最新人教版高一数学试题
高一必修一数学同步训练人教版
高一必修一数学同步训练人教版1. 集合 A={1, 2, 3},集合 B={2, 3, 4},则A∩B=()A. {1, 2, 3, 4}B. {2, 3}C. {1, 2, 3}D. {1, 4}2. 函数 f(x)=x + 1 的定义域为()A. RB. (∞, 0)∪(0, +∞)C. (∞, 1)∪(1, +∞)D. (∞, 0)3. 已知 a = 2, b = 3,则 a + b = ()A. 5B. 6C. 8D. 94. 下列函数中,是奇函数的是()A. f(x) = x²B. f(x) = xC. f(x) = 2xD. f(x) = x + 15. 不等式x² 2x 3 0 的解集为()A. (1, 3)B. (∞, 1)∪(3, +∞)C. (3, 1)D. (∞,3)∪(1, +∞)6. 直线 y = 2x + 1 的斜率为()A. 1B. 2C. 1D. 27. 已知向量 a = (1, 2),向量 b = (2, 3),则a·b = ()A. 8B. 7C. 6D. 58. 等差数列{an}中,a1 = 2,d = 3,则 a5 = ()A. 11B. 14C. 17D. 20填空题(每题 5 分,共 20 分)1. 函数f(x) = √x 的定义域为________。
2. 直线 2x y + 1 = 0 在 y 轴上的截距为________。
3. 等比数列{an}中,a1 = 2,q = 2,则 a4 = ________。
4. 圆心为(1, 2),半径为 3 的圆的标准方程为________。
解答题(每题 20 分,共 40 分)1. 已知函数f(x) = 2x² 3x + 1,求 f(2)的值。
2. 求过点(1, 2)且斜率为 3 的直线方程。
答案与解析:选择题1. B 集合 A 与集合 B 的交集是它们共有的元素,即{2, 3}。
人教版高一数学必修一第一章测试题含答案
人教版高一数学必修一第一章测试题含答案一、选择题1.下列数中,是正数且有理数的是____。
A.根号2B.根号3C.-0.8D.- 3/4答案:D2.在数轴上,数-3,-2,0,2所在的点的次序是____。
A.-2 < -3 < 0 < 2B.-3 < -2 < 2 < 0C.-3 < -2 < 0 < 2D.-2 < -3 < 2 < 0答案:C3.下列各数中,最小的是____。
A.-0.8B.-1/2C.-1D.-0.9999答案:C4.已知-3<x<5,则-2x的取值范围是____。
A.6<x<30B.15<x<30C.-30<x<-6D.-30<x<15答案:D二、填空题1.将-0.25用分数表示为________。
答案:-1/42.-13的绝对值是________。
答案:133.已知-5<x<4,那么|x+7|的取值范围是________。
答案:2<|x+7|<124.如果a>b>0,那么a²和b²的大小关系是________。
答案:a²>b²三、解答题1.已知x<2y,2y≤4z,z≤5,求满足以上条件的x的取值范围。
解:由条件可得:x<2y≤4z≤20故x<20。
2.已知-2<x<3,求满足0<2x-1<5的x的取值范围。
解:0<2x-1<51<2x<6由x的取值范围-2<x<3得1/2<x<3,故满足条件的x的取值范围为1/2<x<3。
3.小明的体重是58kg,如果减轻了1/8,减轻后的体重是多少?解:减轻了1/8,体重减轻的量为1/8×58=7.25kg。
减轻后的体重为58-7.25=50.75kg。
新教材人教版高一数学上册单元测试题含答案全套
新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题集合与常用逻辑用语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此. 4.下列命题中正确的是( ){}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}A B =-29a =3a =±A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z 223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个.2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意; ②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2).3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+={}10B x ax =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求: (1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a a <≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
人教版高一数学必修一-第一章练习题与答案
精品文档集合与函数基础测试一、选择题 ( 共 12 小题,每题 5 分,四个选项中只有一个符合要求).函数 y== x2-x+10在区间(,)上是()1624A.递减函数B.递增函数C.先递减再递增D.选递增再递减.x y22.方程组{x y 0 A.{( 1,1)}的解构成的集合是()B.{1,1}C.(1,1)D.{1}3.已知集合 A a,b,c},下列可以作为集合 A 的子集的是()={A. aB. {a,c}C. {a, e}D.{a, b,c,d}4.下列图形中,表示M N 的是()M NN M M N MNAB C D5.下列表述正确的是()A.{ 0}B.{ 0}C.{ 0}D.{ 0}6、设集合 A={x|x 参加自由泳的运动员 } ,B={x|x 参加蛙泳的运动员 } ,对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为()A.A∩BB.A BC.A∪BD.A B7. 集合 A={x x2k, k Z } ,B={x x2k1, k Z } ,C={ x x 4k1, k Z } 又a A,b B, 则有()A. ( a+b) AB. (a+b)BC.(a+b) CD. (a+b)A、B、C任一个)8.函数 f (x)=- x2+( a-) x+2在(-∞,)上是增函数,则 a 的范围是(214A. a≥5B.a≥3C.a≤3D.a≤- 59. 满足条件 {1,2,3}M{1,2,3,4,5,6}的集合 M的个数是()A. 8B. 7C. 6D.510.全集 U={1,2 ,3,4 ,5 ,6 ,7,8},A={3 ,4,5} ,B={1 ,3 ,6} ,那么集合 { 2,7 ,8}是()A.ABB. A BC.C U A C U BD.C U A C U B11. 下列函数中为偶函数的是()A.y x B. y x C. y x2D. y x31 12. 如果集合 A={ x | ax 2+ 2x + 1=0}中只有一个元素,则 a 的值是()A.0B.0 或1C.1D.不能确定二、填空题 ( 共 4 小题,每题 4分,把答案填在题中横线上 ).函数 f (x)=× -| x|的单调减区间是.13223___________.函数 y= 1 的单调区间为___________.14x+115. 含有三个实数的集合既可表示成{ a,b,1},又可表示成{ a2, a b,0},则a2 0 0 3 b2 0 0 4a .。
人教版高一数学必修四测试题(含详细答案)
人教版高一数学必修四测试题(含详细答案)高一数学试题(必修4)第一章三角函数一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C的关系是()A.B=A∩C。
B.B∪C=C。
C.AC。
D.A=B=C2.已知$\sin\theta=\frac{1}{2}$,$\theta\in\mathrm{Q}$,则$\cos\theta$等于()A。
$\frac{\sqrt{3}}{2}$。
B。
$-\frac{\sqrt{3}}{2}$。
C。
$\frac{1}{2}$。
D。
$-\frac{1}{2}$3.已知$\sin\alpha=-\frac{2}{\sqrt{5}}$,$\alpha\in\mathrm{III}$,则$\cos\alpha$等于()A。
$-\frac{1}{\sqrt{5}}$。
B。
$\frac{1}{\sqrt{5}}$。
C。
$-\frac{2}{\sqrt{5}}$。
D。
$\frac{2}{\sqrt{5}}$4.下列函数中,最小正周期为$\pi$的偶函数是()A。
$y=\sin2x$。
B。
$y=\cos x$。
C。
$y=\sin2x+\cos2x$。
D。
$y=\cos2x$5.若角$\theta$的终边上有一点$P$,则$\sin\theta$的值是()A。
$\frac{OP}{1}$。
B。
$\frac{1}{OP}$。
C。
$\frac{OA}{1}$。
D。
$\frac{1}{OA}$6.要得到函数$y=\cos x$的图象,只需将$y=\sin x$的图象()A。
向左平移$\frac{\pi}{2}$个单位。
B。
向右平移$\frac{\pi}{2}$个单位C。
向左平移$\pi$个单位。
D。
向右平移$\pi$个单位7.若函数$y=f(x)$的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿$x$轴向左平移1个单位,沿$y$轴向下平移1个单位,得到函数$y=\sin x$的图象,则$y=f(x)$是()A。
新人教版高一数学必修2试题立体几何
高一数学(必修2)立体几何试题参考公式一、选择题(本大题共10小题,每小题4分,共40分,将答案直接填在下表中)(1)下列命题为真命题的是()(A)平行于同一平面的两条直线平行(B)垂直于同一平面的两条直线平行(C)与某一平面成等角的两条直线平行(D)垂直于同一直线的两条直线平行(2)若一个角的两边分别和另一个角的两边平行,那么这两个角()(A)相等(B)互补(C)相等或互补(D)无法确定(3)正三棱锥的底面边长为2,侧面均为直角三角形,则此棱锥的体积为()(A(B(C(D(4)已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()(A)2对(B)3对(C)4对(D)5对(5)如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()(A)2(B)12+(C)22+(D)1(C)(1,3,5)(D)(-1,-3,5)二、填空题(本大题共6小题,每小题4分,共24分)(11)底面直径和高都是4cm的圆柱的侧面积为cm2.(12)若两个球的表面积之比是4∶9,则它们的体积之比是.(13)图①中的三视图表示的实物为_____________;PA B CD图②为长方体积木块堆成的几何体的三视图,此几何体共由_______块木块堆成.三、解答题(本大题共4小题,共36分.解答应写出文字说明、演算步骤或推证过程) (17)(本小题满分9分)如图,O 是正方形ABCD 的中心, PO ⊥底面ABCD ,E 是PC 的中点.求证:(Ⅰ)P A ∥平面BDE ;(Ⅱ)平面P AC ⊥平面BDE .(18)(本小题满分9分)已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和. (Ⅰ)求该圆台的母线长; (Ⅱ)求该圆台的体积.高一数学(必修2)训练题参考答案一、选择题二、填空题(11)π16 (12)8∶27 (13)圆锥;4 (14)60° (15)(0,3) (16)8 三、解答题 (17) 证明:(Ⅰ)连结EO ,在△P AC 中,∵O 是AC 的中点,E 是PC ∴OE ∥AP . 又∵OE ⊂平面BDE , P A ⊄平面BDE , ∴P A ∥平面BDE .(Ⅱ)∵PO ⊥底面ABCD ,∴PO ⊥BD .图①正视图 左视图俯视图 正视图 左视图又∵AC ⊥BD ,且AC PO =O , ∴BD ⊥平面P AC . 而BD ⊂平面BDE , ∴平面P AC ⊥平面BDE .(18)解:(Ⅰ)设圆台的母线长为l ,则圆台的上底面面积为224S ππ=⋅=上, 圆台的下底面面积为2636S ππ=⋅=下, 所以圆台的底面面积为40S S S π=+=下上 又圆台的侧面积(26)8S l l ππ=+=侧,于是840l ππ=,即5l =为所求.(Ⅱ)由(Ⅰ)可求得,圆台的高为3h ==.∴ (13V S S h =++圆台下上=(143633ππ+⋅=52π.。
人教A版新教材高一上学期期末考试数学试卷(共五套)
人教版新教材高一上学期期末考试数学试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}210A x x =-<,{}01B x x =≤≤,那么A B 等于( ) A .{}0x x ≥B .{}1x x ≤C .102x x ⎧⎫<<⎨⎬⎩⎭D .102x x ⎧⎫≤<⎨⎬⎩⎭2.若12cos 13x =,且x 为第四象限的角,则tan x 的值等于( ) A .125 B .125-C .512D .512-3.若2log 0.5a =,0.52b =,20.5c =,则,,a b c 三个数的大小关系是( ) A .a b c << B .b c a << C .a c b <<D .c a b <<4.已知1(1)232f x x -=+,且()6f m =,则m 等于( )A .14B .14-C .32D .32-5.已知5()tan 3,(3)7f x a x bx cx f =-+--=,则(3)f 的值为( ) A .13-B .13C .7D .7-6.已知()f x 是定义在R 上的偶函数,且有(3)(1)f f >.则下列各式中一定成立的是( ) A .(1)(3)f f -< B .(0)(5)f f < C .(3)(2)f f >D .(2)(0)f f >7.已知()f x 是定义在R 上的奇函数,当0x ≥时,()5x f x m =+(m 为常数),则5(log 7)f -的值为( ) A .4 B .4-C .6D .6-8.函数11y x=-的图象与函数2sin π(24)y x x =-≤≤的图象所有交点的横坐标之和等于( ) A .8B .6C .4D .29.已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,73ππ2α<<, 则cos sin αα+=( ) ABC.D.10.若函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩,且满足对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立,则实数a 的取值范围是( )A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)11.已知ππ()sin(2019)cos(2019)63f x x x =++-的最大值为A ,若存在实数12,x x ,使得对任意实数x 总有12()()()f x f x f x ≤≤成立,则12A x x -的最小值为( )A .π2019B .2π2019C .4π2019D .π403812.已知()f x 是定义在[4,4]-上的奇函数,当0x >时,2()4f x x x =-+,则不等式[()]()f f x f x <的解集为( ) A .(3,0)(3,4]-B .(4,3)(1,0)(1,3)---C .(1,0)(1,2)(2,3)-D .(4,3)(1,2)(2,3)--第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.5log 30.75333322log 2log log 825169-+-+=_______. 14.已知()1423x x f x +=--,则()0f x <的解集为_______.15.方程22210x mx m -+-=的一根在(0,1)内,另一根在(2,3)内,则实数m 的取值范围是______.16.若实数a ,b 满足0a ≥,0b ≥,且0ab =,则称a 与b 互补.记(,)a b a b ϕ=-,那么“(,)0a b ϕ=”是“a 与b 互补”的 条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合{}123A x m x m =-≤≤+,函数2()lg(28)f x x x =-++的定义域为B .(1)当2m =时,求A B 、()A B R ;(2)若A B A =,求实数m 的取值范围.18.(12分)已知函数()log (1)log (1)a a f x x x =+--,0a >且1a ≠. (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明; (3)当1a >时,求使()0f x >的x 的解集.19.(12分)已知函数()2πcos sin()1()3f x x x x x =+∈R .(1)求()f x 的最小正周期;(2)求()f x 在区间ππ[,]44-上的最大值和最小值,并分别写出相应的x 的值.20.(12分)已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. (1)求(0)f 及((1))f f 的值;(2)求函数()f x 在(,0)-∞上的解析式;(3)若关于x 的方程()0f x m -=有四个不同的实数解,求实数m 的取值范围.21.(12分)设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且()21f =,当0x >时,()0f x >. (1)求(0)f 的值;(2)判断函数()f x 的奇偶性;(3)如果()(2)2f x f x ++<,求x 的取值范围.22.(12分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1[,3]2x ∈时,2()(21)0f kx f x +->恒成立,求实数k 的取值范围.【答案解析】 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】因为12A x x ⎧⎫=<⎨⎬⎩⎭,{}01B x x =≤≤,所以102A B x x ⎧⎫=≤<⎨⎬⎩⎭.2.【答案】D【解析】因为x 为第四象限的角,所以5sin 13x =-,于是5tan 12x =-,故选D . 3.【答案】C【解析】2log 0.50a =<,0.521b =>,200.51c <=<,则a c b <<,故选C . 4.【答案】B【解析】因为1(1)232f x x -=+,设112x t -=,则22x t =+,所以()47f t t =+,因为()6f m =,所以476m +=,解得14m =-,故选B .5.【答案】A 【解析】5()tan 3f x a x bx cx =-+-,()()6f x f x ∴+-=-,(3)7f -=,(3)6713f ∴=--=-.故选A . 6.【答案】A【解析】∵()f x 是定义在R 上的偶函数,∴(1)(1)f f =-, 又(3)(1)f f >,∴(3)(1)f f >-,故选A . 7.【答案】D【解析】由奇函数的定义可得(0)10f m =+=,即1m =-,则5log 755(log 7)(log 7)51716f f -=-=-+=-+=-.故选D .8.【答案】A 【解析】函数111y x=-,22sin π(24)y x x =-≤≤的图象有公共的对称中心(1,0), 如图在直角坐标系中作出两个函数的图象,当14x <≤时,10y <,而函数2y 在(1,4)上出现1.5个周期的图象,且在3(1,)2和57(,)22上是减函数,在35(,)22和7(,4)2上是增函数.∴函数1y 在(1,4)上函数值为负数,且与2y 的图象有四个交点E 、F 、G 、H , 相应地,1y 在(2,1)-上函数值为正数,且与2y 的图象有四个交点A 、B 、C 、D , 且2A H B G C F D E x x x x x x x x +=+=+=+=, 故所求的横坐标之和为8,故选A . 9.【答案】C 【解析】∵tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, ∴1tan tan k αα+=,21tan 31tan k αα⋅=-=, ∵73ππ2α<<,∴0k >, ∵24k =,∴2k =,∴tan 1α=,∴π3π4α=+,则cos α=,sin α=,则cos sin αα+=C . 10.【答案】D【解析】∵对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立, ∴函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递增, 1114021(4)122a a a a ⎧⎪>⎪⎪∴->⎨⎪⎪≥-⨯+⎪⎩,解得[4,8)a ∈,故选D . 11.【答案】B【解析】ππ()sin(2019)cos(2019)63f x x x =++-,112019cos 2019cos 201920192222x x x x =+++2019cos 2019x x =+π2sin(2019)6x =+,∴()f x 的最大值为2A =, 由题意得,12x x -的最小值为π22019T =, ∴12A x x -的最小值为2π2019,故选B . 12.【答案】B【解析】∵()f x 是定义在[4,4]-上的奇函数,∴当0x =时,(0)0f =,先求出当[4,0)x ∈-时()f x 的表达式, 当[4,0)x ∈-时,则(0,4]x -∈,又∵当0x >时,2()4f x x x =-+,∴22()()4()4f x x x x x -=--+-=--, 又()f x 是定义在[4,4]-上的奇函数,∴2()()4f x f x x x =--=-+,∴224,[4,0]()4,(0,4]x x x f x x x x ⎧+∈-⎪=⎨-+∈⎪⎩,令()0f x =,解得4x =-或0或4,当[4,0]x ∈-时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x +++<+, 化简得222(4)3(4)0x x x x +++<,解得(4,3)(1,0)x ∈---;当(0,4]x ∈时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x --++-+<-+, 化简得222(4)3(4)0x x x x --++-+<,解得(1,3)x ∈, 综上所述,(4,3)(1,0)(1,3)x ∈---,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】原式=253log 94433332log 4log log 825(2)9-+-+ 339log (48)98log 91132=⨯⨯-+=-=.14.【答案】2{|log 3}x x <【解析】当()0f x <,即14230,023x x x +--<<<,解得2log 3x <. 15.【答案】(1,2)【解析】设22()21f x x mx m =-+-,则由题意知:函数()f x 的一个零点在(0,1)内,另一个零点在(2,3)内,则有222210(0)0(1)020(2)0430(3)0680m f f m m f m m f m m ⎧->>⎧⎪⎪<-<⎪⎪∴⇒⎨⎨<-+<⎪⎪⎪⎪>⎩-+>⎩,解得12m <<,m 的取值范围是(1,2).16.【答案】充要条件【解析】若(,)0a b ϕ=,a b =+,两边平方整理,得0ab =,且0a ≥,0b ≥,所以a 与b 互补;若a 与b 互补,则0a ≥,0b ≥,且0ab =,所以0a b +≥,此时有(,)()()()0a b a b a b a b ϕ=+=+-+=, 所以“(,)0a b ϕ=”是“a 与b 互补”的充要条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1){}27A B x x =-<≤,{}()21A B x x =-<<R ;(2)1(,4)(1,)2-∞--.【解析】根据题意,当2m =时,{}17A x x =≤≤,{}24B x x =-<<, 则{}27A B x x =-<≤, 又{1A x x =<R或}7x >,则{}()21A B x x =-<<R .(2)根据题意,若A B A =,则A B ⊆, 分2种情况讨论:①当A =∅时,有123m m ->+,解可得4m <-; ②当A ≠∅时,若有A B ⊆,必有12312234m m m m -≤+⎧⎪->-⎨⎪+<⎩,解可得112m -<<,综上可得:m 的取值范围是1(,4)(1,)2-∞--.18.【答案】(1){}11x x -<<;(2)奇函数,证明见解析;(3)(0,1)x ∈. 【解析】()log (1)log (1)a a f x x x =+--,若要式子有意义,则1010x x +>⎧⎨->⎩,即11x -<<,所以定义域为{}11x x -<<.(2)()f x 的定义域为(1,1)-,且()log (1)log (1)[log (1)log (1)]()a a a a f x x x x x f x -=-+-+=-+--=-, 所以()f x 是奇函数.(3)又()0f x >,即log (1)log (1)0a a x x +-->, 有log (1)log (1)a a x x +>-.当1a >时,上述不等式101011x x x x +>⎧⎪->⎨⎪+>-⎩,解得(0,1)x ∈.19.【答案】(1)πT =;(2)π4x =时,max 3()4f x =-;π12x =-时,min 3()2f x =-. 【解析】(1)2π()cos sin()13f x x x x=+-+21cos (sin )12x x x x =+-2111cos2sin cos 1sin21242x x x x x +==+-11πsin2cos21sin(2)14423x x x =--=--, 所以()f x 的最小正周期为2ππ2T ==. (2)∵[,]4ππ4x ∈-,∴5π2[,]6ππ36x -∈-, 当ππ236x -=,即π4x =时,max 113()1224f x =⨯-=-, 当ππ232x -=-,π12x =-时,()min 13()1122f x =⨯--=-. 20.【答案】(1)0(0)f =,((1))1f f =-;(2)()22f x x x =+;(3)10m -<<. 【解析】(1)0(0)f =,((1))(1)(1)1f f f f =-==-. (2)设0x <,则0x ->,22()()2()2f x x x x x -=---=+,∵()f x 偶函数,2()()2f x f x x x -==+,∴当0x <时,()22f x x x =+.(3)设函数1()y f x =及2y m =,方程()0f x m -=的解的个数,就是函数1()y f x =与2y m =图象交点的个数. 作出简图利用数形结合思想可得10m -<<.21.【答案】(1)(0)0f =;(2)奇函数;(3){|1}x x <. 【解析】(1)令0x y ==,则(00)(0)(0)f f f -=-,∴(0)0f =. (2)∵()()()f x y f x f y -=-,∴()()()00f x f f x -=-,由(1)知(0)0f =,()()f x f x -=-, ∴函数()f x 是奇函数.(3)设12,x x ∀∈R ,且12x x >,则120x x ->,()()()1212f x x f x f x -=-,∵当0x >时,()0f x >,∴()120f x x ->,即()()120f x f x ->, ∴()()12f x f x >,∴函数()f x 是定义在R 上的增函数,()()()f x y f x f y -=-, ∴()()()f x f x y f y =-+,211(2)(2)(2)(42)(4)f f f f f =+=+=+-=, ∵()(2)2f x f x ++<,∴()(2)(4)f x f x f ++<, ∴()()()(2)44f x f f x f x +<-=-,∵函数()f x 是定义在R 上的增函数,∴24x x +<-,∴1x <, ∴不等式()(2)2f x f x ++<的解集为{|1}x x <.22.【答案】(1)1b =;(2)单调递减,证明见解析;(3)(,1)-∞-. 【解析】(1)因为()f x 是定义在R 上的奇函数, 所以(0)0f =,即1022b-+=+,则1b =, 经检验,当1b =时,12()22x x bf x +-+=+是奇函数,所以1b =.(2)11211()22221x x x f x +-==-+++,()f x 在R 上是减函数,证明如下:在R 上任取12,x x ,且12x x <,则122121211122()()2121(21)(21)x x x x x x f x f x --=-=++++,因为2x y =在R 上单调递增,且12x x <,则12220x x -<, 又因为12(21)(21)0x x ++>,所以21()()0f x f x -<, 即21()()f x f x <,所以()f x 在R 上是减函数.(3)因为2()(21)0f kx f x +->,所以2()(21)f kx f x >--, 而()f x 是奇函数,则2()(12)f kx f x >-, 又()f x 在R 上是减函数,所以212kx x <-, 即221212()x k x x x -<=-在1[,3]2上恒成立, 令1t x =,1[,2]3t ∈,2()2g t t t =-,1[,2]3t ∈, 因为min ()(1)1g t g ==-,则1k <-. 所以k 的取值范围为(,1)-∞-.人教版新教材高一上学期期末考试数学试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。
人教版高一数学必修 测试题及答案全套
A. 9 2
B. 7 2
C. 5 2
D. 3 2
6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为 5 ,它的对角线的长
分别是 9 和15 ,则这个棱柱的侧面积是( )
A.130
B.140 C.150 D.160
二、填空题
1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,
人教版高一数学必修 2 测试题及答案全套
[基础训练 A 组]
一、选择题
1.有一个几何体的三视图如下图所示,这个几何体应是一个( )
A.棱台
B.棱锥
C.棱柱
D.都不对
主视图
左视图
2.棱长都是1的三棱锥的表面积为( )
A. 3
B. 2 3 பைடு நூலகம். 3 3
D. 4 3
俯视图
3.长方体的一个顶点上三条棱长分别是 3, 4, 5 ,且它的8 个顶点都在
同一球面上,则这个球的表面积是( )
A. 25 B. 50 C.125 D.都不对
4.正方体的内切球和外接球的半径之比为( )
A. 3 :1 B. 3 : 2 C. 2 : 3 D. 3 : 3
5.在△ABC 中, AB 2, BC 1.5, ABC 1200 ,若使绕直线 BC 旋转一周,
则所形成的几何体的体积是( )
顶点最少的一个棱台有 ________条侧棱。
1
PS:双击获取文档。Ctrl+A,Ctrl+C,然后粘贴到word即可。 未能直接提供word版,抱歉。
高一数学试题及答案上册人教版
高一数学试题及答案上册人教版一、选择题(每小题3分,共30分)1. 函数y=f(x)=2x+3的值域是()A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [2, +∞)2. 若直线l的方程为y=2x+b,且直线l与x轴交于点(1,0),则b的值为()A. -2B. 2C. -1D. 13. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B=()A. {1}B. {2}C. {1,2}D. 空集4. 若函数f(x)=x^3-3x在区间[-2,2]上单调递增,则f(1)的值为()A. -2B. -1C. 2D. 15. 已知等差数列{an}的首项a1=1,公差d=2,则其前n项和Sn的公式为()A. Sn=n^2B. Sn=n(n+1)C. Sn=n(n+1)/2D. Sn=n^2+n6. 函数y=f(x)=x^2-4x+4的图像关于直线x=()A. 0B. 2C. -2D. 47. 若复数z=1+i,则|z|=()A. 1B. √2C. 2D. √38. 已知向量a=(2,1),b=(1,-1),则向量a+b的坐标为()A. (3,0)B. (1,2)C. (3,-2)D. (1,0)9. 函数y=f(x)=x^3-3x+1的极值点个数为()A. 0B. 1C. 2D. 310. 已知双曲线C的方程为x^2/a^2-y^2/b^2=1(a>0,b>0),若双曲线C的渐近线方程为y=±(1/2)x,则a/b的值为()A. 2B. 1/2C. 1D. 4二、填空题(每小题4分,共20分)11. 函数y=f(x)=x^2-4x+m的顶点坐标为()。
12. 若直线l的倾斜角为45°,则直线l的斜率为()。
13. 已知等比数列{bn}的首项b1=2,公比q=1/2,则其前n项积Tn的公式为()。
14. 函数y=f(x)=x^3+3x^2-9x+5的单调递减区间为()。
最新人教版高一数学上学期期末考试试题(附答案)
最新人教版高一数学上学期期末考试试题(附答案)最新人教版高一数学上学期期末考试试题(附答案)一、选择题(每题3分,共36分)1.已知集合$A=\{2,4,6\}$。
且当$a\in A$ 时,$6-a\in A$。
则 $a$ 为()A。
2 B。
4 C。
3 D。
12.$\sin(-1050)$ 的值为()A。
$\dfrac{3}{3}$ B。
$\dfrac{3}{2}$ C。
$0$ D。
$2$ 或$4$3.下列函数中,不满足 $f(2x)=2f(x)$ 的是()A。
$f(x)=|x|$ B。
$f(x)=x+1$ C。
$f(x)=-x$ D。
$f(x)=x-|x|$4.函数 $f(x)=|\cos x|$ 的最小正周期为()A。
$2\pi$ B。
$\pi$ C。
$3\pi$ D。
均不对5.函数 $y=2\sin x-2$ 的定义域为()A。
$[2k\pi,2k\pi+\dfrac{\pi}{4}]$,$k\in Z$ B。
$[2k\pi+\dfrac{\pi}{4},2k\pi+\dfrac{\pi}{2}]$,$k\in Z$C。
$[2k\pi+\dfrac{3\pi}{4},2k\pi+\pi]$,$k\in Z$ D。
$[2k\pi,2k\pi+3\pi]$,$k\in Z$6.函数 $f(x)=ax^2+bx+c$ 满足 $f(1)>0$,$f(2)<0$,则$f(x)$ 在 $(1,2)$ 上的零点()A。
至多有一个 B。
有1个或2个 C。
有且仅有一个 D。
一个也没有7.已知向量 $\bold{a}=(1,2,3)$,$|\bold{b}|=1$,且两向量夹 $120^\circ$,则 $|\bold{a}-\bold{b}|=$()A。
$\sqrt{3}$ B。
$3$ C。
$5$ D。
$7$8.将函数 $y=\sin(x+\phi)$,$(0<\phi<\pi)$ 的图像所有点的纵坐标不变,横坐标伸长到原来的2倍,再向左平移$\dfrac{1}{2}$ 个单位得到一个奇函数的图像,则$\phi=$()A。
高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)
第一章集合与函数概念综合测试题、选择题1函数讨二2x -1的定义域是()2•已知集合 A 到B 的映射f:x T y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A • 2B • 6C • 5D • 83•设集合 A 二{x|1 ::: x ::: 2}, B 二{x|x ::: a}.若 A B,则 a 的范围是()A • a_2B • a < 1C • a - 1D . a 乞 24•函数y =(k • 2)x • 1在实数集上是减函数,则 k 的范围是()A • k l :—2B • k z ;—2C • k ^ -2D • k-25•全集 U ={ 0,1,3,5,6,8},集合 A = { 1 , 5, 8 }, B ={2},则(6 A ) B =()A (2,;)B.[];)2 2—1 C.(「2) -1D.( =,2]B • { 0,3,6} {2,1,5,8} D • {0,2,3,6}F列各组函数中,表示同一函数的是(0 x y =x ,y =A •xB y = .x -1 . x 1, y = . x2 -1—2Dy=|x|,y = (、x)F列函数是奇函数的是(1A • y =x2B • y =2x2 3 (一“)若奇函数f x在1,3】上为增函数,且有最小值0,则它在1-3,-1】上A •是减函数,有最小值C •是减函数,有最大值设集合M = X - 2乞x -2 :f,B •是增函数,D •是增函数,N 二:y0 -有最小值有最大值y乞2:,给出下列四个图形,其中能表示集合M为定义域,N为值域的函数关系的是()x2 x 010. 已知f (x) X=0,则 f [ f (-3)]等于( )0 x cO2A . 0 B. n C. n D. 9二. 填空题r X +5(XA 1) nt211. 已知f(x—1)=x2,贝y f(x)= .14.已知f (x) = 2 ,则2x +1(x 兰1)f[f(1)> _______________________ .212. 函数y = x -6x的减区间是_____________ .13•设偶函数f (x)的定义域为R,当x・[0, •::)时f(x)是增函数,则f (2), f (二),f (-3)的大小关系是_________________________三、解答题14.设U =R, A x _1[ B J x 0 :: x :: 5?,求C u 切B 和A C U B .15. 求下列函数的定义域(4)f(X)x —22(2) f(x)|x| -216.集合A = 'xx2• 4x = 0; B -汉x2• 2 a T x • a2-1 = 0若A B = B求a 的取值范围。
人教版高一数学必修1测试题(含答案)
人教版数学必修I 测试题(含答案)一、选择题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U AC B =( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 MN ( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同③ B 中每个元素都有原像 ④ 像的集合就是集合BA 、①②B 、①②③C 、②③④D 、①②③④5、在221,2,,y y x y x x y x===+= ( )A 、1个B 、2个C 、3个D 、4个 6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( )A 、259x x -+B 、23x x --C 、259x x +-D 、21x x -+7、若方程0x a x a --=有两个解,则a 的取值范围是 ( )A 、()0,+∞B 、()1,+∞C 、()0,1D 、∅8、若21025x =,则10x -等于 ( )A 、15-B 、15C 、150D 、16259、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a <<B 、112a << C 、102a << D 、1a > 10、设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都不对12、若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、103 二、填空题13、设{}{}12,0A x x B x x a =<<=-<,若A B Ø,则a 的取值范围是 ; 14、函数y =的定义域为 ; 15、若2x <,则3x -的值是 ; 16、100lg 20log 25+= 。
人教版高一数学必修1测试题(含答案)
人教版高一数学必修1测试题(含答案)22、(本小题满分14分)已知()()()()22log 4log 1log 5log 21,0,1a a a a x y xy a a +++=+->≠且,求8log yx的值。
人教版数学必修I 测试题高一数学(答案卷)一、选择题(本大题共12道小题,每小题5分,共60分。
在每小题给出的四个选项中,二、填空题(本大题共4道小题,每小题5分,共20分。
把答案填在题中横线上) 13、[)2,+∞ ; 14、(]1,0- ; 15、1- ; 16、 2 。
三、解答题(本大题共6道小题,共70分。
解答应写出文字说明、证明过程或演算步骤) 17、(本小题满分10分)设{}{}24,21,,5,1,9A a a B a a =--=--,已知{}9A B =,求a 的值。
解:{}9,99A B A B =∴∈∈且 ----------------------------------1分 有219a -=或29a =,解得:5,3a a ==±或 ---------------------4分 当5a =时,{}{}4,9,25,0,4,9A B =-=-,则有{}4,9A B =-,与题意不相符,∴5a =舍去。
-----------6分 当3a =时,{}4,9,5,512A a a =--=-=-,则与B 中有3个元素不相符,∴3a =舍去。
------------------8分 当3a =-时,{}{}4,7,9,8,4,9A B =--=-,{}9A B = 3a ∴= ------10分18、(本小题满分10分)判断并证明()221x f x x =+在()0,+∞的单调性。
解:判断:()221x f x x =+在()0,+∞的单调递增。
--------------------------2分证明:设120x x >>,则有()()2212122212,11x x f x f x x x ==++ ----------------3分()()()()()()2222221221121222221212111111x x x x x x f x f x x x x x ∙+-∙+-=-=+++∙+--------5分()()()()()()22121212222212121111x x x x x x x x x x +∙--==+∙++∙+-------------7分120x x >>,12120,0x x x x ∴+>->,又221210,10x x +>+>-----10分()()()()12122212011x x x x xx +∙-∴>+∙+,即()()120f x f x ->故()221x f x x =+在()0,+∞的单调递增。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特殊适合按14523依次的省份)必修4第一章三角函数(1)一、选择题:l已知A={第一象限角}'B={锐角}'C={小千90°的角},那么A、B、C关系是()A. B=Anc2.✓sin2120° 等千忒i A土——- B. B U C=CC. A宝D. A=B=C()五2B五2c1_2n i sin a —2cosa3已知=-5, 那么tana的值为3 sin a + 5 c os aA.—2B. 2C .23164. 下列函数中,最小正周期为兀的偶函数是A.y =sin 2xXB y =c s—2A , 4✓3B -4✓3C .s in 2x+c s 2x 5, 若角600°的终边上有一点(-4,a),则a的值是()23 D.16( )1-tan 2 xD. y =1 + tan2 x()c .土4✓3D✓3X冗X6. 要得到函数y=co s (—-—)的图象,只需将y=sin —的图象( )2 4 2冗冗A. 向左平移—个单位B 同右平移—个单位22冗冗C. 向左平移—个单位D. 向右平移—个单位4 47. 若函数y=f (x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将冗l整个图象沿x轴向左平移—个单位,沿y轴向下平移l个单位,得到函数y =-sin x 的图象22测y=f (x)是()l 兀A. y=—sin(2x+—) +12 2 l 兀C.y =—sin(2x+—) +1 2 4l 兀B.y =—sin(2x -—) +12 2 l 冗D. —sin(2x -—) +12 45兀8. 函数y=sin (2x+—-)的图像的一条对方程是2冗A.x=-— 冗B. x =-— 冗_8__ xc 19. 若sin0·cos0=—,则下列结论中肯定成立的是A .si n 0 = ✓22B. 五sin 0 = -—C. si n 0+cos0 = 1(三4(_ x D))冗10 函数y = 2si n (2x+—)的图象3冗A. 关千原点对称B.关千(——,0)对称c.6 冗11 函数y =s n (x+—)X E R 是2 兀冗A . [-—,—]上是增函数2 2C. [-冗OJ 上是减函数12函数y =✓2c o sx l的定义域是A . [2k三三}k EZ)C. [2k冗十f,2k冗+气}k EZ)D. si n 0—cos0=0()冗关千y 对称D .关千直线x =—对称6( )B. [O五上是减函数D. [-冗冗上是减函数()B. [2k 二,2k 兀三}k E Z ) 6 6D. [2k 兀一气,2k兀+气}k E Z ) 二、填空题:冗冗213. 函数y = cos (x -—) (x E [—,—兀)的最小值是8 6 314。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高一数学试题:立体几何内容摘要:
一.选择题(每题4分,共40分)
1.已知AB//PQ,BC//QR,则∠PQP等于()
A B C D 以上结论都不对
2.在空间,下列命题正确的个数为()
(1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形
(3)平行于同一条直线的两条直线平行;(4)有两边及其夹角对应相等的两个三角形全等
A 1
B 2
C 3
D 4
3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()
A 平行
B 相交
C 在平面内
D 平行或在平面内
4.已知直线m//平面,直线n在内,则m与n的关系为()
A 平行
B 相交
C 平行或异面
D 相交或异面
5.经过平面外一点,作与平行的平面,则这样的平面可作()
A 1个或2个
B 0个或1个
C 1个
D 0个
6.如图,如果菱形所在平面,那么MA与BD的位置关系是( )
A 平行
B 垂直相交
C 异面
D 相交但不垂直
7.经过平面外一点和平面内一点与平面垂直的平面有()
A 0个
B 1个
C 无数个
D 1个或无数个
8.下列条件中,能判断两个平面平行的是( )
A 一个平面内的一条直线平行于另一个平面;
B 一个平面内的两条直线平行于另一个平面
C 一个平面内有无数条直线平行于另一个平面
D 一个平面内任何一条直线都平行于另一个平面
9.对于直线, 和平面,使成立的一个条件是( )
A B
C D
10 .已知四棱锥,则中,直角三角形最多可以有( )
A 1个
B 2个
C 3个
D 4个
二.填空题(每题4分,共16分)
11.已知ABC的两边AC,BC分别交平面于点M,N,设直线AB与平面交于点O,则点O 与直线MN的位置关系为_________
12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有
_____________条
13.一块西瓜切3刀最多能切_________块
14.将边长是a的正方形ABCD沿对角线AC折起,使得折起后BD得长为a,则三棱锥D-ABC 的体积为___________
人教版高一数学试题:立体几何内容摘要:
一.选择题(每题4分,共40分)
1.已知AB//PQ,BC//QR,则∠PQP等于()
A B C D 以上结论都不对
2.在空间,下列命题正确的个数为()
(1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形
(3)平行于同一条直线的两条直线平行;(4)有两边及其夹角对应相等的两个三角形全等
A 1
B 2
C 3
D 4
3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()
A 平行
B 相交
C 在平面内
D 平行或在平面内
4.已知直线m//平面,直线n在内,则m与n的关系为()
A 平行
B 相交
C 平行或异面
D 相交或异面
5.经过平面外一点,作与平行的平面,则这样的平面可作()
A 1个或2个
B 0个或1个
C 1个
D 0个
6.如图,如果菱形所在平面,那么MA与BD的位置关系是( )
A 平行
B 垂直相交
C 异面
D 相交但不垂直
7.经过平面外一点和平面内一点与平面垂直的平面有()
A 0个
B 1个
C 无数个
D 1个或无数个
8.下列条件中,能判断两个平面平行的是( )
A 一个平面内的一条直线平行于另一个平面;
B 一个平面内的两条直线平行于另一个平面
C 一个平面内有无数条直线平行于另一个平面
D 一个平面内任何一条直线都平行于另一个平面
9.对于直线, 和平面,使成立的一个条件是( )
A B
C D
10 .已知四棱锥,则中,直角三角形最多可以有( )
A 1个
B 2个
C 3个
D 4个
二.填空题(每题4分,共16分)
11.已知ABC的两边AC,BC分别交平面于点M,N,设直线AB与平面交于点O,则点O 与直线MN的位置关系为_________
12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有
_____________条
13.一块西瓜切3刀最多能切_________块
14.将边长是a的正方形ABCD沿对角线AC折起,使得折起后BD得长为a,则三棱锥D-ABC 的体积为___________
员工手册培训签到表
本人确认参加了组织的《员工手册》培训课程。
本人声明将认真接受培训,我将仔细阅读且完全理解手册的各项内容并谨此声明愿意遵守《员工手册》的所有内容。
培训部门:培训日期:。