正弦定理教学案例分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《正弦定理》教学案例分析

山东省莱芜市第十七中学/田才林

一、教学内容:

本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证明,最后进行简单的应用。

二、教材分析:

1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书.数学必修5》(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证明,感受“类比--猜想--证明”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。

2、教学重点和难点:重点是正弦定理的发现和证明;难点是三角形外接圆法证明。

三、教学目标:

1、知识目标:

掌握正弦定理,理解证明过程。

2、能力目标:

(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。

(2)增强学生的协作能力和数学交流能力。

(3)发展学生的创新意识和创新能力。

3、情感态度与价值观:

(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。

(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。

四、教学设想:

本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下:

五、教学过程:

(一)创设问题情景

课前放映一些有关军事题材的图片,并在课首给出引例:一天,我核潜艇A正在某海域执行巡逻任务,突然发现其正东处有一敌艇B正以30海里/小时的速度朝北偏西40°方向航行。经研究,决定向其发射鱼雷给以威慑性打击。已知鱼雷的速度为60海里/小时,问怎样确定发射角度可击中敌舰?

[设计一个学生比较感兴趣的实际问题,吸引学生注意力,使其立刻进入到研究者的角色中来!]

(二)启发引导学生数学地观察问题,构建数学模型。

用几何画板模拟演示鱼雷及敌舰行踪,在探讨鱼雷发射角度的过程中,抽象出一个解三角形问题:

1、考察角A的范围,回忆“大边对大角”的性质

2、让学生猜测角A的准确角度,由AC=2BC,从而B=2A

从而抽象出一个雏形:

3、测量角A的实际角度,与猜测有误差,从而产生矛盾:

定性研究如何转化为定量研究?

4、进一步修正雏形中的公式,启发学生大胆想象:以及

[直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!]

(三)引导学生用“特例到一般”的研究方法,猜想数学规律。

提出问题:

1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式()。

2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。

3、让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

[“特例→类比→猜想”是一种常用的科学的研究思路!]

(四)让学生进行各种尝试,探寻理论证明的方法。

提出问题:

1、如何把猜想变成定理呢?使学生注意到猜想和定理的区别,强化学生思维的严密性。

2、怎样进行理论证明呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证明。

3、你能找出它们的比值吗?借以检验学生是否掌握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。

4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。

[学生成为发现者,成为创造者!让学生享受成功的喜悦!]

(五)反思总结,布置作业

1、正弦定理具有对称和谐美

2、“类比→实验→猜想→证明”是一种常用的研究问题的思路和方法

课下思考:三角形中还有其它的边角定量关系吗?

六、板书设计:

正弦定理

问题:大边对大角→边角准确的量化关系?

研究思路:特例→类比→实验→猜想→证明

结论:在△ABC中,边与所对角满足关系:

七、课后反思

本节课授课对象为实验班的学生,学习基础较好。同时,考虑到这是一节探究课,授课前并没有告诉学生授课内容。学生在未经预习不知正弦定理内容和证明方法的前提下,在教师预设的思路中,一步步发现了定理并证明了定理,感受到了创造的快乐,激发了学习数学的兴趣。

(一)、通过创设教学情境,激活了学生思维。从认知的角度看,情境可视为一种信息载体,一种知识产生的背景。本节课数学情境的创设突出了以下两点:

1.从有利于学生主动探索设计数学情境。新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,本教案紧紧地抓住高二学生的这一特征,利用“正弦定理的发现和证明”这一富有挑战性和探索性的材料,精心设计教学情境,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。

2.以问题为导向设计教学情境。“问题是数学的心脏”,本节课数学情境的设计处处以问题为导向:“怎样调整发射角度呢?”、“我们的工作该怎样进行呢?”、“我们的‘根据地’是什么?”、“对任意三角形都成立吗?”……促使学生去思考问题,去发现问题。

相关文档
最新文档