高等代数选讲 第一讲 数域P上一元多项式环22页PPT
高等代数第一讲代数系统PPT课件
称K为F的子域,F称 而为K的扩域。 则有 deg (fg)=deg f+deg g
C的子域被称作数域,
有理数Q域 是最小的数 --是 域任意数域的子
II Polynomial form
§1- 1基本概念与运算
定义1:(i)设F为一个域X是 ,不属F于 的 任一个符号,则形如
例3:n阶可逆方阵的全体通(常按矩阵的 乘法)是乘法群。一称般为线性.- 群- generallineargrou简 p 记为 GLn(F).
而 SLn(F= ) {AMn(F)detA=1} 称为特殊线性群S- pe- ciaLl ineargroup
定义中的恒元和逆是元乘都在左边的, 可以证明,乘在右有边相也同的性质。 即 aa-1=e, ae=a.
X5 4 X 4 3 X 3 2 X 2 X 1
4X 3
4 45
23 X 2
23 X 3
117 X
23 5 23
586
117 X 2
117 5 117
586 X 586 5 586
r(X)= 2931
于是 q(X)4X323 X211X758,r6(X)29,3 f(X)q(X)(X5)r(X) . r(X)f(5)
若 defgdegg ,则 q令 0。 rf即可
记 fanXnan 1Xn 1 a1Xa0, an0
gbm Xmbm 1Xm 1 b1Xb0,令
q1
an bm
Xnm,
则gq1与f 的首项相同
q1
an bm
Xnm,
则gq1与f 的首项相
f gq1 f1的次数 f 低 比,f1对 同样讨
存在 q1,,qs使 de r0 g de g或 g r00
《高等代数》第一章 多项式
§1 数域关于数的加、减、乘、除等运算的性质通常称为数的代数性质.代数所研究的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的全体所共有的.定义1 设P 是由一些复数组成的集合,其中包括0与1.如果P 中任意两个数的和、差、积、商(除数不为零)仍然是中的数,那么P 就称为一个数域.显然全体有理数组成的集合、全体实数组成的集合、全体复数组成的集合都是数域.这三个数域分别用字母Q 、R 、C 来代表.全体整数组成的集合就不是数域.如果数的集合P 中任意两个数作某一种运算的结果都仍在P 中,就说数集P 对这个运算是封闭的.因此数域的定义也可以说成,如果一个包含0,1在内的数集P 对于加法、减法、乘法与除法(除数不为零)是封闭的,那么P 就称为一个数域.例1 所有具有形式2b a +的数(其中b a ,是任何有理数),构成一个数域.通常用)2(Q 来表示这个数域.例2 所有可以表成形式m m nn b b b a a a ππππ++++++ 1010 的数组成一数域,其中m n ,为任意非负整数,),,1,0;,,1,0(,m j n i b a j i ==是整数.例 3 所有奇数组成的数集,对于乘法是封闭的,但对于加、减法不是封闭的.性质:所有的数域都包含有理数域作为它的一部分.一、一元多项式定义2 设n 是一非负整数,形式表达式111a x a x a x a n n n n ++++-- ,(1) 其中n a a a ,,,10 全属于数域P ,称为系数在数域P 中的一元多项式,或者简称为数域P 上的一元多项式.在多项式(1)以后用 ),(),(x g x f 或 ,,g f 等来表示多项式.注意:这里定义的多项式是符号或文字的形式表达式.定义3 如果在多项式)(x f 与)(x g 中,除去系数为零的项外,同次项的系数全相等)()(x g x f =.系数全为零的多项式称为零多项式,记为0.在(1)中,如果0≠n a n a 称为首项系数,n 称为多项式(1)的次数.零多项式是唯一不定义次数的多项式.多项式)(x f二、多项式的运算设0111)(a x a x a x a x f n n n n ++++=--0111)(b x b x b x b x g m m m m ++++=--是数域P 上两个多项式,那么可以写成∑==ni i i x a x f 0)(∑==mj j j x b x g 0)(在表示多项式)(x f 与)(x g 的和时,如m n ≥,为了方便起见,在)(x g 中令011====+-m n n b b b ,那么)(x f 与)(x g 的和为∑=---+=++++++++=+n i i i i n n n n n n xb a b a x b a x b a x b a x g x f 00011111)()()()()()()(而)(x f 与)(x g 的乘积为其中s 次项的系数是∑=+--=++++s j i j i s s s sb a b a b a b a b a 011110所以)(x f )(x g 可表成显然,数域P 上的两个多项式经过加、减、乘运算后,所得结果仍然是数域P 上的多项式.对于多项式的加减法,不难看出对于多项式的乘法,可以证明,若0)(,0)(≠≠x g x f ,则0)()(≠x g x f ,并且由以上证明看出,多项式乘积的首项系数就等于因子首项系数的乘积.显然上面的结果都可以推广到多个多项式的情形.多项式的运算满足以下的一些规律:1. 加法交换律:)()()()(x f x g x g x f +=+.2. 加法结合律:))()(()()())()((x h x g x f x h x g x f ++=++3. 乘法交换律:. )()()()(x f x g x g x f =4. 乘法结合律:))()()(()())()((x h x g x f x h x g x f =5. 乘法对加法的分配律:)()()()())()()((x h x f x g x f x h x g x f +=+6. 乘法消去律:若)()()()(x h x f x g x f =且0)(≠x f ,则)()(x h x g =.定义4 所有系数在数域P 中的一元多项式的全体,称为数域P 上的一元多项式环,记为][x P ,P 称为][x P 的系数域.§3 整除的概念在一元多项式环中,可以作加、减、乘三种运算,但是乘法的逆运算—除法—并不是普遍可以做的.因之整除就成了两个多项式之间的一种特殊的关系.一、整除的概念带余除法 对于][x P 中任意两个多项式)(x f 与)(x g ,其中0)(≠x g ,一定有][x P 中的多项式)(),(x r x q 存在,使(1))(),(x r x q 是唯一决定的.带余除法中所得的)(x q 通常称为)(x g 除)(x f 的商,)(x r 称为)(x g 除)(x f 的余式.定义5 数域P 上的多项式)(x g 称为整除)(x f ,如果有数域P 上的多项式)(x h 使等式成立.用表示)(x g 整除)(x f ,用“)(|)(x f x g /”表示)(x g 不能整除)(x f .当)(|)(x f x g 时,)(x g 就称为)(x f 的因式,)(x f 称为)(x g 的倍式.当0)(≠x g 时,带余除法给出了整除性的一个判别条件.定理1 对于数域P 上的任意两个多项式)(x f ,)(x g ,其中0)(≠x g ,)(|)(x f x g 的充要条件是)(x g 除)(x f 的余式为零.带余除法中)(x g 必须不为零.但)(|)(x f x g 中,)(x g 可以为零.这时0)(0)()()(=⋅=⋅=x h x h x g x f .当)(|)(x f x g 时,如0)(≠x g ,)(x g 除)(x f 的商)(x q 有时也用)()(x g x f 来表示.二、整除的性质1. 任一多项式)(x f 一定整除它自身.2. 任一多项式)(x f 都能整除零多项式.3. 零次多项式,即非零常数,能整除任一个多项式.4. 若)(|)(),(|)(x f x g x g x f ,则)()(x cg x f =,其中c 为非零常数.5. 若)(|)(),(|)(x h x g x g x f ,则)(|)(x h x f (整除的传递性).6. 若r i x g x f i ,,2,1),(|)( =,则))()()()()()((|)(2211x g x u x g x u x g x u x f r r +++ ,其中)(x u i 是数域P 上任意的多项式.通常,)()()()()()(2211x g x u x g x u x g x u r r +++ 称为)(,),(),(21x g x g x g r 的最后,两个多项式之间的整除关系不因系数域的扩大而改变.即若)(x f ,)(x g 是][x P 中两个多项式,P 是包含P 的一个较大的数域.当然,)(x f ,)(x g 也可以看成是][x P 中的多项式.从带余除法可以看出,不论把)(x f ,)(x g 看成是][x P 中或者是][x P 中的多项式,用)(x g 去除)(x f 所得的商式及余式都是一样的.因此,若在][x P 中)(x g 不能整除)(x f ,则在][x P 中,)(x g 也不能整除)(x f .例1 证明若)()(|)(),()(|)(2121x f x f x g x f x f x g -+,则)(|)(),(|)(21x f x g x f x g例2 求l k ,,使1|32++++kx x l x x .例3 若)(|)(),(|)(x h x g x f x g /,则)()(|)(x h x f x g +/.§4 多项式的最大公因式一 、多项式的最大公因式如果多项式)(x ϕ既是)(x f 的因式,又是)(x g 的因式,那么)(x ϕ就称为)(x f 与)(x g 的一个公因式.定义 6 设)(x f 与)(x g 是][x P 中两个多项式. ][x P 中多项式)(x d 称为)(x f ,)(x g 的一个公因式,如果它满足下面两个条件:1))(x d 是)(x f 与)(x g 的公因式;2))(x f ,)(x g 的公因式全是)(x d 的因式.例如,对于任意多项式)(x f ,)(x f 就是)(x f 与0的一个最大公因式.特别地,根据定义,两个零多项式的最大公因式就是0.引理 如果有等式)()()()(x r x g x q x f += (1)成立,那么)(x f ,)(x g 和)(x g ,)(x r 有相同的公因式.定理2 对于][x P 的任意两个多项式)(x f ,)(x g ,在][x P 中存在一个最大公因式)(x d ,且)(x d 可以表成)(x f ,)(x g 的一个组合,即有][x P 中多项式)(),(x v x u 使由最大公因式的定义不难看出,如果)(),(21x d x d 是)(x f ,)(x g 的两个最大公因式,那么一定有)(|)(21x d x d 与)(|)(12x d x d ,也就是说0),()(21≠=c x cd x d .这就是说,两个多项式的最大公因式在可以相差一个非零常数倍的意义下是唯一确定的.两个不全为零的多项式的最大公因式总是一个非零多项式.在这个情形,我们约定,用来表示首项系数是1的那个最大公因式.定理证明中用来求最大公因式的方法通常称为辗转相除法(division algorithm).例 设343)(234---+=x x x x x f32103)(23-++=x x x x g求()(x f ,)(x g ),并求)(),(x v x u 使)()()()()(x g x v x f x u x d +=.注:定理2的逆不成立.例如令1)(,)(+==x x g x x f ,则122)1)(1()2(2-+=-+++x x x x x x .但1222-+x x 显然不是)(x f 与)(x g 的最大公因式.但是当(2)式成立,而)(x d 是)(x f 与)(x g 的一个公因式,则)(x d 一定是)(x f 与)(x g 的一个最大公因式.二、多项式互素定义7 ][x P 中两个多项式)(x f ,)(x g 称为互素(也称为互质)的,如果显然,两个多项式互素,那么它们除去零次多项式外没有其他的公因式,反之亦然.定理3 ][x P 中两个多项式)(x f ,)(x g 互素的充要条件是有][x P 中多项式)(),(x v x u 使推论2 如果1))(),((1=x g x f ,1))(),((2=x g x f ,那么1))(),()((21=x g x f x f 推广:对于任意多个多项式)2)((,),(),(21≥s x f x f x f s ,)(x d 称为)2)((,),(),(21≥s x f x f x f s 的一个最大公因式,如果)(x d 具有下面的性质:1)s i x f x d i ,,2,1),(|)( =;2)如果s i x f x i ,,2,1),(|)( =ϕ,那么)(|)(x d x ϕ.我们仍用))(,),(),((21x f x f x f s 符号来表示首项系数为1的最大公因式.不难证明)(,),(),(21x f x f x f s 的最大公因式存在,而且当)(,),(),(21x f x f x f s 全不为零时,))()),(,),(),(((121x f x f x f x f s s -就是)(,),(),(21x f x f x f s 的最大公因式,即))(,),(),((21x f x f x f s =))()),(,),(),(((121x f x f x f x f s s -同样,利用以上这个关系可以证明,存在多项式s i x u i ,,2,1),( =,使))(,),(),(()()()()()()(212211x f x f x f x f x u x f x u x f x u s s s =+++如果1))(,),(),((21=x f x f x f s ,那么)(,),(),(21x f x f x f s 就称为互素的.同样有类似定理3的结论.注意 1)当一个多项式整除两个多项式之积时,若没有互素的条件,这个多项式一般不能整除积的因式之一.例如222)1()1(|1-+-x x x ,但22)1(|1+/-x x ,且22)1(|1-/-x x .2) 推论1中没有互素的条件,则不成立.如1)(2-=x x g ,1)(1+=x x f , )1)(1()(2-+=x x x f ,则)(|)(),(|)(21x g x f x g x f ,但)(|)()(21x g x f x f .注意:s )2(≥s 个多项式)(,),(),(21x f x f x f s 互素时,它们并不一定两两互素.例如,多项式34)(,65)(,23)(232221+-=+-=+-=x x x f x x x f x x x f是互素的,但2))(),((21-=x x f x f . 令P 是含P 的一个数域, )(x d 是][x P 的多项式)(x f 与)(x g 在][x P 中的首项系数为1的最大公因式,而)(x d 是)(x f 与)(x g 在][X P 中首项系数为1的最大公因式,那么)()(x d x d =.即从数域P 过渡到数域P 时, )(x f 与)(x g 的最大公因式本质上没有改变. 互素多项式的性质可以推广到多个多项式的情形:1)若多项式),()()(|)(21x f x f x f x h s )(x h 与)(,),(),(,),(111x f x f x f x f s i i +- 互素,则)1)((|)(s i x f x h i ≤≤.2) 若多项式)(,),(),(21x f x f x f s 都整除)(x h ,且)(,),(),(21x f x f x f s 两两互素,则)(|)()()(21x h x f x f x f s .3) 若多项式)(,),(),(21x f x f x f s 都与)(x h 互素,则1))(),()()((21=x h x f x f x f s .§5 因式分解定理一、不可约多项式Con i x i x x x R on x x x Q on x x x )2)(2)(2)(2()2)(2)(2()2)(2(42224+-+-=++-=+-=-. 定义8 数域P 上次数1≥的多项式)(x p 称为域P 上的不可约多项式(irreducible polynomical),如果它不能表成数域P 上的两个次数比)(x p 的次数低的多项式的乘积.根据定义,一次多项式总是不可约多项式.一个多项式是否可约是依赖于系数域的.显然,不可约多项式)(x p 的因式只有非零常数与它自身的非零常数倍)0)((≠c x cp 这两种,此外就没有了.反过来,具有这个性质的次数1≥的多项式一定是不可约的.推广:如果不可约多项式)(x p 整除一些多项式)(,),(),(21x f x f x f s 的乘积)()()(21x f x f x f s ,那么)(x p 一定整除这些多项式之中的一个.二、因式分解定理因式分解及唯一性定理 数域P 上次数1≥的多项式)(x f 都可以唯一地分解成数域P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式)()()()()()()(2121x q x q x q x p x p x p x f t s ==,那么必有t s =,并且适当排列因式的次序后有s i x q c x p i i i ,,2,1,)()( ==.其中),,2,1(s i c i =是一些非零常数.应该指出,因式分解定理虽然在理论上有其基本重要性,但是它并没有给出一个具体的分解多项式的方法.实际上,对于一般的情形,普遍可行的分解多项式的方法是不存在的.在多项式)(x f 的分解式中,可以把每一个不可约因式的首项系数提出来,使它们成为首项系数为1的多项式,再把相同的不可约因式合并.于是)(x f 的分解式成为)()()()(2121x p x p x cp x f s r s r r =,其中c 是)(x f 的首项系数,)(,),(),(21x p x p x p s 是不同的首项系数为1的不可约多项式,而s r r r ,,,21 是正整数.这种分解式称为标准分解式.如果已经有了两个多项式的标准分解,就可以直接写出两个多项式的最大公因式.多项式)(x f 与)(x g 的最大公因式)(x d 就是那些同时在)(x f 与)(x g 的标准分解式中出现的不可约多项式方幂的乘积,所带的方幂的指数等于它在)(x f 与)(x g 中所带的方幂中较小的一个.由以上讨论可以看出,带余除法是一元多项式因式分解理论的基础.若)(x f 与)(x g 的标准分解式中没有共同的不可约多项式,则)(x f 与)(x g 互素.注意:上述求最大公因式的方法不能代替辗转相除法,因为在一般情况下,没有实际分解多项式为不可约多项式的乘积的方法,即使要判断数域P 上一个多项式是否可约一般都是很困难的.例 在有理数域上分解多项式22)(23--+=x x x x f 为不可约多项式的乘积.§6 重因式一、重因式的定义定义9 不可约多项式)(x p 称为多项式)(x f 的k 重因式,如果)(|)(x f x p k ,但)(|)(1x f x p k /+.如果0=k ,那么)(x p 根本不是)(x f 的因式;如果1=k ,那么)(x p 称为)(x f 的单因式;如果1>k ,那么)(x p 称为)(x f 的重因式.注意. k 重因式和重因式是两个不同的概念,不要混淆.显然,如果)(x f 的标准分解式为)()()()(2121x p x p x cp x f s r s r r =,那么)(,),(),(21x p x p x p s 分别是)(x f 的1r 重,2r 重,… ,s r 重因式.指数1=i r 的那些不可约因式是单因式;指数1>i r 的那些不可约因式是重因式.使得)()()(x g x p x f k =,且)(|)(x g x p /.二、重因式的判别设有多项式0111)(a x a x a x a x f n n n n ++++=-- ,规定它的微商(也称导数或一阶导数)是1211)1()(a x n a nx a x f n n n n ++-+='--- .通过直接验证,可以得出关于多项式微商的基本公式:).()()()()()(()())((),()())()((x g x f x g x f x g x f x f c x cf x g x f x g x f '+'=''=''+'='+)))()(())((1x f x f m x f m m '='-同样可以定义高阶微商的概念.微商)(x f '称为)(x f 的一阶微商;)(x f '的微商)(x f ''称为)(x f 的二阶微商;等等. )(x f 的k 阶微商记为)()(x f k .一个)1(≥n n 次多项式的微商是一个1-n 次多项式;它的n 阶微商是一个常数;它的1+n 阶微商等于0.定理6 如果不可约多项式)(x p 是多项式)(x f 的一个)1(≥k k 重因式,那么)(x p 是微商)(x f '的1-k 重因式.分析: 要证)(x p 是微商)(x f '的1-k 重因式,须证)(|)(1x f x p k '-,但)(|)(x f x p k '/.注意:定理6的逆定理不成立.如333)(23++-=x x x x f , 22)1(3363)(-=+-='x x x x f ,1-x 是)(x f '的2重因式,但根本不是)(x f 是因式.当然更不是三重因式.推论 1 如果不可约多项式)(x p 是多项式)(x f 的一个)1(≥k k 重因式,那么)(x p 是)(x f ,)(x f ',…,)()1(x f k -的因式,但不是)()(x f k 的因式.)(x f 与)(x f '的公因式.推论3 多项式)(x f 没有重因式1))(),((='⇔x f x f这个推论表明,判别一个多项式有无重因式可以通过代数运算——辗转相除法来解决,这个方法甚至是机械的.由于多项式的导数以及两个多项式互素与否的事实在由数域P 过渡到含P 的数域P 时都无改变,所以由定理6有以下结论:若多项式)(x f 在][x P 中没有重因式,那么把)(x f 看成含P 的某一数域P 上的多项式时, )(x f 也没有重因式.例1 判断多项式2795)(234+-+-=x x x x x f有无重因式三、去掉重因式的方法设)(x f 有重因式,其标准分解式为s r s r r x p x p x cp x f )()()()(2121 =.那么由定理5),()()()()(1121121x g x p x p x p x f s r s r r ---='此处)(x g 不能被任何),,2,1)((s i x p i =整除.于是11211)()()()())(),((21---=='s r s r r x p x p x p x d x f x f用)(x d 去除)(x f 所得的商为)()()()(21x p x p x cp x h s =这样得到一个没有重因式的多项式)(x h .且若不计重数, )(x h 与)(x f 含有完全相同的不可约因式.把由)(x f 找)(x h 的方法叫做去掉重因式方法.例2 求多项式16566520104)(23456++++--=x x x x x x x f的标准分解式.§7 多项式函数到目前为止,我们始终是纯形式地讨论多项式,也就是把多项式看作形式表达式.在这一节,将从另一个观点,即函数的观点来考察多项式.一、多项式函数设0111)(a x a x a x a x f n n n n ++++=-- (1)是][x P 中的多项式,α是P 中的数,在(1)中用α代x 所得的数0111a a a a n n n n ++++--ααα称为)(x f 当α=x 时的值,记为)(αf .这样,多项式)(x f 就定义了一个数域上的函数.可以由一个多项式来定义的函数就称为数域上的多项式函数.因为x 在与数域P 中的数进行运算时适合与数的运算相同的运算规律,所以不难看出,如果,)()()(,)()()(21x g x f x h x g x f x h =+=那么.)()()(,)()()(21ααααααg f h g f h =+=定理7(余数定理)用一次多项式去除多项式)(x f ,所得的余式是一个常数,这个常数等于函数值)(αf .如果)(x f 在α=x 时函数值0)(=αf ,那么α就称为)(x f 的一个根或零点. 由余数定理得到根与一次因式的关系.推论 α是)(x f 的根的充要条件是)(|)(x f x α-.由这个关系,可以定义重根的概念. α称为)(x f 的k 重根,如果)(α-x 是)(x f 的k 重因式.当1=k 时,α称为单根;当1>k 时,α称为重根.定理8 ][x P 中n 次多项式)0(≥n 在数域P 中的根不可能多于n 个,重根按重数计算.二、多项式相等与多项式函数相等的关系在上面看到,每个多项式函数都可以由一个多项式来定义.不同的多项式会不会定义出相同的函数呢?这就是问,是否可能有)()(x g x f ≠,而对于P 中所有的数α都有)()(ααg f =?由定理8不难对这个问题给出一个否定的回答.定理9 如果多项式)(x f ,)(x g 的次数都不超过n ,而它们对n+1个不同的数有相同的值即)()(i i g f αα=,1,,2,1+=n i ,那么)(x f =)(x g .因为数域中有无穷多个数,所以定理9说明了,不同的多项式定义的函数也不相同.如果两个多项式定义相同的函数,就称为恒等,上面结论表明,多项式的恒等与多项式相等实际上是一致的.换句话说,数域P 上的多项式既可以作为形式表达式来处理,也可以作为函数来处理.但是应该指出,考虑到今后的应用与推广,多项式看成形式表达式要方便些.三、综合除法根据余数定理,要求)(x f 当c x =时的值,只需用带余除法求出用c x -除)(x f 所得的余式.但是还有一个更简便的方法,叫做综合除法.设n n n n n a x a x a x a x a x f +++++=---122110)(并且设r x q c x x f +-=)()()(. (2)其中.)(12322110-----+++++=n n n n n b x b x b x b x b x q比较等式(2)中两端同次项的系数.得到.,,,,121112201100-----=-=-=-==n n n n n cb r a cb b a cb b a cb b a b a⇒ .,,,,112121210100n n n n n a cb r a cb b a cb b a cb b a b +=+=+=+==---- 这样,欲求系数k b ,只要把前一系数1-k b 乘以c 再加上对应系数k a ,而余式r 也可以按照类似的规律求出.因此按照下表所指出的算法就可以很快地陆续求出商式的系数和余式:rb b b b cb cb cb cb a a a a ac n n n n n |)|12101210121---------------------------------+ 表中的加号通常略去不写.例1 用3+x 除94)(24-++=x x x x f .例2 求k 使355)(234+++-=kx x x x x f 能被3-x 整除注意 :若)(x f 缺少某一项,在作综合除法时该项系数的位置要补上零.四、拉格朗日插值公式已知次数n ≤的多项式)(x f 在)1,,2,1(+==n i c x i 的值)1,,,2,1()(+==n i b c f i i .设∑+=++-----=111111)())(()()(n i n i i i c x c x c x c x k x f依次令c x =代入)(x f ,得)())(()(1111++-----=n i i i i i i i i c c c c c c c c b k ∑+=++-++---------=1111111111)())(()()())(()()(n i n i i i i i i n i i i c c c c c c c c c x c x c x c x b x f 这个公式叫做拉格朗日(Lagrange)插值公式.例3 求次数小于3的多项式)(x f ,使3)2(,3)1(,1)1(==-=f f f .下面介绍将一个多项式表成一次多项式α-x 的方幂和的方法.所谓n 次多项式)(x f 表成α-x 的方幂和,就是把)(x f 表示成0111)()()()(b x b x b x b x f n n n n +-++-+-=--ααα的形式.如何求系数011,,,,b b b b n n -,把上式改写成01211)]()()([)(b x b x b x b x f n n n n +-++-+-=---ααα ,就可看出0b 就是)(x f 被α-x 除所得的余数,而12111)()()(b x b x b x q n n n n ++-+-=--- αα就是)(x f 被α-x 除所得的商式.又因为123121)]()()([)(b x b x b x b x q n n n n +-++-+-=---ααα .又可看出1b 是商式)(1x q 被α-x 除所得的余式,而233122)()()()(b x b x b x b x q n n n n +-++-+-=---ααα .就是)(1x q 被α-x 除所得商式.这样逐次用α-x 除所得的商式,那么所得的余数就是n n b b b b ,,,,110- .例4 将5)2()2(3)2(2)2()(234+-+---+-=x x x x x f 展开成x 的多项式. 解 令2-=x y ,则2+=y x .于是532)2(234++-+=+y y y y y f .问题变为把多项式532234++-+y y y y 表成2+y (即x )的方幂和,-2 | 1 2 -3 1 5+) -2 0 6 -14--------------------------------------------------------2 | 1 0 -3 7 | -9+) -2 4 -2-------------------------------------------------------2 | 1 -2 1 | 5+) -2 8------------------------------------------------2 | 1 -4 | 9+) -2----------------------------------1 | -6所以9596)(234-++-=x x x x x f .注意:将)(x f 表成α-x 的方幂和,把α写在综合除法的左边,将α-x 的方幂和展开成x 的多项式,那么相当于将)(x f 表成c c x +-)(的方幂和,要把c -写在综合除法的左边.§8 复系数和实系数多项式的因式分解一、 复系数多项式因式分解定理代数基本定理 每个次数1≥的复系数多项式在复数域中有一个根.利用根与一次因式的关系,代数基本定理可以等价地叙述为:每个次数1≥的复系数多项式在复数域上一定有一个一次因式.由此可知,在复数域上所有次数大于1的多项式都是可约的.换句话说,不可约多项式只有一次多项式.于是,因式分解定理在复数域上可以叙述成:复系数多项式因式分解定理 每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.因此,复系数多项式具有标准分解式s l s l l n x x x a x f )()()()(2121ααα---=其中s ααα,,,21 是不同的复数,s l l l ,,,21 是正整数.标准分解式说明了每个n 次复系数多项式恰有n 个复根(重根按重数计算).二、实系数多项式因式分解定理对于实系数多项式,以下事实是基本的:如果α是实系数多项式)(x f 的复根,那么α的共轭数α也是)(x f 的根,并且α与α有同一重数.即实系数多项式的非实的复数根两两成对.实系数多项式因式分解定理 每个次数1≥的实系数多项式在实数域上都可以唯一地分解成一次因式与含一对非实共轭复数根的二次因式的乘积.实数域上不可约多项式,除一次多项式外,只有含非实共轭复数根的二次多项式.因此,实系数多项式具有标准分解式r s k r r k l s l l n q x p x q x p x c x c x c x a x f )()()()()()(211221121++++---= 其中r r s q q p p c c ,,,,,,,,111 全是实数,s l l l ,,,21 ,r k k ,,1 是正整数,并且),,2,1(2r i q x p x i i =++是不可约的,也就是适合条件r i q p i i ,,2,1,042 =<-..代数基本定理虽然肯定了n 次方程有n 个复根,但是并没有给出根的一个具体的求法.高次方程求根的问题还远远没有解决.特别是应用方面,方程求根是一个重要的问题,这个问题是相当复杂的,它构成了计算数学的一个分支.三、n 次多项式的根与系数的关系.令.)(11n n n a x a x x f +++=- (1)是一个n (>0)次多项式,那么在复数域C 中)(x f 有n 个根,,,,21n ααα 因而在][x C 中)(x f 完全分解为一次因式的乘积:).())(()(21n x x x x f ααα---=展开这一等式右端的括号,合并同次项,然后比较所得出的系数与(1)式右端的系数,得到根与系数的关系.,)1(),()1(),(),),(21323112111124213213131212211n n n n n n n n n n n n n n a a a a a αααααααααααααααααααααααααααααα-=+++-=+++-=+++=+++-=------(其中第),,2,1(n k k =个等式的右端是一切可能的k 个根的乘积之和,乘以k )1(-.若多项式 n n n a x a x a x f +++=- 110)(的首项系数,10≠a 那么应用根与系数的关系时须先用0a 除所有的系数,这样做多项式的根并无改变.这时根与系数的关系取以下形式:.)1(,),(21013121022101n n n n n n a a a a a a αααααααααααα-=+++=+++-=-利用根与系数的关系容易求出有已知根的多项式.例1 求出有单根5与-2,有二重根3的四次多项式.例2. 分别在复数域和实数域上分解1-n x 为标准分解式.§9 有理系数多项式作为因式分解定理的一个特殊情形,有每个次数≥1的有理系数多项式都能分解成不可约的有理系数多项式的乘积.但是对于任何一个给定的多项式,要具体地作出它的分解式却是一个很复杂的问题,即使要判别一个有理系数多项式是否可约也不是一个容易解决的问题,这一点是有理数域与复数域、实数域不同的.在这一节主要是指出有理系数多项式的两个重要事实:第一,有理系数多项式的因式分解的问题,可以归结为整(数)系数多项式的因式分解问题,并进而解决求有理系数多项式的有理根的问题.第二,在有理系数多项式环中有任意次数的不可约多项式.一、有理系数多项式的有理根设011)(a x a x a x f n n n n +++=--是一个有理系数多项式.选取适当的整数c 乘)(x f ,总可以使)(x cf 是一个整系数多项式.如果)(x cf 的各项系数有公因子,就可以提出来,得到)()(x dg x cf =,也就是)()(x g cd x f = 其中)(x g 是整系数多项式,且各项系数没有异于±1的公因子.如果一个非零的整系数多项式011)(b x b x b x g n n n n +++=-- 的系数01,,,b b b n n -没有异于±1的公因子,也就是说它们是互素的,它就称为一个本原多项式.上面的分析表明,任何一个非零的有理系数多项式)(x f 都可以表示成一个有理数r 与一个本原多项式)(x g 的乘积,即)()(x rg x f =.可以证明,这种表示法除了差一个正负号是唯一的.亦即,如果)()()(11x g r x rg x f ==,其中)(),(1x g x g 都是本原多项式,那么必有)()(,11x g x g r r ±=±=因为)(x f 与)(x g 只差一个常数倍,所以)(x f 的因式分解问题,可以归结为本原多项式)(x g 的因式分解问题.下面进一步指出,一个本原多项式能否分解成两个次数较低的有理系数多项式的乘积与它能否分解成两个次数较低的整系数多项式的乘积的问题是一致的.定理10(Gauss 引理) 两个本原多项式的乘积还是本原多项式.定理11 如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定可以分解两个次数较低的整系数多项式的乘积.以上定理把有理系数多项式在有理数域上是否可约的问题归结到整系数多项式能否分解成次数较低的整系数多项式的乘积的问题.推论 设)(x f ,)(x g 是整系数多项式,且)(x g 是本原多项式,如果)()()(x h x g x f =,其中)(x h 是有理系数多项式,那么)(x h 一定是整系数多项式.这个推论提供了一个求整系数多项式的全部有理根的方法. 定理12 设011)(a x a x a x f n n n n +++=--是一个整系数多项式.而sr是它的一个有理根,其中s r ,互素,那么(1) 0|,|a r a s n ;特别如果)(x f 的首项系数1=n a ,那么)(x f 的有理根都是整根,而且是0a 的因子.(2) ),()()(x q srx x f -= 其中)(x q 是一个整系数多项式.给了一个整系数多项式)(x f ,设它的最高次项系数的因数是k v v v ,,,21 ,常数项的因数是.,,,21l u u u 那么根据定理12,欲求)(x f 的有理根,只需对有限个有理数ji v u 用综合除法来进行试验.当有理数jiv u 的个数很多时,对它们逐个进行试验还是比较麻烦的.下面的讨论能够简化计算.首先,1和-1永远在有理数jiv u 中出现,而计算)1(f 与)1(-f 并不困难.另一方面,若有理数)1(±≠a 是)(x f 的根,那么由定理12,)()()(x q x x f α-=而)(x q 也是一个整系数多项式.因此商)1(1)1(),1(1)1(--=+-=-q af q af 都应该是整数.这样只需对那些使商a f a f +--1)1(1)1(与都是整数的ji v u来进行试验.(我们可以假定)1(f 与)1(-f 都不等于零.否则可以用1-x 或1+x 除)(x f 而考虑所得的商.)例1 求多项式2553)(234-+++=x x x x x f的有理根.例2 证明15)(3+-=x x x f在有理数域上不可约.二、有理数域上多项式的可约性定理13 (艾森斯坦(Eisenstein)判别法) 设011)(a x a x a x f n n n n +++=--是一个整系数多项式.若有一个素数p ,使得1. n a p |/;2. 021,,,|a a a p n n --;3. 02|a p /.则多项式)(x f 在有理数域上不可约.由艾森斯坦判断法得到:有理数域上存在任意次的不可约多项式.例如2)(+=n x x f .,其中n 是任意正整数.艾森斯坦判别法的条件只是一个充分条件.有时对于某一个多项式)(x f ,艾森斯坦判断法不能直接应用,但把)(x f 适当变形后,就可以应用这个判断法.例3 设p 是一个素数,多项式1)(21++++=--x x x x f p p叫做一个分圆多项式,证明)(x f 在][x Q 中不可约.证明:令1+=y x ,则由于1)()1(-=-p x x f x ,yCyC y y y yf p pp ppp 1111)1()1(--+++=-+=+ ,令)1()(+=y f y g ,于是1211)(---+++=p p p p p C yC y y g ,由艾森斯坦判断法,)(y g 在有理数域上不可约,)(x f 也在有理数域上不可约.第一章 多项式(小结)一元多项式理论,主要讨论了三个问题:整除性理论(整除,最大公因式,互素);因式分解理论(不可约多项式,典型分解式,重因式);根的理论(多项式函数,根的个数).其中整除性是基础,因式分解是核心.一、基本概念.1.一元多项式(零多项式),多项式的次数.多项式的相等,多项式的运算,一元多项式环.2.基本结论:(1) 多项式的加法,减法和乘法满足一些运算规律.(3) 多项式乘积的常数项(最高次项系数)等于因子的常数项(最高次项系数)的乘积.二、整除性理论1.整除的概念及其基本性质.2.带余除法. (1) 带余除法定理.(2) 设1)()()()(|)(,0)(][)(),(=⇔≠∈x r x f x g x f x g x g x F x g x f 的余式除,. 因此多项式的整除性不因数域的扩大而改变.3. 最大公因式和互素. (1) 最大公因式,互素的概念.(2) 最大公因式的存在性和求法------辗转相除法.(3) 设)(x d 是)(x f 与)(x g 的最大公因式,反之不然.三、 因式分解理论 1.不可约多项式(1) 不可约多项式的概念.(2) 不可约多项式p(x)有下列性质:(4) 艾森斯坦判断法. 2.因式分解的有关结果: (1) 因式分解及唯一性定理.(2) 次数大于零的复系数多项式都可以分解成一次因式的乘积.(3) 次数大于零的实系数多项式都可以分解成一次因式和二次不可约因式的乘积.3.重因式(1) 重因式的概念.(2) 若不可约多项式)(x p 是)(x f 的k 重因式)1(≥k ,则)(x p 是)(x f 的1-k 重因式.(4) 消去重因式的方法:))(),(()(x f x f x f '是一个没有重因式的多项式,它与)(x f 具有完全相同的不可约因式.四、多项式根的理论1.多项式函数,根和重根的概念.2.余数定理.c x -去除)(x f 所得的余式为)(x f ,则.0)()(|=⇔-c f x f c x3.有理系数多项式的有理根的求法.4.实系数多项式虚根成对定理.5.代数基本定理.每个)1(≥n n 次复系数多项式在复数域中至少有一个根.因而n 次复系数多项式恰有n 个复根(重根按重数计算).6.韦达定理.。
高等代数一元多项式
证设
f(x) = anxn + an−1xn−1 + · · · + a0, g(x) = bmxm + bm−1xm−1 + · · · + b0,
其中 an ̸= 0, bm ̸= 0. 则 ∂(f(x)) = n, ∂(g(x)) = m.
. .. . . ..
次数公式
(1) 在考虑多项式 f(x) 和 g(x) 的和时,不妨设 n ≥ m 且令 bm+1 = bm+2 = · · · = bn = 0,则
f(x)
+
g(x)
=
∑n (ai
+
bi)xi.
i=0
从而 ∂(f(x) + g(x)) ≤ n = max(∂(f(x)), ∂(g(x))). (2) f(x)g(x) 的首项是 anbmxn+m,显然 anbm ̸= 0,因之,f(x)g(x) ̸= 0 而且它的次数就是 n + m.
. .. . . ..
多项式的运算律
1 加法交换律:f(x) + g(x) = g(x) + f(x). 2 加法结合律:(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)). 3 乘法交换律:f(x)g(x) = g(x)f(x). 4 乘法结合律:(f(x)g(x))h(x) = f(x)(g(x)h(x)).
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
次数公式
高代选讲第1章、多项式
第一章多项式(讲授7课时)一、教学目的:1、掌握数域的定义,会判定一个代数系统是否是多项式;2、正确理解数域p上的一元多项式的定义,多项式相乘,次数,一元多项式环等概念。
3、掌握多项式的运算及规律。
4、掌握整除的定义,熟练掌握带余除法及整除的性质。
5、正确理解和掌握两个(或者若干个)多项式的最大公因式,互素等概念及性质。
能用辗转相除法求两个多项式的最大公因式。
6、正确理解和掌握不可约多项式的定义与性质及判定。
7、正确理解和掌握k重因式的定义。
8、掌握余数定理,多项式的根及性质。
9、理解代数基本定理,熟练掌握复系数多项式分解定理及标准分解式。
二、教学内容:1、数域、一元多项式、多项式根、多项式整除。
2、最大公因式、不可约多项式、重因式、复系数与实系数多项式的因式分解。
三、教学重点:多项式整除及性质、多项式互素、最大公因式、重因式、不可约多项式判定及多项式的标准分解四、教学难点:多项式互素、最大公因式、不可约多项式及多项式分解五、教学方法:启发讲授六、教学过程:(一)、多项式整除基本知识点1、定义:设(),()[]f x gxhxg x f x。
=,则称()|()∃∈,使()()()hx Pxf xg x P x∈,若()[]2、带余除法定理:(),()[],()0∃∈,有q x r x P x∈≠,则(),()[]f xg x P x g x=+f xg x q x r x()()()()其中()0∂<∂。
r x=,或(())(())r x g x3、整除的性质:(1)、()|(),()|()()()⇒=;f xg x g x f x f x cg x(2)、()|(),()|()()|()f x g x g x h x f x h x ⇒; (3)、11()|(),1,,()|(()()()())i n n f x g x i n f x u x f x u x f x =⇒++;(4)、整除与系数域大小无关;(5)、()|()()g x f x g x ⇔的所有根都是()f x 的根(含重根)常见的n 次单位根。
《元多项式环》课件
元多项式环的特性
环结构:满足加法、乘法和单位元的封闭性 代数性质:满足交换律、结合律和分配律 唯一性:每个元多项式环都有唯一的单位元 线性空间:元多项式环是线性空间,满足线性组合和线性映射的性质
元多项式环的运算规则
加法:将两个多项式相加,得到新的多项 式
减法:将两个多项式相减,得到新的多项 式
乘法:将两个多项式相乘,得到新的多项 式
在计算机科学中的应用
密码学:用于加密和解密 数据
计算机图形学:用于生成 和渲染图像
计算机代数系统:用于求 解代数方程和优化问题
计算机辅助设计:用于设 计和优化工程结构
在物理中的应用
量子力学:元多 项式环在量子力 学中用于描述量 子态和量子操作
统计力学:元多 项式环在统计力 学中用于描述系 统的微观状态和 宏观性质
第二章
定义元多项式环
元多项式环:由元多项式组成的集合,每个元多项式都是某个元环上 的元素
元多项式:由元环上的元素和元环上的运算组成的表达式
元环:由元素和运算组成的集合,每个元素都是某个集合上的元素
元素:由集合上的元素和集合上的运算组成的表达式
运算:由集合上的元素和集合上的运算组成的表达式
合成:将若干个不可约元多项式环合成为一个元多项式环
应用:在代数、几何、数论等领域有广泛应用
感谢您的观看
汇报人:PPT
文字表示法
系数表示:使用系数表示元 多项式环中的元素
符号表示:使用符号表示元 多项式环中的元素
指数表示:使用指数表示元 多项式环中的元素
组合表示:使用组合表示元 多项式环中的元素
代数表示法
定义:元多项式环的代数表示法是指通过代数运算来表示元多项式环的方法 基本概念:元多项式环、代数运算、多项式 代数表示法的特点:简洁、直观、易于理解 代数表示法的应用:在数学、物理、计算机科学等领域都有广泛的应用
高等代数北大版1-4ppt课件
f ( x),g( x)的最大公因式.
§1.4 最大公因式
11
如: f ( x)=x2 1, g( x)=1 ,则 ( f ( x)、g( x))=1. 取 u( x)= 1, v( x)=x2 ,有 u( x) f ( x)+v( x)g( x)=1, 取 u( x)=0, v( x)=1 ,也有 u( x) f ( x)+v( x)g( x)=1, 取u( x)= 2, v( x)=2x2 1 ,也有u( x) f ( x)+v( x)g( x)=1.
用 g( x) 除 f ( x) 得:
f ( x) q1( x)g( x) r1( x) 其中 (r1( x)) ( g( x)) 或 r1( x) 0 .
若 r1( x) 0 ,用 r1( x) 除 g( x),得:
g( x) q2( x)r1( x) r2( x)
§1.4 最大公因式
辗转相除法.
② 定理2中最大公因式 d( x)=u( x) f ( x)+v( x)g( x) 中的 u( x)、v( x) 不唯一.
③ 对于 d( x), f ( x),g( x) P[x], u( x),v( x) P[x],
使 d(x)=u( x) f ( x) v( x)g( x) ,但是 d(x)未必是
若 f ( x), g( x)不全为零,则( f ( x), g( x)) 0.
④ 最大公因式不是唯一的,但首项系数为1的最大
公因式是唯一的. 若 d1( x)、d为2( x) f ( x)、g( x)
的最大公因式,则 d1( x)=c,d2(cx为) 非零常数.
§1.4 最大公因式
4
二、最大公因式的存在性与求法
一元多项式
所以 r2 x就是 f x与 gx的最大公因式:
f x, gx x 3
定理 1.4.2
若dx 是 P[x] 的多项式 f x与 gx的最大公因 式,那么在 P[x] 里可以求得多项式 ux与vx ,
二、教学目的
1.掌握一元多项式整除的概念及其性质。 2.熟练运用带余除法。
三、重点、难点
多项式的整除概念,带余除法定理
1.3.1 多项式的整除概念
设P是一个数域. P[x]是P上一元多项式.
定义1
设f x, gx P[x] ,如果存在 hx P[x] ,使得
f x gxhx,则称 gx整除 f x ,记为
3
虽然 a1,b1, a2,b2 Z,
不一定属于Z ,所以
不是数域.
a1aa不222 一33bb定122b2属, a于a2b221Z(3ab132b2)2
,因此 Z (
3)
定理1.1 任何数域都包含有理数域 Q. (有理数域是最小的数域).
定理1.2 若数域 P R,则P C. (实数域和复数域之间没有其它的数域).
则 (a1 a2) b1 b2 2 Q 2 ,
a1 b1 2 a2 b2 2
(a1a2 2b1b2 ) a1b2 a2b1 2 Q 2
显然,Q Q( 2) R.
再设 a2 b2 2 0, 即 a2,b2 不全为零,从
而 a2 b2 2 0 , a1 b1 2 a1 b1 2 a2 b2 2 a2 b2 2 a2 b2 2 a2 b2 2
a 叫做 i 次项, i叫做 i 次项的系数.
注 2:在一个多项式中,可以任意添上或去掉一些系
数为零的项;若是某一个i次项的系数是1 ,那 么这个系数可以省略不写。
高等代数-1讲解
f ( x ) an x n an1 x n1 a1 x a0 ai x i
i 0
m
g( x ) bm x m bm 1 x m 1 b1 x b0 b j x j
j 0
是数域P上的多项式且 n m . 1.多项式相等
f ( x ) g( x ) f (x)与g (x)中,除去系数为零的
f ( x ) g( x )
(a1b0 a0b1 ) x a0b0
anbm x n m (anbm 1 an1bm ) x n m 1
其中s次项的系数为
as b0 as 1b1
所以 f ( x ) g( x )
n m s0
a1bs 1 a0bs
二. 数域的性质
任何数域P 都包含有理数域Q. 即有理数域是最小的数域.
§1
数
域
三. 作业
1. 判断下列数集是否为数域.
P1 a bi | a Q , b R , i 2 1 ,
P a b
4
m P2 n m , n Z 2
,
P3 a 5 | a Q ,
a1 x a0
其中 a 0 , a1 ,, a n为数域P中的数, 称 f(x)为系数在数域P中的一元多项式, 或简称为数域P上的一元多项式. 注1 称 ai x 为f(x)的i次项, a i 为i次项系数. 特别, a0 称为f(x)的常数项.
i
§2
一元多项式
n a 0, a x 注2 若 n 称为f(x)的首项, a n 为首项系数, n
n称为f(x)的次数,记为 ( f ( x )) n. 注3 当 n 0, a0 0 时,f(x)= a0 称为零次多项式. 注4 当f(x)的所有系数全为0时,f(x)=0 称为零多项式, 零多项式不定义次数!
高等代数第一章一元多项式
1第一章多项式21.1 数域3数是数学的一个最基本的概念,研究数学问题常常需要明确规定所考虑的数的范围,按照所研究的问题不同,我们对数的范围界定也不一样。
例如22x 在有理数范围内不能分解,在实数范围内就可以分解。
210x 在实数范围内没有根,在复数范围内就有根。
自然数整数有理数实数复数NZQRC这是一个认识的渐进的过程。
在讨论多项式的因式分解、方程的根等问题时,都跟数的范围有关。
4在代数中,我们主要考虑一个集合中元素的加、减、乘、除四则运算以及经过四则运算后是否还在这个集合之中。
例如自然数集N 只对加法和乘法封闭,而整数集Z 对加、减、乘三种运算封闭,但对除法不封闭;而有理数集Q 对加、减、乘、除(除数不为0)四种运算都封闭,同样,实数集R 、复数集C 对加、减、乘、除四种运算都封闭。
定义( 运算封闭):在一个数的集合P 中,如果集合中任意两个数做某种运算后的结果仍在P 中,则称数集P 对这种运算是封闭的(closed) 。
5定义1(数域):设P 是一个由一些复数组成的数的集合,其中包含0和1。
如果P 中的任意两个数对加、减、乘、除(除数不为0)都是封闭的,则称P 是一个数域(number field )。
有理数集Q ,实数集R ,复数集C 都是数域,且是三个最重要的数域。
如果某个数集只对加、减、乘封闭,则称其为数环。
整数集是一个数环.任意一个数域P 都是复数域C 的子集,都包含有理数域Q 作为其子域,即满足.Q P C 在Q 和R 之间存在其它数域;但在R 与C 之间没有别的数域存在.61.2 一元多项式教学目的和要求1. 掌握一元多项式形式表达式的准确定义.2. 掌握一元多项式的加法、减法、乘法的运算和运算律.3. 掌握一元多项式经过运算后的次数,并会用相关结论解题.78一、基本概念设x 是一个符号(或称文字),P 是一个数域,定义2:n 是一个非负整数,形式表达式其中,,,,,011P a a a a n n 称为系数在数域P 中的一元多项式(one variable polynomial ),或称为数域P 上的一元多项式。
高数第一章 一元函数 PPT课件
此表表示了毛线的零售量s随月份t而变化的函数关系 它的定 义域为 D{1 2 3 4 5 6 7 8 9 10 11 12}
常用的函数表示法有公式法、表格法和图形法 图像法——用函数的图像表示自变量和因变量间的关系 例3 某河道的一个断面图形如下 其深度y与一岸边0到 测量点的距离x之间的对应关系由图中的曲线所示 这里深度 y是测距x的函数关系是用图形表示的 它的定义域为D=[0 b]
引
言
一、什么是高等数学 ?
初等数学 — 研究对象为常量, 以静止观点研究问题. 高等数学 — 研究对象为变量, 运动和辩证法进入了数学.
数学中的转折点是笛卡儿的变数. 有了变数 , 运动进入了数学, 有了变数,辩证法进入了数学 ,
恩格斯
有了变数 , 微分和积分也就立刻成 为必要的了.
二、如何学习高等数学 ?
x0 x
由此可知微分的一个重要应用是:近似计算。
2、定积分问题举例
矩形面积
梯形面积
曲边梯形的面积如何求? 设曲边梯形是由连续曲线 和 x 轴,以及两直线 所围成 , 求其面积 A .
A?
用矩形面积近似取代曲边梯形面积
y
y
o
a
(四个小矩形)
b
x o
a
(九个小矩形)
b
x
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
2 22 r 2 r xx y y y x2 x2 yy y log log x x 1) 1) a(3 a(3
有些函数它的因变量与自变量的对应规则是用一个方程 F ( x, y ) 0 表示的 称为隐函数
一元多项式环-PPT文档资料
1. 这里x不再局限为实数而是任意的文字或符号。 2. 系数可以是任意数域。
例1
2 3 是Q上多项式; f x 12 x 3 x 9 x
2 f x 3 2 x x 是R上多项式;
2 f x 3 i x 5 x 是C上多项式。
3 1 x 3 x 2 2 3 x , a x, x x 1
第七章 多项式环
§7.1 一元多项式环
高等代数课件--天津科技大学理学院高等代数精品课程教研小组
一、多项式的概念 中学多项式的定义:n个单项式(不含加法或减 法运算的整式)的代数和叫多项式。 例: 4a+3b,3x2 2x 1, 3 y 1 .
2 5
在多项式中,每个单项式叫做多项式的项。这是 形式表达式。
都不是多项式。
高等代数课件--天津科技大学理学院高等代数精品课程教研小组
定义2: f x, gx 是两个多项式, f x gx
最高次项, 亦称为首项。 除系数为0的项之外,同次项的系数都相等。 多项式的表法唯一。 n 方程 a 是一个条件等式而不是 a x a x 0 0 1 n 两个多项式相等。
下面证明多项式乘法满足结合律。
k f x a xg , x b xh , x c x 证:设 i j k i 3 i 0 j 0 k 0 n m l
n m fx g xc c x c x 01 n m
高等代数课件--天津科技大学理学院高等代数精品课程教研小组
b a b a b a b a b , k 0 k 1 k 1 k 1 1 k 0 i j 其中 ca
k 0 , 1 , ,n m .
高代选讲第一章
第一章 多项式一、整除的理论1. 一元多项式:设x 是符号(或文字),n 是一非负整数,形式表达式110,n n n n a x a x a --+++ 其中01,,,n a a a 全属于数域P ,称为系数在数域P 中的一元多项式,或者简称为数域P 上的一元多项式.2. 整除:数域P 上的多项式()g x 称为整除()f x ,如果有数域P 上的多项式()h x 使等式()()()f x g x h x =成立,我们用“()()g x f x ”表示()g x 整除()f x ,用()()†g x f x 表示()g x 不能整除()f x .3. 带余除法:对于[]P x 中任意两个多项式()f x 与()g x ,其中()0g x ≠,一定有[]P x 中的多项式()q x ,()r x 存在,使得()()()()f x q x g x r x =+成立,其中()()()()r x g x ∂<∂或者()0,r x =并且这样的()q x ,()r x 是唯一确定的.4. 最大公因式:设()f x ,()g x 是[]P x 中两个多项式. []P x 中的多项式()d x 称为()f x ,()g x 的一个最大公因式,如果它满足下面两个条件:1) ()d x 是()f x ,()g x 的公因式; 2) ()f x ,()g x 的公因式全是()d x 的因式.5. 互素:[]P x 中两个多项式()f x ,()g x 称为互素(也称互质)的,如果()()(),1f x g x =. 二、性质: 整除:(1)如果()()f x g x ,()()g x f x ,那么()()f x cg x =,其中c 为非零常数.(2)如果()()f x g x ,()()g x h x ,那么()()f x h x (整除的传递性). (3)如果()(),1,2,,,i f x g x i r =那么()()()()()()()()1122r r f x u x g x u x g x u x g x +++ 其中()i u x 是数域P 上任意的多项式.(4)对于数域P 中任意两个多项式()f x 与()g x ,其中()0g x ≠,()()g x f x 的充分必要条件是()g x 除()f x 的余子式为零.(5)对于[]P x 中任意两个多项式()f x 与()g x ,在[]P x 中存在一个最大公因式()d x ,且()d x 可以表示成()f x ,()g x 的一个组合,即有[]P x 中多项式()(),u x v x 使()()()()().d x u x f x v x g x =+ (6)[]P x 中两个多项式()f x ,()g x 互素的充分必要条件是有[]P x中的多项式()(),u x v x 使()()()() 1.u x f x v x g x +=(7)如果()()(),1f x g x =,且()()()f x g x h x ,那么()().f x h x (8)如果()()1,f x g x ()()2,f x g x且()()121,f x f x =那么()()()12.f f x x g x(9)如果()p x 是不可约多项式,那么对于任意的两个多项式()f x ,()g x ,由()()()p x f x g x 一定推出()()p x f x 或者()()p x g x .二、因式分解理论 1、基本概念:(1)不可约多项式:数域P 上次数1≥的多项式()p x 称为域P 上的不可约多项式,如果它不能表成数域P 上的两个次数比()p x 的次数低的多项式的乘积。
第章多项式环
第7章 多项式环§1 一元多项式环观察下列表达式有什么不同之处:321,2x x -++ 其中x 是一个符号; (1)321i i ,2-++ 其中; (2) 321,2A A I -++ 其中1001A ⎛⎫= ⎪-⎝⎭。
(3) 由2i =1-及2A I =,从(2)、(3)式分别得出3211i i i ,22-++=- (4)3213.22A A I A I -++=-+ (5) (4)的左右两边相等,但所含有的关于i 的项却不相同; 同样(5)的左右两边相等,但所含有的关于A 的项却不相同。
对于3212x x -++,当是一个符号时,只能是 32321122x x x x -++=-++, 即相等的两个表达式含有相同的项,此时称3212x x -++为一个多项式,而321i i ,2-++3212A A I -++都不能称为多项式。
1. 多项式的定义 设K 是一个数域,x 是一个不属于K 的符号(也称x 为不定元)。
任意给定一个非负整数,n 在K 中任意取定01,,,n a a a K ∈K ,称表达式1110n n n n a x a x a x a --++++L (6)为数域K 上的一个一元多项式,其中i i a x 常数项0a 也称为零次项。
两个一元多项式相等当且仅当它们的同次项的系数对应相等。
系数全为零的多项式称为零多项式,记为01(00000)n n x x x -=⨯+⨯+⨯+L 。
2. 多项式的次数:用()f x 表示(6)式中的多项式。
如果0n a ≠,则称n n a x 为多项式()f x 的首项,称n 为()f x 的次数,记为 deg ()deg .f x f n == 亦即,一元多项式的次数就是系数不为零的项的最高次数。
当首项系数1n a =时,也称()f x 为首一多项式(补充)。
零多项式的次数规定为-∞,即deg0=-∞项式,次数为零。
约定:,n -∞< ()(),-∞+-∞=-∞ ().n -∞+=-∞3. 多项式的运算 记数域K 上的所有一元多项式组成的集合为[]K x 。
第章多项式环
第7章 多项式环§1 一元多项式环观察下列表达式有什么不同之处:321,2x x -++ 其中是一个符号; (1)321i i ,2-++ 其中; (2) 321,2A A I -++ 其中1001A ⎛⎫= ⎪-⎝⎭。
(3) 由2i =1-及2A I =,从(2)、(3)式分别得出3211i i i ,22-++=- (4)3213.22A A I A I -++=-+ (5) (4)的左右两边相等,但所含有的关于的项却不相同; 同样(5)的左右两边相等,但所含有的关于A 的项却不 相同。
对于3212x x -++,当是一个符号时,只能是 32321122x x x x -++=-++,即相等的两个表达式含有相同的项,此时称3212x x -++为 一个多项式,而321i i ,2-++3212A A I -++都不能称为多项式。
(也称x 为不定元)。
任意给定一个非负整数,n 在K 中任意取定01,,,n a a a K ∈K ,称表达式1110n n n n a x a x a x a --++++L (6)为数域K 上的一个一元多项式,其中i i a x 常数项0a 也称为零次项。
两个一元多项式相等当且仅当它们的同次项的系数对应相等。
系数全为零的多项式称为零多项式,记为01(00000)n n x x x -=⨯+⨯+⨯+L 。
2. 多项式的次数:用()f x 表示(6)式中的多项式。
如果0n a ≠,则称n n a x 为多项式()f x 的首项,称n 为()f x 的次数,记为 deg ()deg .f x f n == 亦即,一元多项式的次数就是系数不为零的项的最高次数。
当首项系数1n a =时,也称()f x 为首一多项式(补充)。
零多项式的次数规定为-∞,即deg0=-∞项式,次数为零。
约定:,n -∞< ()(),-∞+-∞=-∞ ().n -∞+=-∞3. 多项式的运算 记数域K 上的所有一元多项式组成的集合为[]K x 。