(完整版)平面直角坐标系(人教版)

合集下载

人教版7.1平面直角坐标系 课件 (共20张PPT)

人教版7.1平面直角坐标系 课件 (共20张PPT)
2叫做点P的纵坐标,
3 N2
1 -4 -3 -2 -1 0 -1 1
.Q(2,3) (3,2) p ·
M
2 3 4 5
记作:P(3,2)
X
-2 -3
-4
平面上点的坐标的确定
Y b
平面内任意一点P,过P点分别 向x、y轴作垂线,垂足在x轴、 y轴上对应的数a、b分别叫做 O 点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标。
y 2
y
2 1 1
y
2 1 1 2 O
-2 -1
O
2
x
-2 -1
O
1
1
2 x
-2 -1
x
-2 -4
-1 -2 1 y ]
-1 -2
[
[
2
]
y 2
[
3
]
-2 -1 O
2 1
-2 -1 1 2 x O
1 1 -1 2
-1
-2
[ 4 ]
-2
5
纵轴
y
如何在平面直 5 角坐标系中表 4 示一个点? 3 纵坐标2
任何一个在 x轴上的点 的纵坐标都为0。
练习
1 .点﹙0,1﹚,﹙2,0﹚,﹙-1,2﹚,﹙-1,0﹚, 3 个,在y轴上的点N﹙a,3﹚在y轴上,则a= _______ 0 3 .若点p﹙-4,b﹚在x轴上,则b= ____
4 .若点N﹙a+5 ,a-2﹚在y轴 –5 上,则a=______
. P(a,b)
a
X
记为P(a,b)
注意:横坐标写在前,纵坐标写在后, 中间用逗号隔开.
发现: (a,b)是一对有序数对,横坐标在前,纵 坐标在后,中间用逗号隔开,不能颠倒。

人教版七年级数学下册课件 7.1.2 平面直角坐标系 (共22张PPT)

人教版七年级数学下册课件 7.1.2 平面直角坐标系 (共22张PPT)

-3 -2 -1 0 1 2 3 4
A: -3; B: 2. 点C. 思考2 : 由(1)你发现数轴上的点与实数是什么关系?
一一对应. ①数轴上的每个点都对应一个实数(这个实数叫作这个
点在数轴上的坐标); ②反过来,知道一个数, 这个数在数轴上的位置就确定了.
新课导入
1596-1650
数学家笛卡儿潜心研究能否用代数中的 计算来代替几何中的证明. 有一天, 在梦中他 用金钥匙打开了数学宫殿的大门, 遍地的珠 子光彩夺目, 他看见窗框角上有一只蜘蛛正 忙着结网, 顺着吐出的丝在空中飘动, 一个念 头闪过脑际: 眼前这一条条的横线和竖线不 正是自己全力研究的直线和曲线吗?
5 N
A
平面内的点就可以用一个
4
x轴上的点的
(3, 4)
有序数对来表示了.
纵坐标为0; y 3
轴上的点的 2 C 例如, 由点 A 分别向 x 轴、横坐标为0. 1
原点O的坐标 为(0, 0)
y轴作垂线, 垂足M 在 x 轴 上的坐标3, 垂足 N 在 y 轴 -4 -3
-2
-1 O
M 1 2 3456
y
D (0, 6)
6
C(6, 6)
5
4
3
2
1
A(O) (0,10)2 3 4 5 B (6, 0)
x
新知探究
请另建立一个平面直角坐标系, 这时正方形的顶点A, B, C, D 的坐标又分别是什么?与同学们交流一下.
y
D (-3,3)
C (3,3)
A (-3,-3)
B (3,-3)
x
新知探究
由上得知, 建立的平面直角坐标系不同, 则各点的坐标也 不同. 你认为怎样建立直角坐标系才比较适当?

平面直角坐标系(坐标系及其象限特征)(人教版)(含答案)

平面直角坐标系(坐标系及其象限特征)(人教版)(含答案)

111学生做题前请先回答以下问题问题1:坐标系把平面分成了______个象限,第一象限内点的坐标特征是(+,+),第二象限内点的坐标特征是(___,___),第三象限内点的坐标特征是(____,____),第四象限内点的坐标特征是(___,___).问题2:x轴上的点____坐标等于零,y轴上的点_____坐标等于零.问题3:平行于x轴的直线上的点____坐标相同;平行于y轴的直线上的点____坐标相同.平面直角坐标系(坐标系及其象限特征)(人教版)一、单选题(共14道,每道7分)1.下列描述不能确定物体位置的是( )A.五栋四楼B.1单元6楼8号C.和平路125号D.东经110°,北纬80°答案:A解题思路:五栋四楼有很多房间,因此不能确定物体的位置.故选A.试题难度:三颗星知识点:位置的确定2.下列各点中,在第二象限的点是( )A.(3,2)B.(3,-2)C.(-3,2)D.(-3,-2)答案:C解题思路:第二象限的点的符号特征为(-,+),符合这一特征的只有C选项.故选C.试题难度:三颗星知识点:点的坐标3.下列各点中,在第三象限的点是( )111A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)答案:D解题思路:第三象限的点的符号特征为(-,-),符合这一特征的只有D选项.故选D.试题难度:三颗星知识点:点的坐标4.如图,在平面直角坐标系中,点E的坐标是( )A.(1,2)B.(2,1)C.(-1,2)D.(1,-2)答案:A解题思路:∵点E在第一象限内,∴点E的符号为(+,+)又∵E到x轴的距离是2,到y轴的距离是1,∴点E的纵坐标是2,横坐标是1,故点E的坐标为(1,2).故选A.试题难度:三颗星知识点:点的坐标5.如图,在平面直角坐标系中,坐标是(0,-3)的点是( )A.点AB.点BC.点CD.点D答案:D解题思路:根据题意可知,横坐标等于零,纵坐标是负数,这个点在y轴负半轴上.故选D.试题难度:三颗星知识点:坐标确定位置6.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A.点AB.点BC.点CD.点D答案:B解题思路:根据题意可得:小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,即向西走为x轴负方向,向南走为y轴负方向,则(10,20)表示的位置是向东10米,向北20米,即点B所在位置.故选B.试题难度:三颗星知识点:坐标确定位置7.如图,在正方形ABCD中,点A和点C的坐标分别为(-2,3)和(3,-2),则点B和点D 的坐标分别为( )A.(2,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)答案:B解题思路:因为点A和点C的坐标分别为(-2,3)和(3,-2),四边形ABCD为正方形,AB平行于y轴,CD平行于y轴,AD平行于x轴,BC平行于x轴,所以点B的横坐标为-2,纵坐标为-2,点D的横坐标为3,纵坐标为3.故选B.试题难度:三颗星知识点:坐标与图形的性质8.若点P(8-3a,a)的横坐标与纵坐标互为相反数,则点P一定在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:B解题思路:由题可知8-3a+a=0,解得a=4,因此点P(-4,4)在第二象限.故选B.试题难度:三颗星知识点:坐标确定位置9.如果点P(m,n)是第四象限内的点,那么点Q(0,-n)在( )A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上答案:C解题思路:因为点P(m,n)是第四象限内的点,所以m为正,n为负,那么-n为正,所以点Q(0,-n)在y轴正半轴上.故选C.试题难度:三颗星知识点:坐标确定位置10.如图,是象棋盘的一部分.若“帅”位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点( )上.A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)答案:C解题思路:由题意知,坐标原点、坐标轴所在的位置如图所示,∴“炮”所在的点的坐标为(-2,1).111 故选C.试题难度:三颗星知识点:点的坐标11.已知点M(2m-1,2-m)在x轴上,则m的值为( )A. B.2C.3D.0答案:B解题思路:∵点M在x轴上,∴2-m=0,∴m=2.故选B.试题难度:三颗星知识点:坐标确定位置12.在平面直角坐标系中,点(-7,m+1)在第三象限,则m的取值范围是( )A.m 1B.m 1C.m-1D.m-1答案:C解题思路:因为点(-7,m+1)在第三象限,第三象限点的符号特征为(-,-),所以m+10,解得m-1.故选C.试题难度:三颗星知识点:点的坐标13.平面直角坐标系中有一点P(a,b),如果ab=0,那么点P的位置在( )A.原点B.x轴上C.y轴上D.坐标轴上答案:D解题思路:因为ab=0,所以a和b中至少有一个为0,因此点P一定在坐标轴上.故选D.111 试题难度:三颗星知识点:坐标确定位置14.如果点P(a,b)在第四象限,那么点Q(-a,b-4)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第一象限或第三象限答案:C解题思路:∵点P(a,b)在第四象限∴a0,b0∴-a0,b-40∴点Q(-,-)在第三象限故选C.试题难度:三颗星知识点:坐标的象限特征。

人教版七年级数学下册第七章平面直角坐标系知识点归纳完整版

人教版七年级数学下册第七章平面直角坐标系知识点归纳完整版

人教版七年级数学下册第七章平面直角坐标系知识点归纳HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】平面直角坐标系知识点总结1、在平面内,两条互相垂直且原点重合的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b )一一对应;其中a为横坐标,b为纵坐标;3、x轴上的点,纵坐标等于 0;y轴上的点,横坐标等于 0;Y 坐标轴上的点不属于任何象限; b P(a,b)4、四个象限的点的坐标具有如下特征:1象限横坐标x纵坐标y-3 -2 -1 0 1a x-1第一象限正正-2第二象限负正-3第三象限负负第四象限正负小结:(1)点 P()所在的象限横、纵坐标、y的取值的正负性;(2)点 P(x,y)所在的数轴横、纵坐标x、y中必有一数为零;y5、在平面直角坐标系中,已知点 P (a,b),则a ;b P (a,b )(1)点 P 到x轴的距离为b;(2)点 P 到y轴的距离为ab (3)点 P 到原点 O 的距离为 PO=a2?b2O x6、平行直线上的点的坐标特征:a)在不x轴平行的直线上,所有点的纵坐标相等;YA B点 A、B 的纵坐标都等于m;mXb)在不y轴平行的直线上,所有点的横坐标相等;YC点 C、D 的横坐标都等于n;n7、 对称点的坐标特征:a) 点 P (m , n ) 关于 x 轴的对称点为 P 1 (m ,?n ) , 即横坐标丌变,纵坐标互为相反数; b) 点 P (m , n ) 关于 y 轴的对称点为 P 2 (?m , n ) , 即纵坐标丌变,横坐标互为相反数; c) 点 P (m , n ) 关于原点的对称点为 P 3 (?m ,?n ) ,即横、纵坐标都互为相反数;yyyPPn P2n n POmX? m? mm XO m X O? n P 1 ? nP 3关于 x 轴对称 关于 y 轴对称 关于原点对称d) 点 P (a , b )关于点 Q (m , n ) 的对称点是 M (2m-a ,2n-b );8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点 P ( m , n )在第一、三象限的角平分线上,则 m ? n ,即横、纵坐标相等;b) 若点 P ( m , n )在第二、四象限的角平分线上,则 m ???n ,即横、纵坐标互为相反数;yyn P PnOm Xm OX在第一、三象限的角平分线上在第二、四象限的角平分线上9、 用坐标点表示移(1)点的平移将点(x , y )向右(或向左)平移 a 个单位,可得对应点(x+a , y ){或(x-a , y )},可记为“右加左减,纵不变”;将点(x , y )向上(或向下)平移 b 个单位,可得对应点(x , y+b ){或(x , y-b )},可记为“上加下减,横不变”;(2)图形的平移把一个图形各个点的横坐标都加上(或减去)一个正数 a ,相应的新图像就是把原图形向右(或向左)平移 a 个单元得到的。

人教版七年级数学下册课件平面直角坐标系3

人教版七年级数学下册课件平面直角坐标系3
四、作业布置与教学反思
解若:连点 接3A点对.P应 ,在的Q(数3地-为a-图,3a,上+点2)我B,对则们应线的段要数P为Q确与2;定___一___(个选填地“x点轴”的或位“y轴置”,)平行需.要借助经线和纬线,这两条 4三.象在限平线和面__直从_角__局坐__标_部_系_.中上坐,可标坐轴标以上平的面看点被成不两属条是于坐任标平何轴面象分限成内.了_两___条个部互分相,每垂个部直分的称为直___线___,_,有分别刻叫度做第、一象有限方、__向___的______、第 解4.:如(1图)直A,(0根线,据0,)图,中B进(正-方而2,形0抽的),位象C置(-,成2分,数别2)写,轴出D(边.0,长2在为);2平的正面方形内AB,CD两的各条点坐互标相. 垂直的且有公共原点的数 若 2.连如接图轴点,P写,,出Q就(数3-轴如a上,A同a,+B地2两),点图则所线上对段应的P的Q与数经_,_线反__过_和_来(选,纬填描“线出x数轴,-”4可或,“0以y和轴1帮”所)对平助应行的我.点们. 确定平面内任何一个点
2.教材P67 思考及以下内容. 提出问题:
(1)原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点? (2)什么叫做象限?平面直角坐标系有几个象限?它们是如何分布的? (3)每个象限内的点的坐标符号能够确定吗?请分别指出各象限内点的坐 标的符号特征. (4)坐标轴上的点属于第几象限? (5)坐标平面内的点与有序数对有什么关系?
4.在平面直角坐标系中,坐标平面被两条坐标轴分成4了____个部分,每个部分称为_______,分别叫做第一象限、___________、第
三象限和__________.坐标轴上的点不属于任何象限.
2.教材P67 思考及以下内容.第二象限
3

人教版平面直角坐标系(20)

人教版平面直角坐标系(20)
7.1 第2、3题
复习引入
问题3 如图,思考:你能找到一种办法来确定平面 内点P的位置吗?
我们可以约定“列数 在前,排数在 后”.如图,点P在 “第1列第2排”,记 为(1,2).
新课讲解
问题4 在图中,如果点P记为(1,2),你能找到 办法来确定平面内其余点的位置吗?
M记为(-2,-2); N记为(-1,3).
新课讲解
问题5 如图,学生看书第66,67页后回答下列问题:
①说一说组成平面直 角坐标系的两条数轴 具备什么样的位置关 系?
②什么是横轴?什么 是纵轴?什么是 原点坐标?
新课讲解
问题6 如图,学生看书第66,67页后回答下列问题:
③坐标平面被两条坐 标轴分成了哪几个部分, 分别对应什么象限?
大家有疑问的,可以询问和交流
问题10 数轴上点与其坐标是什么关系?想一想 平面上的点与坐标又是什么关系?
数轴上的点与坐标(实数)一一对应.平面 上的点与坐标(有序实数对)也是一一对应的.
课堂练习
本节书上练习题
课堂小结
回顾本节课所学的主要内容,回答以下问题: (1)什么是平面直角坐标系?
(2)平面直角坐标系内点与坐标之间有什么关系?
可以互相讨论下,但要小声点
教师总结
平面直角坐标系就是在平面内互相垂直,原点 重合的两条数轴.
水平的数轴称为x轴或横轴,取向右方向为正方 向;竖直的数轴称为y轴或纵轴,取向上方向为正方 向.两坐标轴的交点为平面直角坐标系的原点.
建立平面直角坐标系后,坐标平面被两条坐标 轴分成了四个部分,每个部分称为象限,分别叫做 第一象限、第二象限、第三象限、第四象限,坐标 轴上的点不属于任何象限.
7.1 平面直角坐标系 (第2课时)

完整版)平面直角坐标系知识点总结

完整版)平面直角坐标系知识点总结

完整版)平面直角坐标系知识点总结二、知识要点梳理知识点一:有序数对有序数对是由有顺序的两个数a与b组成的,记作(a,b)。

它通常用来表示物体的位置,其中,a与b的顺序不能随意交换,因为(a,b)与(b,a)的顺序不同,含义也不同。

知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。

其中,水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法。

要想表示一个点的具体位置,需要用它的坐标来表示。

点的坐标由横坐标和纵坐标组成,记作A(a,b),其中横坐标a 表示点到y轴的距离,纵坐标b表示点到x轴的距离。

知识点三:点坐标的特征1.四个象限内点坐标的特征平面直角坐标系将平面分成四个象限,分别为第一、二、三、四象限,按逆时针顺序排列。

这四个象限的点的坐标符号分别为(+,+)、(-,+)、(-,-)、(+,-)。

2.数轴上点坐标的特征x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b)。

3.象限的角平分线上点坐标的特征象限的角平分线上的点的坐标通常是两个相同的数,如(1,1)、(-2,-2)等。

点的平移指的是在平面内将一个点沿着某个方向移动一定的距离后得到的新点。

设原点为O,点P的坐标为(x,y),平移向量为(a,b),则点P'的坐标为(x+a,y+b)。

其中,向量(a,b)表示从原点O到点P'的位移向量。

2)图形的平移:图形的平移指的是将整个图形沿着某个方向移动一定的距离后得到的新图形。

设原图形的每个顶点的坐标为(x,y),平移向量为(a,b),则新图形的每个顶点的坐标为(x+a,y+b)。

可以看出,图形的平移实际上就是将图形中的每个点都进行相同的平移操作。

要点诠释:在平移操作中,向量的概念是非常重要的。

人教版七年级数学下册第七章平面直角坐标系全章优质教学课件

人教版七年级数学下册第七章平面直角坐标系全章优质教学课件
两个数a与b组成的数对,叫做有序数
对,记作 ( a,b ).
我相信,只要大家勤 于思考,勇于探索,一定 会获得很多的发现,增长 更多的见识,谢谢大家, 再见!
广东省怀集县凤岗镇初级中学
黄柳燕
一、学习目标
1、理解平面直角坐标系,以及横轴、 纵轴、原点、坐标等概念;
2、认识并能画出平面直角坐标系;
三、研学教材
知识点二 有序数对的应用----练一练
2、如图,是小强画的一张脸谱,他对弟 弟说:“如果我用(1,3)表示左眼,用 (3,3)表示右眼,那么嘴巴可以表示
为_____(_2_,_1_) ___.” 4 3 2 1 00 1 2 3 4 第2题
三、研学教材
知识点二 有序数对的应用----练一练
知识点一 有序数对的意义
7、我们用含有两个数的表达方式来表示一
个确定的__位__置___,其中两个数各自表示 不同的含义,这种__有__顺__序__的两个数a与
b组成的数对,叫做有序数对,记作
(a ,b ).
三、研学教材
知识点一 有序数对的意义----练一练
1、在电影票上,将“8排9座”简记为
﹙8,9﹚,则“2排6座”可表示 (2,6)
小刚
小军 小华
第2题图
三、研学教材
3、如图,A、B两点的坐标分别为(– 3
,2)、(3,2),请你写出C在同一坐标
系下的坐标
C。(-1 ,4)
C
A
B
第3题图
四、归纳小结 1、各象限点的坐标的特点是: ⑴点P(x,y)在第一象限,则x 〉0,y 〉0.
⑵点P(x,y)在第二象限,则x〈 0,y 〉0. ⑶点P(x,y)在第三象限,则x〈 0,y〈 0. ⑷点P(x,y)在第四象限,则x 〉 0,y〈 0.

人教版数学七年级下册平面直角坐标系(用经纬度表示地理位置)课件

人教版数学七年级下册平面直角坐标系(用经纬度表示地理位置)课件
标系,使得图形的几何关系在方程的性质中表现出来。
科考站以及你想去旅行的地点的经纬度,并记录下来. 公元前344年,亚历山大东征,其随军地理学家发现东征路线由西向东季节变换和日照长短都很相仿,于是第一次在地球上划出了一条
纬线. 解析几何的创立是数学史上的转折点,从此数学进入了变量数学的新时期。
阅读与思考
资料一:经纬网的由来 公元前344年,亚历山大东征,其随军地理学家发现
东征路线由西向东季节变换和日照长短都很相仿,于是 第一次在地球上划出了一条纬线.
公元120年,年青的数学家、天文学家、地理学家克 罗狄斯﹒托勒密综合前人的研究成果,提出在地球上绘 制经纬线网的想法.
正确测定经度和纬度需要“标准钟”。18世纪,英 国钟表匠哈里森用时42年制造了精度很高却只有怀表大 小的计时器;差不多同时,法国钟表匠埃尔﹒勒鲁瓦制 造出了海上计时器.
3),请你把这个英文单词写出来: MATHS

它翻译成中文是 数学 .
当堂自测
4. 如图3所示为课间操时,小有、小智、小慧三人的相 对位置,如果用(4,5)表示小智的位置,(2,4)表
示小有的位置,那么小慧的位置可表示为 (1,2) .
小智
小有
小慧
图3
当堂自测
B
当堂自测
6. 如图5所示,每个小正方形的边长都是1,点A、C的位 置分别用有序数对(3,1),(8,1)表示. ⑴ 请你写出表示点O、B、D、E的有序数对; ⑵ 请求出五边形ABCDE的面积.
⑴ 请你写出表示点O、B、D、E的有序数对;
一篇数学小论文. 公元前344年,亚历山大东征,其随军地理学家发现东征路线由西向东季节变换和日照长短都很相仿,于是第一次在地球上划出了一条
纬线. ⑴ 请你写出表示点O、B、D、E的有序数对; 为了精确地表明各地在地球上的位置,人们给地球表面假设了一个坐标系,这就是经纬网。 反过来,能根据地球表面的某一点的经纬度确定其地理位置; 公元120年,年青的数学家、天文学家、地理学家克罗狄斯﹒托勒密综合前人的研究成果,提出在地球上绘制经纬线网的想法. 从0゜经线算起,各分作180゜,向西为0゜至西经180゜,向东为0゜至东经180゜,西经180゜与东经180゜重合。 解析几何的创立是数学史上的转折点,从此数学进入了变量数学的新时期。 国际上把赤道定为0゜纬线。 公元120年,年青的数学家、天文学家、地理学家克罗狄斯﹒托勒密综合前人的研究成果,提出在地球上绘制经纬线网的想法. 补全下表,并将表中的地点用彩笔标注在你所画的经纬网地图上: 将地球表面虚拟的经纬网进行高斯投影,就可获得经纬网的平面地图。 14世纪在奥尔斯姆的著作中,已有关于经纬度的萌芽。 补全下表,并将表中的地点用彩笔标注在你所画的经纬网地图上: (32゜N,114゜E) 公元前344年,亚历山大东征,其随军地理学家发现东征路线由西向东季节变换和日照长短都很相仿,于是第一次在地球上划出了一条 纬线. 国际上把赤道定为0゜纬线。 从0゜经线算起,各分作180゜,向西为0゜至西经180゜,向东为0゜至东经180゜,西经180゜与东经180゜重合。 你知道下面这幅经纬网地图中哪些是东经线,哪些线是西经线吗?北纬线和南纬线呢? 公元前344年,亚历山大东征,其随军地理学家发现东征路线由西向东季节变换和日照长短都很相仿,于是第一次在地球上划出了一条 纬线. ⑴ 请你写出表示点O、B、D、E的有序数对;

人教版数学选修4-4课件 1.1 平面直角坐标系

人教版数学选修4-4课件 1.1 平面直角坐标系
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
• 思维导引:本题涉及两点间的距离及曲线, 故要想到坐标法解决问题.
解析:以 A,B 所在直线为 x 轴,A,B 中点 O 为坐标原点,建立如图的直角坐标 系.
∵|AB|=10,∴点 A(-5,0),B(5,0).设某地 P 的坐标为(x,y),并设 A 地运费为 3a 元/公里,则 B 地运费为 a 元/公里,设 P 地居民购货总费用满足条件(P 地居民选择 A 地 购货):价格+A 地运费≤价格+B 地运费,
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
•要点二 平面直角坐标系中的伸缩变换
定义:设 P(x,y)是平面直角坐标系中任意一点,在变换 φ:xy′′==λμxy,,λμ>>00,
• 的作用下,点P(x,y)对应到点P′(x′,y′),就 坐称标φ伸为缩平变面换 直角伸坐缩标变换系中的________________, 简称______________.

人教版初一数学 7.1.2 平面直角坐标系PPT课件

人教版初一数学 7.1.2 平面直角坐标系PPT课件

探究新知
引导学生思考在平面直角坐标系内确定已知点坐标 的方法.学生能通过刚才的实例联想到平面内的已知点, 可以通过做垂线来找到其横、纵坐标.设点E的横坐标 为-3,纵坐标为1,教师进一步指出点的坐标的记作方法: 记作E(-3,1).
探究新知
根据坐标描出点的位置. 提出问题:点E的坐标能记作(1,-3)吗?它与点E是同 一个点吗?如果不是,它在哪里呢?引导学生联想用坐标 表示平面内的已知点的过程回放,寻求到由点的坐标描 点的方法.让学生观察、思考:一个已知点对应几个坐 标,一个坐标能描出几个点?引导学生总结:平面内的点 与有序实数对是一一对应的.让学生在理解的基础上, 突破难点.
探究新知
小组合作,寻求规律 1.探究坐标轴上点的特点: 提出问题:x轴上的点的坐标有什么特点?y轴呢? 引导学生利用所学,先独立思考,再小组交流,让学生 去发现规律,进而自然寻求到原点的坐标特点,并通过 后面的练习加以巩固.
探究新知
2.认识象限并探究规律: 象限的概念先由学生通过阅读自己找出来,教师引 导学生认识各象限,让学生总结每个象限分别是由坐标 轴的哪两个半轴组成,再利用“由特殊到一般”的方法 去探究每个象限内点的坐标符号特点,从而发现规律, 并结合练习使所学得以巩固.教师归纳探究规律的一般 方法,在学习方法上给予指导.
探究新知 学生活动二【典例精讲】 1.如图所示,点A的坐标是 ( B )
A.(3,2) B.(3,3) C.(3,-3) D.(-3,-3)
探究新知
2.如图所示,在平面直角坐标系中,描出以下各点:A (4,3),B(-2,3),C(-3,-1),D(2,-2),E(0, -1),F(-1,0),G(0,0).并指出各点所在的象 限或坐标轴.
第七章 平面直角坐标系 7.1 平面直角坐标系

全国优质课一等奖人教版初中七年级数学下册《平面直角坐标系》课件

全国优质课一等奖人教版初中七年级数学下册《平面直角坐标系》课件
T
E
A
C
H
I
N
G
A
N
D
L
E
A
R
N
I
N
G
第七章
7.1.2. 平面直角坐标系(第2课时)
y轴或
纵轴
y
【温故知新】
6
平面直角坐标系是由两条
互相 垂直 、 原点 重合的
数轴所组成
5
4
3
原点2
x轴或
横轴
1
-6 -5 -4 -3 -2 -1 0
-1
-2
-3
-4
-5
-6
1
2 3
4
5
6
X
【温故知新】
y
6
5
第二象限
-6
J
若直线l//y轴,则直线上
所有点的横坐标相同。
【初步总结】
平行于坐标轴上的点
1、若直线l//x轴,则直线上所有
点的纵坐标相同。
2、若直线l//y轴,则直线上所有
点的横坐标相同。
【深入思考】
y
5
6
A1
5
A
B2
4
3
B
2
1
C
C3
2
-6 -5 -4 -3 -2 -1 0 1
-1 D
D4
-2
-3
解得m=3.5
n,3 。.
(2)∵点M到x轴,y轴距离相等。
∴m-2=2m-7 或(m-2)+(2m-7)=0
解得m=5或3
在平面直角坐标系中,已知点 M m 2, 2m 7 ,点N
(1)若M在x轴上,求m的值;
(2)若点M到x轴,y轴距离相等,求m的值;

人教版平面直角坐标系(15)

人教版平面直角坐标系(15)
平面直角坐标系
y
20
10
o x -20 -10
10 20 30
-10
平面上有公共原点且互相垂直 -20
的2条数轴构成平面直角坐标系,-30 -40
简称直角坐标系。
-50
音乐喷泉
水平方向的数轴称为x轴或横轴。
竖直方向的数轴称为y轴或纵轴。
(它们统称坐标轴)
公共原点O称为坐标原点。
各象限内的点的坐标有何特征?

· ·B ··
· O · ·A

··
y
5
第二象限
4
3
2
1
- 9 - 8- 7 - 6 - 5- 4 - 3 - 2 - 1o
-1
-2
第三象限
-3
-4
-5
第一象限
1 2 3 4 5 6 7 8 9x
第四象限
注意:坐标轴上的点不属于任何象限
简单练习
一、判断:
1、对于坐标平面内的任一点,都有唯一
一对有序实数与它对应.( √ ) 2、在直角坐标系内,原点的坐标是0.( × )
y
(-,+)(C-2,3)45 3
(+,+)
B (5,3)
F(-7,2)
2
A(3,2)
1
- 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1-1 o 1 2 3 4 5 6 7 8 9 x
(-,-)
-2 -3
(+,-)
G(-5,-4) -4
E(5,-4)
D(-7,-5)
-5
H (3,-5)
3.若点P(x,y)在第四象限,|x|=2, |y|=3,则P点的坐标为 .

人教版平面直角坐标系

人教版平面直角坐标系
(3)注意点的坐标与线段的长的相互转化。当两个点纵坐标 相等时,两个点之间的距离等于两点的横坐标之差的绝对值;同 理,当两个点横坐标相等时,两个点之间的距离等于两点的纵坐 标之差的绝对值。
(4)运用平面内的点的坐标特征解决问题时要注意数形结合, 不宜死记硬背。
谢谢
4 则BC=
,则△ABC的面积
为6。
y 4
3 A
2
1
B
C
–4 –3 –2 –1 O 1 2 3 4 x
–1
–2
–3
–4
探究三:点的坐标在几何中的应用 活动3 学以致用
重点、难点知识★▲
【例2】 一个长方形在平面直角坐标
系中四个顶点的坐标为(-1,2),
(-1,-1),(3,-1),(3,2),
则这个长方形的周长为 14
重点、难点知识★
活动2 结合旧知,探求平面直角坐标系的概念。
类似于利用数轴确定直线上点的位置,能找到一种方法
来确定平面内点的位置吗?
y
我们可以在平面内画两条互相垂直、
4
原点重合的数轴,组成平面直角坐标系。
3
2
水平的数轴称为x轴或者横轴,一
1
般取向右为正方向;竖直的数轴称为纵 –4 –3 –2 –1 O 1 2 3 4 x
重点、难点知识★▲
活动1 结合概念,探索性质。
原点的坐标为 (0,0)
x轴上的点的坐标特征

纵坐标为0
y轴上的点的坐标特征

横坐标为0
y 4

3B
2
1

–4 –3 –2
–1 O –1
1 2A 3
4x
–2
–3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系
一、选择题(每小题3分,共18分)
1.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()
A.(5,4)B.(4,5)C.(3,4)D.(4,3)
(第1题图)(第2题图)
2.如图,下列说法正确的是()
A.A与D的横坐标相同。B.C与D的横坐标相同。
五、做一做
15.(1)80(可分别割成直角三角形和长方形或补直角三角形成长方形)。
(2)80
六、小设计
16.略。
(二)命题意图
一、选择题
1.本题考查用有序数对表示物体的位置及识图能力和有序数对在生活中的应用。
2.本题考查平行于x轴、y轴的直线上的点的坐标的特点及观察能力。
3.本题考查x轴上点的特点及思维的全面性。
11.火车站(0,0),医院(–2,–2),文化宫(–3,1),体育场(–4,3),宾馆(2,2),市场(4,3),超市(2,–3)
12.图略,AB∥CD,平行四边形。
13.略
四、试一试
14.(1)(2,3),(6,5),(10,3),(3,3),(9,3),(3,0),(9,0);
(2)平移后坐标依次为(2,0),(6,2),(10,0),(3,0),(9,0),(3,–3),(9,–3)。
8.点A在x轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为;点B在y轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为;点C在y轴左侧,在x轴下方,距离每个坐标轴都是5个单位长度,则此点的坐标为。
(第7题图)(第10题图)
9.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(–4,3)、(–2,3),则移动后猫眼的坐标为。
10.如图,小强告诉小华图中A、B两点的坐标分别为(–3,5)、(3,5),小华一下就说出了C在同一坐标系下的坐标。
三、解答题(每小题10分,共30分)
11.如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标。
12.如图,描出A(–3,–2)、B(2,–2)、C(3,1)、D(–2,1)四个点,线段AB、CD有什么关系?顺次连接A、B、C、D四点组成的图形是什么图形?
C.B与C的纵坐标相同。D.B与D的纵坐标相同。
3.若x轴上的点P到y轴的距离为3,则点P的坐标为()
A.(3,0)B.(3,0)或(–3,0)C.(0,3)D.(0,3)或(0,–3)
4.如果点P(5,y)在第四象限,则y的取值范围是()
A.y<0 B.y>0 C.y≤0 D.y≥0
5.线段CD是由线段AB平移得到的。点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()
4.本题考查象限内点的特点
5.本题考查用坐标表示平移及抽象思维能力。
6.本题考查用坐标确定点
二、填空题
7.本题考查用有序数对表示物体的位置及识图能力和数学在生活中的应用意识。
8.本题考查用坐标确定点及x、y轴上点的特点。
9.本题考查图形平移后坐标的变化。
10.本题考查如何建立适当的直角坐标系并用坐标确定点的位置及逻辑思维能力。
(1)确定这个四边形的面积,你是怎么做的?
(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?
六、小设计(10分)
16.这是一个动物园游览示意图,试计描述这个动物园图中每个景点位置的一个方法,并画图说明。
附:命题意图及参考答案
(一)参考答案
一、选择题
二、填空题
三、解答题
13.建立两个适当的平面直角坐标系,分别表示边长为4的正方形的顶点的坐标。
四、试一试(15分)
14.如图,(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标。(2)源源想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图案,并写出平移后的7个点的坐标。
五、做一做(15分)
15.如图,四边形ABCD各个顶点的坐标分别为(–2,8),(–11,6),(–14,0),(0,0)。
六、小设计
16.本题通过创设具体情景,调动学生学习数学的兴趣,考查学生能否利用所学的知识描述物体的位置,并考查通过具体的动手操作解决问题的能力。
A.(2,9)B.(5,3)C.(1,2)D.(–9,–4)
6.一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为()
A.(2,2)B.(3,2)C.(3,3)D.(2,3)
二、填空题(每小题3分,共12分)
7.如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成。
三、解答题
11.本题考查用坐标表示地理位置。
12.本题考查用坐标确定点及平行直线上的点的坐标特点和画图、识图的能力。
13.本题考查同一图形在不同的直角坐标系下各点的坐标。
四、试一试
14.本题意在综合考查点的坐标、图形平移后的坐标变化及绘图能力。
五、做一做
15.本题意在综合考查点的坐标、图形平移后的坐标变化等内容,并通过探究活动考查分析问题、解决问题能力及未知转化为已知的思想。
相关文档
最新文档