两角和与差的正弦余弦正切公式练习题答案
两角和与差的正弦余弦正切公式练习题(含答案)
两角和与差的正弦余弦正切公式练习题(含答案)两角和差的正弦余弦正切公式练题一、选择题1.给出如下四个命题:①对于任意的实数α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;②存在实数α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;③公式tan(α+β)=tanα+tanβ成立的条件是α≠kπ+π(k∈Z)且β≠kπ+π(k∈Z);1-tanαtanβ/2④不存在无穷多个α和β,使sin(α-β)=sinαcosβ-cosαsinβ。
其中假命题是()A。
①②B。
②③C。
③④D。
②③④2.函数y=2sinx(sinx+cosx)的最大值是()A。
1+2B。
2-1C。
2D。
2/33.当x∈[-π/2,π/2]时,函数f(x)=sinx+3cosx的()A。
最大值为1,最小值为-1B。
最大值为1,最小值为-1/2C。
最大值为2,最小值为-2D。
最大值为2,最小值为-14.已知tan(α+β)=7,tanαtanβ=2/3,则cos(α-β)的值()A。
1/2B。
2/2C。
-2D。
±25.已知π/2<β<α<3π/4,cos(α-β)=12/13,sin(α+β)=-3/5,则sin2α=()A。
56/65B。
-56/65C。
6565/56D。
-5/66.sin15°sin30°sin75°的值等于()A。
3/4B。
3/8C。
1/8D。
1/47.函数f(x)=tan(x+π/4)+1+tanx/4,g(x)=1-tanx,h(x)=cot(π/4-x)。
其中为相同函数的是()A。
f(x)与g(x)B。
g(x)与h(x)C。
h(x)与f(x)D。
f(x)与g(x)及h(x)8.α、β、γ都是锐角,tanα=1/2,tanβ=1/5,tanγ=1/8,则α+β+γ等于()A。
π/3B。
π/4C。
π/5D。
(完整版)两角和与差的正弦、余弦和正切公式练习试题
两角和与差的正弦、余弦和正切公式 基础训练 一、选择题 1.已知α为锐角,55cos ,=α则=+)24tan(απ( ) A .-3 B .-17 C .-43 D .-72.如图,在平面直角坐标系xOy 中,角α,β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A ,B 两点,若点A ,B 的坐标为)54,53(和)53,54(-,则cos(α+β)的值为( ) A .-2425 B .-725C .0 D.2425 3.函数f (x )=sin x cos x +32cos2x 的最小正周期和振幅分别是( ) A .π,1 B .π,2 C .2π,1D .2π,2 4.(2015·嘉兴模拟)2cos10°-sin20°sin70°的值是( ) A.12 B.32C. 3D. 2 5.若,33)24cos(,31)4cos(,02,20=-=+<<-<<βπαπβππα则=+)2cos(βα( ) A.33 B .-33 C.539D .-69 6.已知,534sin )3sin(-=++απα则=+)32cos(πα( ) A .-45 B .-35 C.35D.45 7.(2013·课标全国Ⅱ)已知sin 2α=23,则=+)4(cos 2πα( ) A.16 B.13 C.12 D.23二、填空题8.已知,2)4tan(=+πx 则tan x tan2x 的值为________. 9.已知,31)6sin(=-απ则=+)232cos(απ_______. 10.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C 2的值为________. 11.设当θ=x 时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________.三、解答题12.(2014·广东卷)已知函数,),4sin()(R x x A x f ∈+=π且23)125(=πf . (1)求A 的值;(2)若),2,0(,23)()(πθθθ∈=-+f f 求)43(θπ-f . 13.(2014·四川卷)已知函数)43sin()(π+=x x f .(1)求f (x )的单调递增区间;(2)若α是第二象限角,,2cos )4cos(54)3(απαα+=f 求cos α-sin α的值. 巩固训练1.已知tan(α+π4)=12,且-π2<α<0,则=-+)4cos(2sin sin 22πααα( ) A .-255 B .-3510 C .-31010D.255 2.定义运算⎪⎪⎪⎪⎪⎪ab c d =ad -bc ,若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( ) A.π12 B.π6 C.π4 D.π3 3.已知tan α=4,则1+cos 2α+8sin 2αsin 2α的值为( ) A .4 3 B.654 C .4 D.2334.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255 C.2525或255D.55或525 5.若),2,0(πα∈且sin 2α+cos 2α=14,则tan α的值等于( ) A.22 B.33C. 2D. 3 6. sin 250°1+sin 10°=________. 7.已知),2,0(,πβα∈满足tan(α+β)=4tan β,则tan α的最大值是________.8.(2014·江西卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R ,)2,2(ππθ-∈. (1)若a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若,0)2(=πf f (π)=1,求a ,θ的值. 9.已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4). (1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围.。
2022秋新教材高中数学第五章两角和与差的正弦余弦正切公式课后提能训练新人教A版必修第一册
第五章 5.5.1 第2课时A级——基础过关练1.sin 105°的值为( )A.B.C.D.【答案】D 【解析】sin 105°=sin(45°+60°)=sin 45°·cos 60°+cos 45°sin 60°=×+×=.2.(多选)下列四个选项,化简正确的是( )A.cos(-15°)=B.cos 15°cos 105°+sin 15°sin 105°=cos(15°-105°)=0C.cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=D.sin 14°cos 16°+sin 76°cos 74°=【答案】BCD 【解析】对于A,(方法一)原式=cos(30°-45°)=cos 30°cos 45°+sin 30°sin 45°=×+×=,(方法二)原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=×+×=,A错误.对于B,原式=cos(15°-105°)=cos(-90°)=cos 90°=0,B正确.对于C,原式=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=,C正确.对于D,原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=,D正确.故选BCD.3.(2020年青岛高一期中)已知α,β为锐角,tan α=,cos(α+β)=-,则tan β=( )A.2B.C.D.【答案】A 【解析】因为α,β为锐角,所以0<α+β<π,所以sin(α+β)==,tan(α+β)==-2,则tan β=tan[(α+β)-α]===2.故选A.4.(2020年抚州高一期中)已知cos=2cos(π+α),且tan(α+β)=,则tan β的值为( )A.-7B.7C.1D.-1【答案】B 【解析】因为cos=2cos(π+α),所以sin α=-2cos α,即 tan α=-2.又因为tan(α+β)===,解得tan β=7.故选B.5.已知cos(α-β)=,sin β=-,且α∈,β∈,则cos α=( )A.B.C.- D.-【答案】B 【解析】因为0<α<,-<β<0,所以0<α-β<π.又cos(α-β)=,所以sin(α-β)=.因为-<β<0,sin β=-,所以cos β=.所以cos α=cos[(α-β)+β]=cos(α-β)cos β-sin(α-β)sin β=×-×=.6.(2020年上海黄浦区高一期中)已知sin x=,x∈,则tan的值等于________.【答案】- 【解析】因为sin x=,x∈,所以cos x=-,tan x=-.所以tan===-.7.若sin α+2cos α=0(0<α<π),则tan α=________,tan=________.【答案】-2 - 【解析】因为sin α+2cos α=0(0<α<π),所以sin α=-2cos α,即tan α=-2.所以tan===-.8.(2020年湘潭高一期中)已知tan α,tan β是方程2x2+3x-5=0的两个实数根,则tan(α+β)=________.【答案】- 【解析】因为tan α,tan β是方程2x2+3x-5=0的两个实数根,所以tan α+tan β=-,tan αtan β=-.所以tan(α+β)===-.9.已知cos α=(α为第一象限角),求cos,sin的值.解:因为cos α=,且α为第一象限角,所以sin α= ==.所以cos=cos cos α-sin sin α=×-×=,sin=sincos α+cossin α=×+×=.B级——能力提升练10.sin(θ+75°)+cos(θ+45°)-cos(θ+15°)=( )A.±1B.1C.-1D.0【答案】D 【解析】原式=sin[60°+(θ+15°)]+cos(θ+45°)-cos(θ+15°)=-cos(θ+15°)+sin(θ+15°)+cos(θ+45°)=sin(θ-45°)+cos(θ+45°)=0.故选D.11.已知tan(α+β)=3,tan(α-β)=5,则tan 2α的值为( )A.-B.C.D.-【答案】A 【解析】tan 2α=tan[(α+β)+(α-β)]====-.12.在△ABC中,cos A=,cos B=,则△ABC的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【答案】B 【解析】由题意得sin A=,sin B=,所以cos C=cos(π-A-B)=-cos(A+B)=-cos A·cos B+sin A sin B=-×+×=-=-=-<0,所以C是钝角,故△ABC是钝角三角形.13.在△ABC中,tan A+tan B+=tan A·tan B,则角C等于( )A.B.C.D.【答案】A 【解析】由已知,得tan A+tan B=·(tan A tan B-1),即=-.所以tan(A +B)=-.所以tan C=tan[π-(A+B)]=-tan(A+B)=,得C=.14.已知cos α=,sin(α-β)=,且α,β∈.(1)求cos(2α-β)的值;(2)求β的值.解:(1)因为α,β∈,所以α-β∈.又因为sin(α-β)=>0,所以0<α-β<.所以sin α==,cos(α-β)==.cos(2α-β)=cos[α+(α-β)]=cos αcos(α-β)-sin αsin(α-β)=×-×=.(2)cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×=.又因为β∈,所以β=.C级——探究创新练15.已知函数f(x)=(sin x+cos x)2-2cos2x(x∈R).(1)求函数f(x)的周期和递增区间;(2)若函数g(x)=f(x)-m在上有两个不同的零点x1,x2,求tan(x1+x2)的值.解:(1)因为f(x)=(sin x+cos x)2-2cos2x=1+2sin x·cos x-2cos2x=sin 2x-cos 2x=sin(x∈R),所以函数f(x)的周期T==π.因为函数y=sin x的单调递增区间为(k∈Z),所以函数f(x)的单调递增区间由2kπ-≤2x-≤2kπ+(k∈Z),化简得kπ-≤x≤kπ+(k∈Z),即(k∈Z).(2)因为方程g(x)=f(x)-m=0同解于f(x)=m.在直角坐标系中画出函数f(x)=sin在上的图象,如图,当且仅当m∈[1,)时,方程f(x)=m在上的区间和有两个不同的解x1、x2,且x1与x2关于直线x=对称,即=,所以x1+x2=,故tan(x1+x2)=tan=-1.。
完整版)两角和与差的正弦、余弦、正切经典练习题
完整版)两角和与差的正弦、余弦、正切经典练习题两角和与差的正弦、余弦、正切cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ1、求值:1)cos15°2)cos80°cos20°+sin80°sin20°3)cos130°cos10°+sin130°sin10°5)sin75°7)cos(A+B)cosB+sin(A+B)sinB2.1)证明:cos(π/2-α)=sinα4)cos105°6)求cos75°cos105°+sin75°sin105°8)cos91°cos29°-sin91°sin29°2)已知sinθ=15π,且θ为第二象限角,求cos(θ-π)的值.3)已知sin(30°+α)=√3/2,60°<α<150°,求cosα.4)化简cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°).5)已知sinα=-4/5,求cosα的值。
6)已知cosα=-3π/32,α∈(π/2,π),求sin(α+π/4)的值。
7)已知α,β都是锐角,cosα=32π/53,α∈(π/3,π/2),cosβ=-3π/52,β∈(π/6,π/4),求cos(α+β)的值。
8)已知cos(α+β)=-11/53,求cosβ的值。
9)在△ABC中,已知sinA=√3/5,cosB=1/4,求cosC的值.两角和与差的正弦sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβ利用和差角公式计算下列各式的值:1)sin72°cos42°-cos72°sin42°2)3sinx+cosx3)cos2x-sin2x证明:1)sinα+cosα=sin(α+π/2)2)cosθ+sinθ=2sin(θ+π/4)3)2(sin x+cos x)=2cos(x-π/4)1)已知sinα=-3/5,α是第四象限角,求sin(-α)的值。
两角和与差的正弦余弦正切公式练习附答案
1. - =()
A.4B.2
C.-2D.-4
解析:选D. - = - = = = =-4,故选D.
2.若α,β都是锐角,且cosα= ,sin(α-β)= ,
则cosβ=()
A. B.
C. 或- D. 或
解析:选A.因为α,β都是锐角,且cosα= ,sin(α-β)= ,所以sinα= ,cos(α-β)= ,从而cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)= ,故选A.
6.已知cosθ=- ,θ∈ ,则sin 的值为________.
解析:由cosθ=- ,θ∈ 得sinθ=- =- ,故sin =sinθcos -cosθsin =- × - × = .
答案:
7.已知cos =- ,则cosx+cos =________.
解析:cosx+cos =cosx+ cosx+ sinx
1. 的值为()
A. B.
C.- D.-
解析:选B.原式= = =tan(45°+15°)= .
2.(1+tan 18°)·(1+tan 27°)的值是()
A. B.1+
C.2D.2(tan 18°+tan 27°)
解析:选C.原式=1+tan 18°+tan 27°+tan 18°tan 27°=1+tan 18°tan 27°+tan 45°(1-tan 18°tan 27°)=2,故选C.
解:因为0<α< <β< π.
所以 π< π+α<π,- < -β<0.
Hale Waihona Puke 又sin = ,cos = ,
所以cos =- ,sin =- ,
两角和与差的正、余弦公式、正切公式、二倍角公式
1.已知tan 2α=,则tan 2α的值为 . 【答案】43-【分析】222tan 224tan 21tan 123ααα⨯===---. 2.已知P (-3,4)为角α终边上的一点,则cos (π+α)= .【考点】任意角的三角函数的定义.【答案】35【分析】∵P (-3,4)为角α终边上的一点,∴x =-3,y =4,r =|OP |=5,∴cos (π+α)=-cos α=x r -=35--=35,故答案为35. 3.已知cos(α-β)=35,sin β=513-且α∈(0,π2),β∈(π2-,0),则sin α= .【考点】两角和与差的余弦函数;同角三角函数间的基本关系.【答案】3365【分析】∵α∈(0,π2),β∈(π2-,0),∴α-β∈(0,π), 又cos (α-β)=35,sin β=513-,∴sin (α-β)=21cos ()αβ--=45,cos β=21sin β-=1213,则sin α=sin[(α-β)+β]= sin (α-β)cos β+cos (α-β)sin β=45×1213+35×(513-)=3365.故答案为3365. 4.若0≤x ≤π2,则函数y =cos (x -π2)sin (x +π6)的最大值是 .【考点】两角和与差的正余弦公式的应用.【答案】234+ 【分析】y =sin x (sin x 32⋅+12cos x )=322sin x +12sin x cos x =()31cos 24x -+14sin2x =12sin (2x -π3)+34, ∵0≤x ≤π2,∴-π3≤2x -π3≤2π3,∴max y =12+34=234+. 5.已知过点(0,1)的直线l :x tan α-y -3tan β=0的一个法向量为(2,-1),则tan (α+β)=________.【考点】平面的法向量. 【答案】1【分析】∵过点(0,1)的直线l :x tan α-y -3tan β=0的一个法向量为(2,-1),∴-1-3tan β=0,12-tan α=-1.∴1tan 3β=-,tan α=2. ∴tan (α+β)=12tan tan 3111tan tan 123αβαβ-+==-+⨯,故答案为1. 6.在ABC △中,已知BC =8,AC =5,三角形面积为12,则cos2C = .【考点】三角形面积公式,二倍角公式的应用. 【答案】725【分析】∵已知BC =8,AC =5,三角形面积为12, ∴12⋅BC ⋅AC sin C =12,∴sin C =35,∴cos2C =122sin C -=1-2×925=725. 7.某种波的传播是由曲线()()()sin 0f x A x A ωϕ=+>来实现的,我们把函数解析式()()sin f x A x ωϕ=+称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波()()11sin f x x ϕ=+与()()22sin f x x ϕ=+叠加后仍是“1类波”,求21ϕϕ-的值;(2)在“A 类波“中有一个是()1sin f x A x =,从 A 类波中再找出两个不同的波()()23,f x f x ,使得这三个不同的波叠加之后是平波,即叠加后()()()1230f x f x f x ++=,并说明理由.(3)在()2n n n ∈N,≥个“A 类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明. 【考点】两角和与差的正弦函数;归纳推理.【解】(1)()()()()1212sin sin f x f x x x ϕϕ+=+++ =1212(cos cos )sin (sin sin )cos x x ϕϕϕϕ+++,振幅是221212(cos cos )(sin sin )ϕϕϕϕ+++=()1222cos ϕϕ+-,则()1222cos ϕϕ+-=1,即()121cos 2ϕϕ-=-,所以122π2π,3k k ϕϕ-=±∈Z . (2)设()()21sin f x A x ϕ=+,()()32sin f x A x ϕ=+, 则()()()()()12312sin sin sin f x f x f x A x A x A x ϕϕ++=++++=()()1212sin 1cos cos cos sin sin 0A x A x ϕϕϕϕ++++=恒成立, 则121cos cos 0ϕϕ++=且12sin sin 0ϕϕ+=, 即有:21cos cos 1ϕϕ=--且21sin sin ϕϕ=-,消去2ϕ可解得11cos 2ϕ=-, 若取12π3ϕ=,可取24π3ϕ=(或22π3ϕ=-等),此时,()22πsin 3f x A x ⎛⎫=+ ⎪⎝⎭,()34πsin 3f x A x ⎛⎫=+ ⎪⎝⎭(或()32πsin 3f x A x ⎛⎫=- ⎪⎝⎭等), 则()()()1231313sin sin cos sin cos 02222f x f x f x A x x x x x ⎡⎤⎛⎫⎛⎫++=+-++--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以是平波.(3)()1sin f x A x =,()22πsin f x A x n ⎛⎫=+⎪⎝⎭,()34πsin f x A x n ⎛⎫=+ ⎪⎝⎭,…, ()()21πsin n n f x A x n -⎛⎫=+ ⎪⎝⎭,这n 个波叠加后是平波.8. (4分)已知sin α=3cos α,则cos 21sin 2αα=+ ________.【参考答案】 12-【测量目标】 运算能力/能根据法则准确的进行运算和变形. 【考点】二倍角的余弦;二倍角的正弦.【试题分析】 由已知先求tan α,因为sin α=3cos α,所以tan α=3,把所求的式子中的三角函数利用二倍角公式进行化简,然后化为正切形式,即可求值:222222cos 2cos sin 1tan 1911sin 2cos 2sin cos +sin 12tan tan 1692ααααααααααα---====-++++++.9.若tan (α-π4)=14,则tan α=______. 【参考答案】 53【测量目标】 数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识. 【考点】 两角和与差的正切函数.【试题分析】 ∵tan (α-π4)=14, ∴πtan tan4π1tan tan4αα-+=tan 11tan αα-+=14,解得tan α=53.故答案为53. 10.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且3cos 4B =. (1)求2sin 2cos2A CB ++的值; (2)若3b =,求ABC △面积的最大值. 【考点】余弦定理,二倍角的正弦、余弦. 【解】(1)因为3cos 4B =,所以7sin 4B =, 又22π1sin 2cos2sin cos cos 2sin cos (1cos )222A CB B B B B B B +-+=+=+- =73113724488+⨯⨯+=. (2)由已知可得:2223cos 24a cb B ac +-==, 又因为3b =,所以22332a c ac +-=, 又因为223322a c ac ac +=+≥, 所以6ac ≤,当且仅当6a c ==时,ac 取得最大值.此时11737sin 62244ABC S ac B ==⨯⨯=△. 所以△ABC 的面积的最大值为374. 11.已知1sin 4θ=,则sin 2()4θπ⎡⎤-=⎢⎥⎣⎦__________. 【答案】78-【分析】27sin 2()cos 212sin 48θθθπ⎡⎤-=-=-+=-⎢⎥⎣⎦.12. 已知α为第二象限的角,sin α=35,则tan2α=_______________. 【答案】247-【分析】因为α为第二象限的角,又sin α=35,所以cos α=45-,tan α=sin cos αα=34-,tan2α=22tan 1tan αα-=247-.【考点】两角和与差的三角函数、二倍角公式. 13.若△ABC 的内角A 满足sin2A =23,则sin A +cos A 等于( ) A.153 B.153- C.53 D.53-【答案】A 【分析】∵0<A <π,0<2A <2π,又sin2A =23,即2sin A cos A =23,∴0<A <π2, 2(sin cos )A A +=53,sin A +cos A =153,故选A. 【考点】两角和与差的三角函数、二倍角公式. 14.已知sin θ+cos θ=15,且π2≤θ≤3π4,则cos2θ的值是___________. 【答案】725-【分析】由已知sin θ+cos θ=15①,2sin θcos θ= 2425-,又π2≤θ≤3π4,∴cos θ<0,sin θ>0. 2(cos sin )θθ-=4925,则sin θ-cos θ=75②,由①②知cos2θ=22cossin θθ-=725-. 【考点】两角和与差的三角函数、二倍角公式.15.已知0<α<π2,sin α=45.(1)求22sin sin 2cos cos 2αααα++的值;(2)求tan(α-5π4)的值.【解】∵0<α<π2,sin α=45,∴cos α=35,tan α=43.(1)22sin sin2cos cos2αααα++=222sin2sin cos2cos sinααααα+-=22tan2tan2tanααα+-=2244()23342()3+⨯-=20;(2)tan(α-5π4)=tan11tanαα-+=413413-+=17.【考点】两角和与差的三角函数、二倍角公式.16.已知x∈(π2-,0),cos x=45,tan2x=()A.724B.724- C.247D.247-【答案】D【分析】sin x=35-,tan x=34-,tan2x=22tan1tanxx-=247-,故选D.【考点】两角和与差的三角函数、二倍角公式.17.cos20cos351sin20︒︒-︒=()A.1B. 2C.2D.3【答案】C【分析】cos20cos351sin20︒︒-︒=22cos10sin10cos35(cos10sin10)︒-︒︒︒-︒=cos10sin10cos35︒+︒︒=2sin55cos35︒︒=2,故选C.【考点】两角和与差的三角函数、二倍角公式.18.设a=sin14°+cos14°,b=sin16°+cos16°,c =62,则a、b、c大小关系是()A.a<b<cB.b<a<cC. c<b<aD. a<c<b【答案】D【分析】由题意知,a =2sin59°,b =2sin61°,c =2sin60°,所以a<c<b,故选D.【考点】两角和与差的三角函数、二倍角公式.19.tan20°+tan40°+ 3tan20°tan40°=_____________.【答案】3【分析】tan60°= tan(20°+40°)=tan20+tan401tan20tan40︒︒-︒︒=3,∴3-3tan20°tan40°=tan20°+tan40°,移向即可得结果为3. 【考点】两角和与差的三角函数、二倍角公式. 20.已知sin2θ+cos 2θ=233,那么sin θ =______,cos2θ =___________. 【答案】13,79【分析】2(sin cos )22θθ+=1+ sin θ=43,sin θ=13,cos2θ=1-22sin θ=79. 【考点】两角和与差的三角函数、二倍角公式. 21.若1tan 1tan αα+-=2008,则1cos 2α+tan2α=_______________.【答案】2008【分析】1cos 2α+tan2α=1sin 2cos 2cos 2ααα+=1sin 2cos 2αα+=222(cos +sin )cos sin αααα-= cos +sin cos sin αααα-=1+tan 1tan αα-=2008.【考点】两角和与差的三角函数、二倍角公式. 22.计算:sin65+sin15sin10sin 25cos15cos80︒︒︒︒-︒︒=________.【答案】2+3【分析】sin65+sin15sin10sin 25cos15cos80︒︒︒︒-︒︒=sin80cos15sin15cos10︒︒︒︒=cos15sin15︒︒=2+3.【考点】两角和与差的三角函数、二倍角公式.23.求值:(1)sin6°sin42°sin66°sin78°;(2)22sin 20cos 50︒+︒+sin20°cos50°.【解】原式=sin6°cos12°cos24°cos48°=sin 6cos 6cos12cos 24cos 48cos 6︒︒︒︒︒︒=1sin12cos12cos 24cos 482cos6︒︒︒︒︒=1sin 24cos 24cos 484cos6︒︒︒︒=1sin 48cos 488cos6︒︒︒=1sin 9616cos6︒︒=1cos616cos6︒︒=116; (2)原式=1cos 401cos1001(sin 70sin 30)222-︒+︒++︒-︒ =1+111(cos100cos 40)sin 70224︒-︒+︒-=31sin 70sin 30sin 7042-︒⋅︒+︒=34.【考点】两角和与差的三角函数、二倍角公式. 24.已知tan α、tan β是方程2x -5x +6=0的两个实根,求22sin ()αβ+-3sin ()αβ+cos ()αβ++2cos ()αβ+的值. 【解】由韦达定理得tan α+tan β=5,tan α·tan β=6,所以tan(α+β)=tan tan 1tan tan αβαβ+-⋅=-1.原式=[22sin ()αβ+-3sin(α+β)cos(α+β)+2cos ()αβ+]/[22sin ()cos ()αβαβ+++]=222tan ()3tan()1tan ()1αβαβαβ+-++++=213(1)111⨯-⨯-++=3.【考点】两角和与差的三角函数、二倍角公式.。
两角和与差的正弦余弦正切公式练习题(答案)
两角和差的正弦余弦正切公式练习题知 识 梳 理1.两角和与差的正弦、余弦和正切公式 s in (α±β)=s in_αcos _β±cos_αsin _β. cos(α∓β)=cos_αc os_β±sin_αsin_β. t an(α±β)=错误!.2.二倍角的正弦、余弦、正切公式 s in 2α=2sin_αcos_α.cos 2α=cos 2α-sin2α=2cos 2α-1=1-2sin 2α. ta n 2α=错误!. 3.有关公式的逆用、变形等(1)ta n α±tan β=t an(α±β)(1∓ta n_αt an_β). (2)co s2α=\f(1+cos 2α,2),sin 2α=错误!.(3)1+sin 2α=(si n α+co s α)2,1-sin 2α=(sin α-cos α)2,sin α±co s α=\r(2)sin 错误!.4.函数f (α)=a sin α+bcos α(a ,b 为常数),可以化为f (α)=a 2+b 2s in(α+φ),其中t an φ=\f(b,a ) 一、选择题1.给出如下四个命题ﻩﻩ①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立;②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是 ﻩ( )A .①②ﻩB.②③ C.③④ﻩD.②③④2.函数)cos (sin sin 2x x x y +=的最大值是ﻩﻩ( )A .21+ﻩB .12-ﻩC .2ﻩD . 2 3.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的ﻩﻩ( ) A.最大值为1,最小值为-1ﻩB .最大值为1,最小值为21-C .最大值为2,最小值为-2D .最大值为2,最小值为-14.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值ﻩﻩ( ) A.21 B .22 C.22-D.22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A.6556ﻩB .-6556ﻩC.5665 D.-5665 6. 75sin 30sin 15sin ⋅⋅的值等于ﻩﻩ( ) A .43 B .83ﻩC.81 D.417.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是ﻩﻩ( )A.)()(x g x f 与B .)()(x h x g 与C.)()(x f x h 与ﻩD.)()()(x h x g x f 及与8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于 ( ) A.3πB.4πﻩC.π65ﻩD.π45 9.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A.p +q +1=0 B .p-q +1=0ﻩC.p+q-1=0 D .p-q-1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A.412--a a ﻩB.-412--a a ﻩC.214a a --± D .412--±a a11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为ﻩ( )A.1tan tan >+B A ﻩB .1tan tan <⋅B A C.1tan tan =⋅B A D.不能确定 12. 50sin 10sin 70cos 20sin +的值是ﻩ( )A.41B.23ﻩC.21D.43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 . 14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=.15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,22sin sin +=+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π.18.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.19.求证:yx xy x y x 22sin cos 2sin )tan()tan(-=-++.20.已知α,β∈(0,π)且71tan ,21)tan(-==-ββα,求βα-2的值.21.证明:xx xx x 2cos cos sin 22tan 23tan +=-.22.已知△ABC 的三个内角满足:A+C=2B,B C A cos 2cos 1cos 1-=+求2cos CA -的值. 两角和差的正弦余弦正切公式练习题参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A二、13.m 14.3π15.32-- 16.]214,214[- 三、17.原式=)34cos()33sin()33cos()34sin(x x x x -----ππππ=462-.18.)4550sin(2)2150(sin 4)50sin 2(50sin 222 ±=---±=x ,12sin 95cos5,sin 5cos85,x x ∴====ﻩ3275tan )2tan(+==- αβ. 19.证:y x y x y x y x y x y x y x y x 2222sin sin cos cos )]()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左=-=+-=yx xy x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13tan ,tan(2)1,2.34ααβαβπ=-=-=-21.左==+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22cos23cos sin 2cos 23cos 2sin23cos 2cos 23sin右.22.由题设B=60°,A +C=120°,设2CA -=α知A=60°+α, C=60°-α,22cos ,2243cos cos cos 1cos 12=-=-=+ααα即CA 故222cos =-C A .。
最新两角和与差的正弦余弦正切公式练习题(含答案)
两角和差的正弦余弦正切公式练习题一、选择题1.给出如下四个命题①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是( )A .①②B .②③C .③④D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是( )A .21+B .12-C .2D . 2 3.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的( ) A .最大值为1,最小值为-1 B .最大值为1,最小值为21-C .最大值为2,最小值为-2D .最大值为2,最小值为-1 4.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值 ( )A .21 B .22 C .22-D .22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A .6556B .-6556C .5665D .-56656. 75sin 30sin 15sin ⋅⋅的值等于( )A .43 B .83 C .81D .41 7.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是 ( )A .)()(x g x f 与B .)()(x h x g 与C .)()(x f x h 与D .)()()(x h x g x f 及与8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于 ( )A .3π B .4π C .π65D .π459.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A .p+q+1=0B .p -q+1=0C .p+q -1=0D .p -q -1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A .412--a aB .-412--a aC .214a a --±D .412--±a a11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为( )A .1tan tan >+B A B .1tan tan <⋅B AC .1tan tan =⋅B AD .不能确定12. 50sin 10sin 70cos 20sin +的值是( )A .41B .23C .21D .43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 . 14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=.15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,22sin sin +=+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π.18.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.19.求证:yx xy x y x 22sin cos 2sin )tan()tan(-=-++.20.已知α,β∈(0,π)且71tan ,21)tan(-==-ββα,求βα-2的值.21.证明:xx xx x 2cos cos sin 22tan 23tan +=-.22.已知△ABC 的三个内角满足:A+C=2B ,B C A cos 2cos 1cos 1-=+求2cos CA -的值.两角和差的正弦余弦正切公式练习题参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A二、13.m 14.3π15.32-- 16.]214,214[-三、17.原式=)34cos()33sin()33cos()34sin(x x x x -----ππππ=462-.18.)4550sin(2)2150(sin 4)50sin 2(50sin 222 ±=---±=x ,12sin 95cos5,sin 5cos85,x x ∴====3275tan )2tan(+==- αβ.19.证:yx y x y x y x y x y x y x y x 2222sin sin cos cos )]()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左=-=+-=yx xy x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13tan ,tan(2)1,2.34ααβαβπ=-=-=-21.左==+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22cos23cos sin 2cos 23cos 2sin23cos 2cos 23sin右.22.由题设B=60°,A+C=120°,设2CA -=α知A=60°+α, C=60°-α,22cos ,2243cos cos cos 1cos 12=-=-=+ααα即CA故222cos =-C A .。
两角和与差的正弦、余弦和正切公式(含解析)
两角和与差的正弦、余弦和正切公式(含解析)1.两角和与差的正弦、余弦、正切公式1) $cos(\alpha-\beta): cos(\alpha-\beta)=cos\alphacos\beta+sin\alpha sin\beta$2) $cos(\alpha+\beta): cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta$3) $sin(\alpha+\beta): sin(\alpha+\beta)=sin\alphacos\beta+cos\alpha sin\beta$4) $sin(\alpha-\beta): sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta$5) $tan(\alpha+\beta):tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}$6) $tan(\alpha-\beta): tan(\alpha-\beta)=\frac{tan\alpha-tan\beta}{1+tan\alpha tan\beta}$2.二倍角的正弦、余弦、正切公式1) $sin2\alpha: sin2\alpha=2sin\alpha cos\alpha$2) $cos2\alpha: cos2\alpha=cos^2\alpha-sin^2\alpha=2cos^2\alpha-1=1-2sin^2\alpha$3) $tan2\alpha: tan2\alpha=\frac{2tan\alpha}{1-tan^2\alpha}$3.常用的公式变形1) $tan(\alpha\pm\beta)=\frac{tan\alpha\pm tan\beta}{1\mp tan\alpha tan\beta}$2) $cos2\alpha=\frac{1+cos2\alpha}{2}$,$sin2\alpha=\frac{1-cos2\alpha}{2}$3) $1+sin2\alpha=(sin\alpha+cos\alpha)^2$,$1-sin2\alpha=(sin\alpha-cos\alpha)^2$,$\sin\alpha+\cos\alpha=2\sin\frac{\alpha+\beta}{4}$基础题必做1.若$tan\alpha=3$,则$\frac{sin2\alpha}{2sin\alphacos\alpha}$的值等于$2tan\alpha=2\times3=6$。
两角和与差的公式
两角和与差的正弦、余弦、正切公式1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β), tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)设sin 2α=-sin α,α∈(π2,π),则tan 2α= 3.( √ )1.(2013·浙江)已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C .-34 D .-43 答案 C解析 ∵sin α+2cos α=102, ∴sin 2α+4sin αcos α+4cos 2α=52.化简得:4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C.2.若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34 B.34 C .-43 D.43答案 B解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3,则tan 2α=2tan α1-tan 2α=34.3.(2013·课标全国Ⅱ)设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13, 即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,且θ为第二象限角,解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.4.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________. 答案 1解析 ∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin [(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin [(x +φ)-φ]=sin x , ∴f (x )的最大值为1.题型一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ) A .-3 B .-1 C .1D .3(2)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)等于( )A.33B .-33 C.539D .-69答案 (1)A (2)C解析 (1)由根与系数的关系可知 tan α+tan β=3,tan αtan β=2. ∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.故选A. (2)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2).∵0<α<π2,则π4<π4+α<3π4, ∴sin(π4+α)=223.又-π2<β<0,则π4<π4-β2<π2, 则sin(π4-β2)=63.故cos(α+β2)=13×33+223×63=539.故选C.思维升华 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.(1)若α∈(π2,π),tan(α+π4)=17,则sin α等于( )A.35 B.45 C .-35D .-45(2)计算:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°)=________.答案 (1)A (2)32解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)原式=2cos 210°4sin 10°cos 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 20°sin 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2sin 30°cos 10°+2cos 30°sin 10°2sin 10°=32. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为( ) A. 2 B.22 C.12D.32(2)化简:2cos 4x -2cos 2x +122tan (π4-x )sin 2(π4+x )=________.(3)求值:cos 15°+sin 15°cos 15°-sin 15°=________.答案 (1)B (2)12cos 2x (3) 3解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22.故选B. (2)原式=12(4cos 4x -4cos 2x +1)2×sin (π4-x )cos (π4-x )·cos 2(π4-x )=(2cos 2x -1)24sin (π4-x )cos (π4-x )=cos 22x 2sin (π2-2x )=cos 22x 2cos 2x =12cos 2x .(3)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.答案 (1)cos α (2) 3解析 (1)原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)4cos 2α2.因为α∈(0,π),所以cos α2>0,所以原式=(2cos 2α2+2sin α2cos α2)·(cos α2-sin α2)2cosα2=(cos α2+sin α2)·(cos α2-sin α2)=cos 2α2-sin 2α2=cos α.(2)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C 2=π3,tanA +C2=3, 所以tan A 2+tan C 2+3tan A 2tan C2=tan ⎝⎛⎭⎫A 2+C 2⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C 2 =3⎝⎛⎭⎫1-tan A 2tan C 2+3tan A 2tan C2= 3. 题型三 三角函数公式运用中角的变换例3 (1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=________,cos β=________.(2)(2013·课标全国Ⅱ)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( ) A.16 B.13 C.12 D.23 答案 (1)-1010 95010 (2)A 解析 (1)∵α,β∈(0,π2),从而-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010,cos(α-β)=31010. ∵α为锐角,sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050. (2)因为cos 2⎝⎛⎭⎫α+π4=1+cos2⎝⎛⎭⎫α+π42=1+cos ⎝⎛⎭⎫2α+π22=1-sin 2α2,所以cos 2⎝⎛⎭⎫α+π4=1-sin 2α2=1-232=16,选A.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255C.2525或255D.55或525(2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.答案 (1)A (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos [(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.高考中的三角函数求值、化简问题典例:(1)若tan 2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin (θ+π4)=________.(2)(2014·课标全国Ⅰ)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2(3)(2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于( ) A .-53 B .-59 C.59 D.53(4)(2012·重庆)sin 47°-sin 17°cos 30°cos 17°等于( )A .-32 B .-12 C.12 D.32思维点拨 (1)注意和差公式的逆用及变形.(2)“切化弦”,利用和差公式、诱导公式找α,β的关系. (3)可以利用sin 2α+cos 2α=1寻求sin α±cos α与sin αcos α的联系. (4)利用和角公式将已知式子中的角向特殊角转化. 解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan 2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0, 解得tan θ=-12或tan θ= 2. ∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故原式=1+121-12=3+2 2.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.(3)方法一 ∵sin α+cos α=33,∴(sin α+cos α)2=13, ∴2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sin α+cos α=33>0, ∴2k π+π2<α<2k π+34π(k ∈Z ),∴4k π+π<2α<4k π+32π(k ∈Z ),∴2α为第三象限角, ∴cos 2α=-1-sin 22α=-53. 方法二 由sin α+cos α=33两边平方得1+2sin αcos α=13, ∴2sin αcos α=-23.∵α为第二象限角,∴sin α>0,cos α<0, ∴sin α-cos α=(sin α-cos α)2=1-2sin αcos α=153.由⎩⎨⎧ sin α+cos α=33,sin α-cos α=153,得⎩⎪⎨⎪⎧ sin α=3+156,cos α=3-156.∴cos 2α=2cos 2α-1=-53. (4)原式=sin (30°+17°)-sin 17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17° =sin 30°cos 17°cos 17°=sin 30°=12. 答案 (1)3+22 (2)B (3)A (4)C温馨提醒 (1)三角函数的求值化简要结合式子特征,灵活运用或变形使用公式.(2)三角求值要注意角的变换,掌握常见的配角技巧.方法与技巧1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的.3.在三角求值时,往往要估计角的范围后再求值.A组专项基础训练(时间:30分钟)1.已知tan(α+β)=25,tan⎝⎛⎭⎫β-π4=14,那么tan⎝⎛⎭⎫α+π4等于() A.1318 B.1322 C.322 D.16答案 C解析因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝⎛⎭⎫β-π4,所以tan⎝⎛⎭⎫α+π4=tan⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4=tan(α+β)-tan⎝⎛⎭⎫β-π41+tan(α+β)tan⎝⎛⎭⎫β-π4=322.2.若θ∈[π4,π2],sin 2θ=378,则sin θ等于()A.35 B.45 C.74 D.34答案 D解析由sin 2θ=387和sin2θ+cos2θ=1得(sin θ+cos θ)2=378+1=(3+74)2,又θ∈[π4,π2],∴sin θ+cos θ=3+74.同理,sin θ-cos θ=3-74,∴sin θ=34.3.已知tan α=4,则1+cos 2α+8sin 2αsin 2α的值为( ) A .4 3B.654 C .4 D.233答案 B解析 1+cos 2α+8sin 2αsin 2α=2cos 2α+8sin 2α2sin αcos α, ∵tan α=4,∴cos α≠0,分子、分母都除以cos 2α得2+8tan 2α2tan α=654. 4.(2013·重庆)4cos 50°-tan 40°等于( )A. 2B.2+32 C. 3 D .22-1 答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40°=3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3. 5.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是( ) A .-233B .±233C .-1D .±1 答案 C解析 cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x )=3cos(x -π6)=-1. 6. sin 250°1+sin 10°=________. 答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos(90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=________. 答案 1解析根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.3tan 12°-3(4cos212°-2)sin 12°=________.答案-4 3解析原式=3sin 12°cos 12°-32(2cos212°-1)sin 12°=23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin(-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24°=-23sin 48°12sin 48°=-4 3.9.已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.解因为1+sin α1-sin α-1-sin α1+sin α=(1+sin α)2cos2α-(1-sin α)2cos2α=|1+sin α||cos α|-|1-sin α||cos α|=1+sin α-1+sin α|cos α|=2sin α|cos α|, 所以2sin α|cos α|=-2tan α=-2sin αcos α. 所以sin α=0或|cos α|=-cos α>0.故α的取值集合为{α|α=k π或2k π+π2<α<2k π+π或2k π+π<α<2k π+3π2,k ∈Z }. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35=-43+310. B 组 专项能力提升(时间:25分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)等于( ) A .-255 B .-3510 C .-31010 D.255答案 A解析 由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010.故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.12.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于() A.22 B.33 C. 2 D. 3答案 D解析 ∵α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14,∴cos α=12或-12(舍去),∴α=π3,∴tan α= 3.13.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=________.答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45,又由θ∈(0,π4),得2θ∈(0,π2),所以cos 2θ=1-sin 22θ=35,所以sin(2θ+π4)=sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210.14.已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. (1)解 ∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45, 两式相加得2cos βcos α=0,∵0<α<β≤π2,∴β=π2, ∴[f (β)]2-2=4sin 2π4-2=0. 15.已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4). (1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值范围. 解 (1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4 =1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎫2x +π2 =12+12(sin 2x -cos 2x )+cos 2x =12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以,f (α)=12(sin 2α+cos 2α)+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤5π4. 所以-22≤sin ⎝⎛⎭⎫2x +π4≤1,0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12.。
高一 两角和与差的余弦、正弦、正切公式知识点+例题+练习 含答案
1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β))cos(α+β)=cos αcos β-sin αsin β (C (α+β))sin(α-β)=sin αcos β-cos αsin β (S (α-β))sin(α+β)=sin αcos β+cos αsin β (S (α+β))tan(α-β)=tan α-tan β1+tan αtan β(T (α-β)) tan(α+β)=tan α+tan β1-tan αtan β(T (α+β)) 2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=2tan α1-tan 2α. 3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ )1.化简cos 40°cos 25°1-sin 40°= . 答案 2解析 原式=cos 40°cos 25°1-cos 50°=cos (90°-50°)cos 25°·2sin 25°=sin 50°22sin 50°= 2. 2.若sin α+cos αsin α-cos α=12,则tan 2α= . 答案 34解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3, 则tan 2α=2tan α1-tan 2α=34. 3.(2015·重庆改编)若tan α=13,tan(α+β)=12,则tan β= . 答案 17解析 tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17. 4.(教材改编)sin 347°cos 148°+sin 77°cos 58°= .答案 22 解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°=(-cos 77°)·(-sin 58°)+sin 77°cos 58°=sin 58°cos 77°+cos 58°sin 77°=sin(58°+77°)=sin 135°=22. 5.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为 . 答案 17250解析 ∵α为锐角,cos(α+π6)=45, ∴α+π6∈⎝⎛⎭⎫π6,2π3,∴sin(α+π6)=35, ∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425, ∴cos(2α+π3)=2cos 2(α+π6)-1=725, ∴sin(2α+π12)=sin(2α+π3-π4) =22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)= . (2)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是 .答案 (1)-75(2) 3 解析 (1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π, ∴cos α=-45. ∴原式=-75. (2)∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2 α=-231-(-3)2= 3. 思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α= . (2)已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是 . 答案 (1)35(2)-1 解析 (1)∵tan(α+π4)=tan α+11-tan α=17, ∴tan α=-34=sin αcos α, ∴cos α=-43sin α. 又∵sin 2α+cos 2α=1,∴sin 2α=925. 又∵α∈(π2,π),∴sin α=35. (2)cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x ) =3cos(x -π6)=-1. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为 . (2)求值:cos 15°+sin 15°cos 15°-sin 15°= . 答案 (1)22(2) 3 解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22. (2)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为 .(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为 . 答案 (1)π4(2)3 解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C=-1=-tan A ,所以A =π4.(2)f (x )=1-cos ⎣⎡⎦⎤2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎫2x -π3+1, 可得f (x )的最大值是3.题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β= . (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 . 答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β).因为45>55>-45, 所以cos(α+β)=-45. 于是cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525. (2)∵cos(α-π6)+sin α=453, ∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453, ∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45. 思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. 若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2= . 答案 539解析 cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2, ∵0<α<π2,∴π4<π4+α<3π4, ∴sin ⎝⎛⎭⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2, ∴sin ⎝⎛⎭⎫π4-β2=63. 故cos ⎝⎛⎭⎫α+β2=13×33+223×63=539.5.三角函数求值忽视角的范围致误典例 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,则cos(α+β)的值为 .(2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A = . 易错分析 (1)角α2-β,α-β2的范围没有确定准确,导致开方时符号错误. (2)对三角形中角的范围挖掘不够,忽视隐含条件,B 为钝角.解析 (1)∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π, ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1 =2×49×5729-1=-239729. (2)在△ABC 中,∵cos B =-34, ∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin 2(A +B )=-53, ∴cos A =cos [(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B=⎝⎛⎭⎫-53×⎝⎛⎭⎫-34+23×74=35+2712. 答案 (1)-239729 (2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的范围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧]1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[失误与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.A 组 专项基础训练(时间:40分钟)1.cos 85°+sin 25°cos 30°cos 25°= . 答案 12解析 原式=sin 5°+32sin 25°cos 25°=sin (30°-25°)+32sin 25°cos 25°=12cos 25°cos 25°=12. 2.若θ∈[π4,π2],sin 2θ=378,则sin θ= . 答案 34解析 由sin 2θ=378和sin 2θ+cos 2θ=1得 (sin θ+cos θ)2=378+1=(3+74)2, 又θ∈[π4,π2],∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34. 3.若tan θ=3,则sin 2θ1+cos 2θ= . 答案3 解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3. 4.已知cos α=-55,tan β=13,π<α<32π,0<β<π2,则α-β的值为 . 答案 54π 解析 因为π<α<32π,cos α=-55,所以sin α=-255,tan α=2,又tan β=13,所以tan(α-β)=2-131+23=1,由π<α<32π,-π2<-β<0得π2<α-β<32π,所以α-β=54π. 5.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4= . 答案 322解析 因为α+π4+β-π4=α+β, 所以α+π4=(α+β)-⎝⎛⎭⎫β-π4, 所以tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 6.sin 250°1+sin 10°= .答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α= . 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)= . 答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2), 所以cos 2θ=1-sin 22θ=35, 所以sin(2θ+π4) =sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210. 9.已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值.解 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35 =-43+310. B 组 专项能力提升(时间:20分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)= . 答案 -255解析 由tan(α+π4)=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0, 所以sin α=-1010. 故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α =-255. 12.已知α∈⎝⎛⎭⎫0,π2,且sin 2α-sin αcos α-2cos 2α=0,则tan ⎝⎛⎭⎫π3-α= . 答案 8-5311解析 ∵sin 2α-sin αcos α-2cos 2α=0,cos α≠0,∴tan 2α-tan α-2=0.∴tan α=2或tan α=-1,∵α∈⎝⎛⎭⎫0,π2,∴tan α=2, tan ⎝⎛⎭⎫π3-α=tan π3-tan α1+tan π3tan α =3-21+23=(3-2)(23-1)(23-1)(23+1)=8-5312-1=8-5311. 13.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3= . 答案 2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23, 又α∈⎝⎛⎭⎫0,π2, ∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝⎛⎭⎫π2-x +sin x +a 2sin ⎝⎛⎭⎫x +π4的最大值为2+3,则常数a = . 答案 ±3解析 f (x )=1+2cos 2x -12cos x+sin x +a 2sin ⎝⎛⎭⎫x +π4=cos x +sin x +a 2sin ⎝⎛⎭⎫x +π4 =2sin ⎝⎛⎭⎫x +π4+a 2sin ⎝⎛⎭⎫x +π4 =(2+a 2)sin ⎝⎛⎭⎫x +π4. 依题意有2+a 2=2+3, ∴a =±3.15.已知函数f (x )=1-2sin ⎝⎛⎭⎫x +π8 ·⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8. (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤-π2,π12,求函数f ⎝⎛⎭⎫x +π8的值域. 解 (1)函数f (x )=1-2sin ⎝⎛⎭⎫x +π8[sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8] =1-2sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π8cos ⎝⎛⎭⎫x +π8 =cos ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x +π4=2sin ⎝⎛⎭⎫2x +π2 =2cos 2x ,所以f (x )的最小正周期T =2π2=π. (2)由(1)可知f ⎝⎛⎭⎫x +π8=2cos ⎝⎛⎭⎫2x +π4. 由于x ∈⎣⎡⎦⎤-π2,π12, 所以2x +π4∈⎣⎡⎦⎤-3π4,5π12, 所以cos ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 则f ⎝⎛⎭⎫x +π8∈[-1,2], 所以f ⎝⎛⎭⎫x +π8的值域为[-1,2].。
两角和与差的正弦、余弦和正切公式Word版含答案
两角和与差的正弦、余弦和正切公式【课前回顾】1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β; cos(α∓β)=cos_αcos_β±sin_αsin_β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.公式的常用变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【课前快练】1.sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B.32C .-12D.12解析:选D 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.设角θ的终边过点(2,3),则tan ⎝⎛⎭⎫θ-π4=( ) A.15 B .-15C .5D .-5解析:选A 由于角θ的终边过点(2,3),因此tan θ=32,故tan ⎝⎛⎭⎫θ-π4=tan θ-11+tan θ=32-11+32=15,选A. 3.(2017·山东高考)已知cos x =34,则cos 2x =( )A .-14B.14 C .-18D.18解析:选D ∵cos x =34,∴cos 2x =2cos 2x -1=18.4.化简:2sin (π-α)+sin 2αcos 2α2=________.解析:2sin (π-α)+sin 2αcos 2α2=2sin α+2sin αcos α12(1+cos α)=4sin α(1+cos α)1+cos α=4sin α.答案:4sin α5.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:75考点一 三角函数公式的直接应用三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.【典型例题】1.已知cos α=-35,α是第三象限角,则cos ⎝⎛⎭⎫π4+α的值为( ) A.210B .-210 C.7210D .-7210解析:选A ∵cos α=-35,α是第三象限的角,∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45, ∴cos ⎝⎛⎭⎫π4+α=cos π4cos α-sin π4sin α =22×⎝⎛⎭⎫-35-22×⎝⎛⎭⎫-45=210. 2.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112解析:选A 因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.因为tan(π-β)=12=-tan β,所以tan β=-12,则tan(α-β)=tan α-tan β1+tan αtan β=-211.3.已知α∈⎝⎛⎭⎫π2,π,sin α=55,则cos ⎝⎛⎭⎫5π6-2α的值为______. 解析:因为α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-255. sin 2α=2sin αcos α=2×55×⎝⎛⎭⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α =⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45 =-4+3310.答案:-4+3310考点二 三角函数公式的逆用与变形用1.注意三角函数公式逆用和变形用的2个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.2.熟记三角函数公式的2类变式 (1)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β). (2)倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2. 考法(一) 三角函数公式的逆用 1.sin 10°1-3tan 10°=________. 解析:sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.答案:142.在△ABC 中,若tan A tan B = tan A +tan B +1, 则cos C =________.解析:由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又A +B ∈(0,π),所以A +B =3π4,则C =π4,cos C =22.答案:223.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45, ∴sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 答案:-45考法(二) 三角函数公式的变形用 4.化简sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-15.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换1.迁移要准(1)看到角的范围及余弦值想到正弦值;看到β,α+β,α想到凑角β=(α+β)-α,代入公式求值.(2)看到两个角的正切值想到两角和与差的正切公式;看到α+β,β,α-β想到凑角.2.思路要明(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.3.思想要有转化思想是实施三角变换的主导思想,恒等变形前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.【典型例题】1.(2018·南充模拟)已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,则sin β=________.解析:因为α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且cos α=17,cos(α+β)=-1114,所以α+β∈(0,π), 所以sin α=1-cos 2α=437, sin(α+β)=1-cos 2(α+β)=5314, 则sin β=sin[(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α =5314×17-⎝⎛⎭⎫-1114×437=32. 答案:322.已知tan(α+β)=25,tan β=13,则tan(α-β)的值为________.解析:∵tan(α+β)=25,tan β=13,∴tan α=tan[(α+β)-β]=tan (α+β)-tan β1+tan (α+β)·tan β=25-131+25×13=117,tan(α-β)=tan α-tan β1+tan αtan β=117-131+117×13=-726.答案:-726【针对训练】1.(2017·全国卷Ⅰ)已知α∈⎝⎛⎭⎫0,π2,tan α=2,则cos ⎝⎛⎭⎫α-π4=________. 解析:∵α∈⎝⎛⎭⎫0,π2,tan α=2,∴sin α=255,cos α=55, ∴cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4 =22×⎝⎛⎭⎫255+55=31010. 答案:310102.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,从而-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. 【课后演练】1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12 C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin ⎝⎛⎭⎫θ+π3=3sin(π-θ),则tan θ等于( ) A .-33B.32C.233D .2 3解析:选B 由已知得sin θ+3cos θ=3sin θ, 即2sin θ=3cos θ,所以tan θ=32. 3.(2018·石家庄质检)若sin(π-α)=13,且π2≤α≤π,则sin 2α的值为( )A .-429B .-229C.229D.429解析:选A 因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.4.(2018·衡水调研)若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118 B.118 C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.5.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B.12C.32D .-32解析:选Bsin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.6.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65B .1C.35D.15解析:选A 因为cos ⎝⎛⎭⎫x -π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫x +π3-π2=sin ⎝⎛⎭⎫x +π3,所以f (x )=65sin ⎝⎛⎭⎫x +π3,于是f (x )的最大值为65.7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2018·贵州适应性考试)已知α是第三象限角,且cos(α+π)=45,则tan 2α=________.解析:由cos(α+π)=-cos α=45,得cos α=-45,又α是第三象限角,所以sin α=-35,tan α=34,故tan 2α=2tan α1-tan 2α=247. 答案:2479.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=________. 解析:cos x +cos ⎝⎛⎭⎫x -π3 =cos x +12cos x +32sin x=32cos x +32sin x =3cos ⎝⎛⎭⎫x -π6 =3×⎝⎛⎭⎫-33 =-1. 答案:-110.(2018·石家庄质检)已知α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫α+π3=-23,则cos α=________. 解析:因为α∈⎝⎛⎭⎫0,π2,所以α+π3∈⎝⎛⎭⎫π3,5π6, 所以sin ⎝⎛⎭⎫α+π3=53,所以cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3-π3=cos ⎝⎛⎭⎫α+π3cos π3+sin ⎝⎛⎭⎫α+π3sin π3=-23×12+53×32=15-26. 答案:15-2611.(2018·陕西高三教学质量检测)已知角α的终边过点P (4,-3),则cos ⎝⎛⎭⎫α+π4的值为( )A .-7210 B.7210 C .-210D.210解析:选B 由于角α的终边过点P (4,-3),则cos α=442+(-3)2=45,sin α=-342+(-3)2=-35,故cos ⎝⎛⎭⎫α+π4=cos αcos π4-sin αsin π4=45×22-⎝⎛⎭⎫-35×22=7210. 12.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π3的值为( ) A.1225 B.2425 C .-2425D .-1225解析:选B 因为α为锐角,且cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6= 1-cos 2⎝⎛⎭⎫α+π6=35, 所以sin ⎝⎛⎭⎫2α+π3=sin2⎝⎛⎭⎫α+π6 =2sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫α+π6=2×35×45=2425. 13.(2018·广东肇庆模拟)已知sin α=35且α为第二象限角,则tan ⎝⎛⎭⎫2α+π4=( ) A .-195 B .-519 C .-3117D .-1731解析:选D 由题意得cos α=-45,则sin 2α=-2425,cos 2α=2cos 2α-1=725.∴tan 2α=-247, ∴tan ⎝⎛⎭⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=-247+11-⎝⎛⎭⎫-247×1=-1731. 14.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 解析:由已知可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),所以α+β=π3. 答案:π315.(2018·安徽两校阶段性测试)若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫π4-α=22cos 2α,则sin 2α=________.解析:由已知得22(cos α+sin α)=22(cos α-sin α)·(cos α+sin α),所以cos α+sin α=0或cos α-sin α=14,由cos α+sin α=0得tan α=-1,因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=0不满足条件;由cos α-sin α=14,两边平方得1-sin 2α=116,所以sin 2α=1516. 答案:151616.(2018·广东六校联考)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12 =sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2, 所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ) =22×⎝⎛⎭⎫2425-725=17250. 17.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-1-sin 2α=-32. (2)因为π2<α<π,π2<β<π, 所以-π2<α-β<π2. 又由sin(α-β)=-35,得cos(α-β)=45. 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝⎛⎭⎫-35=-43+310. 18.已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解:(1)cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3,∴cos ⎝⎛⎭⎫2α+π3=-32, ∴ sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3 =-12×12-⎝⎛⎭⎫-32×32=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
高三数学两角和与差的三角函数试题答案及解析
高三数学两角和与差的三角函数试题答案及解析1.已知,,则()A.B.C.D.【答案】B【解析】∵,,,∴,∴,∴.【考点】平方关系、商数关系、两角差的正切.2. [2014·太原模拟]已知锐角α,β满足sinα=,cosβ=,则α+β等于() A.B.或C.D.2kπ+(k∈Z)【答案】C【解析】由sinα=,cosβ=且α,β为锐角,可知cosα=,sinβ=,故cos(α+β)=cosαcosβ-sinαsinβ=×-×=,又0<α+β<π,故α+β=.3.设,且.则的值为.【答案】【解析】由题意,又,∴且,由于,且,∴,∴,∴.【考点】三角函数的恒等变形与求值.4.函数y=sin(+x)cos(-x)的最大值为()A.B.C.D.【答案】B【解析】∵sin(+x)cos(-x)=cosx(cos cosx+sin sinx)=cos2x+sinxcosx=(1+cos2x)+sin2x=+cos2x+sin2x=+(cos2x+sin2x)=+sin(2x+)∴函数y=sin(+x)cos(-x)的最大值为5.已知,,且,则=.【答案】【解析】∵,∴,∴,,∴====.【考点】两角和与差的余弦.6.【答案】【解析】,.【考点】两角和与差的正切公式.7.已知,,则的值为.【答案】【解析】因为,所以.【考点】两角和与差正切8.计算:=________.【答案】2-【解析】sin7°=sin(15°-8°)=sin15°cos8°-cos15°sin8°,cos7°=cos(15°-8°)=cos15°cos8°+sin15°sin8°,∴原式=tan15°=tan(45°-30°)==2-9.已知α、β均为锐角,且tanβ=,则tan(α+β)=________.【答案】1【解析】∵tanβ=,∴tanβ==tan .又∵α、β均为锐角,∴β=-α,即α+β=,∴tan(α+β)=tan=1.10.设α∈,若tan=2cos 2α,则α=________.【答案】【解析】解析:∵tan=2cos 2α,∴=2(cos2α-sin2α),整理得=2(cos α+sin α)(cos α-sin α).因为α∈,所以sin α+cos α≠0.因此(cos α-sin α)2=,即sin 2α=.由α∈,得2α∈,所以2α=,即α=.11.若α,β∈,cos =,sin =-,则cos (α+β)=________.【答案】-【解析】∵α,β∈,∴-<α-<,-<-β<,由cos =和sin =-得α-=±,-β=-,当α-=-,-β=-时,α+β=0,与α,β∈矛盾;当α-=,-β=-时,α=β=,此时cos (α+β)=-.12.已知向量,,函数(Ⅰ)求的最大值;(Ⅱ)在中,设角,的对边分别为,若,且,求角的大小.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由向量数量积的定义只需将其化为一个角的三角函数就能求出的最大值.(Ⅱ)由(Ⅰ)的结果和正弦定理:,又 ,所以,,由以上两式即可解出,.试题解析:(Ⅰ) 2分4分(注:也可以化为)所以的最大值为. 6分(注:没有化简或化简过程不全正确,但结论正确,给4分)(Ⅱ)因为,由(1)和正弦定理,得. 7分又,所以,即, 9分而是三角形的内角,所以,故,, 11分所以,,. 12分【考点】1.正弦定理;2、两角和与差的在角函数公式、倍角公式;3、三角函数的性质.13.已知向量,.(1)若,求的值;(2)若,,求的值.【答案】(1);(2).【解析】(1)由易得,代入式子中可约去为求出其值;(2)先求出,再对两边平方化简可得关于和的关系式,联立正弦余弦的平方关系解方程组可得和的值,代入的展开式,就可求出其值.试题解析:⑴由可知,,所以, 2分所以. 6分(2)由可得,,即,① 10分又,且②,由①②可解得,, 12分所以. 14分【考点】向量的数量积、模的计算,同角三角函数的关系、两角和与差的正弦.14.已知是方程的两根,则=_______.【答案】1【解析】本题考查两角和的正切公式,,而与可由韦达定理得.【考点】韦达定理与两角和的正切公式.15.已知a,b,c分别为ABC的三个内角A,B,C的对边,=(sinA,1),=(cosA,),且//.(I)求角A的大小;(II)若a=2,b=2,求ABC的面积.【答案】(I).(II)ABC的面积为或.【解析】(I)根据//,可得到注意到,得到.(II)首先由正弦定理可得:通过讨论,得到,从而或.根据,,分别计算进一步确定ABC的面积.试题解析:(I)因为//,所以因为,所以.(II)由正弦定理可得:因为,所以,或.当时,所以;当时,所以.故ABC的面积为或.【考点】平面向量的坐标运算,两角和差的三角函数,正弦定理的应用,三角形面积公式.16.已知圆O的半径为R(R为常数),它的内接三角形ABC满足成立,其中分别为的对边,求三角形ABC面积S的最大值.【答案】【解析】本题主要考查解三角形中的正弦定理余弦定理的应用以及运用倍角公式、两角和与差的正弦公式等三角公式进行三角变换的能力和利用三角形面积求最值,考查基本运算能力.先利用正弦定理将角换成边,再利用余弦定理求出,得到特殊角的值,利用三角形面积公式列出表达式,利用正弦定理将边换成角,将用表示,利用两角和与差的正弦公式、倍角公式化简表达式,求三角函数的最值.试题解析:由,由正弦定理得代入得,由余弦定理---6分所以=当且仅当时, 12分【考点】1.正弦定理;2.余弦定理;3.两角和与差的正弦公式;4.三角形面积公式;5.三角函数最值.17.函数的最小正周期为.【答案】【解析】由,得函数的最小正周期为.【考点】三角函数的周期.18.已知函数,将函数的图象向左平移个单位后得到函数的图象,且,则( )A.B.C.D.【答案】D【解析】∵,∴,∵,∴ (),即 (),∵,∴.【考点】1.倍角公式;2.两角和与差的余弦公式;3.三角方程的解法.19.设是锐角三角形,分别是内角所对边长,并且.(1)求角的值;(2)若,求(其中).【答案】(1) ;(2) .【解析】(1) 利用两角和与差的正弦公式展开化简得,又为锐角,所以;(2)由可得,即,然后利用余弦定理得的另一个关系,从而解出.试题解析:(1)因为,所以,又为锐角,所以.(2)由可得①由(1)知,所以②由余弦定理知,将及①代入,得③③+②×2,得,所以因此,是一元二次方程的两个根.解此方程并由知.【考点】两角和与差的正弦定理、平面向量的数量积、余弦定理.20.已知,且,,则______.【答案】【解析】由,,得,所以,又由,知.【考点】同角三角函数的关系、两角和与差的三角函数.21.设的内角的对边分别为,且,则 ,的面积 .【答案】;.【解析】为的内角,且,,由正弦定理得,,.【考点】两角和的三角函数、正弦定理、三角形的面积22.在中,分别是角的对边,,,且(1)求角的大小;(2)设,且的最小正周期为,求在上的最大值和最小值,及相应的的值。
两角和与差的正弦、余弦和正切公式专题与解析
两角和与差的正弦、余弦和正切公式教学目标 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的在联系。
知 识 梳 理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β.cos(α∓β)=cos αcos β±sin αsin β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β).(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f (α)=a 2+b 2·cos(α-φ)⎝ ⎛⎭⎪⎫其中tan φ=a b . 诊 断 自 测1.判断正误(在括号打“√”或“×”) 精彩PPT 展示(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( )(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(3)公式tan(α+β)=tan α+tan β 1-tan αtan β可以变形为tan α+tan β =tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)存在实数α,使tan 2α=2tan α.( )解析 (3)变形可以,但不是对任意的α,β都成立,α,β,α+β≠π2+k π,k ∈Z .答案 (1)√ (2)√ (3)× (4)√2.(2016·全国Ⅲ卷)若tan θ=-13,则cos 2θ=( ) A.-45 B.-15 C.15 D.45解析 cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45. 答案 D3.(2015·卷)若tan α=13,tan(α+β)=12,则tan β等于( )A.17B.16C.57D.56解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17,故选A.答案 A 4.(2017·调研)已知sin α+cos α=13,则sin 2⎝ ⎛⎭⎪⎫π4-α=( ) A.118 B.1718 C.89 D.29解析 由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2⎝ ⎛⎭⎪⎫π4-α=1-cos ⎝ ⎛⎭⎪⎫π2-2α2=1-sin 2α2=1+892=1718,故选B. 答案 B5.(必修4P137A13(5)改编)sin 347°cos 148°+sin 77°·cos 58°=________. 解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°=(-cos 77°)·(-sin 58°)+sin 77°cos 58°=sin 58°cos 77°+cos 58°sin 77°=sin(58°+77°)=sin 135°=22.答案 22考点一 三角函数式的化简【例1】 (1)(2016·模拟)cos(α+β)cos β+sin(α+β)sin β=( )A.sin(α+2β)B.sin αC.cos(α+2β)D.cos α(2)化简:(1+sin α+cos α)·⎝ ⎛⎭⎪⎫cos α2-sin α22+2cos α(0<α<π)=________. 解析 (1)cos(α+β)cos β+sin(α+β)sin β=cos[(α+β)-β]=cos α. (2)原式=⎝ ⎛⎭⎪⎫2cos 2α2+2sin α2cos α2·⎝ ⎛⎭⎪⎫cos α2-sin α24cos 2α2=cos α2⎝ ⎛⎭⎪⎫cos 2α2-sin 2α2⎪⎪⎪⎪⎪⎪cos α2=cos α2cos α⎪⎪⎪⎪⎪⎪cos α2. 因为0<α<π,所以0<α2<π2,所以cos α2>0,所以原式=cos α.答案 (1)D (2)cos α【训练1】 (1)2+2cos 8+21-sin 8的化简结果是________.(2)化简:2cos 4α-2cos 2α+122tan ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α=________. 解析 (1)原式=4cos 24+2(sin 4-cos 4)2=2|cos 4|+2|sin 4-cos 4|,因为54π<4<32π,所以cos 4<0,且sin 4<cos 4,所以原式=-2cos 4-2(sin 4-cos 4)=-2sin 4.(2)原式=12(4cos 4α-4cos 2α+1)2×sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α·cos 2⎝ ⎛⎭⎪⎫π4-α =(2cos 2α-1)24sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α=cos 22α2sin ⎝ ⎛⎭⎪⎫π2-2α =cos 22α2cos 2α=12cos 2α. 答案 (1)-2sin 4 (2)12cos 2α考点二 三角函数式的求值【例2】 (1)[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280=________.(2)已知cos ⎝ ⎛⎭⎪⎫π4+α=35,17π12<α<7π4,则sin 2α+2sin 2α1-tan α的值为________. (3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.解析 (1)原式=(2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°)· 2sin 80°=(2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°)· 2cos 10°=22[sin 50°·cos 10°+sin 10°·cos(60°-10°)]=22sin(50°+10°)=22×32= 6.(2)sin 2α+2sin 2α1-tan α=2sin αcos α+2sin 2α1-sin αcos α=2sin αcos α(cos α+sin α)cos α-sin α=sin 2α1+tan α1-tan α=sin 2α·tan ⎝ ⎛⎭⎪⎫π4+α. 由17π12<α<7π4得5π3<α+π4<2π,又cos ⎝ ⎛⎭⎪⎫π4+α=35, 所以sin ⎝ ⎛⎭⎪⎫π4+α=-45,tan ⎝ ⎛⎭⎪⎫π4+α=-43. cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-π4=-210,sin α=-7210,sin 2α=725. 所以sin 2α+2sin 2α1-tan α=-2875. (3)∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,又α∈(0,π),∴0<α<π2,又∵tan 2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.答案 (1)6 (2)-2875 (3)-3π4【训练2】 (1)4cos 50°-tan 40°=( ) A. 2B.2+32 C.3 D.22-1(2)已知sin ⎝⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos α的值为________. (3)已知cos α=17,cos(α-β)=1314(0<β<α<π2),则tan 2α=________,β=________.解析 (1)原式=4sin 40°-sin 40°cos 40°=4cos 40°sin 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (120°-40°)-sin 40°cos 40°=3cos 40°+sin 40°-sin 40°cos 40°=3cos 40°cos 40°=3,故选C. (2)由sin ⎝⎛⎭⎪⎫α+π3+sin α=-435, 得32sin α+32cos α=-435,sin ⎝⎛⎭⎪⎫α+π6=-45. 又-π2<α<0,所以-π3<α+π6<π6,于是cos ⎝⎛⎭⎪⎫α+π6=35. 所以cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6=33-410. (3)∵cos α=17,0<α<π2,∴sin α=437,tan α=43,∴tan 2α=2tan α1-tan 2α=2×431-48=-8347. ∵0<β<α<π2,∴0<α-β<π2,∴sin(α-β)=3314,∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12,∴β=π3.答案 (1)C (2)33-410 (3)-8347 π3考点三 三角变换的简单应用【例3】 已知△ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A ,1+sin A )是共线向量.(1)求角A ;(2)求函数y =2sin 2B +cos C -3B 2的最大值. 解 (1)因为p ,q 共线,所以(2-2sin A )(1+sin A )=(cos A +sin A )(sin A -cos A ),则sin 2A =34.又A 为锐角,所以sin A =32,则A =π3.(2)y =2sin 2 B +cos C -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π-π3-B -3B 2=2sin 2B +cos ⎝ ⎛⎭⎪⎫π3-2B =1-cos 2B +12cos 2B + 32sin 2B =32sin 2B -12cos 2B +1=sin ⎝⎛⎭⎪⎫2B -π6+1. 因为B ∈⎝ ⎛⎭⎪⎫0,π2,所以2B -π6∈⎝ ⎛⎭⎪⎫-π6,5π6,所以当2B -π6=π2时,函数y 取得最大值,此时B =π3,y max =2.【训练3】 (2017·模拟)已知函数f (x )=(2cos 2x -1)·sin 2x +12cos 4x .(1)求f (x )的最小正周期及单调减区间;(2)若α∈(0,π),且f ⎝ ⎛⎭⎪⎫α4-π8=22,求tan ⎝⎛⎭⎪⎫α+π3的值. 解 (1)f (x )=(2cos 2x -1)sin 2x +12cos 4x=cos 2x sin 2x +12cos 4x =12(sin 4x +cos 4x )=22sin ⎝⎛⎭⎪⎫4x +π4, ∴f (x )的最小正周期T =π2.令2k π+π2≤4x +π4≤2k π+32π,k ∈Z , 得k π2+π16≤x ≤k π2+5π16,k ∈Z .∴f (x )的单调减区间为⎣⎢⎡⎦⎥⎤k π2+π16,k π2+5π16,k ∈Z . (2)∵f ⎝ ⎛⎭⎪⎫α4-π8=22,即sin ⎝⎛⎭⎪⎫α-π4=1. 因为α∈(0,π),-π4<α-π4<3π4,所以α-π4=π2,故α=3π4.因此tan ⎝ ⎛⎭⎪⎫α+π3=tan 3π4+tan π31-tan 3π4tan π3=-1+31+3=2- 3.基础巩固题组(建议用时:40分钟)一、选择题1.(2015·全国Ⅰ卷)sin 20°cos 10°-cos 160°sin 10°=()A.-32 B.32 C.-12 D.12解析sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=1 2.答案 D2.(1+tan 17°)(1+tan 28°)的值是()A.-1B.0C.1D.2 解析原式=1+tan 17°+tan 28°+tan 17°·tan 28°=1+tan 45°(1-tan 17°·tan 28°)+tan 17°·tan 28°=1+1=2.答案 D3.(2017·二检)已知α是第二象限角,且tan α=-13,则sin 2α=()A.-31010 B.31010 C.-35 D.35解析因为α是第二象限角,且tan α=-1 3,所以sin α=1010,cosα=-31010,所以sin 2α=2sin αcos α=2×1010×⎝⎛⎭⎪⎫-31010=-35,故选C.答案 C4.(2017·六市联考)设a =12cos 2°-32sin 2°,b =2tan 14°1-tan 214°,c =1-cos 50°2,则有( ) A.a <c <bB.a <b <cC.b <c <aD.c <a <b解析 由题意可知,a =sin 28°,b =tan 28°,c =sin 25°,∴c <a <b .答案 D5.(2016·三模)已知sin α=35且α为第二象限角,则tan ⎝⎛⎭⎪⎫2α+π4=( ) A.-195 B.-519 C.-3117 D.-1731解析 由题意得cos α=-45,则sin 2α=-2425,cos 2α=2cos 2α-1=725.∴tan 2α=-247,∴tan ⎝ ⎛⎭⎪⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=-247+11-⎝ ⎛⎭⎪⎫-247×1=-1731. 答案 D二、填空题6.(2016·模拟)若cos ⎝ ⎛⎭⎪⎫α-π3=13,则sin ⎝⎛⎭⎪⎫2α-π6的值是________.解析 sin ⎝ ⎛⎭⎪⎫2α-π6=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α-π3+π2= cos 2⎝ ⎛⎭⎪⎫α-π3=2cos 2⎝⎛⎭⎪⎫α-π3-1=2×19-1=-79. 答案 -797.(2017·一中月考)已知α∈⎝ ⎛⎭⎪⎫π4,3π4,β∈⎝ ⎛⎭⎪⎫0,π4,且cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫54π+β=-1213,则cos(α+β)=________. 解析 ∵α∈⎝ ⎛⎭⎪⎫π4,3π4,cos ⎝ ⎛⎭⎪⎫π4-α=35, ∴sin ⎝ ⎛⎭⎪⎫π4-α=-45, ∵sin ⎝ ⎛⎭⎪⎫54π+β=-1213,∴sin ⎝ ⎛⎭⎪⎫π4+β=1213, 又∵β∈⎝ ⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4+β=513, ∴cos(α+β)=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+β-⎝ ⎛⎭⎪⎫π4-α=35×513-45×1213=-3365. 答案 -33658.已知θ∈⎝ ⎛⎭⎪⎫0,π2,且sin ⎝⎛⎭⎪⎫θ-π4=210,则tan 2θ=________. 解析 sin ⎝⎛⎭⎪⎫θ-π4=210,得sin θ-cos θ=15,① θ∈⎝ ⎛⎭⎪⎫0,π2,①平方得2sin θcos θ=2425,可求得sin θ+cos θ=75,∴sin θ=45,cos θ=35,∴tan θ=43,tan 2θ=2tan θ1-tan 2 θ=-247.答案 -247三、解答题9.(2017·淮海中学模拟)已知向量a =(cos θ,sin θ),b =(2,-1).(1)若a ⊥b ,求sin θ-cos θsin θ+cos θ的值; (2)若|a -b |=2,θ∈⎝ ⎛⎭⎪⎫0,π2,求sin ⎝⎛⎭⎪⎫θ+π4的值. 解 (1)由a ⊥b 可知,a ·b =2cos θ-sin θ=0,所以sin θ=2cos θ,所以sin θ-cos θsin θ+cos θ=2cos θ-cos θ2cos θ+cos θ=13. (2)由a -b =(cos θ-2,sin θ+1)可得,|a -b |=(cos θ-2)2+(sin θ+1)2=6-4cos θ+2sin θ=2,即1-2cos θ+sin θ=0.又cos 2θ+sin 2θ=1,且θ∈⎝ ⎛⎭⎪⎫0,π2, 所以sin θ=35,cos θ=45.所以sin ⎝⎛⎭⎪⎫θ+π4=22(sin θ+cos θ)=22⎝ ⎛⎭⎪⎫35+45=7210. 10.设cos α=-55,tan β=13,π<α<3π2,0<β<π2,求α-β的值.解 法一 由cos α=-55,π<α<3π2,得sin α=-255,tan α=2,又tanβ=13,于是tan(α-β)=tan α-tan β1+tan αtan β=2-131+2×13=1.又由π<α<3π2,0<β<π2可得-π2<-β<0,π2<α-β<3π2, 因此,α-β=5π4.法二 由cos α=-55,π<α<3π2得sin α=-255. 由tan β=13,0<β<π2得sin β=110,cos β=310. 所以sin(α-β)=sin αcos β-cos αsin β=⎝⎛⎭⎪⎫-255⎝ ⎛⎭⎪⎫310-⎝ ⎛⎭⎪⎫-55⎝ ⎛⎭⎪⎫110=-22. 又由π<α<3π2,0<β<π2可得-π2<-β<0,π2<α-β<3π2,因此,α-β=5π4.能力提升题组 (建议用时:20分钟)11.(2016·统一检测)cos π9·cos 2π9·cos ⎝⎛⎭⎪⎫-23π9=( ) A.-18 B.-116 C.116 D.18解析 cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-239π=cos 20°·cos 40°·cos 100°=-cos 20°·cos 40°·cos 80°=-sin 20°cos 20°cos 40°cos 80°sin 20°=-12sin 40°·cos 40°·cos 80°sin 20°=-14sin 80°·cos 80°sin 20°=-18sin 160°sin 20°=-18sin 20°sin 20°=-18. 答案 A12.(2017·调研)设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值围为( )A.[-2,1]B.[-1,2]C.[-1,1]D.[1,2]解析 ∵sin αcos β-cos αsin β=1,∴sin(α-β)=1,∵α,β∈[0,π],∴α-β=π2,由⎩⎪⎨⎪⎧0≤α≤π,0≤β=α-π2≤π⇒π2≤α≤π, ∴sin(2α-β)+sin(α-2β)=sin ⎝⎛⎭⎪⎫2α-α+π2+sin(α-2α+π)=cos α+sin α=2sin ⎝ ⎛⎭⎪⎫α+π4,∵π2≤α≤π,∴3π4≤α+π4≤54π,∴-1≤2sin ⎝⎛⎭⎪⎫α+π4≤1,即所求的取值围是[-1,1],故选C.答案 C13.已知cos 4α-sin 4α=23,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos ⎝ ⎛⎭⎪⎫2α+π3=________. 解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23,又α∈⎝⎛⎭⎪⎫0,π2,∴2α∈(0,π),∴sin 2α=1-cos 22α=53,∴cos ⎝⎛⎭⎪⎫2α+π3=12cos 2α-32sin 2α=12×23-32×53=2-156. 答案 2-15614.(2016·模拟)如图,现要在一块半径为1 m ,圆心角为π3的扇形白铁片AOB 上剪出一个平行四边形MNPQ ,使点P 在弧AB 上,点Q 在OA 上,点M ,N 在OB 上,设∠BOP =θ,平行四边形MNPQ 的面积为S .(1)求S 关于θ的函数关系式.(2)求S 的最大值及相应的θ角.解 (1)分别过P ,Q 作PD ⊥OB 于D ,QE ⊥OB 于E ,则四边形QEDP 为矩形.由扇形半径为1 m ,得PD =sin θ,OD =cos θ.在Rt △OEQ中,OE =33QE =33PD ,MN =QP =DE =OD -OE =cos θ-33sin θ,S =MN ·PD =⎝ ⎛⎭⎪⎫cos θ-33sin θ·sin θ=sin θcos θ-33·sin 2θ,θ∈⎝ ⎛⎭⎪⎫0,π3. (2)由(1)得S =12sin 2θ-36(1-cos 2θ)=12sin 2θ+36cos 2θ-36=33sin ⎝⎛⎭⎪⎫2θ+π6-36, 因为θ∈⎝ ⎛⎭⎪⎫0,π3,所以2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,sin ⎝⎛⎭⎪⎫2θ+π6∈⎝ ⎛⎦⎥⎤12,1. 当θ=π6时,S max =36(m 2).。
(完整版)两角和与差的正弦、余弦、正切经典练习题
两角和与差的正弦、余弦、正切一、两角和与差的余弦βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-1、求值:(1) 15cos (2) 20802080sin sin cos cos +(3) 1013010130sin sin cos cos +(4)cos105°(5)sin75°(6)求cos75°cos105°+sin75°sin105°(7)cos (A +B )cosB +sin (A +B )sinB .(8) 29912991sin sin cos cos -2. (1)求证:cos (2π-α) =sin α.(2)已知sin θ=1715,且θ为第二象限角,求cos (θ-3π)的值. (3)已知sin (30°+α)=,60°<α<150°,求cos α.3. 化简cos (36°+α)cos (α-54°)+sin (36°+α)sin (α-54°).4. 已知32=αsin ,⎪⎭⎫ ⎝⎛∈ππα,2,53-=βcos ,⎪⎭⎫ ⎝⎛∈23ππβ,,求)cos(βα+的值.5.已知1312-=αcos ,⎪⎭⎫ ⎝⎛∈23ππα,,求)cos(4πα+的值。
6. 已知α,β都是锐角,31=αcos ,51-=+)cos(βα,求βcos 的值。
7.在△ABC 中,已知sin A =53,cos B =135,求cos C 的值.二、两角和与差的正弦sin()sin cos cos sin αβαβαβ+=+sin()sin cos cos sin αβαβαβ-=-1利用和差角公式计算下列各式的值(1)sin 72cos 42cos 72sin 42︒︒-︒︒ (2)13cos sin 22x x -(3)3sin cos x x + (4)22cos 2sin 222x x -二、证明: )4cos(2)cos (sin 2)3()4sin(2sin cos )2()6sin(cos 21sin 23)1(ππθθθπααα-=++=++=+x x x3(1)已知3sin 5α=-,α是第四象限角,求sin()4πα-的值。
两角和与差的正弦、余弦和正切公式及二倍角公式
答案 D 由cos +sin α= , 可得 cos α+ sin α+sin α= , 即 sin α+ cos α= , ∴ sin = , 即sin = , ∴sin =-sin =- .
单击此处添加大标题内容
2-1 已知cos +sin α= ,则sin 的值是 ( ) A.- B. C. D.-
方法技巧 三角恒等变换的变“角”与变“名”问题的解题思路 角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角 与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α= (α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°, + = , =2× 等. 名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、 诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.
添加标题
1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
添加标题
cos2α=⑩ ,sin2α= ;
添加标题
1.sin 20°cos 10°-cos 160°sin 10°= ( ) A.- B. C.- D.
02
03
已知sin(α-kπ)= (k∈Z),则cos 2α的值为 ( ) A. B.- C. D.-
A
若tan = ,则tan α= .
.
考点突破
典例1 (1)已知sin =cos ,则tan α= ( ) A.-1 B.0 C. D.1 (2)(2017课标全国Ⅰ,15,5分)已知α∈ ,tan α=2,则cos = (3)设sin 2α=-sin α,α∈ ,则tan 2α的值是 .
高考专题练习: 第1课时 两角和与差的正弦、余弦和正切公式
1.两角和与差的正弦、余弦、正切公式 C (α-β):cos(α-β)=cos αcos β+sin αsin β. C (α+β):cos(α+β)=cos αcos β-sin αsin β. S (α+β):sin(α+β)=sin αcos β+cos αsin β. S (α-β):sin(α-β)=sin αcos β-cos αsin β. T (α+β):tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎪⎫α,β,α+β≠π2+k π,k ∈Z .T (α-β):tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎪⎫α,β,α-β≠π2+k π,k ∈Z .2.二倍角的正弦、余弦、正切公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎪⎫α≠π4+k π2,且α≠k π+π2,k ∈Z . 常用结论记准4个必备结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ) ⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=aa 2+b 2.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)对任意角α都有1+sin α=⎝ ⎛⎭⎪⎫sin α2+cos α22.( )(3)y =3sin x +4cos x 的最大值是7.( ) (4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立. ( )答案:(1)√ (2)√ (3)× (4)× 二、易错纠偏常见误区| (1)不会逆用公式,找不到思路; (2)不会合理配角出错.1.tan 20°+tan 40°+3tan 20°·tan 40°=________. 解析:因为tan 60°=tan(20°+40°)=tan 20°+tan 40°1-tan 20°tan 40°,所以tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°) =3-3tan 20°tan 40°,所以原式=3-3tan 20°tan 40°+3tan 20°tan 40°= 3. 答案: 32.sin 15°+sin 75°的值是________.解析:sin 15°+sin 75°=sin 15°+cos 15°=2sin(15°+45°)=2sin 60°=62. 答案:62第1课时 两角和与差的正弦、余弦和正切公式三角函数公式的直接应用(师生共研)(1)(2020·高考全国卷Ⅲ)已知sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=1,则sin ⎝ ⎛⎭⎪⎫θ+π6=( )A .12 B .33 C .23D .22(2)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.【解析】 (1)因为sin θ+sin ⎝ ⎛⎭⎪⎫θ+π3=32sin θ+32cos θ=3sin ⎝ ⎛⎭⎪⎫θ+π6=1, 所以sin ⎝ ⎛⎭⎪⎫θ+π6=33,故选B .(2)由cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3⎝ ⎛⎭⎪⎫12cos α-32sin α=3cos ⎝ ⎛⎭⎪⎫α+π3=3sin ⎝ ⎛⎭⎪⎫π6-α=435,得sin ⎝ ⎛⎭⎪⎫π6-α=45.sin ⎝ ⎛⎭⎪⎫α+11π6=-sin ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫α+11π6=-sin ⎝ ⎛⎭⎪⎫π6-α=-45. 【答案】 (1)B (2)-45利用三角函数公式时应注意的问题(1)首先要注意公式的结构特点和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号相反”.(2)应注意与同角三角函数基本关系、诱导公式的综合应用. (3)应注意配方法、因式分解和整体代换思想的应用.1.(2021·湖北八校第一次联考)若sin ⎝ ⎛⎭⎪⎫π6-θ=35,则sin ⎝ ⎛⎭⎪⎫π6+2θ=( ) A .-2425 B .2425 C .-725D .725解析:选D .方法一:因为sin ⎝ ⎛⎭⎪⎫π6-θ=35,所以sin ⎝ ⎛⎭⎪⎫π6+2θ=sin ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫π6-θ =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-θ=1-2sin 2⎝ ⎛⎭⎪⎫π6-θ=1-2×⎝ ⎛⎭⎪⎫352=725,故选D .方法二:因为sin ⎝ ⎛⎭⎪⎫π6-θ=cos ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫π6-θ =cos ⎝ ⎛⎭⎪⎫π3+θ=35,所以cos ⎝ ⎛⎭⎪⎫2π3+2θ=2×⎝ ⎛⎭⎪⎫352-1=-725.因为cos ⎝ ⎛⎭⎪⎫π2+π6+2θ=-sin ⎝ ⎛⎭⎪⎫π6+2θ,所以sin ⎝ ⎛⎭⎪⎫π6+2θ=725,故选D . 2.(2021·六校联盟第二次联考)若tan ⎝ ⎛⎭⎪⎫π4-α=-2,则tan 2α=________.解析:由tan ⎝ ⎛⎭⎪⎫π4-α=-2可得tan π4-tan α1+tan π4tan α=-2,即1-tan α1+tan α=-2,化简得tan α=-3,所以tan 2α= 2 tan α1-tan 2 α=2×(-3)1-(-3)2=34. 答案:34三角函数公式的逆用与变形应用(师生共研)(1)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B .22 C .12D .-12(2)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. 【解析】 (1)由tan A tan B =tan A +tan B +1,可得tan A +tan B1-tan A tan B =-1,即tan(A +B )=-1,又(A +B )∈(0,π),所以A+B=3π4,所以C=π4,cos C=2 2.(2)因为sin α+cos β=1,cos α+sin β=0,所以sin2α+cos2β+2sin αcos β=1①,cos2α+sin2β+2cos αsin β=0②,①②两式相加可得sin2α+cos2α+sin2β+cos2β+2(sin α·cos β+cos αsin β)=1,所以sin(α+β)=-12.【答案】(1)B(2)-1 2(1)三角函数公式活用技巧①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(2)三角函数公式逆用和变形使用应注意的问题①公式逆用时一定要注意公式成立的条件和角之间的关系;②注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”以便构造适合公式的形式.1.(1-tan215°)cos215°=()A.1-32B.1C.32D.12解析:选C.(1-tan215°)cos215°=cos215°-sin215°=cos 30°=3 2.2.已知sin 2α=13,则cos 2⎝ ⎛⎭⎪⎫α-π4=( )A .-13 B .13 C .-23D .23解析:选D .cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=12+12sin 2α=12+12×13=23. 3.cos 15°+sin 15°cos 15°-sin 15°=( ) A .33 B . 3 C .-33D .- 3解析:选B .原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.两角和、差及倍角公式的灵活应用(多维探究) 角度一 三角函数公式中变“角”已知α,β∈⎝ ⎛⎭⎪⎫3π4,π,sin(α+β)=-35,sin ⎝ ⎛⎭⎪⎫β-π4=2425,则cos ⎝ ⎛⎭⎪⎫α+π4=________.,【解析】 由题意知,α+β∈⎝ ⎛⎭⎪⎫3π2,2π,sin(α+β)=-35<0,所以cos(α+β)=45,因为β-π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以cos ⎝ ⎛⎭⎪⎫β-π4=-725,cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4=cos(α+β)cos ⎝ ⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝ ⎛⎭⎪⎫β-π4=-45.【答案】 -45角度二 三角函数公式中变“名”求值:1+cos 20°2sin 20°-sin 10°⎝ ⎛⎭⎪⎫1tan 5°-tan 5°. 【解】 原式=2cos 210°2×2sin 10°cos 10°-sin 10°⎝ ⎛⎭⎪⎫cos 5°sin 5°-sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.三角函数公式应用的解题思路(1)角的转换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[提醒] 转化思想是实施三角恒等变换的主导思想,恒等变换前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.1.若tan(α+2β)=2,tan β=-3,则tan(α+β)=________,tan α=________. 解析:因为tan(α+2β)=2,tan β=-3,所以tan(α+β)=tan(α+2β-β)=tan(α+2β)-tan β1+tan(α+2β)tan β=2-(-3)1+2×(-3)=-1.tan α=tan(α+β-β)=-1-(-3)1+(-1)×(-3)=1 2.答案:-11 22.4sin 20°+tan 20°=________.解:原式=4sin 20°+sin 20°cos 20°=2sin 40°+sin 20°cos 20°=2sin (60°-20°)+sin 20°cos 20°=3cos 20°-sin 20°+sin 20°cos 20°= 3.答案: 3[A级基础练]1.计算-sin 133°cos 197°-cos 47°cos 73°的结果为()A.12B.33C.22D.32解析:选A.-sin 133°cos 197°-cos 47°cos 73°=-sin 47°(-cos 17°)-cos 47°sin 17°=sin(47°-17°)=sin 30°=12.2.(2021·开封市模拟考试)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=13,则cos(α-β)=()A.-1 B.-7 9C .429D .79解析:选B .因为角α与角β均以Ox 为始边,且它们的终边关于y 轴对称,所以β=π-α+2k π,k ∈Z ,则cos(α-β)=cos(α-π+α-2k π)=cos(2α-π)=cos (π-2α)=-cos 2α,又sin α=13,所以cos 2α=1-2sin 2α=79,所以cos(α-β)=-79,故选B .3.(2020·福州市质量检测)若2cos 2x =1+sin 2x ,则tan x =( ) A .-1 B .13C .-1或13D .-1或13或3解析:选C .方法一:由题设得,2(cos 2x -sin 2x )=1+2sin x cos x ,所以2(cos x +sin x )(cos x -sin x )=(sin x +cos x )2,所以sin x +cos x =0或sin x +cos x =2cos x -2sin x ,所以tan x =-1或tan x =13.方法二:由2cos 2x =1+sin 2x ,得2(cos 2x -sin 2x )=sin 2x +cos 2x +2sin x cos x ,化简得cos 2 x -2sin x cos x -3sin 2x =0,所以(cos x -3sin x )(cos x +sin x )=0,所以cos x =3 sin x 或cos x =-sin x ,所以tan x =13或tan x =-1.方法三:由⎩⎪⎨⎪⎧2cos 2x =1+sin 2x sin 22x +cos 22x =1,得5sin 22x +2sin 2x -3=0,所以sin 2x =35,或sin 2x =-1.当sin 2x =35时, sin 2x =2sin x cos x sin 2x +cos 2x =2tan x tan 2x +1=35,所以3tan 2x-10tan x +3=0,解得tan x =13或tan x =3,但tan x =3时,cos 2x <0,1+sin 2x >0,不合题意舍去,经检验,tan x =13符合题意;当sin 2x =-1时,tan x =-1,经检验,tan x =-1符合题意.综上,tan x =13或tan x =-1.4.已知cos ⎝ ⎛⎭⎪⎫x -π6=14,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3=( )A .34 B .-34 C .14D .±34解析:选A .因为cos ⎝ ⎛⎭⎪⎫x -π6=14,所以cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x=3⎝ ⎛⎭⎪⎫32cos x +12sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=3×14=34.故选A .5.已知sin(α+β)=12,sin(α-β)=13,则log 5⎝ ⎛⎭⎪⎫tan αtan β2=( ) A .2 B .3 C .4D .5解析:选C .因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=5,所以log 5⎝ ⎛⎭⎪⎫tan αtan β2=log552=4.故选C .6.(2020·高考浙江卷)已知tan θ=2,则cos 2θ=________,tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析:方法一:因为tan θ=2,所以sin θ=2cos θ,由sin 2θ+cos 2θ=1可知,sin 2θ=45,cos 2θ=15,所以cos 2θ=cos 2θ-sin 2θ=15-45=-35,tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=2-11+2=13. 方法二:因为tan θ=2,所以cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,tan ⎝ ⎛⎭⎪⎫θ-π4=tan θ-11+tan θ=2-11+2=13.答案:-35 137.sin 10°sin 50°sin 70°=________.解析:sin 10°sin 50°sin 70°=sin 10°cos 40°cos 20° =sin 10°cos 10°cos 20°cos 40°cos 10°=18sin 80°cos 10°=18. 答案:188.已知sin(α-β)cos α-cos(β-α)sin α=35,β是第三象限角,则sin ⎝ ⎛⎭⎪⎫β+5π4=________.解析:依题意可将已知条件变形为sin[(α-β)-α]=-sin β=35,所以sin β=-35. 又β是第三象限角,因此有cos β=-45,所以sin ⎝ ⎛⎭⎪⎫β+5π4=-sin ⎝ ⎛⎭⎪⎫β+π4=-sin βcos π4-cos βsin π4=7210.答案:72109.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,-45.(1)求sin ()α+π的值;(2)若角β满足sin(α+β)=513,求cos β的值.解:(1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45,所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35,由sin(α+β)=513,得cos(α+β)=±1213. 由β=(α+β)-α得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.10.已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值; (2)求tan(α-β)的值.解:(1)因为tan α=43,tan α=sin αcos α, 所以sin α=43cos α.因为sin 2 α+cos 2 α=1,所以cos 2 α=925, 所以cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2 α=-247, 所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[B 级 综合练]11.若α,β都是锐角,且cos α=55,sin(α-β)=1010, 则cos β=( ) A .22 B .210 C .22或-210D .22或210解析:选A .因为α,β都是锐角,且cos α=55,sin(α-β)=1010,所以sin α=255,cos(α-β)=31010,从而cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=22,故选A .12.已知α为第二象限角,且tan α+tan π12=2tan αtan π12-2,则sin ⎝ ⎛⎭⎪⎫α+5π6=( )A .-1010 B .1010 C .-31010D .31010解析:选C .tan α+tan π12=2tan αtan π12-2⇒tan α+tan π121-tan αtan π12=-2⇒tan ⎝ ⎛⎭⎪⎫α+π12=-2,因为α为第二象限角,所以sin ⎝ ⎛⎭⎪⎫α+π12=255,cos ⎝ ⎛⎭⎪⎫α+π12=-55,则sin ⎝ ⎛⎭⎪⎫α+5π6=-sin ⎝ ⎛⎭⎪⎫α-π6=-sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π12-π4=cos ⎝ ⎛⎭⎪⎫α+π12sin π4-sin ⎝ ⎛⎭⎪⎫α+π12cos π4=-31010.13.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6=________.解析:由cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, 所以3sin ⎝ ⎛⎭⎪⎫α+π6=435,即sin ⎝ ⎛⎭⎪⎫α+π6=45,所以sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45.答案:-4514.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2.(1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95, 即1+sin 2α=95,所以sin 2α=45. 又2α∈⎝ ⎛⎭⎪⎫0,π2,所以cos 2α=1-sin 22α=35,所以tan 2α=sin 2αcos 2α=43.(2)因为β∈⎝ ⎛⎭⎪⎫π4,π2,所以β-π4∈⎝ ⎛⎭⎪⎫0,π4,又sin ⎝ ⎛⎭⎪⎫β-π4=35, 所以cos ⎝ ⎛⎭⎪⎫β-π4=45,于是sin 2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4·cos ⎝ ⎛⎭⎪⎫β-π4=2425.又sin 2⎝ ⎛⎭⎪⎫β-π4=-cos 2β,所以cos 2β=-2425,又2β∈⎝ ⎛⎭⎪⎫π2,π,所以sin 2β=725,又cos 2α=1+cos 2α2=45,α∈⎝ ⎛⎭⎪⎫0,π4, 所以cos α=255,sin α=55.所以cos(α+2β)=cos αcos 2β-sin αsin 2β =255×⎝ ⎛⎭⎪⎫-2425-55×725=-11525.[C 级 提升练]15.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m =2sin 18°,若m 2+n =4,则m n 2cos 227°-1=( )A .8B .4C .2D .1解析:选C .因为m =2sin 18°,m 2+n =4,所以n =4-m 2=4-4sin 218°=4cos 218°.所以m n 2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=4sin 18°cos 18°2cos 227°-1=2sin 36°cos 54°=2sin 36°sin 36°=2.故选C .16.设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为________.解析:由sin αcos β-cos αsin β=1,得sin(α-β)=1, 又α,β∈[0,π],所以α-β=π2,所以⎩⎪⎨⎪⎧0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π, 所以sin(2α-β)+sin(α-2β)=sin ⎝ ⎛⎭⎪⎫2α-α+π2+sin(α-2α+π)=cos α+sin α=2sin ⎝ ⎛⎭⎪⎫α+π4.因为π2≤α≤π, 所以3π4≤α+π4≤5π4, 所以-1≤2sin ⎝ ⎛⎭⎪⎫α+π4≤1,即取值范围为[-1,1]. 答案:[-1,1]。
人教a版必修4学案:3.1.2两角和与差的正弦、余弦、正切公式(2)(含答案)
3.1.2 两角和与差的正弦、余弦、正切公式(二)自主学习知识梳理1.两角和与差的正切公式(1)T (α+β):tan(α+β)=__________________. (2)T (α-β):tan(α-β)=__________________. 2.两角和与差的正切公式的变形 (1)T (α+β)的变形:tan α+tan β=__________________.tan α+tan β+tan αtan βtan(α+β)=______________. tan α·tan β=__________________. (2)T (α-β)的变形:tan α-tan β=__________________.tan α-tan β-tan αtan βtan(α-β)=________________. tan αtan β=__________________.自主探究根据同角三角函数关系式完成公式T (α+β)、T (α-β)的推导过程. ∵sin(α+β)=__________________. cos(α+β)=__________________.∴tan(α+β)=sin (α+β)cos (α+β)=____________=_________________________________.∵tan(α-β)=tan[α+(-β)]∴tan(α-β)=________________=________________.对点讲练知识点一 化简求值例1 求下列各式的值. (1)1-tan 15°1+tan 15°;(2)tan 20°+tan 40°+3tan 20°tan 40°.回顾归纳 公式T (α+β),T (α-β)是变形较多的两个公式,公式中有tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者知二可表示或求出第三个.变式训练1 求下列各式的值.(1)3+tan 15°1-3tan 15°;(2)tan 36°+tan 84°-3tan 36°tan 84°.知识点二 给值求角例2 若α,β均为钝角,且(1-tan α)(1-tan β)=2,求α+β.回顾归纳 此类题是给值求角题,解题步骤如下:①求所求角的某一个三角函数值,②确定所求角的范围.此类题常犯的错误是对角的范围不加讨论,范围讨论的程度过大或过小,会使求出的角不合题意或者漏解.变式训练2 已知tan α,tan β是方程x 2+33x +4=0的两根,且-π2<α<π2,-π2<β<π2,求角α+β.知识点三 三角形中的问题例3 已知△ABC 中,tan B +tan C +3tan B tan C =3,且3tan A +3tan B =tan A tan B -1,试判断△ABC 的形状.回顾归纳 三角形中的问题,A +B +C =π肯定要用,有时与诱导公式结合,有时利用它寻找角之间的关系减少角.变式训练3 已知A 、B 、C 为锐角三角形ABC 的内角.求证:tan A +tan B +tan C =tan A tan B tan C .1.公式T (α±β)的适用范围由正切函数的定义可知α、β、α+β(或α-β)的终边不能落在y 轴上,即不为k π+π2(k ∈Z ).2.公式T (α±β)的逆用一方面要熟记公式的结构,另一方面要注意常值代换如tan π4=1,tan π6=33,tan π3=3等.要特别注意tan ⎝⎛⎭⎫π4+α=1+tan α1-tan α,tan ⎝⎛⎭⎫π4-α=1-tan α1+tan α. 3.公式T (α±β)的变形应用 只要见到tan α±tan β,tan αtan β时,有灵活应用公式T (α±β)的意识,就不难想到解题思路.课时作业一、选择题1.已知α∈⎝⎛⎭⎫π2,π,sin α=35,则tan ⎝⎛⎭⎫α+π4的值等于( ) A.17 B .7 C .-17D .-7 2.若sin α=45,tan(α+β)=1,且α是第二象限角,则tan β的值是( )A.43 B .-43 C .-7 D .-173.已知tan α=12,tan β=13,0<α<π2,π<β<3π2,则α+β的值是( )A.π4B.3π4C.5π4D.7π44.A ,B ,C 是△ABC 的三个内角,且tan A ,tan B 是方程3x 2-5x +1=0的两个实数根,则△ABC 是( )A .钝角三角形B .锐角三角形C .直角三角形D .无法确定 5.化简tan 10°tan 20°+tan 20°tan 60°+tan 60°tan 10°的值等于( ) A .1 B .2 C .tan 10° D.3tan 20°二、填空题6.已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)=________.7.如果tan α,tan β是方程x 2-3x -3=0两根,则sin (α+β)cos (α-β)=________.8.已知tan ⎝⎛⎭⎫π4+α=2,则12sin αcos α+cos 2α的值为________.三、解答题9.求下列各式的值. (1)sin 7°+cos 15°sin 8°cos 7°-sin 15°sin 8°;(2)(1-tan 59°)(1-tan 76°).10. 如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为210,255.(1)求tan(α+β)的值;(2)求α+2β的值.123456 345678 5678910 7 8 9 10 11 12 9 10 11 12 13 14 11 12 13 14 15 16 579 68 10 100/6=18*37+154+16*33-2 666 5123.1.2 两角和与差的正弦、余弦、正切公式(二)答案知识梳理1.(1)tan α+tan β1-tan αtan β (2)tan α-tan β1+tan αtan β2.(1)tan(α+β)(1-tan αtan β) tan(α+β) 1-tan α+tan βtan (α+β)(2)tan(α-β)(1+tan αtan β) tan(α-β) tan α-tan βtan (α-β)-1自主探究sin αcos β+cos αsin β cos αcos β-sin αsin β sin αcos β+cos αsin βcos αcos β-sin αsin βtan α+tan β1-tan αtan βtan α+tan (-β)1-tan αtan (-β) tan α-tan β1+tan αtan β对点讲练例1 解 (1)原式=tan 45°-tan 15°1+tan 45°tan 15°=tan(45°-15°)=tan 30°=33.(2)∵tan 60°=tan 20°+tan 40°1-tan 20°tan 40°= 3.∴tan 20°+tan 40°=3(1-tan 20°tan 40°) ∴原式=3(1-tan 20°tan 40°)+3tan 20°tan 40° =3-3tan 20°tan 40°+3tan 20°tan 40° = 3.变式训练1 解 (1)原式=tan 60°+tan 15°1-tan 60°tan 15°=tan(60°+15°)=tan 75°=tan(30°+45°)=tan 30°+tan 45°1-tan 30°tan 45°=33+11-33=2+ 3.(2)原式=tan 120°(1-tan 36°tan 84°)-3tan 36°·tan 84° =tan 120°-tan 120°tan 36°tan 84°-3tan 36°·tan 84°=tan 120°=- 3. 例2 解 ∵(1-tan α)(1-tan β)=2, ∴1-(tan α+tan β)+tan αtan β=2, ∴tan α+tan β=tan αtan β-1 ∴tan α+tan β1-tan αtan β=-1.∴tan(α+β)=-1. ∵α,β∈⎝⎛⎭⎫π2,π.∴α+β∈(π,2π).∴α+β=7π4.变式训练2 解 由已知得⎩⎨⎧tan α+tan β=-33tan α·tan β=4∴tan α、tan β均为负.∴tan(α+β)=tan α+tan β1-tan αtan β=-331-4= 3.∵tan α<0,tan β<0,∴-π2<α<0,-π2<β<0.∴-π<α+β<0,∴α+β=-2π3.例3 解 ∵3tan A +3tan B =tan A tan B -1, ∴3(tan A +tan B )=tan A tan B -1, ∴tan A +tan B 1-tan A tan B =-33,∴tan(A +B )=-33.又∵0<A +B <π,∴A +B =5π6,∴C =π6,∵tan B +tan C +3tan B tan C =3,tan C =33,∴tan B +33+tan B =3,tan B =33,∴B =π6,∴A =2π3,∴△ABC 为等腰三角形.变式训练3 证明 ∵A +B +C =π, ∴A +B =π-C .∴tan(A +B )=tan A +tan B1-tan A tan B=-tan C .∴tan A +tan B =-tan C +tan A tan B tan C . 即tan A +tan B +tan C =tan A tan B tan C . 课时作业1.A 2.C 3.C4.A [tan A +tan B =53,tan A ·tan B =13,∴tan(A +B )=52,∴tan C =-tan(A +B )=-52,∴C 为钝角.]5.A [原式=tan 10°tan 20°+3tan 20°+ 3 tan 10°=3(tan 10°+tan 20°+33tan 10°tan 20°)=3×33=1.]6.1解析 tan β=cos α-sin αcos α+sin α=1-tan α1+tan α.∴tan β+tan αtan β=1-tan α. ∴tan α+tan β+tan αtan β=1. ∴tan α+tan β=1-tan αtan β. ∴tan α+tan β1-tan αtan β=1,∴tan(α+β)=1. 7.-32解析 ∵tan α,tan β是方程x 2-3x -3=0的两根,∴tan α+tan β=3,tan αtan β=-3, ∴sin (α+β)cos (α-β)=sin αcos β+cos αsin βcos αcos β+sin αsin β =tan α+tan β1+tan αtan β=31+(-3)=-32.8.23解析 ∵tan ⎝⎛⎭⎫π4+α=2,∴1+tan α1-tan α=2,解得tan α=13.∴12sin αcos α+cos 2α=sin 2α+cos 2α2sin αcos α+cos 2α=tan 2α+12tan α+1=19+123+1=23.9.解 (1)原式=sin (15°-8°)+cos 15°sin 8°cos (15°-8°)-sin 15°sin 8°=sin 15°cos 8°cos 15°cos 8°=tan 15°=tan(45°-30°) =tan 45°-tan 30°1+tan 45°tan 30°=1-331+33=2- 3. (2)原式=1-tan 59°-tan 76°+tan 59°tan 76° =1-(tan 59°+tan 76°)+tan 59°tan 76° =1-tan 135°(1-tan 59°tan 76°)+tan 59°tan 76° =1+1-tan 59°tan 76°+tan 59°tan 76°=2.10.解 由条件得cos α=210,cos β=255. ∵α,β为锐角,∴sin α=1-cos 2α=7210,sin β=1-cos 2β=55.因此tan α=sin αcos α=7,tan β=sin βcos β=12.(1)tan(α+β)=tan α+tan β1-tan α·tan β=7+121-7×12=-3.(2)∵tan 2β=2tan β1-tan 2β=2×121-⎝⎛⎭⎫122=43, ∴tan(α+2β)=tan α+tan 2β1-tan α·tan 2β=7+431-7×43=-1.∵α,β为锐角,∴0<α+2β<3π2,∴α+2β=3π4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两角和差的正弦余弦正切公式练习题
知 识 梳 理
1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β. cos(α∓β)=cos_αcos_β±sin_αsin_β. tan(α±β)=
tan α±tan β
1∓tan αtan β
.
2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α.
cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=
2tan α
1-tan 2α
.
3.有关公式的逆用、变形等
(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β). (2)cos 2α=
1+cos 2α2,sin 2
α=1-cos 2α2
. (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫
α±π4. 4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ),其中tan φ=b a
一、选择题
1.给出如下四个命题
①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβ
αβαtan tan 1tan ⋅-+an 成立的条件是)(2
Z k k ∈+≠ππα且)(2
Z k k ∈+≠ππβ;
④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是
( )
A .①②
B .②③
C .③④
D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是
( )
A .21+
B .12-
C .2
D . 2
3.当]2
,2[π
π-
∈x 时,函数x x x f cos 3sin )(+=的 ( )
A .最大值为1,最小值为-1
B .最大值为1,最小值为2
1-
C .最大值为2,最小值为-2
D .最大值为2,最小值为-1
4.已知)cos(,3
2
tan tan ,7)tan(βαβαβα-=
⋅=+则的值 ( )
A .2
1 B .
2
2 C .2
2-
D .2
2±
5.已知
=-=+=-<<<αβαβαπαβπ
2sin ,53
)sin(,1312)cos(,432则 ( )
A .6556
B .-6556
C .5665
D .-56
65
6. 75sin 30sin 15sin ⋅⋅的值等于
( )
A .
4
3 B .
8
3 C .8
1
D .
4
1 7.函数)4
cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=π
π其中为相同函数的是
( )
A .)()(x g x f 与
B .)()(x h x g 与
C .)()(x f x h 与
D .)()()(x h x g x f 及与
8.α、β、γ都是锐角,γβαγβα++===
则,8
1
tan ,51tan ,21tan 等于 ( ) A .
3
π
B .
4
π C .π65 D .π4
5
9.设0)4
tan(tan 2=++-q px x 是方程和θπ
θ的两个根,则p 、q 之间的关系是( )
A .p+q+1=0
B .p -q+1=0
C .p+q -1=0
D .p -q -1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是
( )
A .
4
12
--a a
B .-
4
12
--a a
C .2
14a a --±
D .4
12
--±a a
11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为
( )
A .1tan tan >+
B A B .1tan tan <⋅B A
C .1tan tan =⋅B A
D .不能确定
12. 50sin 10sin 70cos 20sin +的值是
( )
A .4
1
B .
2
3
C .2
1
D .4
3
二、填空题(每小题4分,共16分,将答案填在横线上)
13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 .
14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=
.
15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,2
2
sin sin +=
+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34
sin(x +⋅π
.
18.已知 0βαβαcos ,cos ,90且 <<<是方程02
1
50sin 50sin 222=-
+- x x 的两根,求)2tan(αβ-的值.
19.求证:y
x x
y x y x 22sin cos 2sin )tan()tan(-=-++.
20.已知α,β∈(0,π)且7
1
tan ,21)tan(-==-ββα,求βα-2的值.
21.证明:x
x x
x x 2cos cos sin 22tan 23tan +=-.
22.已知△ABC 的三个内角满足:A+C=2B ,
B C A cos 2cos 1cos 1-=+求2
cos C
A -的值.
两角和差的正弦余弦正切公式练习题参考答案
一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A
二、13.m 14.3π
15.32-- 16.]214,214[-
三、17.原式=)34
cos()33
sin()33
cos()34
sin(x x x x -----ππππ=
4
6
2-.
18.)4550sin(2
)
21
50(sin 4)50sin 2(50sin 222 ±=---±=x ,
12sin 95cos5,sin 5cos85,x x ∴====
3275tan )2tan(+==- αβ.
19.证:y x y x y x y x y x y x y x y x 2
222sin sin cos cos )]
()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左
=-=+-=y
x x
y x x x x 2
22222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13
tan ,
tan(2)1,
2.3
4
ααβαβπ=-=-=-
21.左=
=+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22
cos
23cos sin 2cos 23cos 2sin
23cos 2cos 23sin
右.
22.由题设B=60°,A+C=120°,设2
C
A -=α知A=60°+α, C=60°-α, 22cos ,224
3cos cos cos 1
cos 12
=
-=-
=+ααα
即C A
故222cos =-C A .。