正弦定理及其应用教案
正弦定理教案
正弦定理教案一、教学目标1.理解正弦定理的概念,掌握计算正弦定理的方法。
2.能够判断已知条件能否求解三角形的某个角或某个边。
3.能够运用正弦定理解决相关的实际问题。
二、教学重点1.正弦定理的公式和应用。
2.正弦定理与其他三角函数定理的关系。
三、教学难点1.运用正弦定理求解实际问题。
2.能够判断已知条件能否求解三角形的某个角或某个边。
四、教学内容1. 正弦定理的概念正弦定理是解决三角形中一个角和它所对的边以及另外两边之间的关系的定理。
在任意三角形ABC中,有如下公式成立:$a/\\sin A = b/\\sin B = c/\\sin C$其中,a,b,c分别为三角形的三条边,A,B,C分别为对应的三个内角。
2. 正弦定理的公式在上述公式中,如果已知三角形的两边和其中一个对角,则可以根据正弦定理求出第三边的长度。
也可以根据已知的三角形的三条边,利用正弦定理求出三个内角的大小。
3. 正弦定理的应用3.1. 求解三角形的边长已知三角形的两边和其中一个角,可以利用正弦定理求出第三边的长度。
具体地,设三角形ABC中,已知AB = 8cm,AC = 9cm,∠BAC = 30°,求BC的长度。
解:根据正弦定理的公式,有$BC/\\sin 30°=9/\\sin 150°$化简得,BC=18因此,BC的长度为18cm。
3.2. 求解三角形的角度已知三角形的三条边,可以根据正弦定理求出三个内角的大小。
具体地,设三角形ABC中,已知AB = 8cm,BC = 10cm,AC = 12cm,求∠A,∠B和∠C的大小。
解:根据正弦定理的公式,有$a/\\sin A = b/\\sin B = c/\\sin C$代入已知条件,得到:$8/\\sin A = 10/\\sin B = 12/\\sin C$化简得到:$\\sin A = 8/10=0.8, \\sin B=10/12=0.83, \\sin C=8/12=0.67$利用反正弦函数,可以求得:$\\angle A=\\arcsin{0.8}\\approx53.1°$$\\angle B=\\arcsin{0.83}\\approx60.4°$$\\angle C=\\arcsin{0.67}\\approx66.5°$因此,$\\angle A\\approx53.1°$,$\\angle B\\approx60.4°$和$\\angleC\\approx66.5°$。
《正弦定理》优秀教案
《正弦定理》教学设计一、教学目标分析1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。
2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。
3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。
从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。
培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教法与学法分析本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。
在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。
教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。
正弦定理应用教案
正弦定理应用教案【篇一:正弦定理、余弦定理应用举例教案】第7讲正弦定理、余弦定理应用举例【考查要点】利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.【基础梳理】1.用正弦定理和余弦定理解三角形的常见题型。
如测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角:指从正北方向顺时针转到目标方向线的水平角,如b点的方(4)坡度:坡面与水平面所成的二面角的度数.3、解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.4、解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.【例题分析】一、基础理解a..3 m c. m 2解:如图.答案b例4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船a.5海里 b.3海里 c.10海里 d.海里5里),于是这艘船的速度是=10(海里/时).答案 c 0.5二、测量距离问题例1、如图所示,为了测量河对岸a,b两点间的距离,在这岸[分析] 在△bcd中,求出bc,在△abc中,求出ab.例2、如图,a,b,c,d都在同一个与水平面垂直的平面内,b、d为两岛上的试探究图中b、d间距离与另外哪两点间距离相等,然后求b,d的距离.故cb是△cad底边ad的中垂线,所以bd=ba.2+同理,bd(km).故b、d km. 2020三、测量高度问题[分析] 过点c作ce∥db,延长ba交ce于点e,在△aec中解得x=10(33) m.故山高cd为10(33) m.总结:(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.,cdcdxab解:在△abc中,ab=5,ac=9,∠bca=sin∠acb9同理,在△abd中,ab=5,sin∠bad 10abbd∠adb=, sin∠bdasin∠bad22解得bd故bd的长为22总结:要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.点,ad=10,ac=14,dc=6,求ab的长.解:在△adc中,ad=10,ac=14,dc=6,【篇二:《正弦定理》教学设计】《正弦定理》教学设计一、教材分析正弦定理是高中新教材人教a版必修⑤第一章1.1.1的内容,是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边与角之间的数量关系。
正弦定理数学教案优秀5篇
正弦定理数学教案优秀5篇《正弦定理》教案篇一《正弦定理》教案一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性。
《正弦定理》教案(含答案)
《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。
2. 让学生掌握正弦定理的数学表达式。
3. 让学生了解正弦定理的应用场景。
教学内容:1. 引入正弦定理的背景和意义。
2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。
3. 解释正弦定理的证明过程。
教学活动:1. 通过实际例子引入正弦定理的概念。
2. 引导学生推导正弦定理的数学表达式。
3. 让学生进行小组讨论,探索正弦定理的应用场景。
练习题:1. 解释正弦定理的概念。
2. 给出一个三角形,让学生计算其各边的比例。
章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在三角形中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。
2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。
练习题:1. 使用正弦定理计算一个三角形的面积。
2. 给出一个实际问题,让学生应用正弦定理解决问题。
章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。
2. 让学生掌握正弦定理的证明方法。
教学内容:1. 介绍正弦定理的证明过程。
2. 解释正弦定理的证明方法。
教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。
2. 让学生进行小组讨论,理解正弦定理的证明方法。
练习题:1. 解释正弦定理的证明过程。
2. 给出一个三角形,让学生使用正弦定理进行证明。
章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在实际问题中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。
正弦定理及应用教案
正弦定理及应用教案教案标题:正弦定理及应用教案教案目标:1. 理解正弦定理的概念和公式;2. 掌握正弦定理在解决三角形问题中的应用方法;3. 培养学生的数学思维和解决问题的能力。
教学准备:1. 教师准备:教案、黑板、白板、彩色粉笔、投影仪;2. 学生准备:教材、笔记本。
教学过程:步骤一:导入(5分钟)1. 教师出示一张三角形的图片,引导学生回顾三角形的基本概念和性质。
2. 引导学生思考:在解决三角形问题时,我们有哪些方法可以使用?步骤二:概念讲解(15分钟)1. 教师引导学生回顾三角形中的边和角的概念,并提出正弦定理的概念。
2. 教师讲解正弦定理的公式:a/sinA = b/sinB = c/sinC,并解释公式中各变量的含义。
3. 教师通过例题演示正弦定理的应用方法,解决已知两边和一个夹角的情况。
步骤三:应用练习(20分钟)1. 教师出示一些应用正弦定理解决的问题,并引导学生分组讨论解题思路。
2. 学生在小组内互相讨论,尝试解决问题,并记录解题过程和答案。
3. 学生展示解题过程和答案,教师进行点评和讲解。
步骤四:拓展应用(15分钟)1. 教师出示一些较为复杂的三角形问题,引导学生运用正弦定理解决。
2. 学生在小组内合作解决问题,并记录解题过程和答案。
3. 学生展示解题过程和答案,教师进行点评和讲解。
步骤五:归纳总结(10分钟)1. 教师引导学生总结正弦定理的应用方法和注意事项。
2. 学生将重点内容记录在笔记本上,作为复习和巩固。
步骤六:作业布置(5分钟)1. 教师布置相关的练习题作为课后作业。
2. 学生完成作业并在下节课前交给教师。
教学反思:本节课通过导入、概念讲解、应用练习、拓展应用和归纳总结等环节,引导学生理解正弦定理的概念和公式,并掌握其在解决三角形问题中的应用方法。
通过小组合作和展示,培养学生的数学思维和解决问题的能力。
同时,布置相关作业,巩固学生的学习成果。
正弦定理教学设计最新5篇
正弦定理教学设计最新5篇正弦定理教学设计篇一《正弦定理》教学设计茂名市实验中学张卫兵一、教学目标分析1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。
2、过程与方法:让学生从实际问题出发,结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;让学生在应用定理解决问题的过程中更深入地理解定理及其作用。
3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对任意三角形边长和角度关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教学基本流程1、创设问题情境,引出问题:在三角形中,已知两角以及一边,如何求出另外一边;2、结合初中学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理;3、分析正弦定理的特征及利用正弦定理可解的三角形的类型;4、应用正弦定理解三角形。
四、教学情境设计五、教学研究1、新课标倡导积极主动、勇于探索的学习方式,使学生在自主探究的过程中提高数学思维能力。
本设计从生活中的实际问题出发创设了一系列数学问题情境来引导学生质疑、思考,让学生在“疑问”、“好奇”、“解难”中探究学习,激发了学生的学习兴趣,调动了学生自主学习的积极性,从而有效地培养学生了的数学创新思维。
2、新课标强调数学教学要注重“过程”,要使学生学习数学的过程成为在教师的引导下进行“再创造”过程。
本设计展示了一个先从特殊的直角三角形中正弦的定义出发探索A的正弦与B的正弦的关系从而发现正弦定理,再将一般的三角形与直角三角形联系起来(在一般的三角形中构造直角三角形)进而在一般的三角形发现正弦定理的过程,使学生不但体会到探索新知的方法而且体验到了发现的乐趣,起到了良好的教学效果。
高中数学《正弦定理》教案4篇
高中数学《正弦定理》教案4篇高中数学《正弦定理》教案1教材地位与作用:本节学问是必修五第一章《解三角形》的第一节内容,与学校学习的三角形的边和角的基本关系有亲密的联系与判定三角形的全等也有亲密联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理的学问特别重要。
学情分析:作为高一同学,同学们已经把握了基本的三角函数,特殊是在一些特别三角形中,而同学们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探究及证明,已知两边和其中一边的对角解三角形时推断解的个数。
(依据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:学问目标:理解并把握正弦定理的证明,运用正弦定理解三角形。
力量目标:探究正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让同学感受数学公式的干净对称美和数学的实际应用价值。
教法学法分析:教法:采纳探究式课堂教学模式,在老师的启发引导下,以同学自主和合作沟通为前提,以“正弦定理的发觉”为基本探究内容,以生活实际为参照对象,让同学的思维由问题开头,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。
学法:指导同学把握“观看——猜测——证明——应用”这一思维方法,实行个人、小组、集体等多种解难释疑的尝试活动,将自己所学学问应用于对任意三角形性质的探究。
让同学在问题情景中学习,观看,类比,思索,探究,动手尝试相结合,增添同学由特别到一般的数学思维力量,锲而不舍的求学精神。
教学过程(一)创设情境,布疑激趣“爱好是最好的老师”,假如一节课有个好的开头,那就意味着胜利了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab 长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发同学关心别人的热忱和学习的爱好,从而进入今日的学习课题。
正弦定理及其运用的教案
《正弦定理及其应用》的教案一、教学目标:1、 知识与技能:掌握正弦定理,能正确运用正弦定理解决简单的解三角形问题。
2、 过程与方法:师生互动参与教学,学生回顾复习为主,教师教学中串引。
3、 情感、态度与价值观:尽可能创造民主、合作的气氛,激发学生的学习兴趣,让全体学生参与到思考中来,并使他们的思维都能得到训练和提高。
二、教学重点和难点:正弦定理的内容及其应用。
三、课前准备:1、课件的制作。
2、学生学案的资料组合。
3、电脑、小蜜蜂、彩色粉笔。
4、让学生充分预习好解三角形的一些基本知识。
四、教学过程: 1、直引主题:《正弦定理及其应用》在高考中大概占6分,是一个拿分点。
《正弦定理及其应用》的高考考情分析: (1)考查热点:正弦定理的运用。
(2)考查形式:选择题和填空题为主。
(3)考查题型:1、三角形中的边角运算2、三角形的形状判断3、三角形的面积求解(4)命题趋势:结合实际问题考查正弦定理。
2、正式授课:请学生回顾《正弦定理》,并在草稿本上默写,同时请学生上台书写。
写完后请学生分析回答何时选用正弦定理解三角形以及分析正弦定理的变形及其应用。
处理完基本知识后,第一类题型由学生自主完成,抽两名学生完成2、3两个练习题,并及时讲评并强调注意事项并总结。
在处理第二类题型时,给出例1,让学生先充分分析问题,并听取学生的具体问题给予相应的指导,共同解决此题,完整写出解答过程,并让学生处理练习1(同时抽1名学生上黑板解答),并及时讲评,指出其中容易出问题的地方并总结。
在处理第三类题型时,处理过程完全模仿第二类题型的处理方式,不同是要注意各种情况的出现,因为例1方式方法简单,学生的思维单一,不会有太多的思考方式,然而例2就不同了,其解题方法多样,学生的思路也会比较多,所以要多预想多一些情况的出现,并想好处理的对策,以便能在有限地控制课堂时间达到最有效的教学效果。
在处理完上面内容后,一定要及时总结本节的主要内容,强调各种注意事项,并给出课后作业。
正弦定理教案
正弦定理教案正弦定理教案「篇一」教学目标:1.让学生从已有的几何知识出发,通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。
2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。
3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。
4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理的猜想提出过程。
教学准备:制作多媒体,学生准备计算器,直尺,量角器。
教学过程:(一)结合实例,激发动机师生活动:师:每天我们都在科技楼里学习,对科技楼熟悉吗?生:当然熟悉。
师:那大家知道科技楼有多高吗?学生不知道。
激起学生兴趣!师:给大家一个皮尺和测角仪,你能测出楼的高度吗?学生思考片刻,教师引导。
生1:在楼的旁边取一个观测点C,再用一个标杆,利用三角形相似。
师:方法可行吗?生2:B点位置在楼内不确定,故BC长度无法测量,一次测量不行。
师:你有什么想法?生2:可以再取一个观测点D。
师:多次测量取得数据,为了能与上次数据联系,我们应把D点取在什么位置?生2:向前或向后师:好,模型如图(2):我们设正弦定理教学设计,正弦定理教学设计 ,CD=10,那么我们能计算出AB吗?生3:由正弦定理教学设计求出AB。
师:很好,我们可否换个角度,在正弦定理教学设计中,能求出AD,也就求出了AB。
正弦定理教案
正弦定理教案一、教案概述本教案旨在介绍高中数学中的正弦定理,帮助学生理解和掌握正弦定理的概念和应用。
通过本节课的学习,学生将了解到正弦定理在三角形中的应用,并能够正确地运用它来解决相关问题。
二、教学目标1. 了解正弦定理的概念和公式;2. 掌握正弦定理的推导过程;3. 能够灵活运用正弦定理解决相关问题;4. 培养学生的逻辑思维和解决问题的能力。
三、教学内容1. 正弦定理的概念介绍;2. 正弦定理的公式推导;3. 正弦定理的应用实例。
四、教学步骤1. 引入新知识通过一个生活场景引入正弦定理的概念,例如:在实际测量中,我们如何确定高楼的高度或是河流的宽度等等。
2. 学习正弦定理的公式推导a. 引导学生对三角形中的角和边进行编号,并介绍正弦定理的公式:$\\frac{a}{\\sin A}=\\frac{b}{\\sin B}=\\frac{c}{\\sin C}$;b. 利用几何图形和三角函数的知识,推导正弦定理的公式。
3. 练习应用a. 提供一些实际问题,并要求学生运用正弦定理解决;b. 引导学生分析问题,确定需要使用的公式和计算步骤;c. 让学生在小组内进行讨论和解决问题。
4. 总结与展示a. 总结正弦定理的概念和公式;b. 引导学生思考:正弦定理的应用范围和注意事项。
五、教学资源1. 教学板书:正弦定理的公式推导过程、实例问题和解决步骤;2. 视频或图片素材,用于引入新知识。
六、教学评估1. 对学生的学习态度和参与度进行评估;2. 对学生解决问题的能力进行评估;3. 对学生对正弦定理的理解和应用能力进行评估。
七、教学延伸1. 可以引入余弦定理的概念和公式,与正弦定理进行比较和应用;2. 可以安排学生进行实际测量,应用正弦定理求解一些实际问题;3. 可以组织学生进行小组讨论和展示,分享他们对正弦定理的理解和应用经验。
八、教学反思通过本节课的教学,学生对正弦定理有了更深入的了解,并能够熟练地运用它解决实际问题。
高中数学正弦定理教案(最新4篇)
高中数学正弦定理教案(最新4篇)高中数学正弦定理教案篇一一、教材分析1.教材地位和作用在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4 ,学生也学习了三角函数、平面向量等内容。
这些为学生学习正弦定理提供了坚实的基础。
正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。
依据教材的上述地位和作用,我确定如下教学目标和重难点2.教学目标(1)知识目标:①引导学生发现正弦定理的内容,探索证明正弦定理的方法;②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。
(2)能力目标:①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。
②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。
(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。
通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。
通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。
3.教学的重﹑难点教学重点:正弦定理的内容,正弦定理的证明及基本应用;教学难点:正弦定理的探索及证明;教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段二、教学方法与手段1.教学方法教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。
根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。
2.学法指导学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。
学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。
《正弦定理》教案(含答案)
一、教学目标1. 让学生理解正弦定理的定义和意义。
2. 让学生掌握正弦定理的推导过程。
3. 让学生能够运用正弦定理解决实际问题。
二、教学重点与难点1. 教学重点:正弦定理的定义、推导过程和应用。
2. 教学难点:正弦定理在实际问题中的应用。
三、教学方法1. 采用问题驱动法,引导学生思考和探索正弦定理的推导过程。
2. 通过实际例题,让学生掌握正弦定理的应用方法。
3. 利用多媒体辅助教学,直观展示正弦定理的应用场景。
四、教学内容1. 正弦定理的定义与推导正弦定理是指在一个三角形中,各边的长度与其对角的正弦值成正比。
具体来说,对于一个三角形ABC,有:a/sinA = b/sinB = c/sinC其中,a、b、c分别表示三角形ABC的边长,A、B、C分别表示三角形ABC 的对角。
2. 正弦定理的应用(1)求解三角形的边长:已知三角形的两个角和其中一个角的正弦值,求解第三边的边长。
(2)求解三角形的角度:已知三角形的两边和它们夹角的正弦值,求解第三个角的大小。
(3)求解三角形的面积:已知三角形的两边和它们夹角的正弦值,求解三角形的面积。
五、教学过程1. 引入新课:通过展示三角形模型,引导学生思考三角形中边长和角度的关系。
2. 讲解正弦定理的定义与推导:引导学生回顾正弦函数的定义,结合三角形的特点,推导出正弦定理。
3. 例题讲解:挑选一些典型的例题,讲解如何运用正弦定理解决问题。
4. 练习与讨论:让学生分组讨论,互相解答疑问,巩固正弦定理的应用。
5. 总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。
六、教学评价1. 课堂问答:检查学生对正弦定理的理解和掌握程度。
2. 练习题:布置一些有关正弦定理的应用题,检验学生运用知识解决问题的能力。
3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力。
七、教学反思1. 教师需要反思教学过程中的优点和不足,如教学方法、课堂组织等。
2. 针对学生的学习情况,调整教学策略,提高教学效果。
正弦定理及其运用的教案
正弦定理及其运用的教案正弦定理及其运用的教案引言:正弦定理是初中数学中的重要知识点,它能够帮助我们解决关于三角形的边长和角度的问题。
在实际应用中,正弦定理是非常有用的,可以用于土木工程、建筑设计、地理测量等领域。
本节课将通过一系列实例和练习,帮助学生掌握正弦定理的概念、原理和应用方法。
第一部分:概念介绍一、正弦定理的定义和表述正弦定理是指在任意三角形中,三条边的长度和角度之间的关系。
具体而言,正弦定理可以表述为:在三角形ABC中,边长a、b、c所对应的角度分别为A、B、C,则有以下关系式成立:sinA/a = sinB/b = sinC/c二、角度的度与弧度的转换在使用正弦定理时,常常需要将角度从度转换为弧度。
角度与弧度之间的转换关系如下:1度= π/180 弧度1弧度= 180/π 度第二部分:原理探究一、正弦定理的推导过程正弦定理的推导可以通过应用勾股定理和三角函数的定义来完成。
以下是推导过程的关键步骤:1. 假设在三角形ABC中,分别从A、B、C点作垂直于边a、b、c的高,分别为h1、h2、h3。
根据勾股定理,可以得到以下关系式:a^2 = h2^2 + (c - h3)^2b^2 = h1^2 + (c - h3)^2c^2 = h1^2 + h2^22. 将第一步的三个关系式变形,得到以下形式:a^2 = h2^2 + c^2 - 2ch3 + h3^2b^2 = h1^2 + c^2 - 2ch3 + h3^2c^2 = h1^2 + h2^23. 将第三步的三个关系式利用正弦函数的定义进行化简,得到以下形式:a^2 = 4R^2sin^2(A/2) + c^2 - 2cRsinAb^2 = 4R^2sin^2(B/2) + c^2 - 2cRsinBc^2 = 4R^2sin^2(C/2)4. 利用三角恒等式sin^2(x) = (1 - cos2x)/2,进一步化简,可以得到正弦定理的最终形式。
《正弦定理》教案(含答案)
《正弦定理》教案(含答案)第一章:正弦定理的引入1.1 实物的直观引入利用直角三角形和平行四边形模型,引导学生直观感受正弦定理的概念。
让学生通过观察和实验,发现正弦定理在几何图形中的普遍性。
1.2 数学定义与公式给出正弦定理的数学表达式:a/sinA = b/sinB = c/sinC,其中a, b, c分别为三角形的边长,A, B, C分别为对应的角度。
解释正弦定理的内涵,让学生理解各个参数之间的关系。
1.3 例题讲解选择具有代表性的例题,讲解正弦定理的应用方法。
引导学生通过正弦定理解决问题,培养学生的解题能力。
第二章:正弦定理的应用2.1 三角形内角和定理的推导利用正弦定理推导三角形内角和定理:A + B + C = 180°。
解释推导过程,让学生理解正弦定理与三角形内角和定理之间的关系。
2.2 三角形形状的判断利用正弦定理判断三角形的形状(直角三角形、锐角三角形、钝角三角形)。
引导学生通过正弦定理判断给定三角形的形状。
2.3 实际问题应用选择与生活实际相关的问题,引导学生利用正弦定理解决问题。
培养学生的实际问题解决能力,提高学生对正弦定理的应用意识。
第三章:正弦定理在测量中的运用3.1 角度测量讲解利用正弦定理进行角度测量的方法。
引导学生通过正弦定理进行角度测量,提高学生的实际操作能力。
3.2 距离测量讲解利用正弦定理进行距离测量的方法。
引导学生通过正弦定理进行距离测量,提高学生的实际操作能力。
3.3 实际测量案例提供实际测量案例,让学生利用正弦定理进行测量。
培养学生的实际测量能力,提高学生对正弦定理在测量中应用的理解。
第四章:正弦定理在三角函数中的应用4.1 三角函数的定义与关系讲解正弦定理与三角函数之间的关系。
引导学生理解正弦定理在三角函数中的应用。
4.2 三角函数图像的绘制利用正弦定理绘制三角函数图像。
培养学生的图像绘制能力,提高学生对正弦定理在三角函数中应用的理解。
4.3 三角函数问题的解决利用正弦定理解决三角函数问题。
正余弦定理的应用举例教案
正余弦定理的应用举例教案章节一:正弦定理的应用1.1 导入:通过复习正弦定理的定义和公式,引导学生理解正弦定理在几何中的应用。
1.2 实例讲解:以一个等腰三角形为例,利用正弦定理求解三角形的角度和边长。
1.3 练习:给出几个应用正弦定理的例题,让学生独立解答。
章节二:余弦定理的应用2.1 导入:回顾余弦定理的定义和公式,引导学生理解余弦定理在几何中的应用。
2.2 实例讲解:以一个直角三角形为例,利用余弦定理求解三角形的角度和边长。
2.3 练习:给出几个应用余弦定理的例题,让学生独立解答。
章节三:正弦定理和余弦定理的综合应用3.1 导入:介绍正弦定理和余弦定理的综合应用,引导学生理解两者之间的关系。
3.2 实例讲解:以一个复杂的三角形为例,利用正弦定理和余弦定理相互验证,求解三角形的角度和边长。
3.3 练习:给出几个综合应用正弦定理和余弦定理的例题,让学生独立解答。
章节四:正弦定理和余弦定理在实际问题中的应用4.1 导入:引导学生思考正弦定理和余弦定理在实际问题中的应用,如测量学和工程学。
4.2 实例讲解:以一个实际问题为例,如测量一个未知角度的三角形,利用正弦定理和余弦定理求解。
4.3 练习:给出几个实际问题应用正弦定理和余弦定理的例题,让学生独立解答。
章节五:总结与拓展5.1 总结:回顾本节课学习的正弦定理和余弦定理的应用,让学生总结关键点和注意事项。
5.2 拓展:引导学生思考正弦定理和余弦定理在其他领域的应用,如物理学和天文学。
5.3 练习:给出一个拓展性问题,让学生独立解答,激发学生的思考和创造力。
正余弦定理的应用举例教案章节六:正弦定理在三角形判定中的应用6.1 导入:引导学生思考正弦定理在三角形判定中的应用,如判断三角形的类型。
6.2 实例讲解:以一个给定角度的三角形为例,利用正弦定理判断三角形的类型。
6.3 练习:给出几个利用正弦定理判断三角形类型的例题,让学生独立解答。
章节七:余弦定理在三角形判定中的应用7.1 导入:回顾余弦定理的定义和公式,引导学生理解余弦定理在三角形判定中的应用。
正余弦定理完美教案
正余弦定理完美教案第一章:正弦定理简介1.1 学习目标了解正弦定理的定义和基本性质学会运用正弦定理解决实际问题1.2 教学内容正弦定理的定义及公式正弦定理与三角形内角和的关系正弦定理在实际问题中的应用1.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理的规律1.4 教学步骤1. 引入正弦定理的概念,引导学生了解正弦定理的定义和公式2. 通过示例,讲解正弦定理在解决实际问题中的应用3. 安排练习题,巩固学生对正弦定理的理解和应用能力第二章:余弦定理简介2.1 学习目标了解余弦定理的定义和基本性质学会运用余弦定理解决实际问题2.2 教学内容余弦定理的定义及公式余弦定理与三角形内角和的关系余弦定理在实际问题中的应用2.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现余弦定理的规律2.4 教学步骤1. 引入余弦定理的概念,引导学生了解余弦定理的定义和公式2. 通过示例,讲解余弦定理在解决实际问题中的应用3. 安排练习题,巩固学生对余弦定理的理解和应用能力第三章:正弦定理与余弦定理的综合应用3.1 学习目标学会运用正弦定理和余弦定理解决综合问题理解正弦定理和余弦定理之间的关系3.2 教学内容正弦定理和余弦定理的综合应用正弦定理和余弦定理之间的关系3.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理之间的关系3.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在解决综合问题中的应用2. 引导学生发现正弦定理和余弦定理之间的关系3. 安排练习题,巩固学生对正弦定理和余弦定理的综合应用能力第四章:正弦定理和余弦定理在几何中的应用4.1 学习目标学会运用正弦定理和余弦定理解决几何问题理解正弦定理和余弦定理在几何中的重要性4.2 教学内容正弦定理和余弦定理在几何中的应用正弦定理和余弦定理在几何中的重要性4.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理在几何中的重要性4.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在几何问题中的应用2. 引导学生理解正弦定理和余弦定理在几何中的重要性3. 安排练习题,巩固学生对正弦定理和余弦定理在几何中的应用能力第五章:正弦定理和余弦定理在实际问题中的应用5.1 学习目标学会运用正弦定理和余弦定理解决实际问题理解正弦定理和余弦定理在实际问题中的意义5.2 教学内容正弦定理和余弦定理在实际问题中的应用正弦定理和余弦定理在实际问题中的意义5.3 教学方法采用讲解、示例、练习相结合的方式进行教学引导学生通过观察、思考、讨论,发现正弦定理和余弦定理在实际问题中的意义5.4 教学步骤1. 通过示例,讲解正弦定理和余弦定理在实际问题中的应用2. 引导学生理解正弦定理和余弦定理在实际问题中的意义3. 安排练习题,巩固学生对正弦定理和余弦定理在实际问题中的应用第六章:正弦定理和余弦定理的综合练习6.1 学习目标巩固正弦定理和余弦定理的基本概念提高运用正弦定理和余弦定理解决综合问题的能力6.2 教学内容综合练习题,涵盖正弦定理和余弦定理的应用分析解题思路和方法6.3 教学方法提供综合练习题,引导学生独立解答分析解题思路,讨论解题方法6.4 教学步骤1. 提供综合练习题,要求学生独立解答2. 分析解题思路,引导学生运用正弦定理和余弦定理解决问题3. 讨论解题方法,总结正弦定理和余弦定理的应用技巧第七章:正弦定理和余弦定理在三角形中的应用7.1 学习目标深入学习正弦定理和余弦定理在三角形中的应用掌握正弦定理和余弦定理在解决三角形问题时的灵活运用7.2 教学内容正弦定理和余弦定理在三角形中的应用案例三角形特殊角度时的定理特殊性质7.3 教学方法采用案例教学,通过具体三角形问题讲解定理的应用引导学生通过几何画图工具直观理解定理的应用7.4 教学步骤1. 通过具体三角形问题,展示正弦定理和余弦定理的应用2. 引导学生利用几何画图工具,直观理解定理的应用过程3. 安排练习题,巩固学生对定理在三角形中应用的理解第八章:正弦定理和余弦定理在复杂三角形中的应用8.1 学习目标学习正弦定理和余弦定理在复杂三角形中的应用培养学生解决复杂三角形问题的能力8.2 教学内容复杂三角形问题中正弦定理和余弦定理的运用练习题及解题策略8.3 教学方法采用问题解决法,引导学生思考和探讨提供练习题,让学生通过实际操作解决问题8.4 教学步骤1. 引入复杂三角形问题,引导学生思考如何应用定理2. 提供练习题,让学生独立解决3. 讨论解题策略,引导学生总结解题技巧第九章:正弦定理和余弦定理在实际工程中的应用9.1 学习目标学习正弦定理和余弦定理在实际工程中的应用培养学生解决实际工程问题的能力9.2 教学内容正弦定理和余弦定理在工程测量、建筑等方面的应用案例实际工程问题中的解题方法9.3 教学方法采用案例教学,通过实际工程案例讲解定理的应用引导学生通过实际操作,理解定理在工程中的应用9.4 教学步骤1. 通过实际工程案例,展示正弦定理和余弦定理的应用2. 引导学生参与实际操作,理解定理在工程中的应用过程3. 安排练习题,巩固学生对定理在实际工程中应用的理解第十章:总结与复习10.1 学习目标总结正弦定理和余弦定理的主要内容和应用复习本门课程的知识点,为考试做好准备10.2 教学内容复习正弦定理和余弦定理的基本概念、性质和应用总结解题方法和技巧10.3 教学方法通过复习讲义和练习题,引导学生复习和巩固知识点组织复习课堂,鼓励学生提问和讨论10.4 教学步骤1. 发放复习讲义,让学生提前预习2. 组织复习课堂,引导学生复习重点知识点3. 提供练习题,让学生通过实际操作巩固知识点重点和难点解析第六章:正弦定理和余弦定理的综合练习环节:分析解题思路和方法重点和难点解析:此环节需要重点关注解题思路的培养和方法的多样性。
正弦定理教案(精选3篇)
正弦定理教案(精选3篇)正弦定理教案1一、教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。
在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。
它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。
因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。
二、教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
三、教学重难点教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
四、教法分析依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。
即指导学生掌握“观察——猜想——证明——应用”这一思维方法。
学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。
五、教学过程本节知识教学采用发生型模式:1、问题情境有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。
已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。
正弦定理应用教案
正弦定理应用教案【篇一:正弦定理、余弦定理应用举例教案】第7讲正弦定理、余弦定理应用举例【考查要点】利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.【基础梳理】1.用正弦定理和余弦定理解三角形的常见题型。
如测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角:指从正北方向顺时针转到目标方向线的水平角,如b点的方(4)坡度:坡面与水平面所成的二面角的度数.3、解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.4、解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.【例题分析】一、基础理解a..3 m c. m 2解:如图.答案b例4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船a.5海里 b.3海里 c.10海里 d.海里5里),于是这艘船的速度是=10(海里/时).答案 c 0.5二、测量距离问题例1、如图所示,为了测量河对岸a,b两点间的距离,在这岸[分析] 在△bcd中,求出bc,在△abc中,求出ab.例2、如图,a,b,c,d都在同一个与水平面垂直的平面内,b、d为两岛上的试探究图中b、d间距离与另外哪两点间距离相等,然后求b,d的距离.故cb是△cad底边ad的中垂线,所以bd=ba.2+同理,bd(km).故b、d km. 2020三、测量高度问题[分析] 过点c作ce∥db,延长ba交ce于点e,在△aec中解得x=10(33) m.故山高cd为10(33) m.总结:(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.,cdcdxab解:在△abc中,ab=5,ac=9,∠bca=sin∠acb9同理,在△abd中,ab=5,sin∠bad 10abbd∠adb=, sin∠bdasin∠bad22解得bd故bd的长为22总结:要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.点,ad=10,ac=14,dc=6,求ab的长.解:在△adc中,ad=10,ac=14,dc=6,【篇二:《正弦定理》教学设计】《正弦定理》教学设计一、教材分析正弦定理是高中新教材人教a版必修⑤第一章1.1.1的内容,是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边与角之间的数量关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.13 正弦定理及其应用
一、教材分析
正弦定理是高中新教材人教B版必修内容,是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边长与角度之间的数量关系。
在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的问题:
(1)已知两角和一边,解三角形;
(2)已知两边和其中一边的对角,解三角形。
二、学情分析
本节授课对象是高一学生,是在学生学习了必修④基本初等函数Ⅱ和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。
高一学生对生产生活问题比较感兴趣,由实际问题出发可以激起学生的学习兴趣,使学生产生探索研究的愿望。
三、教学目标
1.知识与技能:
(1)引导学生发现正弦定理的内容,探索证明正弦定理的方法;
(2)简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题
2.过程与方法:
(1)通过对定理的探究,培养学生发现数学规律的思维方法与能力;
(2)通过对定理的证明和应用,培养学生独立解决问题的能力和体会分类讨论和数形结合的思想方法。
3.情感、态度与价值观:
(1)通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识;
(2)通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值,不断提高自身的文化修养。
四、教学重点、难点
教学重点:1.正弦定理的推导 2.正弦定理的运用
教学难点: 1.正弦定理的推导 2.正弦定理的运用。
五、学法与教法
学法:开展“动脑想、严格证、多交流、勤设问”的研讨式学习方法,逐渐培养学生“会观察”、“会类比”、“会分析”、“会论证”的能力。
教法:运用“发现问题—自主探究—尝试指导—合作交流”的教学模式整堂课围绕“一切为了学生发展”的教学原则,突出:①动——师生互动、共同探索;②导——教师指导、循序渐进。
(1)新课引入——提出问题,激发学生的求知欲。
(2)掌握正弦定理的推导证明——分类讨论,数形结合,动脑思考,由特殊到一般,组织学生自主探索,获得正弦定理及证明过程。
(3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识。
六、教学过程
教
学
环
节
教学内容师生互动设计意图
探提寻出特猜例想回顾直角三角形中边角关系。
如图:
引导学生寻求联系,
发现规律深化学生对
直角三角形边角关系
的理解。
利用c边相同,寻求
形式的和谐统一,即:
在Rt△ABC中
思考:在斜三角中,
上式关系是否成立?
引导学生经
历经历由特
殊到一般的
发现过程
正弦定理及其推导
在锐角三角形中
作CD AB于D,有
引导学生自主探究对
于一般的三角形
是否仍然成立
分类讨论
(1)在锐角三角形
中,等式是否成立?
(2)在钝角三角形
引导学生通
过自主探
究、合作交
流寻求问题
结论和解决
办法
逻证辑明推猜
理想在钝角三角形中
中,等式是否成立?
(3)如何证明?
让学生分组讨论自主
探究,教师注意巡视
指导,引导学生思考
教
学
环
节
教学内容师生互动设计意图
学习新知作CD AB于D,有
综上:得:
正弦定理:在一个三角形中,各边的长和它所对角的正弦的比相等,即
定概理念(1)正弦定理展现了三角形边角关
系的和谐美和对称美;
(2)解三角形:一般地,我们把
三角形的三个角和它的对边分别叫
做三角形的元素。
已知三角形的几个
元素求其他元素的过程叫做解三角
引导学生充分理解正
弦定理,掌握正弦定
理的结构特征,启发
学生思考正弦定理可
以那些解决解三角问
题.
引导学生体
会正弦定理
所体现的美
学价值,挖
掘正弦定理
的应用.
七、评价分析
这堂课由实际问题出发,引导学生探索研究三角形中边角关系,展示了一个完整的数学探究过程。
提出问题、发现规律、推到证明,定理应用,让学生经历了知识再发现的过程,促进了个性化学习。
在教学过程中,使学生体会认识事物由特殊到一般,再由一般到特殊的规律,体会分类讨论、数形结合的数学思想方法,并提高运用所学知识解决实际问题的能力。
通过学习和运用,进一步使学生体会数学的科学价值、应用价值,进而领会数学的人文价值、美学价值,不断提高自身的文化素养。
(附)板书设计。