平面向量章末总结
平面向量全章小结.ppt
求点P和点M的坐标
P(-10,7) M(2,1)
19. 已知向量a=(1,5),b=(-3,2),求a在b 方向上的正射影的数量。
| a | cos a,b a b 7 13 | b | 13
20. 已知两点A,B的坐标为(5,0),(0,5), 直线OP垂直于直线AB于点P,求点P的坐标
P(5 , 5) 22
x=3, y=-2 7. 已知向量i⊥j,|i|=|j|=1,a=4i-j,b=i+2j, c=2i-3j,计算:a·a+3(a·b)-2(b·c)+1。
32
8. 已知向量r的模和它相对于x轴正方向的转 角θ ,求向量r的坐标。
(1) |r|=16,θ =60°; (8,8 3)
(2) |r|=26,θ =45°; (3) |r|=80,θ =120°;
< a,b >=90° |a+b|= 2 5 , |a-b|= 2 5 <(a+b),a>=45 °
4. 已知△ABC,点O是△ABC的重心(三条
中线的交点),求证: OA OB OC 0
A
O
B
C
D
5. 在△ABC中,引中线AD、BE、CF,求证:
AD BE CF 0
A
F
E
B
C
D
6.给定一个基底{i,j},且a=4i+j,b=3j, c=12i-3j,如果c=xa+yb,求x,y.
AB AD __D__B___.
(3) 如果向量a= 2 b,则向量a与b的关系
3
是 共线 。
(4) AB AC CB BA = 3AB .
高中数学平面向量知识点归纳总结800字(优秀范文8篇)
高中数学平面向量知识点归纳总结800字(优秀范文8篇)关于高中数学平面向量知识点归纳总结,精选5篇优秀范文,字数为800字。
平面向量是数学中的一个重要概念,它不仅在几何学中有广泛的应用,还涉及到物理、工程等多个领域。
本文将对平面向量的应用知识点进行总结。
高中数学平面向量知识点归纳总结(优秀范文):1平面向量是数学中的一个重要概念,它不仅在几何学中有广泛的应用,还涉及到物理、工程等多个领域。
本文将对平面向量的应用知识点进行总结。
一、向量的表示和运算1. 向量的表示:向量可以用一个有序数组或者一个点对来表示,分别称为坐标表示和几何表示。
2. 向量的加法和减法:向量的加法和减法遵循交换律和结合律,可以将向量看作有向线段进行运算。
3. 向量的数量积:向量的数量积是向量的一种运算,结果是一个实数。
它有几何意义和代数意义,可以用来计算向量的模、夹角和投影等。
4. 向量的数量积的性质:数量积满足分配律、交换律、结合律等性质,还满足向量垂直的判定定理和平行的判定定理。
二、向量的几何应用1. 向量的共线和垂直:利用向量共线的性质可以判断直线是否相交、线段是否相交等几何问题;利用向量垂直的性质可以判断两条直线的关系、判断线段之间的位置关系等。
2. 向量的模和单位向量:向量的模表示向量的长度,可以用来计算两点之间的距离等;单位向量是模等于1的向量,可以用来表示方向。
3. 向量的投影:向量的投影表示一个向量在另一个向量上的投影长度,可以用来计算力的分解、向量的分量等。
三、向量的物理应用1. 力的合成和分解:利用向量的加法和减法可以对力进行合成和分解,分析力的平衡和不平衡等物理问题。
2. 动量和动量守恒:动量是物体的物理量,可以用向量表示;利用动量守恒原理可以解决碰撞问题等物理问题。
3. 矢量速度和导数:速度是矢量量,表示物体在单位时间内位移的方向和大小;利用导数可以求解速度与时间的关系。
四、向量的工程应用1. 机械平衡:利用向量的平衡原理可以分析机械结构的平衡条件,设计合理的支撑结构。
第六章平面向量知识点总结
第六章平面向量知识点总结一、平面向量的概念平面向量是指平面上具有大小和方向的量。
它是由起点和终点确定的有向线段。
在平面直角坐标系中,平面向量可以表示为一个有序数对(a, b),其中a表示横坐标的增量,b表示纵坐标的增量。
二、平面向量的表示1. 平面向量的概念平面向量是由两个向量确定的,即它的坐标是有序对(x, y)。
例如平面向量a=(1, 2),其中1表示横坐标的增量,2表示纵坐标的增量。
2. 平面向量的运算(1)平面向量的加法平面向量的加法是指将两个平面向量的对应坐标相加,即(a, b)+(c, d)=(a+c, b+d)。
(2)数乘对于平面向量a=(x, y)和实数k,数乘ka=(kx, ky)。
三、平面向量的运算平面向量的运算包括:平面向量的加法、数乘、模长和方向角。
1. 平面向量的加法设平面向量a=(x₁, y₁),b=(x₂, y₂),则a+b=(x₁+x₂, y₁+y₂)。
2. 数乘设平面向量a=(x, y),实数k,则ka=(kx, ky)。
3. 模长平面向量的模长表示向量的长度,它的计算公式是:|a| = √(x² + y²)。
4. 方向角平面向量的方向角表示向量与x轴的夹角。
它的计算公式是:θ = arctan(y/x)。
四、平面向量的线性运算1. 向量的共线如果平面向量a=λb,则a和b共线。
2. 向量的线性组合设有向量a、b,向量a' = λa,b' = μb,如果a' + b' = 0,那么向量a和b线性无关。
也就是说,向量a和向量b不是平行的,且不是共线的。
3. 平面向量线性运算的性质(1)结合律(a+b)+c=a+(b+c)(2)交换律a+b=b+a(3)数乘结合律k(la)=(kl)a五、平面向量的坐标位置关系1. 向量的平行平面向量a和b平行的充要条件是a=λb。
2. 向量的垂直平面向量a和b垂直的充要条件是a·b=0。
高中数学有关平面向量知识点总结概括
高中数学有关平面向量知识点总结概括高中数学平面向量的知识点总结概括如下:1. 平面向量的定义:平面上两点之间的有向线段。
2. 平面向量的表示法:用向量符号a或者AB来表示。
3. 平面向量的运算:- 平面向量的加法:向量a+b的结果是用起点为a的点与起点为b的点之间的有向线段所代表的向量。
- 平面向量的数乘:向量ka的结果是起点相同且方向与a相同或相反的线段,但其长度为ka倍。
- 平面向量的减法:向量a-b可以表示为a+(-b),其中-(b)表示b的反向量。
4. 平面向量的基本性质:- 平面上任意两个向量的和和差与其起点无关,即将平移后的向量的运算结果与平移前的向量的运算结果相同。
- 向量的交换律:a+b=b+a- 向量的结合律:(a+b)+c=a+(b+c)- 数乘的结合律:k(la)=(kl)a- 数乘的分配律:(k+l)a=ka+la- 零向量的性质:任何向量与零向量的和等于该向量本身。
5. 平面向量的数量积:- 数量积的定义:向量a与向量b的数量积a·b等于a、b的模的乘积和它们的夹角的余弦值的乘积。
- 数量积的计算公式:a·b=|a||b|cosθ,其中θ为a和b的夹角。
6. 平面向量的性质:- 数量积与夹角的关系:a·b=0当且仅当a与b垂直,即a与b的夹角为90度。
- 数量积的交换律:a·b=b·a- 数量积的结合律:(ka)·b=a·(kb)=k(a·b)- 非零向量的性质:若a·b=0,则a、b中至少有一个为零向量。
7. 平面向量的向量积:- 向量积的定义:向量a与向量b的向量积a×b等于a、b的模的乘积和它们的夹角的正弦值的乘积,方向垂直于a、b所在平面,符合右手定则。
- 向量积的计算公式:|a×b|=|a||b|sinθn,其中θ为a和b的夹角,n为单位法向量。
8. 平面向量的性质:- 向量积与夹角的关系:|a×b|=|a||b|sinθ,其中θ为a和b的夹角。
平面向量知识点总结归纳
平面向量知识点总结归纳一、向量的基本概念1. 向量的定义既有大小又有方向的量叫做向量。
例如,物理学中的力、位移、速度等都是向量。
向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量的大小叫做向量的模,记作a(对于向量a)。
模为0的向量叫做零向量,记作0,零向量的方向是任意的。
模为1的向量叫做单位向量。
2. 向量的表示方法几何表示:用有向线段表示向量,有向线段的起点和终点分别表示向量的起点和终点。
例如,以A为起点,B为终点的向量记作AB。
字母表示:用小写字母a,b,c,表示向量。
3. 相等向量与平行向量相等向量:长度相等且方向相同的向量叫做相等向量。
若a=b,则a=b且a与b方向相同。
例如,在平行四边形ABCD中,AB=DC。
平行向量(共线向量):方向相同或相反的非零向量叫做平行向量。
规定零向量与任意向量平行。
若a与b是平行向量,则记作ab。
例如,在梯形ABCD中,ADBC。
二、向量的运算1. 向量的加法三角形法则已知非零向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC=a+b。
例如,若a表示向东3个单位长度的位移,b表示向北4个单位长度的位移,那么a+b表示向东北方向5个单位长度(根据勾股定理3^2+4^2 = 5)的位移。
平行四边形法则已知两个不共线向量a,b,作AB=a,AD=b,以AB,AD为邻边作平行四边形ABCD,则向量AC=a+b。
运算律:向量加法满足交换律a+b=b+a,结合律(a+b)+c=a+(b+c)。
2. 向量的减法定义:向量a与b的差ab=a+(b),其中b是b的相反向量,b与b大小相等,方向相反。
三角形法则:已知向量a,b,在平面内任取一点O,作OA=a,OB=b,则向量BA=ab。
3. 向量的数乘定义:实数与向量a的积是一个向量,记作a,它的长度a=a,它的方向当> 0时与a相同,当<0时与a相反,当= 0时,a=0。
新高一第六章平面向量章末总结规律总结1...
新高一第六章平面向量章末总结规律总结1...新高一第六章平面向量章末总结规律总结1.本章我们学习的向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段的起点位置没有关系,同向且等长的有向线段都表示同一向量.数学中的向量指的是自由向量,根据需要可以进行平移.2.共线向量条件和平面向量基本定理,揭示了共线向量和平面向量的基本结构,它们是进一步研究向量正交分解和用坐标表示向量的基础.3.向量的数量积是一个数,当两个向量的夹角是锐角或零角时,它们的数量积为正数;当两个向量的夹角为钝角或180°角时,它们的数量积为负数;当两个向量的夹角是90°时,它们的数量积等于0.零向量与任何向量的数量积等于0.通过向量的数量积,可以计算向量的长度(模)、平面内两点间的距离、两个向量的夹角,判断相应的两条直线是否垂直.4.平面向量的应用中,用平面向量解决平面几何问题,要注意“三部曲”;用向量解决物理问题,体现了数学建模的要求,要根据题意结合物理意义作出图形,转化为数学问题,再通过向量运算使问题解决.5.正、余弦定理将三角形边和角的关系进行量化,为我们解三角形或求三角形的面积提供了依据,而三角形中的问题常与向量、函数、方程及平面几何相结合,通常可以利用正、余弦定理完成证明,求值问题.(1)解三角形与向量的交汇问题,可以结合向量的平行、垂直、夹角、模等知识转化求解.(2)解三角形与其他知识交汇问题,可以运用三角形的基础知识,正、余弦定理、三角形的面积公式与三角恒等变换,通过等价转化构造方程及函数求解.6.学习本章要注意类比,如向量的运算法则及运算律可与实数相应的运算法则及运算律进行横向类比.7.向量是数形结合的载体.在本章学习中,一方面通过数形结合来研究向量的概念和运算;另一方面,我们又以向量为工具,运用数形结合的思想解决数学问题和物理的相关问题.同时,向量的坐标表示为我们用代数方法研究几何问题提供了可能,丰富了我们研究问题的范围和手段.。
(完整版)高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
高一数学必修四第二章 平面向量章末总结
高一数学必修四第二章平面向量章末总结平面向量是高中数学必修四中的一章内容,主要介绍了平面向量的定义、平面向量的加法、减法、数乘、数量积、向量积等基本运算,以及平面向量的共线、垂直、平行、四边形法则、平面向量的投影等相关概念和定理。
在学习这一章节的过程中,我深刻体会到平面向量的重要性和应用,对于解决实际问题有着很大的帮助。
下面我将对这一章内容进行总结。
第一节平面向量的定义平面向量是一个有大小和方向的量。
平面向量的表示可以用有向线段表示,其中线段代表向量的大小,箭头代表了向量的方向。
平面向量的起点和终点分别叫做向量的始点和终点。
平面向量常用大写字母表示,例如:AB、AC。
平面向量也可以用坐标表示,例如:向量AB的坐标为(3,4),表示向量的起点在原点,终点在坐标点(3,4)处。
平面向量的大小叫做向量的模,用|AB|表示。
第二节平面向量的加法平面向量的加法满足三个定律:1. 交换律:AB + BC = BC + AB.2. 结合律:(AB + BC) + CD = AB + (BC + CD).3. 加法逆元:对于任意的向量AB, 存在向量BA, 使得AB +BA = 0, BA + AB = 0.第三节平面向量的数乘平面向量的数乘即将向量与一个实数进行乘法运算。
加法和数乘的运算统称为线性运算。
数乘满足两个定律:1. 结合律:a(bAB) = (ab)AB.2. 分配律:(a+b)AB = aAB + bAB.第四节平面向量的减法平面向量的减法可以转化为加法和数乘的运算:AB - AC = AB + (-1)AC第五节平面向量的数量积数量积又称为点积,记为AB·CD, 定义为AB·CD = |AB| |CD| cosθ, 其中θ为两个向量的夹角。
第六节平面向量的向量积向量积的结果是一个向量,记为AB×CD,用它来表示与它们夹角θ所在平面的法向量,其大小等于两个向量的模的乘积与夹角θ的正弦值,方向遵循右手螺旋法则。
(完整版)平面向量知识点及方法总结范文总结范文
(完整版)平面向量知识点及方法总结范文总结范文1平面向量知识点小结及常用解题方法一、平面向量两个定理1.平面向量的基本定理2.共线向量定理。
二、平面向量的数量积r1.向量b在向量a上的投影:|b|co,它是一个实数,但不一定大于0.rrr「rr「r2.ab的几何意义:数量积ab等于a的模iai与b在a上的投影的积.三坐标运算:设a(某,y),b(某2,y2),则rr(1)向量的加减法运算:ab(某i某2,yiy2),ab(某某,yy2)•(2)实数与向量的积:a(某,y)(某,y).uuLr(3)若A(某,y),B(某2,y2),则AB(某2某,y2y),即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标(4)平面向量数量积:ab某某2yy2.(5)向量的模:ai2|a|2某2y2|a|■.某2y2.四、向量平行(共线)的充要条件rrrrrrrr2a//bab(b0)(ab)五、向量垂直的充要条件rrrrrrrabab0|ab||a、rrrr六・a(某,y1),b(某2,y2)copa,bf七、向量中一些常用的结论.三角形重心公式在厶ABC中,若A(某,y),B(某2,y2),C(某3,y3),则重心坐标为G(_一,_竺_)•332.三角形“三心”的向量表示uuruuuuurr,“二、(1)GAGBGC0GABC的重心.uuruuuumuuuuuuum,“十、(2)PAPBPBPCPCPAPABC 的垂心•uuuuuuuuuuuuuuuuiuuuut(3)|AB|PC|BC|PA|CA|PB0PABC的内心;3•向量PA,皑Puu中三终点A,B,C共线存在实数,,使得PAPBPC且1.—fuur1uuuuuir4.在厶ABC中右D为BC边中点则AD(ABAC)uuuuuu5.与AB共线的单位向量是_uuu-|AB|(|a||b|)某1y2y某20.b|某1某2某1某22::-22■.某1Y1.-2Y22七•向量问题中常用的方法(一)基本结论的应用rrrrrrrrr5.平面向量ab(4,2),cmab(mR),且c与a的夹角等于c与b的夹角,则m()A、2B、1C、1D、2uuur16.ABC中AN—uuuruuu2uuuuuuNC,P是BN上一点若APACmAB贝Vm=311ULTuuur2uiT2uuu2uuu2uuu27.o为ABC平面内一点,若oABCoBCAoCAB则o是ABC心■-BA-8.(2022课标I理)已知向量a,b的夹角为600,a2,b1,贝Ua2b______________PBPCP0BF0C则ADC900,AD2,BC1,p是腰DC上的动点,m=A.2B.3C.4D.53.设a、b都是非零向量,下列四个条件中,能使rr阜里成立的条件是()|a||b|rrrrrrrrrrA、abB、a//bc、a2bD、a//b且|a||b|mu4.已知点A1,3,B4,1,则与向量AB同万向的单位向量为2•已知ABC 和点M满足MAMB+MC0•若存在实数m使得ABACmAM成立,则A•ABC900B•BAC90°C•ABACD.ACBC1•设点M是线段BC的中点,点A在直线BC 外,uur2BCuuuuuu16,ABACuuruuuuuuuABAC贝VAM(A)8(B)4(C)2(D)1uuu$-umruuu9.如图,在△ABC中,ADAB,BCJ;3BD,AD1,则(B込也/0uuurumrACAD=(A)2品(C)厂(D灵r123uuuuuu10.已知点A1,1.B1,2.C2,1D3,4,则向量AB在CD方向上的投影为A3転B.C.3佢D37152222(二)利用坐标法12.已知直角梯形ABCD中,AD//BC(二)利用投影定11设ABC.F0是边AB上一定点,满足F0B4AB,且对于边AB上任一点P,恒有3uuuuuuPA3PB的最小值为13.(2022课标II理)已知ABC是边长为2的等边三角形,P为平面ABC内一点,uuuPAuuuuuur(PBPC)的最小值是(B.34C.-23D.114.15.向量问题基底化uuv在边长为1的正三角形ABC中,设BCuuuvuuv2BD,CA3CE则ADuuvBE(2022天津理)在ABC中,/A60,uuuuuAB3,AC2.若BD2DC,uuuuuuruuuAEACAB(uuuruuuR),且ADAE4,则的值为16•见上第11题(四)数形结合代数问题几何化,几何问题代数化例题1.uuur1uuurABC中AN-NC,P是BN上一点若32.(2022课标I理)已知向量a,b的夹角为2uuurAC11600,|a2,|b|uuuAPiuumAB贝Vm=3、uuur如图,在△ABC中,ADAB,BCuuurBD,ADuuruuuruuurACAD=(A)23(B)出2(C)17.设向量a,b,c满足a=b=1,ag)=c,bc=600,则c的最大值等于A.2B.318.若a,b,c均为单位向量,且ab0,(A)21(ac)(B)1(C)C.(b22c)D.10,则|abc|的最大值为(D)219.已知a,b是单位向量,ag)0.若向量c满足|c1,则c的取值范围是A.,2-1,,,2+1B..2-1,,.2+2C.1,,,2+1D.1,,「2+220.已知两个非零向量a,b满足|a+b|=|ab|,则下面结论正确的是(A)a//b(五)向量与解三角形(B)a丄b(C)(D)a+b=ab21.在△ABC中,AB=2,uuuruuuAC=3ABgBC=1则BC4uurur22.已知平面向量,,(围_______ULT23.锐角三角形ABC中oATU0,ULToBTUUUTUTuUTUU0)满足,,(0,0)1,与-夹角1200,求取值范UUUoC,A300若coBinCUJUABcoCACinBUr、2moA求m。
第六章平面向量及其应用章末总结课件(人教版)
2
2
由 b=3 及余弦定理 b =a +c -2accos B,
2
2
得 9=a +c -ac.
所以 a= ,c=2 .
规律总结
解三角形就是已知三角形中的三个独立元素(至少一条边)求出其他元素的
过程.三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平
分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时
∠
=
(-∠)
=
在△ABC 中,BC=5,
2
2
2
2
2
由余弦定理得 AC =AB +BC -2AB·BC·cos B=8 +5 -2×8×5×=49,
所以 AC=7.
=3,
题型四
正、余弦定理的综合应用
[例 4] (2021·山西运城模拟)△ABC 的角 A,B,C 的对边分别为 a,b,c,已知
所以 tan B= ,又 0<B<π,所以 B=.
[例 3] 在△ABC 中,内角 A,B,C 的对边分别为 a,b,c,且 bsin A= acos B.
(2)若b=3,sin C=2sin A,求a,c的值.
解:(2)由 sin C=2sin A 及=,得 c=2a,
→
→
所以=2,即 D 错误.故选 AB.
→
→
→
(2)如图所示,正方形 ABCD 中,M 是 BC 的中点,若=λ+μ,则λ+μ等于
(
)
(A)
(B)
(C)
→
→
→
(D)2
第二章平面向量及其应用章末总结提升课件高一下学期数学北师大版
中同样适用,但是这里的“同类项”“公因式”是指向量,实数看作是向量的系
数.
(2)方程法:向量也可以通过列方程来解,把所求向量当作未知数,利用解方
程的方法求解,同时在运算过程中多注意观察,恰当地运用运算律,简化运
算.
变式训练 1(1)如图所示,在正方形 ABCD 中,M 是 BC 的中点,若
的侵袭.
规律方法
用向量观点解题,关键在于找到好的切入点,如果题中的速度
(既有大小,又有方向)、距离都可以用向量表达.本题可根据台风中心与城
市间的距离不超过台风侵袭的半径来建立向量不等式,再根据模长公式,求
出时间.
变式训练4一艘船以5 km/h的速度向垂直于对岸的方向行驶,该船实际航行
方向与水流方向成30°角.求水流速度与船的实际速度.
和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸
显最本质的特征,它是解决问题时常用的方法.在解决平面向量的实际问题
时,结合题目情景,可将问题抽象出一个几何图形(一般利用三角形、平行
四边形、矩形为主),可以直观形象地反映问题中的元素和量的关系,有助
于提升学生的直观想象的思维能力.
【例3】 已知向量a与b不共线,且|a|=|b|≠0,则下列结论一定正确的是( A)
所以 − =λ( − ),又 2 = ,
所以 =(1-λ)+λ=3(1-λ)+λμ =3(1-λ)a+λμb,由于 =
所以
3
1
3(1-λ)=4,λμ=4,解得
3
1
λ=4,μ=3.
3
1
a+4b,
平面向量章末总结
6.(浙江高考)若平面向量α、β满足|α|=1, |β|≤1,且以向量α、β为邻边的平行四边形的面 积为1/2,则α与β的夹角θ的取值范围是 ____________.
7.今有一小船位于d=60 m宽的河边P处,从这里起,在 下游l=80 m处河流有一瀑布,若河水流速方向由上游指 向下游(与河岸平行),水速大小为5 m/s,如图,为了使 小船能安全渡河,船的划速不能小于多少?当划速最小 时,划速方向如何?
求模公式:
a
2
a
求夹角公式: cos a,b a b ab
向量坐标运算
三.平面向量的两个重要定理
(1)向量共线定理:向量a(a≠0)与b共线当且仅当存在唯 一一个实数λ,使b=λa.
(2)平面向量基本定理:如果e1,e2是同一平面内的两个 不共线向量,那么对这一平面内的任一向量a,有且只 有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一 组基底.
中,已知向A量组A→B与专A→C项满足基 A础→→B训+ A练→ →C
·B→C=0
且
→ AB →
→ AC ·→
=12,
|AB| |AC|
|AB| |AC|
则△ABC 为
(A )
A.等边三角形 C.等腰非等边三角形
B.直角三角形 D.三边均不相等的三角形
因为解非零析向量A→B与A→C满足
→ AB →
+
3.已知 a=(2,-1),b=(λ,3),若 a 与 b 的夹角为钝角,则 λ 的取值范围是_(_-__∞__,__-__6_)∪___-__6_,__32_____.
由 a·b<0,即 2λ-3<0,解得 λ<32,由 a∥b 得:
6=-λ,即 λ=-6.因此 λ<32,且 λ≠-6.
高中数学平面向量知识点总结
高中数学平面向量知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!高中数学平面向量知识点总结高中数学平面向量知识点总结归纳论起数学,高中数学平面向量知识点又是哪些?小伙伴们可有了解过?不妨一起来关注下吧!以下是本店铺为大家带来的高中数学平面向量知识点总结归纳,欢迎参阅呀!高中数学平面向量知识点总结归纳平面向量1.基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
平面向量最新最全的章末知识点总结
a· b=0 __________
x1x2+y1y2=0 ____________
[思考辨析 判断正误] 1.平面内的任何两个向量都可以作为一组基底.( × ) 提示 平面内不共线的两个向量才可以作为一组基底. → → 2.若向量AB和向量CD共线,则 A,B,C,D 四点在同一直线上.( × )
由|ka+b|= 3|a-kb|,
(1)用k表示数量积a· b; 得(ka+b)2=3(a-kb)2, ∴k2a2+2ka· b+b2=3a2-6ka· b+3k2b2. ∴(k2-3)a2+8ka· b+(1-3k2)b2=0.
∵|a|= cos2α+sin2α=1,|b|= cos2β+sin2β=1,
第二章 平面向量
章末复习
学习目标
1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征. 2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质. 3.体会应用向量解决问题的基本思想和基本方法. 4.进一步理解向量的“工具”性作用.
内容索引
知识梳理
题型探究
达标检测
知识梳理
1.向量的运算:设a=(x1,y1),b=(x2,y2)
∴k2-3+8ka· b+1-3k2=0,
2k2+2 k2+1 ∴a· b= 8k = 4k (k>0).
解答
(2)求a· b的最小值,并求出此时a与b的夹角θ的大小.
解
k2+1 1 1 k + a· b= 4k =4 k .
1 1 由对勾函数的单调性可知,f(k)=4k+ k 在(0,1]上单调递减,在[1,+∞) 上单调递增,
面内的任意向量a,有且只有一对实数λ1,λ2,使a= λ1e1+λ2e2 .
高中数学平面向量知识点总结概括3篇
高中数学平面向量知识点总结概括3篇高中数学平面向量知识点总结概括1一、定比分点定比分点公式(向量P1P=λ向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。
则存在一个实数λ,使向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ)。
(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式。
二、三点共线定理若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。
三、三角形重心判断式在△ABC中,若GA+GB+GC=O,则G为△ABC的重心。
四、向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是xy—xy=0。
零向量0平行于任何向量。
五、向量垂直的充要条件a⊥b的充要条件是ab=0。
a⊥b的充要条件是xx+yy=0。
零向量0垂直于任何向量。
设a=(x,y),b=(x,y)。
六、向量的运算1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x,y+y)。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=—b,b=—a,a+b=0。
0的反向量为0AB—AC=CB。
即“共同起点,指向被减”a=(x,y)b=(x,y)则a—b=(x—x,y—y)。
4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a ∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
《平面向量》知识点归纳总结
第一章 平面向量2.1向量的基本概念和基本运算16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.2.2平面向量的基本定理及坐标表示21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作baCBAa b C C-=A -AB =B为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
平面向量第二章章末复习
高考数学第二章 平面向量(复习)【学习目标】1、理解和掌握平面向量有关的概念;熟练掌握平面向量的几何运算和坐标运算;2、熟悉平面向量的平行、垂直关系和夹角公式的应用; 【学习过程】一、自主学习(预习教材P116—P121) 1、平面向量有关的概念:(1)向量;(2)向量模;(3)相等向量;(4)相反向量;(5)零向量;(6)单位向量;(7)平行向量;(8)垂直向量;(9)向量的夹角;(10)向量的坐标。
2、向量的运算:(1)加减法;(2)实数与向量的乘积;(3)向量的数量积。
3、几个重要的结论:设11a (x ,y )=,22b (x ,y )=,λ为一实数。
(1)+ a b =________;- a b =__________ ;λ a =__________;a b ⋅= .(2)设a =(x,y),则2a= _____________或a_______________;(3)设θ是a 与b的夹角,则co s θ=_________=_______________; (4)a b ⊥ ⇔a b 0⋅=⇔ ;(5)a ∥b ⇔存在0λ≠,使得a b =λ⇔ 二、合作探究1、设1e 、2e 是两个不共线的向量,已知AB =122e k e + ,123C B e e =+ ,122C D e e =- ,若,,A B D 三点共线,求k 的值.2、已知向量()()4,3,1,2a b ==-,求 ⑴求a与b的夹角θ;⑵若向量a b λ-与2a b +垂直,求λ的值.3、向量a (1,1)=-,且a 与a 2b + 方向相同,求a b ⋅ 的取值范围。
三、交流展示1、已知正方形ABC D 的边长为1,AB a = ,BC b = ,AC c = ,则a b c ++为多少?2、若12,e e 是夹角为60的两个单位向量,则122a e e =+ ;1232b e e =-+的夹角为多少?3、已知向量()2,2a =- ,()5,b k = ,若a b +不超过5,则k 的取值范围是多少?四、达标检测(A 组必做,B 组选做)A 组:1. 下列各组向量中,可以作为基底的是( )A.()()120,0,1,2e e ==-B. ()()121,2,5,7e e =-=C. ()()123,5,6,10e e ==D. ()12132,3,,24e e ⎛⎫=-=- ⎪⎝⎭2. 若平面向量b 与向量()1,2a =- 的夹角是180 ,且b =,则=b ( )A.()3,6-B.()3,6-C.()6,3-D.()6,3-3. 已知向量()1,2a =,()2,4b =-- ,c =,若()52a b c +⋅=,则a与c的夹角为( )A.30B.60C.120D.1504.已知向量()1,1a = ,()2,3b =- ,若2k a b - 与a垂直,则实数k = . 5. 如右图所示,在△AOB 中,若A ,B 两点坐标分别为(2,0),(-3,4),点C 在AB 上,且平分∠BOA ,求点C 的坐标.B 组:1. 已知a =(2,3),b =(-4,7),则b 在a 方向上的投影为________. 2. 已知OA→=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ).若点A 、B 、C能构成三角形,则实数m 应满足的条件为________.3.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,求a 与b 的夹角θ.。
平面向量章末小结 课件
定义 求两个向量差的运算,叫做向量的减法
法则
三角形法则
[说明] 要注意三角形法则与平行四边形法则的要 素.向量加法的三角形法则的要素是“首尾相接,指向终 点”;向量减法的三角形法则的要素是“起点重合,指向 被减向量”;平行四边形法则的要素是“起点重合”.
3.在如图平行四边形中,常有以下关系 ① AB + AD = AC ; ② AB + AD =2 AO ; ③ AB - AD = DB ; ④ AB + BC = AC .
(a+b)·c=a·c+b·c
[说明] 数量积不满足结合律,即(a·b)·c≠(b·c)a.
3.两个向量数量积的性质 设 a 与 b 都是非零向量,e 是单位向量,θ0 是 a 与 e 的夹角, θ 是 a 与 b 的夹角.
①e·a=a·e=|a|cos θ0;
②a⊥b⇔a·b=0; ③当 a 与 b 同向时,a·b=|a||b|,当 a 与 b 反向时,a·b= -|a||b|,特别地,a·a=|a|2 或|a|= a2
数 λ1,λ2,使 a=λ1e1+λ2e2;
(2)基底:我们把不共线的向量 e1,e2 叫做表示这一平面内 所有向量的一组基底;
(3)向量的分解:一个平面向量用一组基底 e1,e2 表示成 a =λ1e1+λ2e2 的形式,我们称它为向量的分解;当 e1,e2 互相垂 直时,就称为向量的正交分解.
四、平面向量的数量积 1.两个向量数量积的定义 (1)向量 a 与 b 的夹角:已知两个非零向量 a 和 b,在平面
λ(a+b)=λa+λb.
三、平面向量共线定理和平面向量基本定理 1.向量共线定理 向量 a(a≠0)与 b 共线,当且仅当有唯一一个实数 λ,使 b =λa. 该定理的主要作用是证明两直线平行,三点共线问题.
《平面向量》章末总结
《平面向量》章末总结08.11.6一、教学目标:1、了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何意义;2、掌握向量加、减法及数乘向量的运算,并理解其几何意义,理解两个向量共线的几何意义;3、了解平面向量基本定理,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加、减、与数乘运算;理解用坐标表示平面向量共线的条件;4、理解平面向量数量积的含义及其物理意义,掌握数量积的坐标表达式,会进行平面向量数量积的运算。
能运用数量积表示两个向量的夹角;会用数量积判断两个平面向量的垂直关系;5、会用向量解决某些简单的平面几何问题、力学问题和其他一些实际问题。
二、本章知识整合:1、向量的概念(1)向量:(2)零向量:(3)单位向量:(4)相等向量:(5)共线向量:注意:①两个向量之间的关系只能说相等或不相等,共线或不共线,而无所谓谁大谁小,但向量的长度(或模)可以比较大小;②“0”是一个特殊向量,其长度为0,方向是任意的,零向量和任意向量共线,所以解题时不要漏掉“0”的考虑。
2、向量的运算 运 算加法 减法 数乘 数量积 结 果定 义 几何意义性质代数性质几何性质坐标表示),(),,(2211y x b y x a ==注意:①向量加减法的三角形法则记忆口诀是:加法:加向量,首尾连;和向量,起点到终点。
减法:共起点,连终点,方向指向被减向量。
②两向量的数量积是一个数而不是向量,要准确区分两向量数量积的运算性质与数乘向量、实数与实数之积的差异;③若a 、b 、c (0≠b )为实数,则ab=bc ⇒a=c ;但对于向量则不成立,即c a c b b a =≠>⋅=⋅;④数量积的运算只适合交换律、加乘分配律及数乘结合律,但不适合乘法结合律,即c b a ⋅⋅)(不一定等于)(c b a ⋅⋅3、重要定理、公式:(1)平面向量基本定理(2)平行向量基本定理(3)两个非零向量垂直的条件已知),(),,(2121b b b a a a ==,则 错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
→ → → → → AB AC AB AC 1 · 4. 在△ABC 中, 已知向量AB与AC满足 + BC= 0 且 · = , → → → → 2 |AB| |AC| |AB| |AC | 则△ABC 为 A.等边三角形 C.等腰非等边三角形 B.直角三角形 D.三边均不相等的三角形 (A )
(7) a bc ab c ;
;
练习1:
已知向量 AB与 AC 的夹角为 120°,且 AB 3, AC 2
若 AP AB AC, AP BC ,则
7 12
.
1 练习2.设向量 a, b, c 满足| a|=|b|=1 , a b , 2 ,则 | c | 的最大值为( ) A a c, b c
6.(浙江高考)若平面向量α、β满足|α|=1, |β|≤1,且以向量α、β为邻边的平行四边形的面 积为1/2,则α与β的夹角θ的取值范围是 ____________.
7.今有一小船位于d=60 m宽的河边P处,从这里起,在 下游l=80 m处河流有一瀑布,若河水流速方向由上游指 向下游(与河岸平行),水速大小为5 m/s,如图,为了使 小船能安全渡河,船的划速不能小于多少?当划速最小 时,划速方向如何?
A组
专项基础训练 → →
→ → → → AB AC → 因为非零向量AB与AC满足 BC=0,所以∠BAC 的平分 → + → · |AB| |AC| 线垂直于 BC,所以 AB=AC. → → AB AC 1 π 又 cos∠BAC= · = ,所以∠BAC=3. → → 2 |AB| |AC|
章末总结 (第二章)
一.向量相关概念
1.零向量:模的大小为 0 ,方向是任意的 .
它与任意向量都 共线 ,记为0.
2.单位向量:模的大小为 1
a
,与a同向的单位向量为 a
.
3.平行向量 : 方向相同或相反 的向量,也叫 共线向量 . 4.向量的投影 :|b|cos〈a,b〉 叫做向量b在向量a方向上 的投影.
a•b=0
四.易错点 (1) 0 与0的区别; (2) 向量共线与直线共线的联系与区别; (3)由a∥b,b∥c不能推出a∥c;
(4)若a∥b ,不一定有a=λb; (5)若a=(x1,y1),b=(x2,y2)且a∥b,不一定有
x1 y1 ; x2 y 2
(6)若 a b a c a 0 ,则不一定有 b c
三点共线定理:平面上三个点共线的充要条件是存在实 数α 、β ,使 OA OB OB ,其中α + β =1.
四.平面向量的两个充要条件 若两个非零向量a=(x1,y1),b=(x2,y2),则: (1)a∥b⇔ (2)a⊥b⇔ a=λb ⇔ ⇔ x1y2-x2y1=0. x1x2+y1y2=0.
OB =b,则AOB 是向量a与 5.向量的夹角 :设 OA =a, b的夹角.(共起点)
二.向量相关运算
(1)向量加法: 可运用三角形法则或平行四边形法 . (2)向量的减法: 三角形法则 . 注:指向被减
(3)向量的数乘:实数λ 与向量a的积是一个向量, 记作λa . (4)向量数量积:a ⋅ b = 求模公式: a |a ||b| cosθ
解 析
所以△ABC 为等边三角形.
B组
专项能力提升
B
解 析
→ → → → → → → → → AO· BC=AO· (AC-AB)=AO· AC-AO· AB, 1→ → → 因为 OA=OB,所以AO在AB上的投影为2|AB|, → → 1→ → 所以AO· AB=2|AB|· |AB|=2, → → 1→ → 9 同理AO· AC=2|AC|· |AC|=2, 5 → → 9 故AO· BC=2-2=2.
a
2
求夹角公式: cos a, b 向量坐标运算
a b ab
三.平面向量的两个重要定理
(1)向量共线定理:向量a(a≠0)与b共线当且仅当存在唯 一一个实数λ,使b=λa.
(2)平面向量基本定理:如果e1,e2是同一平面内的两个 不共线向量,那么对这一平面内的任一向量a,有且只 有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一 组基底.
3
A.2
B.
3
a=(2,-1),b=(λ,3),若 a 与 b 的夹角为钝角,则 3 (-∞,-6)∪-6,2 λ 的取值范围是________________________ .
3 由 a· b<0,即 2λ-3<0,解得 λ< ,由 a∥b 得: 2
3 6=-λ,即 λ=-6.因此 λ<2,且 λ≠-6.