三角形内角和教学设计

合集下载

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

《三角形内角和》教学设计

《三角形内角和》教学设计

《三角形内角和》教学设计一、教学目标1. 知识与技能目标通过量、剪、拼等活动发现、证实三角形内角和是180°。

会应用三角形内角和的性质解决一些简单的实际问题。

2. 过程与方法目标经历观察、猜想、验证的过程,提升动手操作能力和逻辑思维能力。

体会转化的数学思想方法。

3. 情感态度与价值观目标在探究活动中,体验学习数学的乐趣,培养合作交流和创新意识。

二、教学重难点1. 教学重点:理解并掌握三角形内角和是 180°。

2. 教学难点:用不同方法验证三角形内角和是180°。

三、教学方法讲授法、探究法、小组合作法、直观演示法。

四、教学过程1. 创设情境,导入新课出示一个三角形,提问:“什么是三角形的内角?”引出三角形内角的概念。

设疑:“三角形三个内角的度数之和是多少呢?”激发学生的好奇心和探究欲望。

2. 自主探究,合作交流猜想:让学生大胆猜想三角形内角和的度数。

验证:量一量:以小组为单位,用量角器测量三角形三个内角的度数,并计算它们的和。

剪一剪、拼一拼:把三角形的三个内角剪下来,拼成一个平角,观察发现三角形内角和是 180°。

折一折:引导学生把三角形的三个角折成一个平角,进一步验证三角形内角和是 180°。

汇报交流:各小组展示自己的验证方法和结果,分享探究过程中的体会和发现。

3. 巩固应用,拓展提高基础练习:出示一些不同类型的三角形,让学生求出它们的内角和,巩固三角形内角和是 180°的知识。

拓展练习:已知三角形两个内角的度数,求第三个内角的度数。

给出一个三角形的内角关系,判断它是什么三角形。

实际应用:解决生活中的实际问题,如三角形窗户玻璃的内角和、三角形支架的角度等。

4. 总结反思,评价反馈总结:引导学生回顾本节课的学习内容,总结三角形内角和的性质和验证方法。

反思:让学生思考在探究过程中遇到的问题和解决方法,以及还有哪些地方可以改进。

评价:对学生的学习表现进行评价,肯定学生的努力和进步,提出改进的建议。

三角形内角和教案优秀5篇

三角形内角和教案优秀5篇

三角形内角和教案优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、汇报材料、自我鉴定、条据文书、合同协议、心得体会、方案大全、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, presentation materials, self-evaluation, documentary evidence, contract agreements, reflections, comprehensive plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample essay formats and writing methods, please stay tuned!三角形内角和教案优秀5篇如果教案无法在实际教学中实施,就无法让学生真正理解和应用所学的知识,教案写好了,能够帮助我们更好地与学生和家长进行沟通和交流,本店铺今天就为您带来了三角形内角和教案优秀5篇,相信一定会对你有所帮助。

《三角形的内角和》教学设计

《三角形的内角和》教学设计

《三角形的内角和》教学设计一、教学目标1、知识与技能目标学生通过测量、剪拼、折叠等操作活动,探索并发现三角形内角和是 180 度,能够应用这一结论解决简单的实际问题。

2、过程与方法目标经历观察、思考、操作、猜想、验证等数学活动,培养学生的动手实践能力、推理能力和创新思维能力。

3、情感态度与价值观目标在探索三角形内角和的过程中,激发学生对数学的好奇心和求知欲,培养学生勇于探索、敢于质疑的科学精神,以及合作交流的意识。

二、教学重难点1、教学重点探索并证明三角形内角和是 180 度。

2、教学难点对三角形内角和是 180 度的推理和验证。

三、教学方法讲授法、直观演示法、小组合作探究法四、教学准备多媒体课件、三角形纸片、量角器、剪刀五、教学过程(一)创设情境,引入新课1、出示一个三角形的图片,提问:同学们,你们知道三角形的三个角分别叫什么吗?(引导学生说出三角形的三个内角)2、接着提问:那你们想不想知道三角形三个内角的度数之和是多少呢?(引发学生的好奇心和求知欲,从而引入新课)(二)自主探索,合作交流1、量一量(1)让学生以小组为单位,用量角器分别测量出准备好的三角形三个内角的度数,并将测量结果记录下来。

(2)小组汇报测量结果,教师将结果填写在表格中。

(3)观察测量结果,引导学生发现:不同三角形的内角和虽然不完全相同,但都接近 180 度。

2、剪一剪、拼一拼(1)让学生把三角形的三个内角剪下来,然后拼在一起,看看能拼成一个什么角。

(2)学生动手操作,教师巡视指导。

(3)小组汇报展示,发现三角形的三个内角可以拼成一个平角,从而得出三角形内角和是 180 度的结论。

3、折一折(1)教师示范将三角形的三个内角折在一起,形成一个平角。

(2)学生模仿操作,再次验证三角形内角和是 180 度。

(三)推理证明1、引导学生思考:我们通过测量、剪拼、折叠等方法得出了三角形内角和是 180 度的结论,但这些方法都存在一定的误差,能不能用数学推理的方法来证明呢?2、出示一个长方形,提问:长方形的四个角都是直角,那么它的内角和是多少度?(360 度)3、沿着长方形的对角线把它剪成两个三角形,提问:每个三角形的内角和是多少度?(引导学生发现长方形的内角和是两个三角形的内角和,所以每个三角形的内角和是 180 度)(四)应用拓展1、基础练习(1)在一个三角形中,∠1 = 40°,∠2 = 60°,求∠3 的度数。

三角形内角和教学设计(通用6篇)

三角形内角和教学设计(通用6篇)

三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

【教学难点】对不同探究方法的指导和学生对规律的灵活应用。

【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。

【教学过程】一、激趣引入。

1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。

师:那么,下面老师给大家出个谜语。

请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。

(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。

3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。

试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。

1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。

师:三角形有几个内角啊?生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。

三角形内角和教学设计15篇

三角形内角和教学设计15篇

三角形内角和教学设计15篇三角形内角和教学设计(15篇)作为一名教职工,时常需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

我们该怎么去写教学设计呢?下面是小编收集整理的三角形内角和教学设计,仅供参考,欢迎大家阅读。

三角形内角和教学设计1北师大版四年级数学下册1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。

《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。

教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。

扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。

一、创设情境,激发兴趣。

出示课件,提出两个两个疑问:1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?2、三个形状不一样的三角形的争论。

我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?二、初建模型,实际验证自己的猜想在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。

这时教师要组织学生进行小组合作,每人用量角器量出一种三角形的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。

三角形的形状三角形每个内角的度数内角和锐角三角形钝角三角形直角三角形等腰三角形等边三角形三、再建模型,彻底的得出正确的结论因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。

出示一些三角形,让学生指出内角和。

师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。

)(板书三角形的内角和是180度。

)师:那我们再看看刚刚汇报的结果。

为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。

现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。

早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。

(1)直角三角形的两个锐角的和是90°。

(2)一个等腰三角形的底角可能是钝角。

(3)三角形的内角和都是180°,与三角形的大小无关。

4、剪一剪。

把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。

七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。

是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。

教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。

教材还安排了“试一试”,“练一练”的内容。

已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。

他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

三角形内角和教学设计(通用4篇)

三角形内角和教学设计(通用4篇)

三角形内角和教学设计(通用4篇)作为一名人民老师,时常会须要打算好教案,借助教案可以更好地组织教学活动。

如何把教案做到重点突出呢。

以下是我为大家收集的三角形内角和教学设计(通用4篇),仅供参考,欢迎大家阅读。

三角形内角和教学设计篇1【教学内容】《人教版九年义务教化教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。

2.让学生经验量一量、折一折、拼一拼等动手操作的过程。

通过视察、推断、沟通和推理探究用多种方法证明三角形的内角和是180。

3.培育学生自主学习、互动沟通、合作探究的实力和习惯,培育学习数学的爱好,感受学习数学的乐趣。

【教学重点】使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。

【教学难点】通过多种方法验证三角形的内角和是180。

【教学打算】课件。

四组教学用三角板。

铅笔。

大帆布兜子。

固体胶。

剪刀。

筷子若干。

【教学过程】一、激趣导入,提炼学习方法1.课程起先,老师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。

激发学生的新奇心。

然后自述:“你们好,我是一个有三十多年工作阅历的老木匠了。

我收了三个徒弟,他们已经从师学艺三年了,今日我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.接着以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3.选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。

老师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的其次个问题。

4.导入新课。

图中有许多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜爱的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)二、动手操作,探究沟通新知1.分组活动,探究新知依据学生的选择把学生分成三组,分别采纳量一量、折一折和拼一拼的方法探究新知。

三角形内角和教学设计

三角形内角和教学设计

三角形内角和教学设计一、教学目标1、知识与技能目标学生通过测量、剪拼、折叠等活动,探索并发现三角形内角和是180°,并能应用这一知识解决实际问题。

2、过程与方法目标经历观察、猜想、实验、验证等数学活动过程,发展学生的动手操作能力、合情推理能力和数学思维能力。

3、情感态度与价值观目标在探索三角形内角和的过程中,激发学生的学习兴趣,体验数学活动的探索乐趣,培养学生的创新精神和合作意识。

二、教学重难点1、教学重点探索并证明三角形内角和是 180°。

2、教学难点对不同探究方法的理解和运用,以及三角形内角和定理的应用。

三、教学方法讲授法、探究法、讨论法、直观演示法四、教学准备三角形纸片、量角器、剪刀、多媒体课件五、教学过程(一)导入新课1、创设情境展示三角形的图片,如三角形的屋顶、三角形的交通标志等,引导学生观察并思考三角形的特点。

2、提出问题教师提问:“同学们,我们已经知道了三角形有三条边和三个角,那么你们想不想知道三角形三个内角的和是多少呢?”(二)新课讲授1、初步猜想让学生观察手中的三角形,凭直觉猜测三角形内角和的度数。

2、测量验证(1)学生分组,用量角器测量三角形三个内角的度数,并计算内角和。

(2)小组汇报测量结果,发现测量结果存在一定的误差。

3、剪拼法(1)教师示范将三角形的三个角剪下来,拼在一起,组成一个平角。

(2)学生动手操作,验证三角形内角和是 180°。

4、折叠法(1)教师展示如何将三角形的三个角向内折叠,使三个角顶点重合,拼成一个平角。

(2)学生自己动手折叠,再次感受三角形内角和是 180°。

(三)推理证明1、引导学生回顾平行线的性质。

2、利用平行线的性质,通过作辅助线,对三角形内角和进行推理证明。

(四)课堂练习1、基础练习给出一些三角形,让学生计算内角和,巩固所学知识。

2、拓展练习(1)已知三角形中两个角的度数,求第三个角的度数。

(2)一个三角形中,∠1 = 50°,∠2 = 60°,求∠3 的度数。

《三角形内角和》数学教案设计

《三角形内角和》数学教案设计

《三角形内角和》數學教案設計标题:《三角形内角和》數學教案設計一、教学目标:1. 学生能理解和掌握三角形的内角和定理。

2. 学生能够通过实验操作,观察并发现三角形内角和等于180度的规律。

3. 培养学生的空间想象能力、逻辑推理能力和动手操作能力。

二、教学重点和难点:教学重点:理解并掌握三角形内角和定理。

教学难点:通过实验操作,发现并理解三角形内角和等于180度的规律。

三、教学过程:1. 引入新课:教师可以通过提问:“同学们,你们知道三角形有几条边,几个角吗?”引导学生复习三角形的基本概念。

然后提出问题:“那么,一个三角形的三个内角加起来是多少度呢?”,引发学生思考,引入新课。

2. 新课讲解:教师可以利用教具或PPT展示,先让学生自己尝试测量不同类型的三角形的内角,并记录下来。

然后,教师引导学生观察数据,发现三角形内角和总是等于180度的规律。

最后,教师给出三角形内角和定理的定义和证明方法。

3. 实验操作:教师可以让学生分组进行实验,每组准备一些不同类型的三角形纸片,用量角器测量每个三角形的内角,验证三角形内角和是否等于180度。

4. 巩固练习:教师提供一些题目,让学生运用所学知识解题,以巩固对三角形内角和定理的理解和掌握。

5. 课堂小结:教师带领学生回顾本节课的内容,总结三角形内角和定理,强调其在实际生活中的应用。

四、作业布置:安排一些与三角形内角和相关的习题,要求学生独立完成,以检验他们对本节课内容的理解程度。

五、教学反思:在课程结束后,教师需要反思教学效果,看看是否达到了预期的教学目标,对于教学过程中出现的问题,应该如何改进等。

以上就是关于《三角形内角和》的数学教案设计,希望对您有所帮助。

《三角形的内角和〉教学设计

《三角形的内角和〉教学设计

《三角形的内角和〉教学设计《三角形的内角和〉教学设计作为一位不辞辛劳的人民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

那么大家知道规范的教学设计是怎么写的吗?下面是店铺收集整理的《三角形的内角和〉教学设计,希望对大家有所帮助。

《三角形的内角和〉教学设计篇1设计理念:本教学活动通过创设情境,让学生从情境中出发经历猜测、验证、交流等数学活动,培养学生动手实践、自主探究与合作交流的能力。

同时,让学生充分感受到:数学源于生活,生活离不开数学,数学就在我们身边。

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一,并在这一系列教学活动中潜移默化地向学生渗透了“转化”数学思想,为后续学习奠定必要的基础。

教学内容:《义务教育课程标准实验教科书·数学》(人教版)四年级下册第85页例5及相应练习。

学情与教材分析:该内容是本册教材第五单元关于三角形内角和的教学。

它安排在三角形的分类之后,组织学生对不同形状和不同大小三角形度量内角的度数。

通过度量,各种三角形内角和之和都接近180°,引发学生对三角形内角和探究的欲望,应用折叠、拼凑等方法验证。

教材重视知识的探索与发现,安排了一系列的实验操作活动。

教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生进行自主探索和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

教学目标:1.通过量、剪、拼等方法,探索和发现三角形内角和是180°。

2.在操作活动中,培养学生的合作能力、动手操作能力,发展学生的空间观念,并应用新知识解决问题。

3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:引导学生发现三角形内角和是180°。

教学难点:用不同方法验证三角形的内角和是180°。

三角形内角和教案(优秀6篇)

三角形内角和教案(优秀6篇)

三角形内角和教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!三角形内角和教案(优秀6篇)教学设计的目的是为了提高教学效率和教学质量,使学生在单位时间内能够学到更多的知识。

《三角形内角和》教学设计范文

《三角形内角和》教学设计范文

《三角形内角和》教学设计范文最新《三角形的内角和》教学设计篇一背景分析:在学习“三角形的内角和”之前,学生已经学习了三角形的特性和分类,知道平角的度数是180°,并且能够用量角器测量角的大小。

“三角形的内角和是180°”是三角形的一个基本特征,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形三个内角之间的关系,也为以后进一步学习几何知识打下良好的学习基础。

教学目标:1、通过测量、剪拼、折拼等活动让学生全面经历探索和发现“三角形的内角和等于180°”的过程。

2、会用“三角形的内角和等于180°”这个结论进行一些简单的计算和推理。

3、体会数学学习的魅力,体验探究学习的乐趣。

教学重难点:探索和发现三角形的内角和等于180°。

教具准备:多媒体课件、一副三角板、量角器、三角形纸片。

学具准备:每个小组准备4个量角器、4把剪刀、两副三角板、两个学具袋,两个学具袋中各装有2个完全相同的锐角三角形、1个直角三角形、一个钝角三角形。

其中1号学具袋中,还装有表格纸一张。

教学过程:一、导入课题1、故事引入,激发兴趣同学们,今天,老师给大家带来一个小故事,想听吗?课件显示数学家——帕斯卡的图片师:孩子们,你们认识他吗?这可是位了不起的人物,他的名字叫帕斯卡。

他可是位数学奇人,从小就痴迷于数学,可帕斯卡的父亲却不支持他学习数学,因为,他从小就体弱多病,然而,这并不能阻挡帕斯卡对数学的热爱,一个个数学问题就像磁石一样深深地吸引着帕斯卡。

他常常背着父亲一个人偷偷琢磨。

12岁那年,他发现了一个改变他一生的数学问题,当父亲知道后激动的热泪盈眶。

从此以后,父亲不仅支持他学习数学,而且还尽全力帮助他。

在父亲的帮助下,帕斯卡成为了世界著名的数学家、物理学家。

师:究竟是什么发现让父亲的态度发了180°的大转弯呢,想知道吗?揭示并板书课题:三角形的内角和。

生齐读课题。

《三角形的内角和》教学设计

《三角形的内角和》教学设计

《三角形的内角和》教学设计《三角形的内角和》教学设计《三角形的内角和》教学设计1 一、教材分析^p“三角形内角和”的度数推理是三角形中的一个重要环节,也是“空间与图形”领域中的重要内容之一,为学生进一步理解三角形三个角、三条边之间的关系打下根底。

本节课首先让学生对三角形的特点进展复习,随后教材中创设了一个有趣的动态情境,导入了新课,激发学生的兴趣,明确“内角和”的含义,然后引导学生探究三角形内角和等于多少度,可以采用不同的方法验证,教学中安排了3个活动,通过这3个活动体验“三角形内角和”的性质和性质的探究过程。

二、学情分析^p有的学生可能从各种渠道已经对“三角形内角和是180°”有所理解,所以本课的重点是通过数学活动体验,理解为什么三角形的内角和是180°,使学生对这个知识的掌握更深入。

经过不断的课改实验,孩子们已经有了一定的自主探究、合作交流的才能。

他们喜欢在理论中感悟,在理论中发表自己的见解,对数学产生了浓重的兴趣。

1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。

2.才能方面:已具备了初步的动手操作才能和探究才能,并且可以进展简单的计算机操作。

三、教学方法浸透猜测——验证——结论——应用——拓展教学目的:1、通过直观操作的方法,探究并发现三角形三个内角和等于180度,在理论活动中,体验探究的过程和方法2、能应用三角形内角和的性质解决一些简单的问题。

教学重点:经历三角形的内角和是180°这一知识的形成、开展和应用的全过程,会应用三角形的内角和解决实际问题;教学难点:是探究和验证性质的过程。

四、教具学具三角板、量角器、剪刀、白纸五、教学过程(一)、激趣导入,提醒课题1、师:同学们,猜猜它是谁?形状似座山,稳定性能坚,三竿首尾连,学问不简单(打一几何图形)三角形(板书)我们已经认识了什么是三角形,谁能说出三角形有什么特点?生答复。

《三角形的内角和》教学设计优秀8篇

《三角形的内角和》教学设计优秀8篇

《三角形的内角和》教学设计优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《三角形的内角和》教学设计优秀8篇作为一名默默奉献的教育工作者,通常会被要求编写教学设计,借助教学设计可以更好地组织教学活动。

2023-2024学年四年级下册数学《三角形内角和》(教案)

2023-2024学年四年级下册数学《三角形内角和》(教案)

教案标题:2023-2024学年四年级下册数学《三角形内角和》教学目标:1. 让学生理解三角形内角和的概念,掌握三角形内角和的基本性质。

2. 培养学生的观察、操作、概括和推理能力。

3. 培养学生的合作意识和团队精神。

教学内容:1. 三角形内角和的概念及性质2. 证明三角形内角和为180度3. 应用三角形内角和解决实际问题教学重点与难点:1. 教学重点:三角形内角和的概念及性质,证明三角形内角和为180度。

2. 教学难点:理解并证明三角形内角和为180度。

教学准备:1. 教师准备:课件、三角板、量角器等教学工具。

2. 学生准备:铅笔、橡皮、三角板、量角器等学习工具。

教学过程:一、导入(5分钟)1. 教师出示一张三角形的图片,引导学生观察三角形的特征。

2. 学生分享观察到的三角形特征,如三条边、三个角等。

3. 教师引导学生思考:三角形的内角和是多少度?二、探究三角形内角和(15分钟)1. 学生分组讨论,探究三角形内角和的性质。

2. 各小组汇报讨论成果,教师点评并总结。

3. 教师引导学生通过实际操作,用量角器测量三角形的内角和。

4. 学生分享测量结果,教师点评并总结。

三、证明三角形内角和为180度(15分钟)1. 教师引导学生回顾平行线的性质,如同位角、内错角等。

2. 学生分组讨论,探究如何利用平行线性质证明三角形内角和为180度。

3. 各小组汇报讨论成果,教师点评并总结。

4. 教师出示证明过程,引导学生跟随证明过程进行学习。

四、应用三角形内角和解决实际问题(10分钟)1. 教师出示实际问题,如测量不规则图形的角度等。

2. 学生分组讨论,探究如何利用三角形内角和解决实际问题。

3. 各小组汇报讨论成果,教师点评并总结。

五、课堂小结(5分钟)1. 教师引导学生回顾本节课所学内容,总结三角形内角和的性质。

2. 学生分享学习心得,教师点评并总结。

六、课后作业(课后自主完成)1. 完成教材相关练习题。

2. 思考:如何利用三角形内角和解决实际问题?教学反思:本节课通过引导学生观察、操作、概括和推理,使学生掌握了三角形内角和的概念及性质。

三角形内角和教学设计(共6篇)

三角形内角和教学设计(共6篇)

三角形内角和教学设计(共6篇)第1篇:“三角形内角和”教学设计“三角形内角和”教学设计教学内容:义务教育教科书《数学》(人教版) 四年级下册第67页例6。

教学目标:1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。

并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点:学生理解不同探究方法的内涵和对所得结论的灵活运用。

设计思路:三角形的内角和是三角形的一个重要特征,它是在学生已经熟悉长方形、平角等有关知识,并掌握了三角形的特征及分类之后的基础上学习的。

四年级的学生已具备了初步的动手操作能力、主动探究能力以及合作学习的习惯,他们正处于由形象思维向抽象思维过渡的阶段。

《课标》明确指出“要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力”。

因此,这节课我将重点引导学生从“猜测—验证—得出结论”展开学习活动,让学生感受这种重要的思维方式。

并在教学中渗透“从特殊到一般”、“利用旧知解决新知”、“进行转化”等数学思想。

同时借助交互式电子白板的画图、手写、图片处理、屏幕捕获、隐藏、拖拽、链接及较好的交互功能等,让学生通过自主探索、实验、发现、讨论、交流获得知识,形成结论。

教学准备:多媒体课件、三角尺等。

教学过程:一、激趣引入(一)认识三角形内角师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,……师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(白板:画弧线,标上∠1、∠2、∠3),我们把三角形里面的这三个角分别叫做三角形的内角。

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)三角形的内角和,即三个内角的和。

三角形内角和定理:三角形三个内角和等于180°。

用数学符号表示为:在△ABC中,△1+△2+△3=180°。

奇文共欣赏,疑义相如析,该页是漂亮的小编给大家收集整理的三角形的内角和数学教学设计【精选4篇】,欢迎借鉴,希望能够帮助到大家。

《三角形内角和》数学教案篇一大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

二、教学目标1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

三、教学重难点教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

四、学情分析通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

五、教学法分析本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。

领悟转化思想在解决问题中的应用。

六、课前准备1、教师准备:多媒体课件、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

七、教学过程(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。

“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环县红星小学集体课案设计
教学流程设计个人修订
教学过程:
一、创设情景,引出问题
1、猜谜语:(课件)
形状似座山,稳定性能坚。

三竿首尾连,学问不简单。

(打一图形名称)三角形(板书)
2、猜三角形(课件)
师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你
知道这是什么三角形吗?
师:提问第3个图形时问:被遮住的两个角是什么角?
会是两个直角吗?为什么?
(引导学生开始对“三角形的内角和是多少”进行思索。


3、引出课题。

师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三
角形角的知识“三角形内角和”。

(板书课题)
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。

为了方便研究,我们把每个
三角形的3个内角分别标上∠1、∠2、∠3。

(2)三角形内角和
师:内角和指的是什么?
生:三角形的三个角的度数的和,就是三角形的内角和。

(多让几个学生说一说)
2、猜一猜。

师:这个三角形的内角和是多少度?
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多
少?可以用什么方法验证呢?
3操作验证:小组合作。

选1个自己喜欢的三角形,选喜欢的方法进行验证。

(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个
(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及
充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、
拼一拼、画一画等方式去探究问题。


4学生汇报。

(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么
会出现这种情况?
师:有没有别的方法验证。

(2)剪拼a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

C、展示学生作品。

D、师展示。

(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。

(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。


(4)数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662) ,法国数学家、物理学家、近代概率论的奠基者。

早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

5、巩固知识。

(1)师:你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是?度。

(2)解决课前问题,为什么画不出1个含有2个直角的三角形?
1个三角形中有没有2个钝角?
(3)师:我们对三角形的认识已经非常清晰,
出示2个三角形,生分别说出内角和。

把两个小三角形拼在一起,问:大三角形的内角和是?度。

教师:为什么不是360°?
三、解决相关问题
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
1、看图,求未知角的度数
2、书上88页10题。

教师:刚才,我们利用了三角形的什么?
3、教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?
求出下面三角形各角的度数。

(1)我三边相等。

(2)我是等腰三角形,我的顶角是96°。

(3)我有一个锐角是40°。

4、判断。

5、求4边形、5边形内角和。

下课的时间就要到了,我们来一个挑战题。

你们敢接受挑战吗?
如果要求10边形的内角和,你会求吗?你有什么发现?
(我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。


四、总结。

师:这节课你有什么收获?。

相关文档
最新文档