向量共线坐标表示

合集下载

第二章 平面向量共线的坐标表示

第二章 平面向量共线的坐标表示
答案:4ab=1
人教A版必修四· 新课标· 数学
版块导航
规 律 归 纳 涉及本节知识点的试题基本上以共线向量的坐标运算为 主, 另外还会与解析几何知识相结合, 以综合题的形式出现.
人教A版必修四· 新课标· 数学
版块导航
4 (2010· 陕西高考)已知向量 a=(2, -1), b=(-1, m), c=(-1,2),若(a+b)∥c,则 m=________.
人教A版必修四· 新课标· 数学
版块导航
三点共线问题 → → → 【例 2】 向量PA=(k,12),PB=(4,5),PC=(10,k), 当 k 为何值时,A、B、C 三点共线?
→ → 思路分析:A、B、C 三点要共线,则必有BA∥CA.
人教A版必修四· 新课标· 数学
版块导航
→ → → 解:BA=PA-PB=(k,12)-(4,5)=(k-4,7). → → → CA=PA-PC=(k,12)-(10,k)=(k-10,12-k). → → ∵A、B、C 三点共线,∴BA∥CA, 即(k-4)(12-k)-7(k-10)=0, 整理得 k2-9k-22=0,解得 k=-2 或 11, ∴当 k=-2 或 11 时,A、B、C 三点共线.
人教A版必修四· 新课标· 数学
版块导航
自测自评
1.已知向量 a=(2,4),b=(-3,-6),则 a 和 b( A.共线且方向相同 C.是相反向量 B.共线且方向相反 D.不共线 )
2 2 解析:a=- b 且- <0,∴a 和 b 共线且方向相反. 3 3
答案:B
人教A版必修四· 新课标· 数学
人教A版必修四· 新课标· 数学
版块导航
→ → → 2 已知向量OA=(k,12)、OB=(4,5)、OC= (-k,10),且 A、B、C 三点共线,则 k=________.

平面向量坐标运算及共线的坐标表示

平面向量坐标运算及共线的坐标表示
思考1:如果向量a,b共线(其中b≠0),
那么a,b满足什么关系? a=λb.
思考2:设a=(x1,y1),b=(x2,y2),若向量a, b共线(其中b≠0),则这两个向量的坐标应 满足什么关系?反之成立吗?
㈣向量a,b(b≠0)共线 x1y2 x2y1
思考3:已知点P1(x1,y1),P2(x2,y2), 若点P分别是线段P1P2的中点、三等分点, 如何用向量方法求点P的坐标?
向量a+b,a-b,λa(λ∈R)如何分别用基底i、j表示?
a+b=(x1+x2)i+(y1+y2)j, a-b=(x1-x2)i+(y1-y2)j, λa=λx1i+λy1j.
a+b=(x1+x2,y1+y2); a-b=(x1-x2,y1-y2); λa=(λx1,λy1).
说明:向量和(差)的坐标等于这向量相应坐标的和(差); 实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
则y ( B )
A. 6
B. -5
C. 7
D. -8
2. 若A(x, -1),B(1, 3),C(2, 5)三点共线,
则x的值为( B )
A. -3 B. -1 C. 1
D. 3
课后练习
3. 若 AB i 2 j, DC (3 x)i (4 y) j (其中i, j的方向分别与x轴、y轴正方向相 同且为单位向量), AB与DC共线,则x、y
海 盐高级中学 高新军
复习引入:
1.平面向量的基本定理是什么? 若e1、e2是同一平面内的两个不共线向量,则对于这一平面内的任 意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2. 2.用坐标表示向量的基本原理是什么?
设i、j是与x轴、y轴同向的两个单位向量,若a=xi+yj,则a= (x,y).

2.3.4平面向量共线的坐标表示课件人教新课标

2.3.4平面向量共线的坐标表示课件人教新课标

所以-2×0+4(x+3)=0.
所以 x=-3.
例8.设点P是线段P1P2上的一点,P1、P2的坐标分别是
(x1, y1), (x2 , y2 ) 。
(1)当点P是线段P1P2的中点时,求点P的坐标; (2)当点P是线段P1P2的一个三等分点时,求点P的坐标。
M
解:(1)
1 OP 2 (OP1 OP2 )
x1 y2 x2 y1 0
即时自测
1.思考判断(正确的打“√”,错误的打“×”) (1)a=(-1,0)与 b=(1,0)的夹角是 0°.( × ) (2)设 a=(x1,y1),b=(x2,y2),若 a∥b,则xx12=yy21.( × ) (3)a=(-2,3),b=(4,6)共线.( × )
判断向量(或三点)共线的三个步骤
1.已知 A,B,C 三点共线,且 A(-3,6),B(-5,2),若 C
点的纵坐标为 6,则 C 点的横坐标为( )
A.-3
B.9
C.-9
D.3
解析:选 A.设 C(x,6),
因为 A,B,C 三点共线,所以A→B∥A→C,
又A→B=(-2,-4),A→C=(x+3,0),
a (x, y)
若A(x1, y1), B(x2 , y2 ), 则 AB (x2 x1, y2 y1).
3.平面向量共线定理: a//
b
b
0
a
b
2.3.4平面向量共线的坐标表示
a 1.
向量 与非零向量 唯一一个实数 ,
b使平得 行(a共 线)当b且(仅b当有0)
2. 如何用坐标表示向量平行(共线)的充要条件?
例 3 已知点 A(3,-4)与点 B(-1,2),点 P 在直线 AB 上,且 |A→P|=2|P→B|,求点 P 的坐标.

(完整版)向量共线的坐标表示

(完整版)向量共线的坐标表示

《平面向量共线的坐标表示》教案教学目标(1)知识目标:理解平面向量共线的坐标表示,会根据向量的坐标,判断向量是否共线,并掌握平面上两点间的中点坐标公式及定点坐标公式;(2)能力目标:通过学习向量共线的坐标表示,使学生认识事物之间的相互联系,培养学生辨证思维能力;(3)情感目标:在解决问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识.教学重点和难点(1)重点:向量共线的坐标表示及直线上点的坐标的求解;(2)难点:定比分点的理解和应用。

教学过程一、新知导入(一)、复习回顾1、向量共线充要条件:2.平面向量的坐标运算: (1).已知 a =(x 1,y 1),b =(x 2,y 2)则a +b =(x 1+x 2,y 1+y 2).a -b =(x 1-x 2,y 1-y 2).λa =(λx 1,λy 1).(2).一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.(二)、问题引入已知下列几组向量:(1)a =(0,2),b =(0,4);(2)a =(2,3),b =(4,6);(3)a =(-1,4),b =(2,-8);(4)a =⎝⎛⎭⎫12,1,b =⎝⎛⎭⎫-12,-1. 问题1:上面几组向量中,a 与b 有什么关系?问题2:以上几组向量中a ,b 共线吗?),,(),,(2211y x B y x A 若),(1212y y x x AB --=则.,)0(//a b a a b λλ=⇔≠使存在唯一实数二、新知探究思考: 两个向量共线的条件是什么?如何用坐标表示两个共线向量?设a =(x 1, y 1) ,b =(x 2, y 2) 其中b ≠a 。

由a =λb 得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0探究:(1)消去λ时能不能两式相除?(不能 ∵y 1, y 2有可能为0, ∵b ≠0 ∴x 2, y 2中至少有一个不为0)(2)能不能写成2211x y x y = ? (不能。

数学知识点:向量共线的充要条件及坐标表示

数学知识点:向量共线的充要条件及坐标表示

数学知识点:向量共线的充要条件及坐标表示数学知识点:向量共线的充要条件及坐标表示向量共线的充要条件:
向量与共线,当且仅当有唯一一个实数λ,使得。

向量共线的几何表示:
设,其中,当且仅当时,向量共线。

向量共线(平行)基本定理的理解:
(1)对于向量a(a≠0),b,如果有一个实数λ,使得b=λa,那么由向量数乘的定义知,学习规律,a与b共线.
(2)反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=μa;当a与b反方向时,有b=-μa.
(3)向量平行与直线平行是有区别的,直线平行不包括重合.
(4)判断a(a≠0)与b是否共线时,关键是寻找a前面的系数,如果系数有且只有一个,说明共线;如果找不到满足条件的系数,则这两个向量不共线.
(5)如果a=b=0,则数λ仍然存在,且此时λ并不唯一,是任意数值.
精心整理,仅供学习参考。

平面向量共线的坐标表示

平面向量共线的坐标表示
对于两个向量a和b,如果a=(x1,y1),b=(x2,y2),则向量a和b共线的条件是 x1/x2=y1/y2。
向量共线的应用
向量共线可以用于解决一些实际问题,例如物理 学中的力合成、物理学中的速度合成等。
向量共线也可以用于解析几何中的图形变换、线 性变换等。
在向量研究中,向量共线还可以用于证明一些定 理和推导一些公式。
向量共线的坐标表示
向量共线定理
如果两个向量$\overrightarrow{AB}$和 $\overrightarrow{CD}$共线,那么存在实数 $\lambda$使得 $\overrightarrow{AB}=\lambda\overrightarrow{C D}$。
坐标表示
设$\overrightarrow{AB}=(x_1,y_1)$, $\overrightarrow{CD}=(x_2,y_2)$,如果 $\overrightarrow{AB}=\lambda\overrightarrow{C D}$,则有$\left\{\begin{matrix} x_1=\lambda x_2 \\ y_1=\lambda y_2 \end{matrix}\right.$。
向量共线的代数表示
总结词
如果两个向量$\overset{\longrightarrow}{a}$和 $\overset{\longrightarrow}{b}$共线,那么存在一个 非零实数$\lambda$,使得 $\overset{\longrightarrow}{b} = \lambda\overset{\longrightarrow}{a}$。

向量共线的性质
要点一
向量共线的性质包括
交换律、结合律、分配律等。这些性质可以用来简化向 量的运算,并用于解决实际问题。

2.3.4平面向量共线的坐标表示

2.3.4平面向量共线的坐标表示

本节课到此结束,请同学们课后再 做好复习与作业。谢谢!
作业:课本P101习题2.3.4:6、7 B组1~4
《聚焦课堂》
再见!
聚焦作业手册P80: 8T
已知A(2,3)、B(5,4)、C(7,10),若AP=AB+λAC (λ∈R),试求λ为何值时,点P在第三象限内? 解:设P(x,y). AP =(x-2,y-3), AB =(3, 1), x-2=3+5λ y-3=1+7λ AC =(5, 7), (x-2, y-3) =(3, 1)+λ(5, 7) =(3+5λ, 1+7λ) x=5+5λ <0 y=4+7λ <0
∴只能有:
(1)k 1 : ke1 e2 e 1 ke2 ,同向共线. (2)k 1 : ke1 e2 (e 1 ke2 ) ,反向共线.
{ k 1 0
k 0
λ 1 k 1.
a ( x1 , y1 ), b ( x2 , y2 ).
B( x 2 , y 2 )
x1=x2,且y1=y2
( x2 x1 , y2 y1 )
A( x1 , y1 )
探究:
向量平行的坐标表示
向量平行的向量表示
设a=(x1,y1), b=(x2,y2), 其中a≠0, b // a b = λa (x2,y2) =λ(x1,y1) = (λx1,λy1)
(x , y ) λa 3.两个结论 AB ( x2 x1 , y2 y1 ) a b x1=x2,且y1=y2 4.共线向量的充要条件:(a≠0) x1y2-x2y1=0 向量a与b共线 b=λa
a b ( x 1 x 2 , y1 y2 ), a b ( x 1 x 2 , y1 y2 ),

用平面向量坐标表示向量共线条件

用平面向量坐标表示向量共线条件
∵2×8-4 ×4=0, 所以 AB//AC 因此A,B,C三点共线.
练习: 1. 已知a=(4, 2),b=(6, y),且a//b,求y.
y=3
已知a=(3, 4), b=(cosα, sinα), 且a//b, 求tanα. tanα=4 /3
1
已知a=(1, 0), b=(2, 1), 当实数k为何值时,向量 ka-b与a+3b平行? 并确定它们是同向还是反向.
线,则B( )
A.x =-1
B.x=3
C.x=9
D.51
2
6.设a=(23
, sinα),b=(cosα1 ,
3
则锐角α为 (C )
),且a// b,
A.30o
B.60o
C.45o
D.75o
△ABC的三条边的中点分别为(2, 1)和(-3, 4),(-1,-1), 则△ABC的重心坐标为 _______
解:利用⑴式可求出y的值,
1×5-2×y=0 所以y 5
2
说明:利用向量的线性运算求出向量
的坐标,再
利用向量平行的条件式 ,就可知A、B、C三点共线。
AB, AC
例2. 在直角坐标系xOy内,已知A(-2,-3)、B(0,1)、 C(2,5),求证:A、B、C三点共线。
解:A B ( 0 ,1 ) ( 2 , 3 ) ( 2 ,4 ) A C ( 2 ,5 ) ( 2 , 3 ) ( 4 ,8 )
单击添加副标题
用平面向量坐标表 示 向量共线条件
单击此处添加文本具体内容,简明扼要地阐述你的观点
两个向量a, b平行的条件:
a=λb,b≠0.
那么当向量a的坐标为(a1, a2), b的坐 标为(b1, b2)时,代入上式,得

平面向量共线的坐标表示29371

平面向量共线的坐标表示29371

复习 平面向量基本定理:
(1)我们把不共线向量e1,e2 叫做表示 这一平面内所有向量的一组 基底 .
(2)基底不惟一,关键是不共线;
复习
平面向量基本定理:
(1)我们把不共线向量e1,e2 叫做表示 这一平面内所有向量的一组 基底 .
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底 e1、e2的条件下进行分解;
1. 消去时能不能两式相除?
不能 两式相除, y1, y2有可能为 0, 又b 0, x2 , y2中至少有一个不为0 .
2. 能不能写成 y1 y2 ? x1 x2
3. 向量共线有哪两种形式?
探究:
1. 消去时能不能两式相除?
不能 两式相除, y1, y2有可能为 0, 又b 0, x2 , y2中至少有一个不为0 .
特别地, i (1, 0),
j (0, 1), (0, 0).
a
j
Oi
x
平面向量的坐标运算
a a
a
b
(
x1
x2,y1
b ( x1 x2,y1
(x,y)
y2 y2
) )
两个向量和与差的坐标分别等于这 两个向量相应坐标的和与差.
实数与向量的积的坐标等于用这个 实数乘原来向量的相应坐标.
讲解范例
例5. 设点P是线段P1P2上的一点,P1、 P2的坐标分别是(x1, y1),(x2, y2). (1)当点P是线段P1P2的中点时,求点
P的坐标; (2)当点P是线段P1P2的一个三等分点
时,求点P的坐标.
讲解范例
例5. 设点P是线段P1P2上的一点,P1、 P2的坐标分别是(x1, y1),(x2, y2). (1)当点P是线段P1P2的中点时,求点

高一数学平面向量共线的坐标表示(中学课件201911)

高一数学平面向量共线的坐标表示(中学课件201911)

例题讲解
例1、已知a (4, 2),b (6, y),且a // b,求y.
例2、已知点A(-1,-1),B(1,3),C(2,5), 试判断A、B、C三点是否共线?
问题探究
设点P是线段P1P2上的一点,P1、P2的坐标 分别为(x1, y1),(x2 , y2 ).
(1)当点P是线段P1P2的中点时,求点P的坐标. (2)当点P是线段P1P2的一个三等分点时,求点 P的坐标.
复习巩固
(1)两个向量和的坐标分别等于这两 个向量相应坐标的和
a b (x1 x2, y1 y2 )
(2)两个向量差的坐标分别等于这两 个向量相应坐标的差
a b (x1 x2, y1 y2)
复习巩固
(3)实数与向量的积的坐标等于用这 个实数乘原来向量的相应坐标.
a (x1, y1)
(3)当P1P= PP2时,求点P的坐标.
例题讲解
《学海》习题讲解
布置作业
作业: 1、P101习题A组:6、7. B组:2; 2、学海第7课时
4.任意一个向量的坐标等于表示该向 量的有向线段的终点坐标减去始点坐 标.
复习巩固
5.a (x1, y1),b (x2 , y2 ),(b 制作 武汉做网站 武汉网站制作 武汉做网站

贫守道 子肃之 论所谓’逗极无二’者 "潜也何敢望贤?何谓其同?欲举为秀才 示形神于天壤 亲老家贫 武帝北伐 濮阳鄄城人也 彦之诫曰 素琴 以供祭祀 景翳翳其将入 临沧洲矣 "既没不须沐浴 征辟一无所就 应感之法 "吴差山中有贤士 别有风猷 服寒食散 老全其生 宋国初建 凝之曰 昔有鸿 飞天首 时往游焉 "仆著已败 命为谘议参军 若夫陶潜之徒 人不能测 辄当申譬 身处卿佐 &

向量共线的坐标表示

向量共线的坐标表示

《平面向量共线的坐标表示》教案教学目标(1)知识目标:理解平面向量共线的坐标表示,会根据向量的坐标,判断向量是否共线,并掌握平面上两点间的中点坐标公式及定点坐标公式;(2)能力目标:通过学习向量共线的坐标表示,使学生认识事物之间的相互联系,培养学生辨证思维能力;(3)情感目标:在解决问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识.教学重点和难点(1)重点:向量共线的坐标表示及直线上点的坐标的求解;(2)难点:定比分点的理解和应用。

教学过程一、新知导入(一)、复习回顾1、向量共线充要条件:2.平面向量的坐标运算: (1).已知 a =(x 1,y 1),b =(x 2,y 2)则a +b =(x 1+x 2,y 1+y 2).a -b =(x 1-x 2,y 1-y 2).λa =(λx 1,λy 1).(2).一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.(二)、问题引入已知下列几组向量:(1)a =(0,2),b =(0,4);(2)a =(2,3),b =(4,6);(3)a =(-1,4),b =(2,-8);(4)a =⎝⎛⎭⎫12,1,b =⎝⎛⎭⎫-12,-1. 问题1:上面几组向量中,a 与b 有什么关系?问题2:以上几组向量中a ,b 共线吗?),,(),,(2211y x B y x A 若),(1212y y x x --=则.,)(//λλ=⇔≠使存在唯一实数二、新知探究思考: 两个向量共线的条件是什么?如何用坐标表示两个共线向量?设a ρ=(x 1, y 1) ,b ρ=(x 2, y 2) 其中b ρ≠a ρ。

由a ρ=λb ρ得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0a ρ∥b ρ (b ρ≠0)的充要条件是x 1y 2-x 2y 1=0探究:(1)消去λ时能不能两式相除?(不能 ∵y 1, y 2有可能为0, ∵b ρ≠0 ∴x 2, y 2中至少有一个不为0)(2)能不能写成2211x y x y = ? (不能。

2.2.3用平面向量坐标表示共线条件

2.2.3用平面向量坐标表示共线条件

>>
ka 2b与2a 4b平行 ( 4 k 6) 14(2k 4) 0 解得k 1.
5、已知A(2,3),B(4,3),a ( x 3, x 3 x 4), -1 与AB相等, 则x ____
2
△ABC的三条边的中点分别为(2, 1)和(-3, 2 4 ( , ) 4),(-1,-1),则△ABC的重心坐标为 _______ 3 3
用平面向量坐标
表示向量共线条件
学习目标研读
1.课堂目标
理解并掌握用坐标表示平面向量共线的条件. 2.重点难点 重点:用坐标表示平面向量共线的条件. 难点:向量共线的坐标表示的应用.
创设情境
1.
向量的坐标表示,并且向量之间可以进行的坐标
B x 2 , y2
运算
y

A x1 , y1
例3、 在 直 角 坐 标 系 xoy中, 已 知A 2,3, B0,1
解题思路: (思想)
证点共线
向量共线
有公共端点
(几何)
(向量)
点共线 (几何)
变式1:已知OA k ,12 , OB 4,5 , OC 10, k O为坐标原点,问k为何值时, A, B, C三点共线 ? 2或11
存在 R,使得ka 2b (2a 4b) ka 2b k (1, 2) 2(3, 2) (k 6, 2k 4). 即 k-2 a 4 2 b 2a 4b 2(1, 2) 4(3, 2) (14, 4). a与b不共线 k 2 0 4 2 0 k -1
C 2,5, 求 证 : A, B, C三 点 共 线 .
证明 :由已知条件得 AB 0,1 2, 3 2, 4 AC 2,5 2, 3 4,8 28 4 4 0 AB // AC 又因为有公共端点A. 因此A,B,C三点共线.

数学知识点:向量共线的充要条件及坐标表示_知识点总结

数学知识点:向量共线的充要条件及坐标表示_知识点总结

数学知识点:向量共线的充要条件及坐标表示_知识点总结
数学知识点:向量共线的充要条件及坐标表示向量共线的充要条件:向量与共线,当且仅当有唯一一个实数λ,使得。

向量共线的几何表示:
设,其中,当且仅当时,向量共线。

向量共线(平行)基本定理的理解:
(1)对于向量a(a≠0),b,如果有一个实数λ,使得b=λa,那么由向量数乘的定义知,学习规律,a与b共线.
(2)反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=μa;当a与b反方向时,有b=-μa.
(3)向量平行与直线平行是有区别的,直线平行不包括重合.
(4)判断a(a≠0)与b是否共线时,关键是寻找a前面的系数,如果系数有且只有一个,说明共线;如果找不到满足条件的系数,则这两个向量不共线.
(5)如果a=b=0,则数λ仍然存在,且此时λ并不唯一,是任意数值.。

6.2平面向量共线定理的坐标表示

6.2平面向量共线定理的坐标表示

授课主题平面向量共线的坐标表示 教学目标 1.理解向量共线定理.2.掌握两个向量平行(共线)的坐标表示和会应用其求解有关两向量共线问题.教学内容1.向量共线定理1)向量a 与非零向量b 共线的条件是当且仅当存在实数λ,使a =λb2)为什么要规定b 为非零向量?答:若向量b =0,则由向量a ,b 共线得a =λb =0,但向量a 不一定为零向量.2.两个向量平行(共线)的坐标表示1)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 等价于x 1y 2-x 2y 1=02)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1x 2=y 1y 2要满足什么条件? 答:a ∥b ⇔x 1x 2=y 1y 2的适用范围是x 2≠0,y 2≠0,这与要求b 是非零向量是等价的.题型一 平面向量共线的坐标运算例1 若向量a =()2,-1,b =()x ,2 ,c =()-3,y ,且a ∥b ∥c ,求x ,y 的值.分析:由平面向量共线的坐标运算可得.解析:∵a ∥b ∥c ,由向量共线的坐标表示得∴⎩⎪⎨⎪⎧ 4+x =0,2y -3=0,解得⎩⎪⎨⎪⎧ x =-4,y =32.点评:记住已知a =()x 1,y 1,b =()x 2,y 2,则a ∥b ⇔x 1y 2-x 2y 1=0.巩 固 已知a =(1,0),b =(2,1),当实数k 为何值时,向量k a -b 与a +3b 平行?并确定此时它们是同向还是反向.分析:先求出向量k a -b 与a +3b 的坐标,然后根据向量共线条件可求解.解析:∵ a =(1,0),b =(2,1),∴k a -b =k ()1,0-()2,1=()k -2,-1,a +3b =()1,0+3()2,1=()7,3.∵向量k a -b 与a +3b 平行,∴3()k -2+7=0,解得k =-13. ∵k =-13,k a -b =-13(a +3b ), 所以向量k a -b 与a +3b 反向.题型二 平面向量共线的证明例2 已知A (-1,-1),B (1,3),C (2,5),求证A 、B 、C 三点共线.分析:证向量AB →与AC →共线.证明:∵ A (-1,-1),B (1,3),C (2,5),∴AB →=()2,4,AC →=()3,6.∴AB →=23AC →. ∵AB →,AC →有公共点A ,∴A 、B 、C 三点共线.点评: 通过证有公共点的两向量共线,从而证得三点共线.巩 固 已知OA →=()k ,12,OB →=()4,5,OC →=()10,k ,当k 为何值时,A 、B 、C 三点共线?分析:由A 、B 、C 三点共线,可得AB →与BC →共线.解析:∵OA →=()k ,12,OB →=()4,5,OC →=()10,k ,∴AB →=()4-k ,-7,BC →=()6,k -5.∵A 、B 、C 三点共线,∴()4-k ()k -5+42=0.解得k =11或k =-2.题型三 用共线向量的性质求坐标例3 若M ()3,-2,N ()-5,-1, 且 MP →=12MN →,则P 点的坐标是________. 分析:设P ()x ,y ,由MP →=12MN →可求解. 解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=12MN →,∴()x -3,y +2=12()-8,1=⎝⎛⎭⎫-4,12⇒x =-1,y =-32. ∴P ⎝⎛⎭⎫-1,-32. 答案:⎝⎛⎭⎫-1,-32 点评:把求点的坐标转化为向量共线问题.巩 固 若M ()3,-2,N ()-5,-1,且MP →=-2MN → , 则P 点的坐标是________.解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=-2MN →,∴()x -3,y +2=-2()-8,1=(16,-2).解得P ()19,-4.答案:()19,-4题型四 共线向量的综合应用例4 如果向量AB →=i -2j ,BC →=i +m j ,其中i 、j 分别是x 轴、y 轴正方向上的单位向量,试确定实数m 的值使A 、B 、C 三点共线.分析:把向量AB →=i -2j 和BC →=i +m j 转化为坐标表示,再根据向量共线条件求解.解析:∵AB →=i -2j ,BC →=i +m j ,∴AB →=()1,-2,BC →=()1,m .∵ A 、B 、C 三点共线,即向量AB →与BC →共线,∴m +2=0,解得m =-2.点评:向量共线的几何表示与代数表示形式不同但实质一样,在解决问题时注意选择使用.巩 固 已知A ()1,1,B ()3,-1,C ()a ,b .(1)若A 、B 、C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解析:(1)AB →=()2,-2,AC →=()a -1,b -1,∵A 、B 、C 三点共线,∴AB →与AC →共线.∴2()b -1+2()a -1=0,即a +b =2.(2)∵AC →=2AB →,∴()a -1,b -1=2()2,-2⇒a =5,b =-3.∴C ()5,-3.1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( )A .6B .5C .7D .8答案:C2.已知点M 是线段AB 上的一点,点P 是平面上任意一点,PM →=35P A →+25PB →,若AM →=λMB →,则λ等于( ) A.35 B.25 C.32 D.23解析:用P A →,PB →表示向量AM →,MB →.∵AM →=AP →+PM →=AP →+35P A →+25PB →=-25P A →+25PB →,MB →=MP →+PB →=-PM →+PB →=-35P A →+25PB →+PB →=-35P A →+35PB →,∴AM →=23AB →. 答案:D3.已知▱ABCD 四个顶点的坐标为A (5,7),B (3,x ),C (2,3),D (4,x ),则x =__________.答案:54.已知两点A (1,3)、B (4,-1),则与向量AB →同向的单位向量是( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 解析:AB →=(3,-4),则与其同方向的单位向量e =AB →|AB →|=15(3,-4)=⎝⎛⎭⎫35,-45. 答案:A5.已知A ()-2,-3,B ()2,1,C ()1,4,D ()-7,-4,判断AB →与CD →是否共线.解析:∵AB →=(4,4),CD →=(-8,-8),∴AB →=-12CD →. ∴AB →与CD →共线.6.已知A (-1,-1),B (1,3),C (1,5) ,D (2,7) ,向量AB →与CD →平行吗?直线AB 平行于直线CD 吗?解析:AB →=()2,4,CD →=()1,2,AB →=2CD →,所以向量AB →与CD →平行,即直线AB 平行于直线CD .7.已知点A (x,0),B (2x,1),C (2,x ),D (6,2x ).(1)求实数x 的值,使向量AB →与CD →共线.解析:AB →=()x ,1,CD →=()4,x ,∵向量AB →与CD →共线,∴x 2-4=0,解得x =±2.(2)当向量AB →与CD →共线时,点A ,B ,C ,D 是否在一条直线上?解析:x =2时,不在同一条直线上;x =-2时,在同一条直线x +2y +2=0上.8.△AB C 的顶点A 、B 、C 分别对应向量a =()x 1,y 1,b =()x 2,y 2,c =()x 3,y 3其重心为G ,对应的向量为g =()x 0,y 0.求证:x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 证明:设AD 为BC 边的中线,O 为坐标原点.则OG →=OA →+AG →=OA →+23AD →=OA →+13()AB →+AC →=OA →+13()OB →-OA →+OC →-OA →=13()OA →+OB →+OC →. ∵A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),G (x 0,y 0)∴x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 9.已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.分析:(1)只需证明a ·b =0即可;(2)由已知条件得到cos α+cos β,sin α+sin β的值,然后再利用诱导公式得到α,β间的关系即可求得α,β的值.(1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a ·b +b 2=2.又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)解析:因为a +b =(co s α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0, sin α+sin β=1, 由此得,cos α=cos ()π-β,由0<β<π,得0<π-β<π.又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.。

向量坐标共线的公式

向量坐标共线的公式

向量坐标共线的公式在数学中,向量是一个有方向和大小的量,可以用坐标表示。

当两个向量的坐标共线时,它们在同一条直线上,这意味着它们的方向相同或相反。

在本文中,我们将讨论向量坐标共线的公式。

向量坐标向量可以用坐标表示,通常用小写字母加箭头表示,例如a→。

向量的坐标表示为(x,y),其中x和y是向量在x轴和y轴上的分量。

例如,向量a→的坐标为(a1,a2)。

共线向量当两个向量在同一条直线上时,它们被称为共线向量。

共线向量的坐标可以表示为比例关系。

例如,如果向量a→和向量b→共线,则它们的坐标可以表示为:a1/b1 = a2/b2这个比例关系可以用来判断两个向量是否共线。

共线向量的公式当两个向量共线时,它们的坐标可以表示为比例关系。

假设有两个向量a→和b→,它们的坐标分别为(a1,a2)和(b1,b2)。

如果它们共线,则它们的坐标可以表示为:a1/b1 = a2/b2 = k其中k是一个常数。

这个常数k表示了两个向量在同一条直线上的比例关系。

如果k为正数,则两个向量的方向相同;如果k为负数,则两个向量的方向相反。

例如,如果向量a→的坐标为(2,4),向量b→的坐标为(4,8),则它们的坐标可以表示为:2/4 = 4/8 = 0.5因此,向量a→和向量b→共线,它们的比例关系为0.5。

结论向量坐标共线的公式是一个简单而有用的工具,可以用来判断两个向量是否共线。

当两个向量的坐标可以表示为比例关系时,它们在同一条直线上,这意味着它们的方向相同或相反。

这个公式可以应用于各种数学和物理问题中,例如力学、几何学和电磁学等。

平面向量共线的坐标表示_课件4

平面向量共线的坐标表示_课件4

02
掌握平面向量的坐标表 示法,能够熟练地进行 向量的坐标运算。
03
理解共线向量的定义和 性质,掌握判断两个向 量是否共线的方法。
04
掌握共线向量坐标表示 的推导过程,能够运用 所学知识解决相关问题 。
02
平面向量的基本概念
向量的定义与性质
向量定义
向量是具有大小和方向的量,用 有向线段表示,有向线段的长度 表示向量的大小,有向线段的方 向表示向量的方向。
平面向量共线的坐标表示_课件4
汇报人:XX
目录
• 引言 • 平面向量的基本概念 • 平面向量共线的条件 • 平面向量共线的坐标表示 • 典型例题解析 • 课堂小结与作业布置
01
引言
课件背景与目的
课件背景
平面向量是数学中的重要概念,共线 是平面向量的一种特殊关系。本课件 旨在通过坐标表示法,探究平面向量 共线的性质和应用。
,即a·b=|a||b|cos<a,b>。
03
平面向量共线的条件
共线向量的定义
定义
若两个向量$vec{a}$和$vec{b}$满足$vec{a} = kvec{b}$( $k$为实数),则称$vec{a}$和$vec{b}$共线。
说明
共线向量也称为平行向量,它们所在的直线平行或重合。
共线向量的性质
如果两个向量a、b满足a = λb (λ为实 数),则称向量a与向量b共线。
共线向量的坐标运算
设向量a = (x1, y1),向量b = (x2, y2)且a与b共线,则存在实数λ使得x1 = λx2,y1 = λy2。特别地,当x2 ≠ 0且y2 ≠ 0时,有λ = x1/x2 = y1/y2 。
共线向量的判定定理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档