(完整版)第六章弹性波波动方程及其解

合集下载

基础物理学上册习题解答和分析第六章习题解答和分析

基础物理学上册习题解答和分析第六章习题解答和分析

习题六6-1频率为Hz 41025.1⨯=ν的平面简谐纵波沿细长的金属棒传播,棒的弹性模量211/1090.1m N E ⨯=,棒的密度33/106.7m Kg ⨯=ρ.求该纵波的波长. 分析 纵波在固体中传播,波速由弹性模量与密度决定。

解:波速ρ/E u =,波长νλ/u = 2/0.4E m λρν==6-2一横波在沿绳子传播时的波方程为:))(5.2cos(04.0SI x t y ππ-=(1)求波的振幅、波速、频率及波长;(2)求绳上的质点振动时的最大速度;(3)分别画出t=1s 和t=2s 的波形,并指出波峰和波谷.画出x=1.0m 处的质点的振动曲线并讨论其与波形图的不同.解:(1)用比较法,由)2cos()5.2cos(04.0x t A x t y λπϕωππ-+=-=得0.04A m = ; /2 2.5/2 1.25Hz νωπππ===;2, 2.0m ππλλ== 2.5/u m s λν==(2)0.314/m A m s νω==(3)t=1(s)时波形方程为:)5.2cos(04.01x y ππ-= t=2(s)时波形方程为:)5cos(04.02x y ππ-=x=1(m)处的振动方程为:)5.2cos(04.0ππ-=t y6-3 一简谐波沿x 轴正方向传播,t=T/4时的波形图如题图6-3所示虚线,若各点的振动以余弦函数表示,且各点的振动初相取值区间为(-π,π].求各点的初相.分析 由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图。

依旋转矢量法可求t=0时的各点的相位。

解:由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图(图中实线),依旋转矢量法可知 质点1的初相为π; 质点2的初相为π/2; 质点3的初相为0; 质点4的初相为-π/2.6-4 有一平面谐波在空间传播,如题图6-4所示.已知A 点的振动规律为)t cos(A y ϕ+ω=,就图中给出的四种坐标,分别写出它们波的表达式.并说明这四个表达式中在描写距A 点为b 处的质点的振动规律是否一样? 分析 无论何种情况,只需求出任意点x 与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于题图题图6-3t=坐标方向的正负关系)即可求解波的表达。

大学物理波动方程

大学物理波动方程

4
波线: 沿波的传播方向作的 有方向的线。 波前: 在某一时刻,波传播 到的最前面的波面。
波面 波线
波面
波线
球面波 z
波面
x
y
波线
平面波
柱面波
5
注意 在各向同性均匀介质中,波线⊥波面。
三、波长
周期
频率和波速
波长() : 同一波线上相邻两个相位差为 2 的质点之间
的距离;即波源作一次完全振动,波前进的距离 。波长反映了波的空间周期性。
T 4s
2m
u 0.5 m s 1
2 rad s 1 T 2 y0 0.5 cos( t ) t=0原点0: 2 2 2
20
例 一平面简谐波沿x轴正方向传播,已知其波函数为
y 0.04 cos (50t 0.10 x) m
1
横波 波的传播方向 质点的振动方向 特点:具有波峰和波谷 纵波 波的传播方向 质点振动方向 特点:具有疏密相间的区域
下面以横波为例观察波的形成过程
2
t 0
1 2
3
4
5
6
7
8
9 10 11 12 13
静止
T t 4
1 2
3
4
5
6
7
8
9 10 11 12 13
振动状态 传至4
T t 2
1 2
t1 时刻x1 处的振动状态经Δt 时间传播到x1+Δx 处,则
可得到
x1 x1 x (t1 ) (t1 t ) u u x u t
x y ( x, t ) A cos[ (t ) 0 ] u x y ( x, t ) A cos[2π (t ) 0 ] t x y ( x, t ) A cos[2π ( ) 0 ] T

波动方程和能量详解

波动方程和能量详解
波的干涉是在特定条件下波叠加所产生的现象 能够产生干涉现象的波,称为相干波。 激发相干波的波源,称为相干波源。
32
4. 相干条件
(1)频率相同:若两列波的频率不同,则两者的 相位差随时间变化,合振动的振幅也随时间变化, 因而不可能观察到稳定的结果;
y1A1cos(1t2x11)
y2A2cos(2t2x22)
•解的形式:
综量是 x ut 的函数
介质中 的波速
f x ut
当然包括 y Acos t kx 平面简谐波

y(x,t)
A cos[ (t
x) u
0 )]

2 y t2
A
2
cos[ (t
x) u
0]
2 y x2
A
2
u2
cos[ (t
x) u
0 ]
2 y x2
1 u2
2 y t2
xA0cos4t
半径为10m的波面上,某点a 的振动方程为:
x12cos4(t18)
(1)求此波的波长;
(2)求半径为25m的球形波面上任一点b 的振幅和振动方程。
解: (1) 球面波的波动方程为 x(r,t)Acos[(tr)]
r
u
又 r 10m
x 1 (t) 1 A 0c o s (t 1 u 0 ) 2 c o s4 (t 8 1 )
平衡位置时的总能量: E Emax
最大位置时的总能量:
E 0
12
2. 还有一点需要指出的,这就是势能属于谁的问 题。 在波动中介质体元的势能是由介质体元自身 的形变引起的,所以这份势能就应该属于形变体 元自身所具有。形变体元实际上已经包含了相互 作用着的各个物体,或者说,形变体元自身就是 一个由相互作用的物体所组成的系统 .

第六章_波动方程

第六章_波动方程

一、波动方程
7.2.3 一维势垒的简单讨论 粒子在I区,具有能量E>0。各区 的势垒如下,求粒子在各区出现 的几率。
0 (0<x<x1) [I区] V=
V2>E (x1<x<x2) [II区]
0 (x>x2) [III区]
一、波动方程 列出此问题的薛定谔方程:
2 d 2u V x u Eu 2 2m dx d 2u 2m 2 V E u 2 dx
此方程比较难解,令 x,
2
2
(1)
mk 2
4
那么
d 2u 2mE mk 2 2 2 2 4 u 0 2 d
(2)
一、波动方程 令括号内第二项的常数部分为1,用λ代替括号内第一项,那么 2化简为:
d 2u 2 u 0, 2 d
波动方程
一、波动方程
第七章 波动方程
波动方程(wave equation)是一种重要的偏微分方程,主要 描述自然界中的各种的波动现象,例如声波,光波和水波。波动方 程抽象自声学,电磁学,和流体力学等领域。
历史上许多科学家,如达朗贝尔、欧拉、丹尼尔²伯努利和拉格朗日等在研 究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。
px i x
所以动量px可以用算符 i 来表示。同理有 x
p y i y
pz i z
一、波动方程
那么
p p p p 2 2 2 x y z 2 2
2 2 2 2 2 x 2 y 2 z 2
波函数两边取对t的偏导
i E , t

波动方程举例ppt课件

波动方程举例ppt课件

500 Hz
0.02 s 0.4 m
精品课件
15
2. x = 2 m 处
0.05 cos ( 5×2 – 100 t ) 0.05 cos ( 100 t –10 ) 初相为–10
3. x1 = 0.2 m 处的振动相位比原点处的振动相 位落后
x2 = 0.35 m 处的振动相位比原点处的振动相 位落后
解:1.
0.05 cos ( 5 x – 100 t ) 0.05 cos 100 ( t – x )
20
cosa = cosa
正向波
精品课件
14
波动方程 y = 0.05 cos ( 5 x – 100 t ) (SI)

y
Acos(t
x u
)
比较得 0.05 m
100
20 m ·s -1
0. 02 8
精品课件
18
(2)p点处x = 0.2m,代入上述波动方程
y0.c 0o 4 0s .[ 4t0. 2 -]
0. 02 8
0.0c4o0s.[4t]
2
方法二 设波动方程为
y
Acos(t
x u
)
A=0.04m
u=0.08m/s
2 0.4
T

把x=0代入上述波动方程 y Acost
31 02co4sπ[t3π] 5
精品课件
9
u
8m 5m 9m
C
B oA
Dx
点 D 的相位落后于点 A
D
A
-
x u
4t - 4 9
20
yD31 0 2co4sπt[-5 9]
31 02co4sπ[t]

弹性波动理论详解

弹性波动理论详解

图1.6 波前、波后和射线
菲涅尔补充:由波前面上各点所产生的子波,在观测点上相互干涉叠加,其叠加 结果就是我们在该点观测到的总振动。 惠更斯—菲涅尔原理(又称波前原理):既可用于均匀介质,也可用于非均匀介 质,利用这个原理可以构制反射界面、折射界面等。 2.费马原理 弹性波的传播,除了可用波前来描述外,还可用射线来描述: 射线:波从空间一点到另一点的传播路径。在任一点上,射线总是垂直于波前。
垂直面内分量:称SV波
从波动方程知:纵、横波传播速度为
Vp
1 (1 )(1 2 ) E 1 Vs 2 (1 ) E
( 2 )

(1.15)
则纵、横波速度之比为
Vp Vs 1 0 .5
(1.16) 表1.2 Vp/Vs值与介质泊松比的关系
(2) 泊松比(σ) 在拉伸形变中,直杆的横切面会减小。反之,在轴向挤压时,横截面将增大。 也就是说,在拉伸或压缩形变中,纵向增量 L和横向增量 d的符号总是相 反的。 泊松比: 介质的横向应变与纵向应变的比值
σ =- L / L
(3) 体变模量
d / d
(1.6)
一个体积为V的立方体,在流体静压力P的挤压下所发生体积形变。即每个正 截面的压体变模量(压缩模量): 压力P与体积相对变化之比 P (1.7) K=-
解决某些特殊问题,如探测充满液体的洞穴(如溶洞), Vs=0
体波:纵、横波,在整个空间 面波:弹性分界面附近 瑞利面波:自由界面,地滚波,R波 特点:低频、低速,能量大(强振幅),旋转(铅垂面,椭圆,逆转) 天然地震中,危害极大 勒夫面波:低速带顶底界面,平行界面的波动,振动方向垂直传播方向, SH波 特点:对纵波勘探影响不大,对横波勘探严重干扰

第六章弹性波波动方程及其解ppt课件

第六章弹性波波动方程及其解ppt课件



又 • u • uS 0



2

代入纳维方程 ( )( • u ) u f u




uS f uS

2 2
VS uS f uS
2

vs

结论:在均匀各向同性弹性体内,切变扰动以速度VS向
(4)
(5)
式u j , ji (ui , jj u j ,ij ) f i ui即为位移在弹性体
内传播时所满足的方程 .称为纳维 ( Navier)方程.
纳维方程是线性弹性假设条件下得到的各向同性弹性体中
的弹性波最基本方程。
指标表示的纳维方程 ( )u j , ji ui , jj f i ui
§6.1 线性弹性动力学的基本方程
1.
基本方程


运动微分方程 ji , j
几何方程
1
eij (ui , j u j ,i )
2
2 ui
f i 2
t
u1
e11
x1
u2
e22
x2
u
e33 3
x3
1 u1 u2
e12 (

)
2 x2 x1
v p t
上式表示波场是以速度VP向外传播的无旋场。

转动矢量表示的横波方程



2
( )( • u ) u f u两边取旋度

2




(


u
)
( )( ( • u )) 2 ( u ) ( f )

弹性波

弹性波
2 E 1 e ( 2 ) 2 t 2 (1 ) 1 2 y
2 E 1 e ( 2w) 2 t 2 (1 ) 1 2 z
一、无旋波 所谓无旋波是指在弹性体中,波动所产生的变形不存在旋转, 即 弹性体在任一点对三个垂直坐标轴的旋转量皆为零。 假定弹性体的位移 u,v,w 可以表示成为:
纵波波动方程的通解是:
u( x, t ) f1 ( x c1t ) f 2 ( x c1t )
二、横波 [定义] 弹性体的质点运动方向垂直于弹性波的传播方向。
横波的传播形式
由于横波的体积应变 e=0,故横波为等容波。
这就是按位移求解动力问题的基本微分方程, 也称为拉密 (Lame) 方程。 要求解拉密方程,显然需要边界条件。除此之外,由于位移分量 还是时间变量的函数,因此求解动力问题还要给出初始条件。 为求解上的简便,通常不计体力,此时弹性体的运动微分方程简 化为:
2u E 1 e ( 2u ) 2 t 2 (1 ) 1 2 x
z
1 [ z ( x y )] E
1 E
xy
2 (1 ) xy E
由于位移分量很难用应力及其导数来表示, 所以弹性力学动力问 题通常要按位移求解。 将应力分量用位移分量表示的弹性方程代入运 动微分方程,并令:
e
得到:
u w x y z
弹性波
概述: 当静力平衡状态下的弹性体受到荷载作用时, 并不是在弹性体的 所有各部分都立即引起位移、形变和应力。在作用开始时,距荷载作 用处较远的部分仍保持不受干扰。 在作用开始后, 荷载所引起的位移、 形变和应力,就以波动的形式用有限大的速度向别处传播。这种波动 就称为弹性波。 本章将首先给出描述弹性体运动的基本微分方程, 然后介绍弹性 波的几个概念,针对不同的弹性波,对运动微分方程进行简化,最后 给出波在无限大弹性体中传播速度公式。 本章仍然采用如下假设: (1) 弹性体为理想弹性体。 (2) 假定位移和形变都是微小的。 上述两条假设,完全等同于讨论静力问题的基本假设。因此, 在 静力问题中给出的物理方程和几何方程, 以及把应力分量用位移分量 表示的弹性方程,仍然适用于讨论动力问题的任一瞬时,所不同的仅 仅在于,静力问题中的平衡微分方程必须用运动微分方程来代替。 对于任取的微元体,运用达朗伯尔原理,除了考虑应力和体力以 外,还须考虑弹性体由于具有加速度而产生的惯性力。每单位体积上 的惯性力在空间直角坐标系的 x,y,z 方向的分量分别为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档