2n
x2n

x1
要 求 了

n1
2n 1 2n
x2 2n
n1

1

n 1
x 2n2

1
x2

x4


1 1 x2
,

x2n1 n1 2n 1
x1 01 x2
d
x

1 2
x 0

x
1 1

x
1 1
d
x
1 ln1 x , ( | x | 1) . 2 1 x
例3
f (n1) ( ) xn1 | e | x |
(n 1) !
| x |n1 (n 1) !
因为
lim an 0 n n !
( 在 0 与x 之间)

2 x2 (2 x2 )2

3.
x1

高等数学11-4函数展开成幂级数

高等数学11-4函数展开成幂级数

1,
R 1,
牛顿二项式展开式
(1 x )

1 x
( 1) 2!
x
2
( 1)( n 1) n!
的取值有关
( 1 ,1 );
x
n
注意:
在 x 1 处收敛性与
1
收敛域为
. x (1,1)
1 1
i
R n ( x ) f ( x ) s n 1 ( x ), lim s n 1 ( x ) f ( x )
n
lim R n ( x ) lim [ f ( x ) s n 1 ( x )] 0 ;
n n
充分性
n
f ( x ) s n 1 ( x ) R n ( x ),
条件是 f (x) 的泰勒公式中的余项满足: lim Rn ( x) 0 .
n
( f (x) =它的泰勒级数 证明
f (x)
f (x) 的泰勒公式中的余项趋于0)
,
必要性 设 f ( x )能展开为泰勒级数

i0
n
f
(i)
( x0 )
i!
( x x 0 ) R n ( x ) s n 1 ( x ) R n ( x ),

n0

f
(n)
( x0 )
n!
f
(n)
( x x 0 ) 称为 f ( x ) 在点 x 0 的泰勒级数.
n

n0

(0)
x 称为 f ( x ) 的麦克劳林级数.
n
n!
问题
f ( x)

第四节 函数展开成幂级数

第四节   函数展开成幂级数

201第四节 函数展开成幂级数一、泰勒级数前面讨论了这样一个问题,对于给定的幂级数,求出其收敛域并确定其和函数的性质,并在可能时求出和函数的表达式。

这节我们讨论该问题的反问题:给定函数()x f ,要考虑它是否能在某个区间内“展开成幂级数”,即是否能找到这样一个幂级数,它在某区间内收敛,且其和恰好就是给定的函数()x f 。

(如果能够找到这样的幂级数,就说()x f 在该区间内可展开成幂级数。

)解决这个问题有很重要的应用价值,因为它给出了函数()x f 的一种新的表达方式,并使我们可以用简单函数——多项式来逼近一般函数()x f 。

在第三章中我们已经学过泰勒公式:若函数()x f 在点0x 的某一邻域内具有直到()1+n 阶的导数,则在该邻域内()x f 的n 阶泰勒公式:()()()()()() +-''+-'+=200000!2x x x f x x x f x f x f()()()()x R x x n x f n n n +-+00!(1)成立,其中()x R n 为拉格朗日型余项。

()()()()()101!1++-+=n n n x x n f x R ξ(之间与在x x 0ξ)如果令00=x ,就得到马克劳林公式:()()()()()()()x R x n f x f x f f x f n nn +++''+'+=!0!20002(2)202此时,()()()()11!1+++=n n n x n x f x R θ(10<<θ)公式说明,任一函数只要有直到()1+n 阶的导数,就可等于某个n 次多项式与一个余项的和。

下列幂级数()()()()() +++''+'+nn x n f x f x f f !0!20002(3)我们称为马克劳林级数。

那么它是否以函数()x f 为和函数呢? 若令马克劳林级数(3)的前1+n 项和为()x s n 1+,即()()()()()()nn n x n f x f x f f x s !0!200021++''+'+=+那么,级数(3)收敛于函数()x f 的条件为()()x f x s n n =+∞→1lim由马克劳林公式与马克劳林级数的关系,可知()()()x R x s x f n n +=+1于是,当()0lim =∞→x R n n 时,有()()x f x s n n =+∞→1lim 。

函数展成幂级数的公式

函数展成幂级数的公式

函数展成幂级数的公式首先,我们来了解一下函数展成幂级数的定义。

给定一个函数 f(x),我们希望能够找到一系列常数 a0、a1、a2...an 和幂级数∑(n=0 to∞)an(x-c)^n,使得对于给定的 x 的一些范围内,f(x)可以用幂级数进行近似表示。

这个幂级数的展开点 c 表示了幂级数的发散点或收敛点。

接下来,我们介绍一些常见的函数展成幂级数的公式。

1.泰勒级数:泰勒级数是展开函数的一种特殊情况,它是函数f(x)在一些点c处的幂级数表示。

泰勒级数的公式为:f(x)=f(c)+f'(c)(x-c)+f''(c)(x-c)^2/2!+f'''(c)(x-c)^3/3!+... 2.麦克劳林级数:麦克劳林级数是中心点c为0的泰勒级数,它是函数在原点附近的幂级数表示。

麦克劳林级数的公式为:f(x)=f(0)+f'(0)x+f''(0)x^2/2!+f'''(0)x^3/3!+...3.求和公式:对于一些特定的函数,我们可以使用求和公式来展开函数为幂级数表示。

例如:sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + ...exp(x) = 1 + x + x^2/2! + x^3/3! + ...ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + ...这些公式是函数展成幂级数的基础,可以通过逐阶求导和求和运算得到。

其中,泰勒级数和麦克劳林级数是最常见的展开形式,适用于大多数函数的近似表示。

求和公式则适用于一些特定的函数,如三角函数、指数函数和对数函数等。

此外,函数展成幂级数还有一些重要的性质和定理,如幂级数的收敛域、幂级数的计算方法(如微积分运算)、幂级数的和函数和导数等。

函数怎么展开成幂级数

函数怎么展开成幂级数

函数怎么展开成幂级数展开函数成幂级数是一种将一个函数用无穷级数的形式表示的方法。

这种方法在数学分析和物理学中有广泛的应用。

展开函数成幂级数的方法在很多情况下比较复杂,但对于一些特殊的函数,可以采用一些常见的技巧来进行展开。

首先,我们来回顾一下幂级数的定义。

如果给定一个函数f(x),我们想要将它展开为幂级数的形式,那么我们需要找到一个函数g(x)以及一个常数c,使得f(x)可以表示为g(x)乘以伪幂级数(c+x+x^2+x^3+...)的形式。

这个伪幂级数在数学上称为幂级数的“标准形式”。

为了将一个函数展开成幂级数形式,需要进行以下几个步骤:1.确定展开点:选择一个展开点x=a。

通常情况下,我们会选择函数f(x)的一个曲线上的一个点为展开点。

2.求取各项系数:使用泰勒级数展开的方法,我们可以通过求取函数f(x)在展开点x=a处的各阶导数(包括一阶导数、二阶导数、三阶导数等)来计算幂级数的各项系数。

具体来说,幂级数的系数可以通过以下公式计算:cn = f^(n)(a)/n!其中,f^(n)(a)表示函数f(x)的n阶导数在x=a处的值。

n!表示n的阶乘。

3.整理幂级数的形式:将各项系数带入幂级数的标准形式(c+x+x^2+x^3+...)中,得到展开后的幂级数形式。

让我们通过一个例子来演示一下展开函数成幂级数的过程:假设我们要将函数f(x) = sin(x)展开成幂级数的形式。

首先,我们选择展开点x=0。

然后,我们可以使用泰勒级数展开的方法来计算各项系数。

由于sin(x)的各阶导数的周期性质,我们可以观察到以下规律:f^(2n+1)(0)=0f^(2n)(0)=(-1)^n*(2n)!通过计算,我们可以得到幂级数的系数:c0 = f(0)/0! = sin(0)/0! = 0/1 = 0c1 = f'(0)/1! = cos(0)/1! = 1/1 = 1c2 = f''(0)/2! = -sin(0)/2! = 0/2 = 0c3 = f'''(0)/3! = -cos(0)/3! = -1/6c4 = f''''(0)/4! = sin(0)/4! = 0/24 = 0...因此,函数f(x) = sin(x)的展开幂级数形式为:sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...注意:在实际应用中,幂级数展开可以根据需要选择合适的截断级数,即只保留幂级数中的前几项。

函数展开成幂级数(课堂PPT)

函数展开成幂级数(课堂PPT)

无穷级数
上一页
下一页
返回
8
证明
Rn ( x)
f (n1) ( ) ( x
(n 1)!
x0
)n1
M x x0 n1 , (n 1)!
x
x0
n1
在(,)收敛,
n0 (n 1)!
x ( x0 R, x0 R)
lim n
x x0 n1 (n 1)!
0,

lim
n
Rn
(
x
)
x
0,
n0
该级数在(,)内和函数s( x) 0. 可见
除s 0外, f ( x)的麦氏级数处处不收敛于 f ( x).
无穷级数
上一页
下一页
返回
6
三、函数展开成泰勒级数的条件
定理 2 f ( x)在点x0 的泰勒级数,在U ( x0 ) 内收
敛于
f
(
x)
在U
(
x0
) 内lim n
Rn
(
x)
0
.
证明 必要性 设f ( x)能展开为泰勒级数,
( x0
R,
x0
R)
可展成点x0的泰勒级数.
无穷级数
上一页
下一页
返回
9
三、函数展开成泰勒级数的方法
1.直接法(泰勒级数法)
步骤:
(1) 求an
f (n)( x0 ); n!
(2)
讨论
lim
n

Rn
0

f
(n) ( x)
M,
则级数在收敛区间内收敛于 f ( x).
无穷级数
上一页
下一页
返回

函数展开为幂级数

函数展开为幂级数
解 因为
所以
x e (n 1,2,), f 0 f 0 f 0 f ( n) 0 1,
f
n
x
于是我们得到幂级数 1 1 1 x x2 xn ,收敛域为(, ) 2! n! 可以验证余项lim Rn x 0,x (, )(从略)
( n 1)
(0 1)
二、函数展开为幂级数 1.直接展开法
f ( n) ( x0 ) ; 步骤: (1) 求幂级数系数an n!
(2) 讨论 lim Rn ( x) 0 ,
n
则级数在收敛区间内收 敛于 f ( x).
例1 试将函数f x ex展开成x的幂级数.
这个级数的敛域为(, ).
2.间接展开法 根据唯一性, 利用常见展开式, 通过变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分等方法, 求展开式.
ex 1 x 1 2 1 x xn (<x< ). 2! n!
1 3 1 5 x2n1 n sin x x x x (1) 3! 5! (2n 1)!
(n 1)π sin x n 1 2 n 1 x | Rn x | x 0 (n 1)! (n 1)!
因此有
1 3 1 5 x2n1 n sin x x x x (1) , 3! 5! (2n 1)!
n
所以 e x 1 x
1 2 1 x xn (<x< ). 2! n!
例2 试将函数f x sin x展开成x的幂级数.
解 因为 nπ ) (n 1, 2,), 2 所以 f 0 0, f (0) 1,f (0) 0, f (0) 1,, f

函数展开成幂级数讲解

函数展开成幂级数讲解
把 x 换成 x 2 , 得
n 0

(1)
x
2n
( 1 x 1 ).
17
例2 将 f ( x ) e 2 x 展开成x的幂级数. 2 3 x x 1 n x 解 e 1 x x , x (, ) 2! 3! n 0 n ! 将-2x代入上式中x的位置,即得

f ( x)
a
n 0
n
x
n
问题: 1.如果能展开, a n 是什么? 2.展开式是否唯一? 3.在什么条件下才能展开成幂级数?
6
函数能展开成幂级数的定义:
给定函数 如果能找到一个幂级数,使得 它在某区间内收敛,且其和恰好就是给定的函数 则称函数在该区间内能展开成幂级数

f ( x)
例如:
x
a
n
f ( n ) (0) (0) 1 (n 0 ,1,), an n!
x
( n 1)!
0,
e x n 1 e (n 1)!
lim Rn ( x ) 0.
n
x
( 在0与x 之间)
ex
1 n x , x ( , ) n 0 n !
n 0
( an x n ) (an x n )
n 0
x


n 0
x x0
收敛域 x
x ( R , R )
x ( R , R )
2
n 0
0 ( an x )d x (an xn )d x
n
x


n 0
n 0
0
二、幂级数和函数的求法
• 求部分和式的极限 (在收敛区间内) •逐项求导或求积分法

函数展开为幂级数的公式

函数展开为幂级数的公式

函数展开为幂级数的公式
函数展开成幂级数公式为:1/(1-x)=∑x^n(-1),幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方,n是从0开始计数的整数,a为常数。

幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。

常用的全面的幂级数展开公式:f(x)=1/(2+x-x的平方)
每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方,n 是从0开始计数的整数,a为常数。

幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。

扩展资料:
函数展开成幂级数的一般方法是:
1、直接展开
对函数求各阶导数,然后求各阶导数在指定点的值,从而求得幂级数的各个系数。

2、通过变量代换来利用已知的函数展开式
例如sin2x的展开式就可以通过将sinx的展开式里的x全部换成2x 而得到。

3、通过变形来利用已知的函数展开式
例如要将1/(1+x)展开成x−1的幂级数,我们就可以将函数写成x −1 的函数,然后利用1/(1+x)的幂级数展开式。

4、通过逐项求导、逐项积分已知的函数展开式
例如coshx=(sinhx)′,它的幂级数展开式就可以通过将sinhx的展开式逐项求导得到。

需要注意的是,逐项积分法来求幂级数展开式,会有一个常数出现,这个常数是需要我们确定的。

确定的方法就是通过在展开点对函数与展开式取值,令两边相等,就得到了常数的值。

5,利用级数的四则运算
例如sinhx=(e^x−e^{−x})/2,它的幂级数就可以利用e^x和e^{−x} 的幂级数通过四则运算得到。

高中数学(人教版)函数展开成幂级数解析优选教学课件

高中数学(人教版)函数展开成幂级数解析优选教学课件

a2

f (x0 ) 2!
f (n) (x) n!an , x I 令 x x0
an
f (n) (x0 ) n!
a0

f (x0 ), a1
f
(x0 ) 1!
,
a2

f (x0 ) , 2!
,
an
f (n) (x0 ) n!
引言
在收敛域内

求和
幂级数 an xn n0
若在包含x0的某区间I内,等式
f (x)
f (x0 )
f (x0)x x0
f
( x0 2!
)
x

x0
2



f
(n) (x0 n!
)
(x

x0
)n

成立,称上式为f (x)的泰勒展开式(x0=0时,称为麦克劳林展开式).
定理
设函数 f (x) 在点 x0 的某一邻域 U(x0) 内具有各阶导数, 则 f (x) 在该邻域内能展开成泰勒级数的充要条件是:
研究问题
近似计算 理论研究
f (x) a0 a1x x0 a2 x x0 2 an (x x0 )n (x I )
f (x)在什么条件下能展开为幂级数; f (x) 的展开式在什么范围内成立; f (x) 的展开式是否唯一; f (x) 的展开式如何确定.
第五讲 函数展开成幂级数
函数展开成幂级数
一、泰勒级数 二、函数展开成幂级数
函数展开成幂级数
一、泰勒级数 二、函数展开成幂级数
引言
在收敛域内

求和
幂级数 an xn n0

幂级数的展开

幂级数的展开

x
(n + 1)!
x
e
x
由比值判别法知:级数∑
n =0
x
n +1
(n + 1)!
e 收敛,故其一般项趋于0,
即 lim
x
n +1
n →∞
(n + 1)!
e =0,x ∈ (-∞,+∞) 从而有 lim Rn ( x) = 0
x n →∞
16
间接法
根据唯一性, 利用常见展开式, 通过变量代换, 根据唯一性 利用常见展开式 通过变量代换 四则运 恒等变形, 逐项求导, 逐项积分等方法,求展开式 求展开式. 算, 恒等变形 逐项求导 逐项积分等方法 求展开式
定理中的公式称为函数f(x)按(x − a)的幂级数展开到n阶的泰勒公式 或f(x)在x = a处的n阶泰勒公式,简称为n阶泰勒公式。
f(x)的泰勒公式表明,函数f(x)的值可近似地表示为 1 1 (n) 2 f(x) ≈ f(a) + f' (a)(x - a) + ' ' f (a )( x − a ) + L + f (a )( x − a ) n 2! n! 而近似误差可由Rn ( x)来估计。
§7.6函数的幂级数展开 7.6函数的幂级数展开
一、泰勒级数 二、泰勒公式 三、函数的泰勒级数展开
1
问题 n ∞ n −1 x ∑ (−1) n = ln(1 + x )
n =1
( −1 < x ≤ 1)
f ( x) = ∑an ( x − x0 )n
n=0
∞Leabharlann 存在幂级数在其收敛 域内以f(x)为和函数 域内以 为和函数

6.4 函数的幂级数展开

6.4  函数的幂级数展开
n
1 3 1 5 x n 1 sinx x x x (1) 3! 5! ( 2n 1)! ( x ) .
用直接法还可得到,对任意实数
a
2 n 1
a,有
a(a 1) 2 a(a 1)(a 2) 3 (1 x ) 1 ax x x 2! 3! a(a 1)(a n 1) n x n! ( 1 x 1)
例题6-23
将函数 f ( x ) cos x 展开为x的幂级数.
x ) cosx , 解 因为(sin
2 n 1 1 3 1 5 x sinx x x x (1)n1 3! 5! ( 2n 1)! ( x ) .

所以根据幂级数可逐项求导的法则, 可得
中的余项 rn ( x) 0(n ) 时,函数f(x)能
够在x0点的邻域内展开为 ( x x0 ) 的幂级数
式(6.8),即有
f ( x0 ) f ( x ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! ( n) f ( x0 ) n ( x x0 ) (6.9) n!
在x 1点处展开式是否成立,要视 a值而定,
1 1 对应于 a 1, a , a , 有 2 2 1 1 x x 2 x 3 ( 1 x 1) 1 x 1 1 2 1 3 3 1 3 5 4 1 x 1 x x x x 2 2 4 2 4 6 2 4 6 8 ( 1 x 1)
例 6-21 试将函数 f(x) = ex 展开成 x
的幂级数.
( n) x 由 f ( x ) e (n 1 , 2 , 3 ,) , 可以 解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档