磷化机理

磷化机理
磷化机理

化学元素磷能生成氧化态为+1、+3和+5的各种含氧酸,其中P(+5)的含氧酸和含氧酸盐是磷的重要化合物,而正磷酸就是磷的五价含氧酸。正磷酸简称磷酸,是由一个单一的磷氧四面体构成的,磷原子位于四面体的中心。

磷酸的分子式为H3PO4,相对分子质量为97.99。纯磷酸是无色透明的固体,熔点是42.3°C,它的半水化合物H3PO4·1/2H2O的熔点是29.35°C。它在水溶液中从红磷、H2和O2的生成热是1264.4kJ/mol。磷酸是一种无氧化性的不挥发酸,市售的磷酸是含85%H2PO4或含75%H3PO4的水溶液。磷酸是一个三元酸,在水溶液中按下式分三步电离:

H3PO4一H2PO4-+H+

H2PO4-一HPO42-一+H+

HPO42-一PO43-+H+

而逐级电离常数是

K1=7.5×l0-3(25°C时为7.101×l0-3)

K2=6.2×10-8(25°C时为7.99×l0-8)

K3×10-13(25°C时为4 8×10-13)

电离常数越大,说明其越易电离。对于酸来说,越易电离说明其给出质子的能力越强,酸性就越强。磷酸的K1比一般的弱酸如碳酸(K1=4.30×10-7)、醋酸(K1=1.76×10-5)都大,所以说磷酸是中强度的酸。

由于磷酸含有三个可以被置换的氢原子,因而可以形成三种形式的盐,即磷酸二氢盐(二酸式盐)、磷酸氢盐(一酸式盐)和磷酸正盐。

一价金属的三种形式的磷酸盐如下:

MH2PO4M2HPO4M3PO4M=K+、Na+、NH4+…

还有其他形式的酸式和碱式盐,如多聚磷酸盐等,二价金属三种形式的磷酸盐如下:

M(H2PO4) 2MHPO4M3 (PO4) 2M=Fe2+、Zn2+、Mn2+等在这些盐中磷酸根是以磷氧四面体的形式存在的。

碱金属的磷酸二氢盐的水解呈酸性,磷酸氢盐的水解呈弱碱性,正磷酸盐的水解呈强碱性,例如钠的三种磷酸盐在25°C、10g/L的条件下所显示的pH值如下:

NaH2PO3 pH=5.6

NaHPO4 pH=8.3

Na3PO4 pH=11.9

二价金属的所有磷酸二氢盐(二酸式盐)都易溶于水,而磷酸氢盐(一酸式盐)呈不稳定性或不溶解性,二价金属的所有正磷酸盐都不溶于水。而磷化正是利用了磷酸盐的这种性质,绝大多数磷化剂都是二价金属的磷酸二氖盐(铁系磷化液、锌系磷化液、锰系磷化液、锌钙系磷化液等),它们均可溶于水而配成磷化液,金属用它们磷化处理获得的磷化膜是不溶于水的正磷酸盐。

磷化成膜机理比较复杂,至今尚没有统一完整的理论,不同的磷化体系,不同材质的磷化,反应原理不同。

首先,磷化剂在水溶液中发生电离,随温度的升高,离解度增大。在一定的温度下处于平衡状态。当金属与磷化液接触时,钢铁受游离酸的侵蚀而发生反应,产生的氢气被溶液中的氧化剂氧化成水,同时部分Fe2+离子也被溶液中的氧化剂氧化成Fe3+,Fe3+与PO43-生成FePO4成为残

渣,部分Fe2+参与成膜反应。这些反应都是发生在金属表面。由于反应式的发生,反应式的平衡被打破,平衡向右移动,同时,反应式的发生加速了式的电离,电离出越来越多的Zn2+和PO43-使得金属表面附近的Zn2+、PO43-和Fe2+的浓度过饱和,当大于Zn3(PO4) 2或Zn2Fe(PO4) 2的溶度积时,不溶性的磷酸正盐就沉积在溶液与金属的界面上,由此形成磷化膜。在生成磷化膜的同时,由于消耗掉zn2+及PO43-使得反应平衡继续右移,这样,从Zn(H2PO4) 2中又电离出H+、Zn2+PO43-等离子,溶液又处于新的平衡中。

可以看出,磷化液就是一种缓冲溶液,在生产中,它一直处于一种动态平衡状态中,金属表面的活性点增多,即晶核增多,有利于磷化膜的结晶,这也是表面调整的理论基础。

实际的磷化反应比上面描述的过程复杂得多,因为磷化液中有木同的氧化剂、催化剂、络合剂等,还有许多副反应发生。

磷化实际上也是一种电化学现象。磷化过程中,微阳极发生金属溶解,而微阴极释放出氢气,并随着出现不溶性磷酸盐的水解和沉积。过电位测定,可以检测到磷化膜的生长过程。

1.钢铁工件刚接触到磷化液时,首先受到磷化液中游离磷酸的侵蚀,发生电化学阳极溶解,这时对应的图中的电位升高。

2.由于溶解很快,在局部阳极区域,产生Fe(H2PO4) 2浓度迅速增加而达到饱和,并在局部阴极以溶解不可逆的无定型形态沉积于金属表面,导致电位图上的电位急剧下降,此时,含铁的磷化膜生成,构成了非晶态的底层,这叫非晶态沉积,由于最先生成的无定型沉淀膜具有钝化作用,随后电位变化趋势较平坦。

3.重新上移,说明钢铁基体的电化学阳极溶解继续进行。

4.随着Zn3(PO4) 2、ZnFe(PO4) 2沉积量增加,磷化膜增厚,图中电位缓慢下移。

5.(Ghali盖利)用附加恒电位进行磷化处理时,同时测定阳极极化电流随时问的变化,汪明了重结晶现象的存在。

磷化速率就是磷化膜的生成速率,可以用单位面积磷化膜质量随时间增长来表示,也可以用空隙率,更确切地说是以阳极面积百分数随磷化时间下降来表示,其数学表达式为

ln(F ao/F a)=k

式中k ——速度常数;

T ——磷化时间;

F ao——初始自由阳极面积(cm2);

F a——t时残留的阳极面积(cm2)。

显然,速度常数☆值越大,成膜越快,否则,形成一定厚度的磷化膜就需要相当长的时间。由电化学反应动力学理论知,速度常数k是温度的函数,即

K=k0-E/RT

式中k0——活化能等于零时的速度常数

R——气体常数;。

E——活化能;

T——温度(K)。

因此,速度常数k只是温度和活化能的函数,温度升高,k值增大,反应加快。活化能则与被磷化金属的化学性能及其表而的物理状态、磷化药液的各种成分及其性能等因索有关。磷化液的性能主要由氧化性促进剂决定,它降低活化能使k值增大,磷化加快。此外,成膜物质的浓度、物质在界面处的扩散、成膜时的晶核生成及结晶排列等也化液的性能,通常情况下,各种因素是彼此相关的

金属溶解反应导致局部阴极区域界面液的酸度下降,从而形成过饱和溶液,在pH=4~5时,出现磷化液中磷酸盐的起始沉淀点(PIP),出现起始沉淀点的pH值随溶液中PO43-/zn2+比值的升高而提高。

最先形成的不完善的磷酸铁、氧化铁混合物组成的钝化膜,也可作为供磷酸锌增长的晶核。由金属表面结构来看,表面存在着供磷化膜生产的“活性中心”,该活性中心具有一定的能级、数量和表面分布,活性中心的能级决定晶核生成的难易程度,活性中心的数量和表面分布影响到晶核的数量和分布,从而影响磷化膜的粗细和致密性,晶核生成速率随活性中心数量而增加,但主要的制约因素还是活性中心的能级。

磷化膜在金属晶格基础上的取向和排列同金属晶体相似,即晶格周期相一致,如磷化膜晶体的取向、接长规律。磷化膜晶格在金属晶体上排列整齐,且两者之间又有较强的作用力,形成的磷化膜就致密,附着力强。

晶核都是在反应开始后不久生成的,随后的结晶过程只是品粒的长大,而晶粒数并不增加,一般情况下,单位面积(cm2)的钢铁表面,有几十万至几百万个晶粒。钢铁表面晶粒界面处都是晶粒形成的活性中心,所以钢铁晶粒组织越小,磷酸盐结晶的析出度就越大。喷淋磷化和浸渍磷化的晶核生成数有很大的差别,一般喷淋磷化生成的晶核多,磷化膜细致。

金属表面的状态,可以用化学表面调整剂进行表面调整,如用磷酸钛胶体溶液、锰盐悬浮液等调整以后,改善了金属表面活性中心的密度,有助于提高磷化膜的质量和生成速率。另外,还可通过机械活化手段,如砂纸打磨、擦拭来提高晶核的数量,来加快成膜速度。因为晶核数量与金属表面粗糙度成正比,打磨可增加金属表面的粗糙度,使得到的磷化膜细致;而擦拭作用则给予金属表面能快。

以下还可以了解:

磷化膜可以在不含有金属离子,而只含有钠离子、钾离子、铵离子的磷酸盐溶液中形成。由于没有碱金属进入磷化膜中,因而对这种磷化的命名就比较模糊,但是,用这类磷化得到的磷化膜的主要成分仍含有大量的磷酸铁,因而这类磷化也被认为铁系磷化,不过,碱金属磷酸盐与以磷酸二氢铁为主要成分的、真正的铁系磷化液磷化是不同的,为了加以区分不至于混淆,将此类磷化称为碱金属磷化或轻型铁系磷化比较合适。

钢铁材质在碱金属磷化处理液中的成膜机理与在重金属磷化处理液中的成膜机理具有明显的区别,碱金属的正磷酸盐全部易溶于水,它们的水溶液不存在电离平衡,相对于重金属磷化处理液的pH值为1.5~3.5的情况,碱金属磷化处理的最佳pH值范围为4.O~6.0。

有人认为,当钢铁工件与磷化液接触时,首先发生腐蚀反应,但该反应中产生的氢尚在初生状态时即被迅速氧化了,见下式:

2Fe+4NaH2PO4+2H2O+O2—2Fe(H2PO4) 2+4NaOH (5-8)

接着磷酸亚铁被氧化成三价铁,部分成为磷酸铁,见式(5-9),部分成为氢氧化铁,见式(5-10)。

4Fe(H2PO4) 2+4NaOH4+O2——4FePO4+4NaH2PO4+6H2O (5-9)

4Fe(H2PO4) 2十12NaOH+O2—2Fe(0H) 3+4NaH2PO4+4NaHPO4+2H2O (5-10)在烘干过程中氢氧化铁不稳定,分解为Fe2O3见下式:

2Fe(OH) 3—Fe2O3+3H2O (5-11)

综合式(5-8)~式(5-11)的反应,得

4Fe + 4NaH2PO4 + 3O2 →2FePO4+Fe2O3+2Na2HPO4+3H2 O (5-12)

(被处理金属) (磷化液主要成分) (氧化剂) (磷化膜)

但也有人认为,这类磷化膜的形成有两种过程,即磷酸盐的沉积和金属的直接氧化,见如下两式:

4Fe+8NaH2PO4+3O2—4FePO4+4Na2HPO4+6H2O (5-13)

4Fe+3O2→2Fe2O3 (5一14)

综合式(5—13)、式(5一14),得

4Fe + 4NaH2PO4 + 3O2→2FePO4+Fe2O3+2Na2HPO4+3H2O (5-15) (被处理金属) (磷化液主要成分) (氧化剂) (磷化膜)

可以看出,以上两种理论过程不同,结果是一样的,所有的不溶性产物均进入磷化膜中,溶液中无残渣,反应中仅有盼可溶性产物是磷酸氢钠。

氧化促进剂,尤其是氯酸盐、钼酸盐等常被应用于此类磷化处理。但也有人认为加入它们的必要性不大,特别是在喷淋方式处理的情况下,空气中的氧气足够起到氧化剂的作用。但是,磷化处理液中的氧化剂的种类、用量对磷化膜中的氧化铁的比例,甚至对磷化膜的性能还是有很大影响的。

纯锰磷化技术原理及应用介绍

纯锰磷化技术原理及应用介绍 技术原理:我公司2002年为上海通用的F15变速箱齿轮开发了纯锰磷化工艺,至今已经在通用、大众、上汽的多款变速箱内的齿轮及其它各种传动件上使用,实践证明,纯锰磷化工艺能够显著的降低噪音,并能解决由于疲劳和应力点蚀造成的齿轮工作寿命不达标的问题。对纯锰磷化的性能,欧洲和美国的汽车行业认识较为深刻,为此制订了纯锰磷化的欧洲工程标准,对结晶的尺寸和形状有着严格的规定(请看附件)。纯锰磷化不同于我们常用的锌锰系、纯锌系、锌钙系、铁系等磷化,纯锰系磷化的结晶是层叠的半球状,而其它磷化的结晶是叶状或者针状,在钢铁连接件的表面,半球状的层叠结晶能够极好的储存润滑油,在经受工件应力相互挤压的过程中,半球状不会象针状一样被轻易拉断,半球内的润滑油可以保证工件表面一直处于完全的有油润滑状态,其功能相当于“膜轴承”。这也是为什么在我们汽车齿轮上一直无法解决的点蚀可以用纯锰磷化来解决,点蚀是金属材料在冶炼及机械加工过程中产生的金属晶格缺陷,在热处理和机械加工过程中这种缺陷被放大。在工件工作状态下,如果有晶格缺陷的表面有纯锰的磷化膜存在,就可以减缓冲击和受力强度,显著的延长缺陷晶格失效的时间。由于纯锰磷化是一种反应型化学过程,金属基材表面的不平整其反应速率不同,一般突起处反应较剧烈其受到的腐蚀更多,所以磷化后的平整度有提高。目前国内掌握纯锰磷化技术的公司还很少,大部分国内公司都是以锌锰磷化来冒充纯锰磷化,他们的加工温度只有80几度,真正的纯锰磷化要92度以上。 图一纯锰磷化膜层放大600倍显微照片

图二:普通锌系磷化放大500倍显微照片 纯锰磷化膜外观: 磷化前: 磷化后: 应用实例: 上汽集团齿轮厂 美国通用汽车赛欧变速箱齿轮 丰田汽车唐山爱信齿轮厂(变速箱齿轮) 常州溧阳齿轮厂(出口主减速齿轮) 浙江玉环汽车齿轮厂(出口星型齿轮) 浙江杭州昌杰机械厂(星型齿轮) 福建省同兴齿轮厂(变速箱齿轮) 江苏飞船齿轮股份有限公司(差速器齿轮)江苏太平洋精密锻造有限公司(差速器齿轮)检测报告: 1.纯锰磷化欧洲工程标准:

磷化膜影响因素

磷化膜影响因素 磷化温度对磷化膜的成膜影响最大,其次是磷化液酸比,磷化时间对磷化膜的成膜 影响最小 磷化温度 提高磷化温度可以加快磷化速度,提高磷化膜的附着力、硬度、耐蚀性和耐热性,而且较高的磷化温度能够促进金属溶解并加速磷酸盐的水解反应,加快成膜速度[3]。但在高温条件下,Fe2+易被氧化成Fe3+而沉淀下来,使溶液不够稳定。且在磷化过程中升高温度会使部分磷酸盐水解,所以磷化温度的升高有一定的限度。 磷化膜的生成反应速率可表示为 酸比:总酸度和游离酸度 溶液的总酸度取决于马日夫盐的含量,提高总酸度能加速磷化反应,使磷化膜薄而细致。若总酸度过高,则溶液中易出现乳白色沉淀,且磷化后膜层过薄,易起黄锈。若总酸度过低,则磷化速度缓慢,膜层厚而粗糙,磷化膜的附着力不强,并存在空白。 游离酸度取决于磷酸的含量。如果游离酸度过高,则工件表面发黑,使磷酸离解受阻,铁在溶液中溶解变慢,不利于磷化膜的形成,从而导致磷化时间延长,磷化膜晶粒粗大多孔且耐蚀性降低。如果游离酸度过低,则磷化膜变薄,甚至没有磷化膜。 磷化时间 对膜层厚度及空隙率有影响

图:磷化时间与孔隙率的关系曲线--------------------------------------------------------------1 Fe2+含量控制起决定性作用,过高则磷化膜晶粒粗大多孔、Fe2+含量上升快、磷化时间延长,而偏低会使磷化膜变薄或不能成膜。严格控制Fe2+的过快增多是磷化溶液维护的关键之一。控制酸度比及NO-3与H2PO-4的最佳比例、适量添加铬合稳定剂如酒石酸等都能有效控制Fe2+过快升高,且有利于减少磷化沉渣生成、提高磷化膜层质量。若Fe2+含量超过允许范围,则磷化沉渣会增多,磷化膜质量劣化。-----------------------------------------------------174 试验证明磷化液中Fe2+的最佳含量为1. 5~3. 0 g/L。------------------------------------176 磷化工艺发展现状 磷化膜用作钢铁的防腐蚀保护膜,最早的可靠记载是英国CharlesRoss于1869年获得的专利现在磷化处理技术已广泛应用于汽车、船舶、军工、电器、机械等领域,其主要用途是防锈、耐摩减磨、润滑、涂漆底层等,从而较好解决了钢铁在环境中的腐蚀问题。随着磷化技术的进步,现代磷化正朝着低温节能、工艺简便、投资耗料少、无毒无污染的方向发展,如磷化温度由原来的高温(>85e)逐步降低到中温乃至室温(<30e),磷化处理时间由最初的几个小时缩短到目前的几分钟。磷化处理方式也从开始的纯浸渍法发展到喷淋法、馄除法以及浸喷馄混和法的自动化生产,磷化体系则由当初的单元体系(只有铁一种金属离子)发展到今天的多元体系(同时含有铁、锌、锰、镍、钙等多种金属离子) 磷化添加剂从无到有,大大改善了磷化膜的质量,提高成膜速度,已成为磷化液中不可缺少的成分"时至今日,新技术新工艺逐渐取代了旧技术旧工艺,还出现了常温“四合一”磷化处理液,多功能磷化处理液能减少处理工序,降低劳动强度,但在膜的致密性和防腐性方面需进一步的改善和提高。黑色金属的黑化和磷化相结合,在金属表面生成起到修饰、防护的作用共生膜,有着广阔的应用和推广价值。 磷化膜能够提高漆膜或其他有机涂料与金属的结合力及防护性,其主要原因,大体上可归纳如下: (1)磷化膜能够把金属基材表面的活性转化到最小的程度,把以后的腐蚀反应降到最低限度; (2)磷化膜能给金属提供一个“粗糙面”,给油漆或其它有机膜提供一个很好的咬合力,增强其附着力; (3)由于磷化过程除去了工件表明的各种无机污染物,如金属屑,轻微氧化物以及其它污物等,减少了影响附着力的内在不利因素;

磷化液配方总

1.配方原料质量份 磷酸110~180 氧化锌30~50 硝酸锌150~170 氯化镁15~30 酒石酸5~10 十二烷基苯磺酸钠2~4 重铬酸钾0.2~0.4 钼酸铵0.8~1.2 水1000 2. 锌钙系磷化液重量比的物质组成 磷酸二氢锌∶硝酸钙∶磷酸∶硝酸镍∶柠檬酸或葡萄糖酸∶柠檬酸或葡萄糖酸的钠盐或钙盐∶氟化钠∶水=2.5∶3.5∶4.9∶-8.4∶0.5-1∶0.02-0.16∶0.015-0.06∶0.002-0.04∶0.002-0.8∶4-60。 3. 锌钙系磷化液重量比的物质组成 氧化锌:磷酸:硝酸:碳酸钙:碳酸氢铵:硝酸镍:有机酸:有机酸盐:氟化钠:水=0.8-1.1∶3-4∶4.5-6∶3.5-5.5∶0.1-0.3∶0.02-0.16∶0.015-0.06∶0.002-0.04∶0.006-0.08∶4-60; 4. 中温锰基磷化 用浓度为40~65g/1马日夫盐,配成总酸点40~60,游离酸点4~6,酸比 1:9~13的磷化液。本发明的特征在于:磷化液加入浓度为0.8~1.5g/1的添加剂EDTA二钠盐或浓度为1~2g/1的添加剂硼酸,浸泡式磷化时,磷化温度为70~85℃。磷化时间10~40分钟,磷化温度与磷化时间成反比。 5. 硝酸钙,磷酸锌,硝酸镍,硝酸钴,硝酸锡,柠檬酸,酒石酸,E.D.T.A,表面活性剂OP和水组成。 6. 酸洗液和磷化液 1)酸洗液:磷酸,5-50硫尿,0.005-0.015十二烷基磺酸钠,0.0 5-0.15平平加,0.05-0.15氯化十六烷基三甲铵,0.05-0.15柠檬酸,1-10水,93.845-39.535(2)磷化液:硝酸钙,5-15磷酸锌,5-15硝酸镍,0.15-0.25硝酸钴,0.045-0.055硝酸锡,0.045-0.055柠檬酸0.15-0.25酒石酸,0.045-0.055E.D.T.A,0.045-0.055表面活性剂OP,0.008-0.02水89.512-69.26。 7. 除油除锈磷化液 磷酸、柠檬酸、硫脲、磷酸三钠,聚氧乙烯辛基酚醚,其特征是该液还有添加剂,添加剂是 蓖麻油衍生物。 8. 常温下制作和操作的防锈磷化液 磷酸、硝酸、氧化锌、亚硝酸钠、碳酸钠、水,按其重量成份的配比为:H↓[3]PO↓[4]27.2kg HNO↓[3]24.5kgZuO22kgNa↓[2]CO↓[3]10kgH↓[2]O800kg。 9. 钢铁表面防腐处理的磷化液 磷酸、氧化锌、氧化剂、络合剂A、促进剂B等组成, 磷化处理需加温35℃ 10. 常温快速磷化液 磷酸、氧化锌、亚硝酸钠、磷酸二氢锌、氧化剂、络合剂A、促进剂B组成,它在0℃~37℃温 度范围内使用,配方按克/升配比如下:A、磷酸25~35克/升(工业级)氧化锌18~23克/升(工业级)磷酸二氢锌22~30克/升(工业级)亚硝酸钠5~10克/升(工业级)氧化剂0.2~0.5克/升(试剂纯)络合剂A0.2~0.6克/升(试剂纯)促进剂B0.2~0.6克/升(试剂纯)B、当没有络合剂A、促进剂B存在时,以上磷化液也具相对的效果,C、磷化液处理的钢铁表面呈彩色至灰色磷化膜。 11. 新型磷化液 磷化液的配方为:(克 /升)磷酸,5—15硝酸,3—10氧化锌, 3—15催化剂,0.01—2硝酸镍,0.3—3 水,余量。

关于磷化处理原理

金属磷化处理 在各类制造业中对钢、镀锌钢、锌和铝等金属作磷化处理是表面处理中的重要步骤。在油漆前的金属表面预处理中作磷化处理的目的是为了增强材料的抗腐蚀能力、帮助冷成形、改善部件在滑动接触时的摩擦性能。本文将用实例来加以说明。 磷酸锌是一种在金属基材上生成的晶型转化膜,这种膜是利用了那些先让溶于酸的金属离子起反应然後经水稀释而成的磷化液来处理生成的。传统的电镀法是利用电流在金属上生成镀膜,磷化则是让金属与磷化液接触发生酸蚀反应而生成磷化膜的。硝酸和磷酸是常用的用于溶解金属的无机矿物酸。 依照工艺要求可以在磷化液中添加锌、镍和锰等金属离子。为了得到特殊的效果,也可加一些其它金属离子,磷化液中加镍能提高材料的抗腐力加快磷化反应。近年来所发展的无镍工艺的效果已经也可在各方面与含镍工艺相竞争。 在磷化液中加入促进剂可以提高磷化反应速度、消除氢气的影响和控制磷化渣的生成。促进剂可以是单一的物质、也可以为取得最佳效果而将几种物质混合一起使用。可以选用的促进剂有亚硝酸盐/硝酸盐、氯酸盐、溴酸盐、过氧化物和一些有机物(如:硝基苯磺酸钠)。 在对热浸镀锌板或铝板作磷化处理时还常添加游离或络合的氟化物。图1是使用不同的磷化工艺所生成的各种磷酸盐晶体。 一,磷化反应机理: 1. 酸蚀反应 金属表面与磷化液发生的第一个反应是将某些金属从表面溶解下来的酸蚀反应。不同的磷化液对钢的酸蚀速度约1-3 g/m2;作厚膜磷化时,酸蚀反应速度还要求高许多。酸蚀反应对形成涂膜是非常重要的,因为它既可净化金属表面、又能提高漆膜的附著力。在酸蚀反应发生时,由于金属表面的溶解,所以紧靠表面的磷化液中的游离酸被消耗,金属离子进入磷化液,所溶入的金属离子类型与所处理的基材有关。在磷化液中添加氧化促进剂可减少酸蚀反应时所生成的氢气: 钢表面: Fe + 2H+1 + 2Ox →Fe+2 + 2HOx 镀锌钢表面: Zn + 2H+1 + 2Ox →Zn+2 + 2HOx 铝表面: Al + 3H+1 + 3Ox →Al+3 + 3HOx 2. 磷化反应: 在磷化液中所发生的第二个反应是磷化。由于在金属与溶液的界面上的游离酸度的降低、PH升高,金属阳离子就不再以可溶离子形式存在,它们与溶液中的磷酸盐反应后以磷酸锌的形式沉淀结晶在金属表面。 依据不同的工艺方法,这种晶体可有不同的组成和结构: 3Zn+2 + 2H2PO4-1 + 4H2O →Zn3(PO4)2·4H2O

汽车零件磷化过程

中国制造上汽乘用车临港工厂油漆车间 2013年06月13日 06:54来源:凤凰汽车作者:张佳栋1人参与 1条评论 凤凰汽车特别策划中国自主品牌现在的发展状况如何?如何应对合资品牌的压力?凤凰汽车《中国制造》栏目将走访国内主要的自主品牌汽车制造商,一探它们的生产、生存状况。上汽乘用车是我们此次走访的第一站,我们的探访,就从上汽乘用车的临港制造基地开始。 上一期由我的同时介绍了上汽临港工厂的车身车间(点击查看),今天将由我继续向大家介绍上汽乘用车临港生产基地的油漆车间,油漆车间最主要执行的就是汽车生产四大工艺中的喷漆工艺,在车身车间完成的车体一系列的清洗、密封以及喷漆工序,为车辆最终的总装打好基础,车辆的颜色在油漆车间也就已经确定了。

上海汽车乘用车公司临港油漆车间,从2006年8月28日打下第一根桩,开始土建。车间总占地面积为42000平方米,项目共投资5.2亿元,由机械工业第四设计院完成设计、施工。设计最大产能为单班40件/小时,单班年产量8万余辆。2008年12月实现第一阶段的27件/小时产能要求,2009年8月达到40件/小时的产能要求,2010年2月开始两班生产。目前主要生产的车型为荣威550、MG6、MG3以及荣威950。

油漆车间是整个工厂中最洁净的地方,拥有大量密封进行自动化操作的工段,车间内的工作地点均具有良好的空气循环,各工位对烟雾、粉尘和其它污秽空气的控制都有极高的要求,必要时随时进行净化处理。在进入车间是必须穿着专业防护服装并经过除尘、除静电通道,在人工操作区域都保证了充足的照明。采用天然光照明时,不允许太阳光直接照射工作空间,在室内照度不足的情况下则采用与整体光源色调相一致的局部照明,光线保证均匀且亮度一直,从而保证车辆的细节都可完整、真实地呈现。随时对员工通道进行清洁,进一步防止外界粉尘被带入施工地段。一方面避免或减少人身伤害和增强职业危害防护,同时也最大限度地保证了车辆喷漆的质量和效果。

磷化膜的组成及成膜机理(新)

磷化膜的组成和成膜机理 深圳雷邦磷化液工程部编辑 磷化膜的形成过程是一种人工诱导及控制的腐蚀过程,阳极不断有金属溶解,阴极不断有氢气析出,晶粒不断生成且继续成长,直到生成连续的不溶于水的磷化膜。磷化膜的形成,成倍地提高了分层的耐蚀性能和耐水性能,是公认的涂层的良好基底。目前在薄板金属件的涂漆,100%倾向于先采用磷化处理,铸件在涂漆前也采用了磷化处理。 一、磷化膜的特性 (1)多孔性磷化膜具有多孔性的主要原因是磷化膜通常由许多大小相差悬殊的结晶 (6)绝缘性能磷化膜是非金属涂层,是电的不良导体,它能使金属工件表面由优良导体转变为不良导体。 二、磷化膜的组成 表2列出了相应的磷酸二氢盐为主要成分的溶液进行处理可获得的磷酸盐转化膜。这些膜主要用于铁金属、铝、锌、镉及其合金上,而且由于以下原因膜的单位面积质量和表观密度不同。 ①磷化件的材质及表面状态; ②早期的机械或化学处理方式; ③所采用的磷化工艺。 表2磷酸盐转化膜的主要类型及特征

3Me2+ + 2H2PO4=== 4H+ + Me3(PO4)2↓ 将上述两个反应式结合起来,磷化过程的总反应方程式如下: 4Fe+3Me2+ + 6H2PO4- + 6NO2 === 4FePO4↓+ Me2 (PO4 ) 2 + 6 H2O + 6NO ↑ (磷化膜) 实际的磷化反应远较上述复杂,因为有一些副反应生成。磷化淤渣的主要成分是FePO4,但其中也有少量的Me3 (PO4)2。磷化膜的主要成分是Me2 (PO4 ) 2、H2O,但也有磷酸铁与黑色的氧化铁。 在铁盐磷化过程中,由于所采用的酸式碱金属磷酸盐都是水溶性的,不能存在于磷化膜中。碱金属的磷酸二氢盐溶液在氧化剂的存在下,例如空气中的氧,与钢铁表面产生下列反应。4Fe + 4NaH2 PO4 + 3O2 === 2FePO4 + Fe2O3 + 2Na2HPO4 + 3H2O

无渣磷化液配方组成,磷化机理作用及技术开发

无渣磷化液配方组成,磷化机理作用及技术开发 导读:本文详细介绍了无渣磷化液的研究背景,理论基础,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。 无渣磷化液广泛应用汽车、机械加工、电子加工行业金属表面处理,禾川化学专业从事磷化液成分分析、配方还原、研发外包服务,为磷化液相关企业提供一整套配方技术解决方案。 一.背景 无渣磷化液广泛应用汽车、机械加工、电子加工行业金属表面处理,专业从事磷化液成分分析、配方分析、配方检测、配方还原、配方研制,为磷化液相关企业提供整套技术解决方案一站式服务。磷化是金属材料防腐蚀的重要方法之一,其目的在于给基体金属提供防腐蚀保护、用于喷漆前打底、提高覆膜层的附着力与防腐蚀能力及在金属加工中起减摩润滑作用等。磷化是常用的前处理技术,原理上应属于化学转化膜处理。工程上应用主要是钢铁件表面磷化,但有色金属如铝、锌件也可应用磷化。钢铁表面涂装前处理工艺指脱脂(除油)、除锈、表调、磷化。然而由于工件表面的状况不同,则生产工艺也有所不同,有的工艺中没有脱脂或没有除锈工序,有的工艺则没有表面调整工序,但磷化工序是绝对不可缺少的。 在涂装处理过程中,如果不清除油脂、氧化皮和锈层,不进行磷化处理,直接进行涂漆和静电喷涂,就会使钢铁表面的涂层产生脱落,失去了涂装的意义。 目前,国内外的金属加工业、薄板加工业、石油行业及汽车、自行车、高低压开关柜、防盗门、铁路等制造业普遍采用的是中、高温磷化,存在着操作不方

便、能源和材料消耗大、调整频繁、成膜不均、成本高等问题。为解决以上问题,常温磷化已成为国际磷化行业的必然和研究课题。常温磷化不仅可以有效地降低能源消耗,还可以解决操作不方便、材料消耗大、调整频繁、成膜不均、成本高等问题。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案! 二、磷化液 2.1磷化概念 磷化液的主要成分是磷酸二氢盐,如zn(h2po4)2以及适量的游离磷酸和加速剂等。加速剂主要起降低磷化温度和加快磷化速度的作用。作为化学加速剂用得最多的氧化剂如no3-、no2-、cio3-、h2o2等。磷化是金属与稀磷酸或酸性磷酸盐反应而形成磷酸盐保护膜的过程。 工件(钢铁或铝、锌件)浸入磷化液(某些酸式磷酸盐为主的溶液),在表面沉积形成不溶于水的结晶型磷酸盐转化膜的过程,称之为磷化.把金属放入含有锰、铁、锌的磷酸盐溶液中进行化学处理,使金属表面生成一层难溶于水的磷酸盐保护膜的方法,叫做金属的磷酸盐处理。磷化膜层为微孔结构,与基体结合

磷化膜——材料表面与界面

磷化膜 汽车的喷涂工艺或者喷漆工艺,集中体现了材料的表面与界面的知识,而磷化膜就是其中一个对喷漆工艺有很大影响的部分。 磷化(Phosphorization)是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。 1、磷化过程的反应机理 磷化过程的反应机理相对比较复杂,目前尚无统一的完整的理论。磷化过程可归纳为化学反应和电化学反应,不同的磷化体系,不同的基材,磷化反应机理不尽相同,但大都包括以下几个步骤: (1)基体金属溶解:当工件浸入磷化液时,磷化液中游离的磷酸把工件表面的铁溶解并放出氢气,降低了磷化界面的酸度,这是磷化反应的起点,可净化金属表面,破坏磷化槽液中的水解平衡,使水解反应向生磷化膜方向进行,界面处浓度降低。 Me-2e→Me2+ 2H++ 2e→2 [H]→H2↑ (2)促进剂加速:铁溶解过程释放出的氢气吸附在工件表面上,阻止了磷化膜的形成,为加速反应,常加入氧化型促进剂,去除氢气,界面处H+浓度可进一步降低。 [o]+[H]→[R]+H20 (3)磷酸根的多级离解:磷化液的基本成分是一种或多种重金属的酸式磷酸盐,其分子式一般用Me(H2P04)2, Me通常指锌、铁、锰等金属离子。这些酸式th溶于水,在一定条件发生水解反应,产生游离磷酸。由于界面处H+浓度急剧下降,导致磷酸根离子各级离解平衡向右移动,最终离解出PO43-。 Me(H2PO4)2→MeHPO4+H3PO4 3 MeHPO4→Me3(PO4)2+ H3PO4 H3PO4→H2PO4-+H+→HP042-+2H+→PO43- (4)磷酸盐沉淀结晶成膜当溶液中离解出的PO43-与界面处的金属离子达到溶度积常数Ksp时,就会形成磷酸沉淀结晶成膜。 3Zn2++2 PO43- +4H20→Zn3 (PO4)2·4H20 2Zn2++Me2++2 P043- +4H20→Zn2Me (P04)2·4H20 例如上述磷酸锌生成的Zn3(PO4)2·4H20和Zn2Fe(PO4)2·4H20的结晶体,其中Me2+代表的是其他金属离子。 由于金属表面氧化过程的产生,从而破坏了磷化液的电离与水解平衡,随着磷化的不断进行,游离H3PO4的不断消耗,促进了原电离反应和水解反应的进行,Me2+、H2PO4-及PO43-浓度不断增大,当磷化反应进行到MeHPO4, FeHPO4、及Me3(PO4)2等物质浓度分别达到其各自的溶度积时,这些难溶的磷酸盐便在被处理金属表面活性点上形成晶核,并以晶核为中心不断向表面延伸增长而形成晶体;晶体不断经过结晶一溶解一再结晶的过程,直至在被处理表面形成连续均匀的磷化膜。磷酸盐与水分子一起形成磷化晶核,晶核继续长大成为磷化晶粒,无数晶粒紧密堆积形成磷化膜。磷化膜分为假转化膜和转化膜两种,假转化膜靠磷化液本身所含的阳离子来成膜,膜是结晶型的,转化膜靠铁基体腐蚀产生的铁离子成膜,加入的碱金属离子不参与成膜,膜属无定型的。 初生的Fe-Zn混合磷酸盐,由于铁参与成膜反应,故与基体金属的结合力

清洁型常温锌锰系磷化液研究

清洁型常温锌锰系磷化液研究 Ξ 余取民3, 李荣喜, 许第发, 宋 勇 (长沙学院生物工程与环境科学系,湖南长沙410003)[摘要] 为使磷化实现清洁生产,开发了一种用于钢铁表面涂装前处理的清洁型常温锌锰系磷化液,实现了磷化液的所有分子均能参加成膜反应,且产物为磷化膜、水、沉渣或在磷化膜干燥过程中挥发物的设计思想.该磷化液不含亚硝酸盐、重金属,在3~35℃下快速磷化可生成膜重约111g/m 2,耐CuS O 4溶液腐蚀时间达72~145s 的彩色磷化膜.磷化前免表面调整,磷化后免水洗. 关 键 词:锌锰系磷化;表面处理;常温;免水洗 中图分类号:TC174.4 文献标识码:A 文章编号:100025900(2007)022******* Study on Cleaning Z n -Mn System Phosphating Solution at R oom Temperature YU Qu -min 3, LI Rong -xi , XU Di -fa , SONG Yong (Department of Bioengineering and Environmental Science ,Changsha University ,Changsha 410003China ) 【Abstract 】 A cleaning Zn -Mn system phosphating s olution used in surface pretreatment of iron and steel at room tem 2perature was developed in order to perform cleaning phosphating production at room temperature.The design idea that all the m olecules or ions inv olved in the phosphating s olution could react with each other forming phosphating film ,water ,sediments or substances v olatilized in the process of coating dryness was performed.The phosphating s olution contains no nitrite and heavy metals.A colored film weighted 111g/m 2 formed through quickly phosphating at 3~35℃,which could resist to dropping CuS O 4s olution for 72to 135seconds.The surface of this w ork doesn ’t need water washed after phosphating. K ey w ords : Zn -Mn system phosphating ;surface pretreatment ;room temperature ;non -washing 钢铁磷化,是钢铁工件表面在磷化液中形成磷化膜的过程,现正朝着节能、低毒、无污染、膜均匀致密、膜薄且耐蚀性能好的方向发展[1].目前,常温磷化存在速度慢、磷化膜薄、膜耐蚀性差,磷化液中含有严重污染环境的NO 2-、F -、Ni 2+等有毒物质[2].工件从磷化液中取出后,工件表面残存磷化液中的Cl -、S O 42-、NO 3-、NO 2-、F -及过量的盐等会造成磷化后的工件锈蚀、挂灰,因此,磷化后的工件一般需要水 洗以清除这些残存磷化液 [3,4].工业生产中轻薄型磷化的工件带出的磷化液为35g/m 2左右,接近或超过磷化成膜的消耗量[5].清洗这些残存磷化液用的洗水量大,废水中含磷、氮、锌等有害物质多,排放前 必须处理.如果磷化后工件免水洗,这些残存磷化液用于成膜,可显著减少污染物排放、节约资源、增加磷化膜的厚度和耐蚀性.锌锰系常温磷化液配方简单,裸态磷化膜具有较好的抗大气腐蚀能力,涂层的附着力达一级[1] .本文旨在开发一种性能优良、磷化后工件免水洗的清洁型常温锌锰系磷化液.1 试验方法 111 主要仪器和试剂 LRH -250A 生化培养箱(广东医疗器械厂);DC -2006低温恒温槽(宁波天恒仪表厂);JS M -5600LV 扫描电子显微镜(SE M )与能谱仪(E DS )(日本电子公司). 湖南水口山矿务局的9915%的工业氧化锌;安徽江堰第二化工厂的99%的工业七钼酸铵;株洲杉木塘化工厂的85%的工业磷酸、成膜助剂和钢材. 第29卷第2期2007年6月 湘 潭 大 学 自 然 科 学 学 报Natural Science Journal of X iangtan University V ol.29N o.2Jun.2007 Ξ收稿日期:2006201226 基金项目:湖南省科技攻关资助项目(2006GK 3070) 作者简介:余取民(19622),男,湖南平江人,高级工程师.E -mail :qumin @https://www.360docs.net/doc/3b15202442.html,

磷化膜质量评定及表调作用

磷化膜单位面积膜层质量测定方法按GB/T 9792—2003《金属材料上的转化膜单位面积膜质量的测定重量法》规定进行,该标准系等效采用国际标准ISO3892—2000而制定的。其测定原理为具有磷化膜的干燥试片,在分析天平上称量后,在适当的溶液中褪除上述磷化膜,然后清洗、干燥、称重,以退膜前后的质量差计算单位面积上膜层质量,单位为g/m2。 测试方法为:取有磷化膜的干燥试片(总表面积为A),用精度为0.1mg的分析天平称量记录质量m1(g);然后将试片浸到相应的退膜液中,按规定操作条件进行退膜,退膜后的试片用清洁的流动水冲洗,再用蒸馏水清洗,迅速多次干燥,称量,直至恒重,记录质量m2(g)。 单位面积上的膜层质量mA,按下式计算: mA=100(m1一m2)/A 式中mA——单位面积上的膜层质量(g/m2); M1——有磷化膜时试片的质量(g); M2——退除磷化膜后试片的质量(g); A——试片总表面积(dm2)。 磷化膜P比物理意义:代表磷化膜中P组分所占的比率,该值与磷化液的Zn2+含量、材质、磷化方式等因素有关。磷化膜P比可用下式表示: P比=P/(P+H)式中 P——Zn2 Fe(PO4)2?4H2O的(100)晶面,d(晶面间距)=88.4nm时的x射线衍射强度; H——Zn3(PO4)2?4H20的(0/20)晶面,d=90.4nm时的x射线衍射强度。 因此,P比=P/(P+H)已不是磷化膜Zn2M(PO4)2·4H2O的含量的直接指示,而是作为特定条件下产生的x射线衍射强度比。但习惯还是作为磷化膜中两种不同物质的比。P比高的磷化膜的耐蚀性、抗石击及磷化膜附着力均好。 目前常用的转化膜孔隙率测定方法有两种:铁氰盐溶液试验法和电化学测定法。 GMR铁氰盐溶液测定孔隙率方法是G.D.Cheever为了测定不经涂装试片的孔隙率而研制的一种方法。它与盐雾试验法所得结果一致,是一种快速给出定性结果的测定方法。 该法测定要点如下:将质量分数分别为4%的NaCl、3%的K3Fe(CN)6及表面活性剂(如质量分数为0.1%的全氟代辛酸铵)溶解在蒸馏水中,将溶液保存在褐色瓶中,经24h后过滤,将此液保存4个月后即可使用。将分析的滤纸浸入上述溶液中,然后提出滤纸,并把多余的滤液滴尽、晾干,这样就制得了铁氰法(Ferrotest)滤纸。当进行测定时,可将此试纸覆盖在待试验的磷化膜表面上,经过1min后,将试纸拿下来仔细观察在试纸上表示有孔部分的蓝色斑点生成情况。其判别法以优、良、劣三级来表示。它与烟雾试验相对应:“优”表示磷化膜经过烟雾试验后切割部分剥离宽在3mm以下,“良”表示在4~6mm之间,“劣”表示在6mn,以上。 电化学测定方法为定量测定法,在理论研究中经常用到。 磷化表面调整的处理方法是采用磷化表面调整剂使需要磷化的金属表面改变微观状态,促使磷化过程中形成结晶细小的、均匀、致密的磷化膜。磷化前零件的表面处理对磷化膜质量影响极大,尤其是酸洗或高温强碱清洗对薄层磷化影响最明显。研究结果表明,冷轧钢板表面存在着一层厚

磷化配方中的主要成分

磷化配方中的主要成分 磷化配方中的主要成分 1:新型磷化药剂的种类: 对于新型涂装前处理的磷化药剂来说,一般指的是低温磷化药剂和常温磷化药剂。这两大药剂还进一步分为亚硝酸盐药剂和非亚硝酸盐药剂或内含促进剂药剂和外加促进剂药剂。如果按配方是否含镍盐来分,还可以分为有镍和无镍两种药剂。概括的说,新型磷化药剂是指低温的亚硝酸盐含镍的磷化药剂,低温内含促进剂非镍磷化药剂,常温亚硝酸盐含镍药剂,常温内含促进剂无镍药剂。 2:新型磷化药剂的特点 A:磷化温度低,能源消耗少。这类磷化药剂主要是指磷化温度在35-55度的低温磷化药剂和冬天也不需要加温的常温磷化药剂。 B:低污染,低毒性。这类磷化药剂是指无亚硝酸盐的药剂。尤其是不含亚硝酸盐也不含镍的药剂。当然类似铬离子等污染中的成分也没有。 C:长寿命,低成本。这类药剂是使用寿命长,单耗少,综合成本低的磷化药剂。 D:可以满足新型涂装方式,即可以满足电泳涂装和静电喷涂等新型涂装方式的磷化药剂。 E:操作简便,管理简单。这类药剂的组分少,添加方便,管理简单。 3:新型磷化药剂的基本成分和作用 新型的磷化药剂成分要比普通的中温和高温磷化药剂组分要复杂的多,除了成膜物质外,通常含有促进剂,改性剂,降渣剂,添加剂等多种成分。 成膜物质

A:磷酸二氢锌 新型磷化药剂的主要成分仍然是磷酸二氢锌,碱金属磷酸盐。磷酸二氢锌的制备一般用氧化锌和磷酸反应制得。制取1克的磷酸二氢锌约用锌0.28克磷酸0.8克。在锌系磷化液(粉)中,锌离子的含量对磷化膜的影响较大。一般的说,锌离子的含量高,可以形成更多的结晶核心,可以加速磷化反应。使磷化膜致密,光泽性好。但是锌离子含量过高,磷化膜结晶粗大,膜脆,挂灰,影响涂膜附着力。锌离子含量过低时,磷化膜薄,不利于磷化膜的形成。磷化时间延长。且磷化膜颜色发暗。根据磷化液中锌离子含量的不同,把锌系磷化液(粉)分为高锌,中锌,低锌。对于电泳涂装,主要采用含量在0.3-1.3克每升的低锌磷化液。对于镀锌钢铁工件的磷化主要采用含锌量在0.9-1.1克的低锌磷化液。 B:碱金属磷酸盐, 这类成膜物质主要在磷化液中。常用的碱金属磷酸盐包括碱金属一代磷酸盐,二代焦磷酸盐,多磷酸盐。它使磷酸与金属离子形成磷酸盐,构成磷化膜的成分。碱金属磷酸盐通常在金属表面形成均匀,致密的彩色磷化膜。碱金属磷酸盐所形成的磷化反应,产生的磷化沉渣少。槽液易于管理,使用成本低,但是由于磷化膜薄,耐蚀性较差。 C:磷酸 磷酸是与金属离子形成磷酸盐的成膜物质,其含量过多过少都直接影响磷化膜的质量。磷酸含量过高时,游离酸就会增加,磷化膜易返锈。磷酸含量过低时,槽液的稳定性就会降低,磷化沉渣就会增加。磷化膜发暗,多孔,甚至磷化不上。磷酸在磷化槽液中的含量一般为14-16克每升为宜。磷酸根和硝酸根的比值会直接影响磷化效果。 D:硝酸钙盐 作为成膜物质的硝酸钙盐主要在锌钙系磷化液(粉)中,它的制取一般用碳酸钙与硝酸反应,钙离子的加入,使磷化膜的结晶得到改善。并可以减少磷化前的表调工序。但是钙离子和锌离子的比值在磷化槽液中有个临界值的问题。当钙

锰系磷化说明书

锰系磷化说明书 The manuscript was revised on the evening of 2021

高温锰系黑色磷化液说明书 一/本品能在钢铁上形成一种晶体状的锰系磷化膜,这层磷化膜能提高工件的耐磨性和耐腐蚀性能,磷化膜具有很强的吸附性,当浸泡了合适的油后具有高效的耐磨损效果,主要由磷酸铁和磷酸锰组成。这种处理工艺能降低工件如活塞,活塞环,衬垫,凸轮轴,推杠,马达座及类似承载表面的磨损。其他优点可归纳如下: 锰系磷化处理使运动工件迅速跑合,防止承载表面之间金属与金属的直接接触,不会出现划伤或粘结。 由于磷化膜吸油,增加了处理过的表面的润滑作用。消除了金属在机械加工中留下的刮痕。延缓了腐蚀作用,因此也可以用作防腐底层。可适用于汽车,摩托车,船舶,等高速运转零部件的减磨自润滑功能膜层处理。以及工具,刀刃及较高标准要求标准件的耐摩,耐腐蚀处理。 二.产品特性 1.高倍浓缩酸性液体。 2.用于钢铁表面的防腐耐摩处理。 3.也可以用于压铸件的处理。 4.在钢铁表面形成一层黑色的磷酸锰盐层。 5.符合甚至超过国标盐雾实验。 6..环保.安全,操作方便,废水处理简单/ 三.作业管理标准: 管理项目管理标准

1.皮膜建浴浓度:1比5(20%) 2.全酸度(TA) :祥见本公司内部说明 3.游离酸(FA):祥见本公司内部说明 4.温度(Temp) 92-98℃. 5.时间(Time) 8-20分钟 6.限更新周期 12个月 四.工艺流程: 1.除油(XH-400)--水洗—除锈—水洗—表调(XH-28)--磷化(XH-575)---水洗—干燥或脱水防锈油(XH-300) ? 五.及添加方法: 1.使用仪器及试剂:吸球、吸管、烧杯、 NaOH、 酚酞(PP)、溴酚蓝(BPB) 2.测量方法: (1)全酸度(TA):取槽处理10mL加酚酞(PP)指示剂3-5滴,再用 NaOH滴定,颜色由无色变至粉红5-10秒不褪色,即为其终点,此时所消耗 NaOH之毫升数,即为其全酸度之度数。 (2)游离酸(FA):取槽处理液10mL加溴酚蓝(BPB)指示剂3-5滴,再用 NaOH 滴定,颜色由浅黄色变至浅蓝色,5-10秒不褪色,即为其终点,此时所消耗NaOH之毫升数,即为其游离酸之度数。 六。注意事项和安全措施 1.注意事项:

磷化工艺流程

磷化工艺 开放分类:化学工程、化学工艺、化工术语 (I)基本原理及分类 磷化工艺过程是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。 1 基本原理 磷化过程包括化学与电化学反应。不同磷化体系、不同其材的磷化反应机理比较复杂。虽然科学家在这方面已做过大量的研究,但至今未完全弄清楚。在很早以前,曾以一个化学反应方程式简单表述磷化成膜机理: 8Fe+5Me(H2PO4)2+8H2O+H3PO4 Me2Fe(PO4)2?4H2O(膜)+Me3(PO4)?4H2O(膜)+7FeHPO4(沉渣)+8H2↑ Me为Mn、Zn 等,Machu等认为,钢铁在含有磷酸及磷酸二氢盐的高温溶液中浸泡,将形成以磷酸盐沉淀物组成的晶粒状磷化膜,并产生磷酸一氢铁沉渣和氢气。这个机理解释比较粗糙,不能完整地解释成膜过程。随着对磷化研究逐步深入,当今,各学者比较赞同的观点是磷化成膜过程主要是由如下4个步聚组成:①酸的浸蚀使基体金属表面H+浓度降低 Fe –2e→ Fe2+ 2H2-+2e→2[H] (1) H2 ②促进剂(氧化剂)加速 [O]+[H] → [R]+H2O Fe2++[O] → Fe3++[R] 式中[O]为促进剂(氧化剂),[R]为还原产物,由于促进剂氧化掉第一步反应所产生的氢原子,加快了反应(1)的速度,进一步导致金属表面H+浓度急剧下降。同时也将溶液中的Fe2+氧化成为Fe3+。 ③磷酸根的多级离解 H3PO4 H2PO4-+H+ HPO42-+2H+ PO43-+3H-(3) 由于金属表面的H+浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终为PO43-。 ④磷酸盐沉淀结晶成为磷化膜 当金属表面离解出的PO43-与溶液中(金属界面)的金属离子(如Zn2+、Mn2+、Ca2+、Fe2+)达到溶度积常数Ksp时,就会形成磷酸盐沉淀 Zn2++Fe2++PO43-+H2O→Zn2Fe(PO4)2?4H2O↓ (4) 3Zn2++2PO43-+4H2O=Zn3(PO4)2?4H2O↓ (5) 磷酸盐沉淀与水分子一起形成磷化晶核,晶核继续长大成为磷化晶粒,无数个晶粒紧密堆集形而上学成磷化膜。 磷酸盐沉淀的副反应将形成磷化沉渣 Fe3++PO43-=FePO4 (6) 以上机理不仅可解释锌系、锰系、锌钙系磷化成膜过程,还可指导磷化配方与磷化工艺的设计。从以上机理可以看出:适当的氧化剂可提高反应(2)的速度;较低的H+浓度可使磷酸根离解反应(3)的离解平衡更易向右移动离解出PO43-;金属表面如存在活性点面结合时,可使沉淀反应(4)(5)不需太大的过饱和

铸铁件黑色磷化工艺流程

铸铁件的黑色磷化 铸铁件的黑色磷化工艺难点在于,铸铁件晶粒结构疏松、工件表面不平整,磷化后清洗水易积留,使得工件抗腐蚀能力下降,易生锈发黄,同时铸铁件的机加工面易掉色也是黑色磷化工艺处理面临的难点。 针对铸铁件的特点,我公司及时消化和吸收国内及国际表面处理的前沿技术,经长期的试验研究,成功推出了铸铁件黑色磷化工艺专用PZn-9型低温锌系磷化剂和PH-32型黑色表调剂,并应用于生产实践中,该系列产品完好的解决了铸铁件在黑色磷化工艺处理过程中所遇到的技术难题,在市场上应用几年来,取得了良好效果及客户好评。现就以某阀体工件(铸铁件,出口,要求较高)的工艺为例,简单介绍该工艺如下:(铸铁件黑色磷化工艺,一般为槽浸) 1.1工艺流程:脱脂→水洗→酸洗→水洗→表调→水洗→磷化→水洗→热水洗→脱水→浸油 工序工艺过程工艺条件质量指标备注 1表面预处理对重油污、重锈进行人工预处理去除严重油污、毛刺、重锈迹 2装挂根据工件结构,注意工艺孔排气液应良好 3脱脂POH-11脱脂剂 30~50Kg/m3 PH值:11~13 温度:60-75℃ 时间:10min去除表面动植物、矿物油等,参照GB/T13312-91标准。 6水洗工业自来水 PH:7~8 温度:RT(常温) 时间:0.5min去除工件表面脱脂剂生产中保持溢流,应经常更换槽液 7酸洗工业盐酸:300—500Kg/m3 POR-2添加剂:10Kg/m3 温度:RT(常温) 时间:10min无油无锈呈金属银白色 参照JB/T6978-93标准 9水洗工业自来水溢流 PH:6~7 温度:RT(常温) 时间:0.5min保持溢流,应经常更换。 11黑色表调PH-32黑色表调剂 原液:水=1:8(体积比) 时间:5-10分钟 PH:2.2~2.5 温度:RT

磷化成膜机理

磷化成膜机理 1、化学转化过程 所用的磷化液都是由磷酸、碱金属或重金属的磷酸二氢盐及氧化性促进剂组成的酸性溶液。因此,整个磷化过程都包括含有基体金属的溶解反应、难溶磷酸盐结晶沉积的成膜过程及氧化性促进剂的去极化作用。 ①基体金属的溶解 磷化液的PH 值一般都在2~5.5之间,呈酸性。因此当金属和此酸性溶液接触时,必然发生由局部阳极和局部阴极反应组成的金属溶解过程: 局部阳极 Me Me 2++2e 局部阴极 2H ++2e H 2↑ ②成膜反应 由于局部阴极区域H +被还原而消耗,酸度下降,使得在第一阶段形成的可溶性二价金属磷酸二氢盐离解成溶解度较小的磷酸一氢盐: Me (H 2PO 4)2 MeHPO 4+H 3PO 4 只要PH 上升到一定程度,则主要离解成不溶性二价金属磷酸盐。此离解则比较迅速: Me (H 2PO 4)2 MeHPO 4+4H 3PO 4 同时 MeHPO 4 Me 3(PO 4)2+H 3PO 4 难溶的Me 3(PO 4)2在金属表面的阴极区域沉积析出。当整个阴极区域都被沉积物覆盖时,成膜反应结束,从而在金属表面形成完整 的磷化膜覆盖。由于成膜反应的可溶性二价金属磷酸二氢盐可以是金属溶解生成的,也可以是溶液中原有的配方组成。除磷酸铁盐膜

外,其他所有的磷化膜的成膜物质都是添加配方中的原料。难溶性磷酸盐的溶积度如表: 氧化性促进剂的去极化作用和对金属溶解的促进 金属溶解时产生的氢气易吸附于阴极的金属表面,从而阻碍水解产生的二价金属磷酸盐在阴极区域的沉积,不能形成磷化膜。水解产物则于溶液中析出成为渣,即浪费成膜原料,也使渣量大大增加。这样在工艺方面将造成困难,对膜的性能也不能保证,因为孔隙率很大。 氧化剂的去极化作用是将还原形成的初生态氢氧化成水; 2[H]+[O ] H 2O 与去极化作用密切相关的是促进剂对金属溶解的促进。它是通过促进剂对H 2的氧化和沉积作用,导致阳极电流密度增加而提高溶 解速率,即提高可溶性二价金属磷酸二氢盐的生成速率。从成膜反应可知,二价金属磷酸盐的生成对成膜速率有控制作用。例如,铁盐磷化时,用于沉积的物质Fe(H 2PO 4)2是铁溶解而产生的,原料浓度增加必然加快成膜速率。 氧化剂的这种去极化作用,可以增加局部电流密度。局部电流密度的增加,可导致局部阳极成为钝态,其结果,增加了局部阴极对局部阳极的面积比。由于成膜物质晶粒在阴极表面析出,阴极面积越大,晶粒析出越多,生成磷化膜越细越快。所以,增大阴极/难溶磷酸盐的溶积度(18~25℃) 磷酸盐 溶积度K SP 磷酸盐 溶积度K SP ZN 3(PO 4)2 9.1Ⅹ10-33 AlPO 4 6.3Ⅹ10-19 Ni 3(PO 4)2 5Ⅹ10-31 CrPO 4 2.4Ⅹ10-23 Co 3(PO 4)2 2Ⅹ10-35 CrPO 4 1.0Ⅹ10-17 Ca 3(PO 4)2 2.0Ⅹ10-29 FePO 4 1.3Ⅹ10-22 Pb 3(PO 4)2 8.0Ⅹ10-43 PbHPO 4 1.4Ⅹ10-10

相关文档
最新文档