第一章 建筑材料的基本性质
建筑材料的基本性质
建筑材料的基本性质第⼀章建筑材料的基本性质1.建筑材料的基本物理性质密度:材料在绝对密实状态下单位体积的质量。
表观密度:材料在⾃然状态下单位体积的质量堆积密度:散粒或粉状材料,如砂、⽯⼦、⽔泥等,在⾃然堆积状态下单位体积的质量。
孔隙率:在材料⾃然体积内孔隙体积所占的⽐例。
空隙率:散粒材料⾃然堆积体积中颗粒之间的空隙体积所占的⽐例。
空隙率的⼤⼩反映了散粒材料的颗粒互相填充的致密程度。
材料的压实度:散粒堆积材料被碾压或振压等压实的程度。
相对密度:散粒材料压实程度的另⼀种表⽰⽅法。
2.材料与⽔有关的性质①亲⽔性:材料能被⽔润湿的性质(亲⽔性材料与⽔分⼦的亲和⼒⼤于⽔分⼦⾃⾝的内聚⼒)憎⽔性:材料不能被⽔润湿的性质。
②吸⽔性:材料浸⼊⽔中吸收⽔的能⼒(材料吸⽔率是固定的)吸湿性:材料在潮湿空⽓中吸收⽔分的性质。
【平衡含⽔率】:在⼀定温度和湿度条件下,材料与空⽓湿度达到平衡时的含⽔率。
③耐⽔性:材料长期在⽔作⽤下不破坏,且其强度也不显著降低的性质。
④抗渗性:材料抵抗压⼒⽔渗透的性质。
⑤抗冻性:材料在吸⽔饱和状态下,能经受多次冻融作⽤⽽不破坏,且强度和质量⽆显著降低的性质。
3.①材料的强度:材料在外⼒作⽤下抵抗破坏的能⼒。
影响材料强度的因素:孔隙率低,强度⾼温度⾼含⽔率⾼,强度低②材料的⽐强度:是材料的强度与其表观密度的⽐值③材料的理论强度:指结构完整的理想固体从材料结构的理论上分析,材料所能承受的最⼤应⼒。
4.弹性:材料在外⼒作⽤下产⽣变形,当外⼒除去后,变形能完全恢复的性质。
塑性:材料在外⼒作⽤下产⽣变形,外⼒除去后,仍保持变形后的形状,并不破坏的性质5.耐久性:材料在所处环境下,抵抗所受破坏作⽤,在规定的时间内,不变质、不损坏,保持其原有性能的性质。
6.材料(微观结构):晶体、玻璃体、胶体晶体类型:原⼦晶体,离⼦晶体,分⼦晶体,⾦属晶体第三章⽓硬性胶凝材料1.胶凝材料:在⼀定条件下,通过⾃⾝的⼀系列变化⽽把其他材料胶结成具有强度的整体的材料①有机胶凝材料:以天然或⼈⼯合成的⾼分⼦化合物为主要成分的胶凝材料。
建筑材料 第一章 建筑材料的基本性质
建筑材料第一章建筑材料的基本性质在建筑领域中,建筑材料是构建各类建筑物的基石。
了解建筑材料的基本性质对于设计、施工以及建筑物的长期性能至关重要。
这一章,我们将深入探讨建筑材料的一些关键基本性质。
首先,让我们来谈谈建筑材料的物理性质。
物理性质涵盖了多个方面,其中密度是一个重要的指标。
密度反映了材料单位体积的质量,它直接影响着材料的重量以及在建筑物中的使用方式。
例如,钢材的密度较大,因此在建筑中常用于需要承受较大荷载的结构部位;而泡沫塑料的密度较小,常被用作保温隔热材料,以减轻建筑物的自重。
另一个关键的物理性质是孔隙率。
孔隙率指的是材料内部孔隙的体积占总体积的比例。
孔隙的存在会对材料的性能产生显著影响。
例如,多孔的砖材具有较好的保温性能,但强度相对较低;而密实的混凝土则强度较高,但保温性能稍逊一筹。
材料的吸水性也是不可忽视的物理性质之一。
吸水性表示材料在水中吸收水分的能力。
像木材这样的天然材料,如果吸水性过高,可能会导致变形、腐朽等问题,影响其在建筑中的使用寿命。
再来说说建筑材料的力学性质。
强度是力学性质中的核心概念,包括抗压强度、抗拉强度、抗弯强度等。
不同的建筑结构和构件对材料的强度要求各不相同。
例如,柱子通常需要承受较大的压力,因此要求所用材料具有较高的抗压强度;而梁则需要同时具备较好的抗弯强度。
硬度反映了材料抵抗外物压入其表面的能力。
例如,大理石的硬度较高,常用于装饰性的地面和墙面;而一些较软的木材则需要进行特殊的处理来增加其表面硬度,以满足使用要求。
此外,建筑材料的弹性和塑性也是重要的力学性质。
具有良好弹性的材料在受力后能够恢复原状,如钢材;而塑性材料在受力超过一定限度后会产生永久变形,如某些塑料。
建筑材料的化学性质同样不容忽视。
耐腐蚀性是化学性质中的关键。
一些建筑材料在特定的化学环境中容易受到腐蚀,如钢材在潮湿且有腐蚀性气体的环境中容易生锈。
耐久性是衡量建筑材料长期性能的重要指标。
它综合考虑了材料在物理、化学和力学等多方面因素作用下,保持其性能稳定的能力。
第1章 建筑材料的基本性质
土木工程材料
4. 抗渗性
(2)抗渗等级
定义:指砼或砂浆所
能承受的最大水压力。
测试方法:6个试件中
4个试件未出现渗水的最 大水压力。 表示方法:若最大承水 压力为0.2MPa,表示为
P2
混凝土抗渗压力实验
40
土木工程材料
四、材料的热工性质
导热性
热容量
41
土木工程材料
1. 导热性 定义:材料传导热量的能力。 指标:导热系数λ
堆积体积=密实体积+孔隙体积+空隙体积。
15
土木工程材料
几种密度的比较
相同点 均为单位体积的质量(质量/体积)。 不同点 各种密度值不同 体积的测试方法不同,体积值不同 实体体积V —李氏比重瓶法(粉末) 表观体积( V 0= V +闭口+开口) —规则试件:计算法; —不规则试件:饱和排液法 堆积体积 —密度筒法
阻塞毛细通道,掺加引气剂 对材料中的毛细管壁进行憎水处理。
33
土木工程材料
案例分析
2、某施工队原使用普通烧结粘土砖,后改为多孔、容量 700 kg/m3的加气混凝土砌块。在抹灰前往墙上浇水,发觉 原使用的普通烧结粘土砖易吸足水量,但加气混凝土砌块 表面看来浇水不少,但实则吸水不多,请分析原因。 解答:
第一章
建筑材料的基本性质
南京工业大学 土木工程学院 韩建德
1
土木工程材料
主要内容
基本要求
材料的基本物理性质
材料的基本力学性质 材料与水有关性质 材料的组成和结构
2
土木工程材料
教学目标
基本要求
掌握材料的基本物理性质、与水有关性质和力学性质;
了解材料组成与结构
建筑材料的基本性质(非常好的课件)
材料的孔隙特征
(2)周围环境条件的影响,空气的湿度大、温度低时,材 料的吸湿性大,反之则小。
4)材料吸水与吸湿后对其性质的影响:会产生不利的影响, 如材料吸水或吸湿后,使其质量增加,体积膨胀,导热性增 大,强度和耐久性下降。
有一块砖重2625g,其含水率为5% ,该湿砖所含水 量为多少? 解:
(二)材料的吸水性与吸湿性
视密度
ρˊ ρˊ=m/vˊ
表观密度 ρ0
ρ0=m/ v0
堆积密度 ρ0ˊ ρ0ˊ=m/v0ˊ
①绝干状态②含闭口孔隙、 不含开口孔隙
①自然状态②含闭口、开 口孔隙 ①自然堆积状态②含闭口、 开口孔隙③含颗粒间的空 隙
二、密实度与孔隙率,填充率与空隙率
孔隙的特征 (1)按孔隙尺寸大小,可把孔隙分为粗大孔和细小孔 (2)按孔隙与外界之间是否连通,把孔隙分为开口孔、 封闭孔。 孔隙对材料的影响:(1)孔隙的多少(孔隙率)
观体积
表观体积是指包括内部封 闭孔隙在内的体积。其封 闭孔隙的多少,孔隙中是 否含有水及含水的多少, 均可能影响其总质量或体 积。
因此,材料的表观密 度与其内部构成状态及含 水状态有关。
材料四种含水状态
反映散粒堆积的紧密(压实)程度及可能的堆放空间。
4.堆积密度(又称松散容重)
(1)定义:散粒状或粉状材料,在自然堆积状态
与质量有关的性质
物理性质 与水有关的性质
材 料 的 基 力学性质 本
与热有关的性质
强度 变形性 抗冲击性 表面性质
性
质 耐久性
抗压强度
抗拉强度
材 料
强度 抗剪强度 抗弯(折)强度
的
弹性变形
力 变形性 塑性变形
学
弹、塑性变形
建筑材料课件第01章 建筑材料的基本性质
第 15页
3.吸湿性
材料在潮湿空气中吸收水分的性质称为吸湿性。 材料的吸湿性用含水率表示:
Wh
ms m
材料的理论抗拉强度可用下式表示:
fm
E
d
式中:fm——理论抗拉强度,N/m2; E——弹性模量; γ——单位表面能,J/m2; d——原子间的距离。(平均为2×10-8cm)。
按理论计算,材料的抗拉强度fm≈1/10·E。
第 28页
由于材料中都有缺陷,使破坏应力大大低于 理论强度。缺陷主要有:
的性质,可用下式表示:
Q m C (T1 T2 )
式中Q ——材料的热容量,kJ;
m ——材料的重量,kg;
T1-T2 ——材料受热或冷却前后的温度差,K; C ——材料的比热,kJ/(kg·K)。
材料比热的物理意义是指1kg重的材料,在温度每改
变1K时所吸收或放出的热量。
第 21页
材料名称 钢 铜
花岗岩 普通混凝土
水泥砂浆 普通粘土砖 粘土空心砖
松木 泡沫塑料
冰 水 静止空气
导热系数W/(m·K) 55 370
2.91~3.08 1.28~1.51
0.93 0.4~0.7
0.64 0.17~0.35
0.03 2.20 0.60 0.025
比热J/(g·K) 0.46 0.38 0.92 0.88 0.84 0.84 0.92 2.51 1.30 2.05 4.19
2.导热性
第一章 建筑材料的基本性质
耐久性是一个综合性性能
耐久性主要包括:
耐水性 抗渗性 抗冻性 抗腐蚀性
耐水性
抗渗 性 抗老化性
耐久性
耐磨性
抗冻性
抗老化性
耐磨性
抗腐蚀性
42
建筑材料
1. 耐水性
广义定义:材料抵抗水破坏作用的能力。 狭义定义:材料浸水饱和后不被破坏,强度也不显著 降低的性质。 指标:软化系数KR 材料吸水饱和时的抗压强度,MPa
ε
B
A
混凝土的弹塑性变形曲线图
33
建筑材料
三、材料的脆性与韧性
脆性:材料在外力作用下突然破坏,无明显塑性变形。
韧性:冲击、振动荷载下,能吸收较大的能量,产生一定
变形不破坏。
脆性材料:石、砖、砼、陶瓷、玻璃、铸铁等 韧性材料:低碳钢、木材、玻璃钢等。
34
建筑材料
案例分析
1. 铸铁造桥酿成灾祸 概况:1876年6月,英国人用铸铁在北海的Tay湾上建造了全长
加气混凝土砌块虽多孔,但其气孔大多数为“墨水瓶”
结构,肚大口小,毛细管作用差,只有少数孔是水分蒸发 形成的毛细孔。故吸水及导湿均缓慢,材料的吸水性不仅 要看孔数量多少,还需看孔的结构。
11
建筑材料
五、材料的热工性质
导热性 热容量
12
建筑材料
(一) 导热性
定义:材料传导热量的能力。 指标:导热系数λ
温隔热性↑ ; P ↑ ,连通孔、粗孔↑ (孔隙粗大或贯通,空气对流
孔隙率和孔隙特征
作用加强),λ↑,导热性↑,保温隔热性↓ 。
15
建筑材料
影响导热性的因素:
棉袄浸水后保暖 性变差?
建筑材料 第一章 建筑材料的基本性质
解: 孔隙率
P V0 V 100% V0
1
0
100%
ρ0=m/V0=2420/(24×11.5×5.3)=1.65g/cm3
ρ=m/V=50/19.2=2.60g/cm3
P
1
1.65 2.6
100%
36.5%
§1.2 材料的力学性质
一、材料的强度
材料在外力作用下抵抗破坏的能力称为材料 的强度,以材料受外力破坏时单位面积上所承受 的外力表示。材料在建筑物上所承受的外力主要 有拉力、压力、剪力和弯力,材料抵抗这些外力 破坏的能力,分别称为抗拉、抗压、抗剪和抗弯 强度。
§1.3 材料与水有关的性质
建筑物中的材料在使用过程中经常会直接或 间接与水接触,如水坝、桥墩、屋顶等,为防 止建筑物受到水的侵蚀而影响使用性能,有必 要研究材料与水接触后的有关性质。
§1.3 材料与水有关的性质
(一)材料的亲水性与憎水性 材料容易被水润湿的性质称为亲水性。具有
这种性质的材料称为亲水性材料,如砖、石、 木材、混凝土等。
§1.2 材料的力学性质
课堂练习: 3、已知甲材料在绝对密实状态下的体积为40cm3,
在自然状态下体积为160 cm3;乙材料的密实度为 80%,求甲、乙两材料的孔隙率,并判断哪种材料 较宜做保温材料?
解:(1)甲材料的孔隙率
P甲=(V0-V)/V0×100%=(160-40)/160×100% =75%
§1.1 材料的基本物理性质
(一)密度 钢材、玻璃等少数密实材料可根据外形尺
寸求得体积。
大多数有孔隙的材料,在测 定材料的密度时,应把材料磨成 细粉,干燥后用李氏瓶测定其体 积(排液法)。材料磨的越细, 测得的密度数值就越精确。砖、 石等材料的密度即用此法测得。
1建筑材料的基本性质
例如:硅酸盐水泥熟料中,铝酸三钙、硅酸三钙、 硅酸二钙和铁铝酸四钙的性能都是不同的;
3. 相组成
系统:把一种或一组从周围环境中被想象 地孤 立起来的物质称为系统。 相:把系统中一切具有相同组成、相同物理性 质和化学性质的均匀部分的总和称为相。 材料内部,特别是固体相和结构特征直接决定 材料的力学性能。
4. 耐燃性
耐燃性是指材料能够经受火焰和高温的作用而 不破坏,强度也不显著降低的性能,是影响建 筑物防火、结构耐火等级的重要因素。 根据材料的耐燃性可分为四类: (1)不燃材料,混凝土,石材等 (2)难燃材料,沥青混凝土 (3)可燃材料,木材,沥青等 (4)易燃材料,纤维植物
5. 温度变形 温度变形是指材料在温度变化时产生体积变
Qa
AZ(t2 t1)
显然,导热系数越小,材料的隔热性能越好。
材料的导热系数决定于: (1)材料的化学组成、结构、构造; (2)孔隙率与孔隙特征、含水状况导热时的温度。
2. 热容量 材料加热时吸收热量,冷却时放出热量的性质称 为热容量。 热容量的大小用比热容来表示。 比热容在数值上等于1g材料,温度升高或降低 1K时所吸收或放出的能量Q。
化,多数的材料在温度升高时体积膨胀,温度 下降时体积收缩。用线膨胀系数α来表示
L
(t2 t1)L
第二节 材料的力学性质
材料的力学性质,主要是指在外力(荷载)作用 下抵抗破坏的能力和变形的有关性质。
一、理论强度 二、强度、比强度 三、材料的变形性质
一、理论强度
➢固体材料的强度主要取决于结构质点间的相互 作用力。 ➢理论上来说,材料受外力作用后破坏主要是由于 拉力造成质点间的断裂,或者是剪力造成质点间 的滑移。 ➢材料的理论强度一般都远远大于实际强度。
建筑材料-第一章 建筑材料的基本性质
第一章建筑材料的基本性质内容提要了解和掌握材料的基本性质,对于合理选用材料至关重要。
本章主要介绍材料的基本物理、力学、化学性质和有关参数及计算公式。
在建筑物中,建筑材料要承受各种不同的作用,因而要求建筑材料具有相应的不同性质。
如用于建筑结构的材料要受到各种外力的作用,因此,选用的材料应具有所需要的力学性能。
又如,根据建筑物各种不同部位的使用要求,有些材料应具有防水、绝热、吸声等性能;对于某些工业建筑,要求材料具有耐热、耐腐蚀等性能。
此外,对于长期暴露在大气中的材料,要求能经受风吹、日晒、雨淋、冰冻而引起的温度变化、湿度变化及反复冻融等的破坏作用。
为了保证建筑物的耐久性,要求在工程设计与施工中正确的选择和合理的使用材料,因此,必须熟悉和掌握各种材料的基本性质。
1.1 建筑材料的基本物理性质建筑材料在建筑物的各个部位的功能不同,均要承受各种不同的作用,因而要求建筑材料必须具有相应的基本性质。
物理性质包括密度、密实性、空隙率、孔隙率(计算材料用量、构件自重、配料计算、确定堆放空间)一、材料的密度、表观密度与堆积密度密度是指物质单位体积的质量。
单位为g/cm3或kg/m3。
由于材料所处的体积状况不同,故有实际密度(密度)、表观密度和堆积密度之分。
(1)实际密度 (True Density)以前称比重、真实密度),简称密度(Density)。
实际密度是指材料在绝对密实状态下,单位体积所具有的质量,按下式计算:式中: ρ-实际密度(g/cm3);m-材料在干燥状态下的质量(g);V-材料在绝对密实状态下的体积(cm3)。
绝对密实状态下的体积是指不包括孔隙在内的体积。
除了钢材、玻璃等少数接近于绝对密实的材料外,绝大多数材料都有一些孔隙,如砖、石材等块状材料。
在测定有孔隙的材料密度时,应把材料磨成细粉以排除其内部孔隙,经干燥至恒重后,用密度瓶(李氏瓶)测定其实际体积,该体积即可视为材料绝对密实状态下的体积。
材料磨得愈细,测定的密度值愈精确。
1-土木工程材料的基本性质
材料的抗渗性通常用两种指标表示:渗透系 数和抗渗等级。
材料的抗冻性:材料在水饱和状态下,能经受多次冻 融循环作用而不破坏,也不严重降低强度的性质。
材料的抗冻性用抗冻等级表示。
抗冻等级是以规定的试件,在规定试验条件下, 测得其强度降低不超过规定值,并无明显损坏和剥 落时所能经受的冻融循环次数,以此作为抗冻等级, 用符号“Fn”表示,其中n即为最大冻融循环次数。 如F25、F50等。
冻融破坏的大坝坝面
五、材料的热工性质
1、材料的导热性
材料传递热量的性质称为导热性,以导热系数表
示,即
Qa
At(T2 T1 )
式中:λ——材料的导热系数,w/(m·K); Q ——总传热量,J; a ——材料厚度,m;
材料具有亲水性的原因是材料与水接触 时,材料与水之间的分子亲合力大于水本身 分子间的内聚力。当材料与水பைடு நூலகம்间的分子亲 合力小于水本身分子间的内聚力时,材料表 现为憎水性。
材料被水湿润的情况可用润湿边角表示。当材料 与水接触时,在材料、水、空气这三相体的交点 处,作沿水滴表面的切线,此切线与材料和水接 触面的夹角,称为润湿边角(润湿角)。
材料内部孔隙的构造,可分为连通的与封闭的两种。
孔隙按尺寸分为微孔(≤2nm,无害孔)
毛细孔(2~50nm,少害孔)
大孔(≥50nm,有害孔)。
孔隙的大小及其分布、特征对材料的性能影响很大。
第一章 建筑材料的基本性质
第一章 建筑材料的基本性质 土木工程材料的基本性质,是指材料处于不同的使用条件和使用环境时,通常必须考虑的最基本的、共有的性质。
(1)材料的基本物理性质 1 密度材料在绝对密实状态下单位体积的质量用ρ表示。
按下式计算:V m=ρ材料的绝对密实体积是指不包括材料孔隙在内的体积。
钢材、玻璃等少数密实材料可根据外形尺寸求得体积。
大多数有孔隙的材料,在测定材料的密度时,应把材料磨成细粉,干燥后用李氏瓶测定其体积。
材料磨得越细,测得的密度数值就越精确。
2 表观密度材料在自然状态下单位体积的质量称为表观密度,用ρ 表示。
按下式计算:00V m=ρ材料在自然状态下的体积是指包含材料内部孔隙的体积。
当材料孔隙内含有水分时,其质量和体积(可以忽略)均有所变化,故测定表观密度时,须注明其含水情况。
按照含水状态分为:干表观密度、气干表观密度和饱和表观密度。
孔隙的分类 ①按尺寸大小:微细孔隙(D <0.01mm)细小孔隙( 0.01mm < D < 1mm)粗大孔隙(D>1mm)②孔隙的构造:开口孔隙 闭口孔隙干表观密度(干燥状态) 气干表观密度 (与空气湿度有关 平衡时的状态)00V m =ρoV m m 水+=0ρ 饱和表观密度(吸水饱和状态)饱和表观密度(吸水饱和状态)0V m m 饱和水+=ρ3 孔隙率在材料自然体积内孔隙体积所占的比例,称为材料的孔隙率,用Ρ表示。
按下式计算:%100)1(1%1000000⨯-=-=⨯-=ρρV V V V V P bk p p p +=孔隙率=开口孔隙率+闭口孔隙率开口孔隙率Pk=%1000⨯V V 开口孔隙闭口孔隙率Pb=%1000⨯V V 闭口孔隙4堆积密度散粒或粉状材料,如砂、石子、水泥等,在自然堆积状态下单位体积的质量称为堆积密度,用ρ' 表示。
按下式计算:00V m '='ρ由于散粒材料堆积的紧密程度不同,堆积密度可分为疏松堆积密度、振实堆积密度和紧密堆积密度。
第一章建筑材料的基本性质(1-3节)
石子的孔隙率P为:
V0 V 0 V 2.61 P 1 1 1 1.51% V0 V0 2.65 石子的空隙率P,为:
V0 V0 V0 0 1.68 P 1 1 1 35.63% V0 V0 0 2.61
二、材料与水有关的性质
• 材料的吸水率与其孔隙率有关,更 与其孔特征有关。因为水分是通过
材料的开口孔吸入并经过连通孔渗
入内部的。材料内与外界连通的细
微孔隙愈多,其吸水率就愈大
材料的吸湿性
• 材料的吸湿性是指材料在潮湿空气
中吸收水分的性质。干燥的材料处 在较潮湿的空气中时,便会吸收空
气中的水分;而当较潮湿的材料处
在较干燥的空气中时,便会向空气 中放出水分。
水的作用下不破坏,强度也不显著
降低的性质。衡量材料耐水性的指
标是材料的软化系数K软:
K软 材料在水饱和状态下的抗压强度 材料在干燥状态下的抗压强度
• 软化系数反映了材料饱水后强度降
低的程度,是材料吸水后性质变化 的重要特征之一。一般材料吸水后,
水分会分散在材料内微粒的表面,
削弱其内部结合力,强度则有不同
程度的降低。
• 当材料内含有可溶性物质时(如 石膏、石灰等),吸入的水还可
能溶解部分物质,造成强度的严
重降低
• 经常位于水中或受潮严重的重要 结构,其材料的软化系数不宜小
于0.85-0.90; • 受潮较轻或者次要结构,材料软
化系数不宜小于0.70-0.85
例: 某石材在气干、绝干、水饱和情况下测得的 抗压强度分别为174、178、165 MPa,求该石材 的软化系数,并判断该石材可否用于水下工程
• 解:
m=105g,V0=40cm3,V=33cm3 密 度:ρ=m/V=105/33=3.18g/cm3 表观密度:ρ0=m/V0=105/40=2.625g/cm3 孔隙率:P=(V0-V)/V=(40-33)/33=17.5%
无机建筑材料 第一章建筑材料的基本性质
温度越高, λ越大(金属除外)
3. 热容量
材料加热时吸收热量,冷却时放出热量的性质,
称为热容量。大小用比热容(比热)表示
公式 Q=cm(T1-T2)
式中 Q-材料吸收或放出的热量(J) c-材料的比热(J/g·K) m-材料的质量(g) (T1 - T2) -材料受热或冷却前后的温差(K)
易熔材料:耐火度低于1350
。
耐烧材料与耐火材料
钢铁、铝、玻璃等材料受到火烧或高热作
用会发生变形、熔融,所以虽然是非燃烧 材料,但不是耐火的材料
【观察与讨论】:孔隙对材料性质的影 响
某工程顶层欲加保温层,以下两图为两种材料的
剖面,见图。请问选择何种材料?
A 材料剖面
B
1.1.5 与声有关的性质
引起固体材料受迫振动而发出的声能。
采用不连续的结构处理
1.1.6 与光有关的性质
光吸收比 材料吸收的光通量与入射光通量之比。 光反射比 材料反射的光通量与入射光通量之比。 光透射比 透过材料的光通量与入射光通量之比。 透明性
材料的透明性也是与光线有关的性质。
既能透光又能透视的物体称为透明体; 只能透光不能透视的物体称为半透明体; 既不能透光又不能透视的物体称为不透明体。
常见热导率参数:
泡沫塑料 λ=0.035
水 λ=0.58 冰 λ=2.2 空气 λ=0.023 松木 λ=1.17~0.35
大理石 钢材 混凝土
λ=3.5 λ=58 λ=1.51
影响热导率的因素
材料内部的孔隙构造-密闭的空气使λ降 材料的含水情况-含水、结冰使λ增 材料的组成与结构
第一章--建筑材料的基本性质
V
式中: — 密度,g/cm3 m — 材料在干燥状态下的质量,g V — 干燥材料在绝对密实状态下的体积, cm3
每种材料的密度是固定不变的。
二、表观密度
表观密度(俗称容重)是指材料在自然状态下 (包含孔隙)单位体积的质量。材料的表观密度可 按下式计算:
m
V0
式中 —表观密度,g/cm3(kg/m3); m—材料的质量,g(kg); V0—材料在自然状态下的体积,cm3(m3)。
固体材料在空气中与水接触时,按其是否易被 水湿润分为亲水性材料和憎水性材料两类。两类材 料与水接触时,界面上有着不同的状态。
葛州坝工程局水泥厂生产的一水泥的化学 成分(%)如下:
SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O 21.42 4.68 6.15 63.78 1.88 1.08 0.19 0.53
矿物组成
矿物是构成岩石和各类无机非金属材料的 基本单元。
花岗岩的矿物组成主要是石英和长石 石灰岩的矿物组成为方解石 硅酸盐水泥的矿物组成主要是硅酸钙、铝酸 钙等
材料的矿物组成直接影响无机非金属材料 的性质。
二、材料的结构
材料的结构是指材料的内部组织情况, 可分为:
宏观结构 细观结构 微观结构 三个层次。
(一)宏观结构
宏观结构是指用肉眼或放大镜能够分辨的粗 大组织,其尺寸在10-3m级(毫米级)以上。
材料的宏观结构可按其特征分为: 致密结构(钢材、玻璃等)
晶体是由质点(原子、离子或分子)在三维空间作有 规律的周期性重复排列(远程有序)而形成的固体。
特征:具有固定的几何外形,各向异性,在一定的压 力下具有固定的熔点,受到外力作用时可产生弹性变形。
菱
建筑材料的基本性质
混凝土强度等级:C30、C35等 硅酸盐水泥强度等级:42.5级、52.5级等
强度值与强度等级不能混淆,强度 值是表示材料力学性质的指标,强度等 级是根据强度值划分的级别。
(3)比强度
思考:不同的材料如何比较强度?
比强度是衡量材料轻质高强的一个 指标,材料的强度与其表观密度之比,即:
比强度 f
0
几种主要材料的比强度值
材料
低碳钢 烧结普通砖
松木 普通混凝土
表观密度
' 0
(kg/m3)
7850
1700
500
2400
强度f (MPa)
420 10 100 40
比强度(f/ρo)
0.054 0.006 0.200 0.017
1.2.2 弹性和塑性
材料在外力作用下产生变形,外力撤 掉后变形能完全恢复的性质,称为弹性。 相应的变形称为弹性变形。
V0
0
2)空隙率
指散粒材料在其堆积体积中,颗粒之 间空隙体积占材料堆积体积的百分率 。
P ' V0 V0 100% (1 0 ) 100% 1 D
V0
0
P’+D’=1
1.1.2 材料与水有关的性质
思考:水滴在粘土砖表面和塑料表面有什 么不同?
材料在与水接触时,不同材料遇水后 和水的互相作用情况是不一样的,根据材 料表面被水润湿的情况,分为亲水性材料 和憎水性材料。
W含
m含 - m干 m干
100%
影响吸湿性的因素:
材料本身的性质,如亲水性或憎水性; 孔隙大小及孔隙特征等; 周围空气的温度和湿度 。 平衡含水率:与空气湿度相平衡时的含水率。
例:有100g湿砂,含水率为10%, 请问干砂有多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2 弹性(Elasticity)和塑性(Mould)
1.弹性——外力作用产生变形,外力取消能完全恢复。
指标:弹性模量 E
意义:E表示材料抵抗变形的指标,E值越大,材料 越不易变形,即抵抗变形的能力越强。
2.塑性——外力作用产生变形,外力取消变形不能恢复
1.3.3 韧性(Fragility)和脆性(Tenacity)
1462.8
5题
孔隙率
1
表密观度密度 100%
1
2.61 2.65
100%
1.51%
所有孔隙均为闭口孔隙,则m m0
空隙率
1
堆表积观密密度度
100%
1
1.68 2.61
100%
35.63%
1.3 材料的力学性质
土木工程材料
第1章 建筑材料的基本性质
1.1 材料的组成、结构、构造及其 对性能的影响
1.2 材料的物理性质 ▲ 1.3 材料的力学性质 ▲ 1.4 耐久性与环境协调性 ▲
中华人民共和国行业标准 JTG E42-2005 公路工程集料试验规程
材料的性质 是指在负荷与环境因
素联合作用下材料所具有的属性。
m2 m 100%
m
m——材料干质量,g
V0——材料自然状态下的体积,立方分米
3.耐水性(Water resistance)
——材料长期在水的作用下既不破坏强度又不显著下降的性质 指标:软化系数
KR
fb fg
fb——材料饱水状态抗压强度,MPa fg——材料干燥状态抗压强度,MPa
蚀)、抗老化、耐热性、耐磨性等
不同环境中,应 考虑相应的性质。
材料的抗冻性:材料饱水状态下,能经受多次 冻融交替作用,既不破坏强度又不显著下降的 性质。
颗粒间空隙体积)物质颗粒的质量。有干堆积密度和湿堆积 密度之分。
d
m0 V0,
V
m0 Vk Vb
Vx
——反映散粒堆积的紧密(压实)程度及可能的堆放空间。
一般按自然状态下的湿度计算。
几种密度的特点: ★
相同点:指单位体积质量。(质量/体积) 区别:测试方法不同,获得体积大小不同
体积的测试方法:
可采用:摩氏硬度(石料、陶瓷等); 布氏、洛氏硬度(金属材料)。
特点:硬度高,耐磨性强,但不易加工。
2.耐磨性——材料表面抵抗磨损的能力。 (路面材料要求)
材料受外界的摩擦作用而造成质量和体积损失的现象成为磨
损。
..\教学试验录像\石 试验\石料磨耗试验 -洛杉矶法.flv
1.4材料与水有关的性质
• 单位体积(实体矿物 V0 — —材料包含内部封闭孔隙的体积
成分+封闭孔隙体积) 物质颗粒的干质量。
砂、石及水泥等散粒材料,在测 定其密度时,常采用排液置换法
测定颗粒体积,所得体积一般包
含颗粒内部的闭口空隙体积,并
非颗粒绝对密实体积。
2、堆积密度 (accumulated density):
单位体积(含物质颗粒固体及其闭口、开口空隙体积及
(2)空隙率与填充率 ——散粒状材料
空隙率
n
空隙体积 堆积体积 100%
Vx Vd
100% Vd V0,100% Vd
当含水率为0时, m m0
则有
n
1
b
100%
填充度
D'
颗粒体积 堆积体积 100%
V0,100% Vd
三种密度区别: 前两个质量为烘干质量,后者为气干状态下质量。 体积不同,实体体积 表观体积 毛体积。
1.脆性——无明显塑性变形,突然破坏。 脆性材料:石、砖、砼、陶瓷、玻璃、铸铁等 (宁为玉碎不为瓦全)
2.韧性——产生一定变形不破坏,能吸收较大的能量。 韧性材料:低碳钢、木材、玻璃钢等。 采用冲击试验测定。
1.3.4 硬度(Hardness)和耐磨性(Abradability)
1.硬度——抵抗外物压入或刻划的能力。
决定材料性质的内部因 素包括 组成、结构、构造
三个方面。
工程中所讨论的材料的性质
是在一定环境条件下测试的各种性能指标。
1.1 材料的组成、结构、构造
1.1.1 材料的组成对性质的影响
1.化学组成——组成材料的化学元素的种类与数量。
2.矿物组成——组成此材料的矿物种类和数量。
3.有机高分子材料分子的组成单元为链节。
Qd 渗透系数: KS AtH
Ks的意义:抗渗系数越小,表明抗渗性能越好。
(2)抗渗等级
指石料、砼或砂浆所能承受的最大水压力。
如:最大承水压力为0.2MPa,表示为P2,另有P4、P6 、P8、P10…
1.5 材料的耐久性
耐久性(Durability)——材料抵抗外力破坏的能力。 耐久性为综合性质: 抗渗性、抗冻性、抗蚀性(化学腐蚀,生物腐
实体体积 ——李氏比重瓶法(粉末) 表观体积(实体+闭口孔隙) —— 排液置换法(水中重法) 自然(毛)体积(实体+闭口孔隙+开口孔隙)
——规则试件:计算法; 不规则试件:饱和排水法
堆积体积(实体+闭口+开口+空隙)——密度筒法
1.2.4. 孔隙率(Porosity)和空隙率 (Peecenbagee of void)
1.2.1 密度(Density):
材料在绝对密实状态下,单位 实体体积的干质量。
V V0 V0´
m
V
— —密度,g / cm3
m — —材料在干燥状态下的质量,g; V — —材料在干燥、绝对密实状态下的体积,cm3
1.2.2毛体积密度:
单位体积(含材料的实体积矿物成分及其闭口空 隙、开口空隙等颗粒表面轮廓线所包围的毛体 积)物质颗粒的干质量。
b
m
V
, 0
b — —毛体积密度,g / cm(3 Kg / m3)
m — —材料在干燥状态下的质量,g(Kg);
V
, 0
—
—材料在自然状态下的体积,cm(3 m3)
• 1.2.3 散粒材料的表
a
m
V0
V
m Vb
观密度(视密度) a — —材料的表观密度
• 1、表观密度
m — —材料在绝对干燥状态下的质量
材料的力学性质直指材料在外力作用下有关变形性质和抵抗破坏的能力。
1.3.1 强度 (Strength) ——材料抵抗外力破坏的能力。
1.几种强度
(1)静力强度:在静荷载作用下,材料达到破坏前所承受的应力极限值,也成为材
料强度或极限强度。包括抗压(Compressive)、抗拉(Tensile)、抗剪(Shearing)强
• 1、名词解释:密度,孔隙率
• 2、材料的密度、毛体积密度、表观密度、堆积密度的区别。
• 3、量取10L气干状态下的卵石,称得质量为14.5kg,又将该卵石烘干 后,称取500g,放入装有500ml水的量筒中,静置24小时,量筒水面 升高到685ml处,求该卵石的表观密度,堆积密度。
• 4、一块普通粘土砖,外形尺寸为240mm*115mm*53mm,吸水饱和 后质量为2900g,烘干后至恒温质量为2500g,又将该砖磨细再烘干 后称取50g,用李氏瓶测得其体积为18.5立方厘米。试求该砖的密度, 毛体积密度,孔隙率(设所有孔隙为开口孔隙)。(水的密度按1克/ 立方厘米计。)
质量吸水率:材料饱水状态,所吸 水分质量占干质量的百分率
x
m1 m 100% m
体积吸水率:材料饱水状态,所吸 收水分体积占干体积百分率
★
x
(m1
m)/ 水
V0
100%
(2)吸湿性——自然状态 变值 含水率:自然状态下材料所含水
m1——材料吸水饱和后的质量,g
分质量占其干质量的百分率 m2——材料吸水后的质量,g
• 1.1.2.2显微结构、微粉颗粒及胶体
• 显微结构——0.001~1mm,对结构有重要影响。 • 微粉 ——0.0001~0.1mm
• 超微结构—— 104 ~ 106 mm
1.1.3 材料的构造——材料的宏观组织状态
——具有特定性质的材料结构单元间的相互组合搭配情 况 与结构的区别: 构造更强调相同材料或不同材料间的搭配组合关系。
685 500
4题
砖密度 50 2.703g / cm3 18.5
砖的毛密度
2500
2500 1.709g / cm3
240115 53 1000 1462.8
孔隙率 2900 2500 100% 400 100% 27.34%
240115 53 1000
(1)孔隙率与密实度(对应概念) ——单块材料
孔隙率 密实度
P
孔隙体积 总体积 100%
V0, V V0,100% Nhomakorabea
(1
V/m V0,/ m
)
100%
(1
b
) 100%
D
实体体积 总体积 100%
VV0,100%
V /m V 0,/ m
100%
b
100%
密度
表观密度
..\教学试验录像\砂 试验\细集料表观密 度试验.flv
..\教学试验录像\ 石试验\《公路建 筑材料试验》之 石料的密度试 验.flv
..\教学试验录 像\砂试验\细集 料的堆积密度 振实密度试 验.flv
..\教学试验录像\石试 验\粗集料表观密度试 验.flv