解析几何第四版吕林根课后习题答案第二章PDF
解析几何第四版吕林根期末复习课后习题(重点)详解
第一章 矢量与坐标§1.3 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线.三点共线.证明证明∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM ,CN 可 以构成一个三角形.证明:证明: )(21AC AB AL +=Θ)(21BC BA BM +=)(21CB CA CN +=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明是任意一点,证明OB OA ++OC =OL +OM +ON .[证明] LA OL OA +=Θ MB OM OB +=NC ON OC += )(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量CN BM AL ,,构成一个三角形。
构成一个三角形。
8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明是任意一点,证明OA +OB +OC +OD =4OM .[证明证明]]:因为OM =21(OA +OC ), OM =21(OB +OD ), 所以所以2OM =21(OA +OB +OC +OD ) 所以所以OA +OB +OC +OD =4OM . 1010、、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.图1-5证明证明证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN . →→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴,∴ →→→+=BC AD MN ,即,即§1.4 矢量的线性关系与矢量的分解3.、设一直线上三点A , B , P 满足AP =λPB (λ≠-1),O 是空间任意一点,求证:是空间任意一点,求证:OP =λλ++1OB OA[证明]:如图1-7,因为,因为AP =OP -OA ,PB =OB -OP ,所以所以OP -OA =λ (OB -OP ), (1+λ)OP =OA +λOB ,从而从而 OP =λλ++1OB OA .4.、在ABC ∆中,设,1e AB =2e AC =.(1) 设E D 、是边BC 三等分点,将矢量AE AD ,分解为21,e e 的线性组合; (2)设AT 是角A 的平分线(它与BC 交于T 点),将AT 分解为21,e e 的线性组合的线性组合解:(1)()12123131,e e BC BD e e AB AC BC -==-=-=Θ,2111231323131e e e e e BD AB AD +=-+=+=,同理123132e e AE +=(2)因为)因为 ||||TC BT =||||11e e ,且 BT 与TC 方向相同,方向相同,所以所以BT =||||21e e TC . 由上题结论有由上题结论有AT =||||1||||212211e e e e e e ++=||||||||212112e e e e e e ++. 5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量OG 对于矢量对于矢量OC OB OA ,,,的分解式。
《解释几何 第四版》讲解与习题 第二章 轨迹与方程
x (tx b) 1 2 2 a b
2 2
在第二式中取t=0,得x=0,所以舍去第一式,取 从而
b(b 2 a 2t 2 ) y 2 b a 2t 2
在法二中,若令u=-t,则得椭圆的另一种表示式为
2a2bu x 2 b a 2u 2 ( u ) 2 2 2 y b(b a u ) 2 2 2 b a u
(x x0)2 + (y y0)2 + (z z0)2 = R2 (1) 称方程(1)为球面的标准方程. 特别: 当球心在原点O(0, 0, 0)时,
M0
M
R
球面方程: x2 + y2 + z2 = R2
例 4 求与原点O 及 M 0 ( 2,3,4)的距离之比为1 : 2的点的全 体所组成的曲面方程.
解
根据题意有 z 1
用平面z c 去截图形得圆:
z
( x 1)2 ( y 2)2 1 c (c 1)
当平面z c 上下移动时, 得到一系列圆
c
o
x
y
圆心在(1,2, c ),半径为 1 c
半径随c 的增大而增大. 图形上不封顶,下封底.
二、曲面的参数方程 1、双参数向量函数 在两个变数u,v的变动区域内定义的函数 r=r(u,v) 或 r(u,v)=x(u,v)e1+y(u,v)e2+z(u,v)e3 (2) 称为双参数向量函数,其中x(u,v),y(u,v),z(u,v)是变 向量r(u,v)的分量,它们都是变数u,v的函数。 当u,v取遍变动区域的一切 值时,径矢
a b r (a b) cos b cos i b a b (a b) sin b cos j b 特殊地,当 a 4b 应用公式
解析几何_吕林根_许子道_第四版_课后习题解答
解析几何_吕林根 许子道_第四版_课后习题解答第一章 矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆(3)直线; (4)相距为2的两点2. 设点O 是正六边形ABCDEF 的中心,在矢量OA 、OB 、 OC 、OD 、OE 、 OF 、AB 、BC 、CD 、 DE 、EF 和FA 中,哪些矢量是相等的?[解]:如图1-1,在正六边形ABCDEF 中,相等的矢量对是: 图1-1 .DE OF CD OE AB OC FA OB EF OA 和;和;和;和;和3. 设在平面上给了一个四边形ABCD ,点K 、L 、M 、N 分别是边AB、BC、CD、DA的中点,求证:KL =NM . 当ABCD 是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC , 则在∆BAC 中,21AC. KL 与AC 方向相同;在∆DAC 中,21AC . NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .4. 如图1-3,设ABCD -EFGH 是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB 、CD ; (2) AE 、CG ; (3) AC 、EG ;(4) AD 、GF ; (5) BE、CH . [解]:相等的矢量对是(2)、(3)和(5); 互为反矢量的矢量对是(1)和(4)。
§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件?E(1=+ (2+=+ (3-=+ (4+=- (5=[解]:(1)b a ,-=+(2)b a ,+=+(3≥且b a ,-=+ (4)b a ,+=(5)b a ,≥-=-§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM ,CN 可 以构成一个三角形.[证明]: )(21AC AB AL +=)(21BC BA BM +=)(21CB CA CN +=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线矢量CN BM AL ,,构成一个三角形。
解析几何课件(吕林根- 许子道第四版)
那么这一组向量就线性 相关.
推论 一组向量如果含有零向 量,那么这组向量必
线性相关 .
上一页 下一页
返回
定理1.4.6 两向量共线的充要条件 是它们线性相关 . 定理1.4.7 三个向量共面的充要条 件是它们线性相关 . 定理 1.4.8 空间任何四个向量总是 线性相关 .
上一页 下一页
返回
§1.5 标架与坐标
a就
是n个
矢
量a1
,
a2
,,
a
的
n
和
,
即
OA OA1 A1 A2 An1 An .
A1
A4
A3
A2
An-1
O
An
这种求和的方法叫做多边形法则
上一页 下一页
返回
定义1.2.2 当矢量b与矢量c的和等于矢量a,即b c a
时,我们把矢量c叫做矢量a与b的差,并记做c a b.
向量减法
叫 做 矢 量a1, a2 ,, an的 线 性 组 合. 定理1.4.1 如果矢量e 0,那么矢量r与矢量e共
线 的 充 要 条 件 是r可 以 用 矢 量e线 性 表 示 , 或 者 说r
是e的 线 性 组 合 , 即r=xe,
(1.4 1)
并且系数x被e, r唯一确定.
这时e称为用线性组合来表示共线矢量的基底.
所以 2AM ( AB AC) (BM CM ), A 但 BM CM BM MB 0,
因而 2AM AB AC
即
AM 1 (AB AC) 2
C
B
M
(图1.11)
上一页 下一页
返回
例2 用向量方法证明:联结三角形两边中点 的线段平行于第三边且等于第三边的一半.
《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.2曲面的方程
故动点轨迹为
y 0,
z
0,
x
c.
这是x轴上的线段.
② 当a c时,令b2 a2 c2,则动点轨迹为
x2 a2
y2 b2
z2 b2
1,
(旋转椭球面 ).
例 3 建立球心在点 M0 ( x0 , y0 , z0 )、半径为R
的球面方程.
解 设M( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
OM r(u,v), 的终点M (x(u, v), y(u, v), z(u, v))所画出的轨迹一般
为一张曲面.(图1) 定义2.2.2 对u, v (a u b, c v d ),若由(2.2 5)
表示的向径r(u, v)的终点M总在曲面上,同时,曲面
上的任意点M总对应着以它为终点的向径, 而这向径
面,如
x2 y2 z2 1 0,
又 三元方程F(x, y, z) 0有时代表一条曲线(包
括直线),如
x2 y2 0,
代表直线 x y 0,即z 轴.
有时代表一个点,如
x2 y2 z2 0, 即坐标原点 (0,0,0). 曲面与方程研究中的两个基本问题: 1) 给定作为点的几何轨迹 的曲面,建立其方程.
(讨论旋转曲面)
2) 给定坐标x, y, z间的方程, 研究这方程的曲面的
形状. (讨论柱面、二次曲面)
以下讨论问题 1)的实例.
例1 求两坐标面 xoz, yoz所成二面角的平分面方 程.
解 因所求平分面是与xoz, yoz面有等距离的点的
轨迹, 所以
点M(x, y, z)在平分面上 y x.
§2.2曲面的方程
1.曲面的方程
曲面的实例: 水桶的表面、台灯的罩子面等.
解析几何课件(吕林根 许子道第)
有向线段的方向表示向量的方向.
有向线段的长度表示向量的大小,
下一页
模为1的向量.
所有的零向量都相等.
零向量:
模为0的向量.
单位向量:
或
定义1.1.2 如果两个向量的模相等且方向相同,那么叫做相等向量.记为
=
定义1.1.3 两个模相等,方向相反的向量叫做互为反向量.
上一页
下一页
必有
一、平面的点法式方程
下一页
返回
平面的点法式方程
已知点
返回
5.5 二次曲线的主直径和主方向
5.7 应用不变量化简二次曲线方程
§1.1 向量的概念
定义1.1.1 既有大小又有方向的量叫做向量,或称矢量.
向量(矢量)既有大小又有方向的量.
向量的几何表示:
| |
向量的模:
向量的大小.
或
或
两类量: 数量(标量):可用一个数值来描述的量;
e3
.
,
,
3
2
1
这时
e
e
e
.
,
,
,
.
,
,
,
,
,
,
,
,
3
2
1
1
3
2
1
3
2
1
3
2
1
关系式
线性表示的
,
,
用
先求
取不共面的三向量
就可以了
三点重合
下只需证
两组对边中点分别为
其余
它的中点为
线为
的连
的中点
对边
一组
设四面体
证
e
e
解析几何第四版吕林根课后习题答案
第三章 平面与空间直线§ 平面的方程1.求下列各平面的坐标式参数方程和一般方程:1通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面2通过点)1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面;3已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D ;求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ∆平面垂直的平面; 解: 1 }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x2由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为:一般方程为:0)5(2)1(7=+--y x ,即01727=--y x ; 3ⅰ设平面π通过直线AB,且平行于直线CD : }1,5,4{--=AB ,}2,0,1{-=CD 从而π的参数方程为:一般方程为:0745910=-++z y x ;ⅱ设平面π'通过直线AB,且垂直于ABC ∆所在的平面∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-⨯--=⨯AC AB均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:042:=+-+z y x π.解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为:1424=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-,∴ 所求平面的参数式方程为:3.证明矢量},,{Z Y X v =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX .证明: 不妨设0≠A ,则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{AC A B --,从而v 平行于平面0=+++D Cz By Ax 的充要条件为:v ,}1,0,{},0,1,{ACA B --共面⇔ ⇔0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标.解: }5,2,3{z AB +-= 而AB 平行于0147=--+z y x 由题3知:0)5(427)3(=+-⨯+⨯-z 从而18=z .5. 求下列平面的一般方程.⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;⑶与平面0325=+-+z y x 垂直且分别通过三个坐标轴的三个平面; ⑷已知两点()()1,2,4,2,1,321--M -M ,求通过1M 且垂直于21,M M 的平面; ⑸原点O 在所求平面上的正射影为()6,9,2-P ;⑹求过点()1,5,31-M 和()2,1,42M 且垂直于平面0138=-+-z y x 的平面.解:平行于x 轴的平面方程为001011112=--+-z y x .即01=-z .同理可知平行于y 轴,z 轴的平面的方程分别为01,01=-+=-y x z . ⑵设该平面的截距式方程为132=+-+-c z y x ,把点()4,2,3-M 代入得1924-=c 故一般方程为02419812=+++z y x .⑶若所求平面经过x 轴,则()0,0,0为平面内一个点,{}2,1,5-和{}0,0,1为所求平面的方位矢量,∴点法式方程为001215000=----z y x ∴一般方程为02=+z y .同理经过y 轴,z 轴的平面的一般方程分别为05,052=-=+y x z x . ⑷{}2121.3,1,1M M --=M M →垂直于平面π,∴该平面的法向量{}3,1,1--=→n ,平面∂通过点()2,1,31-M , 因此平面π的点位式方程为()()()02313=--+--z y x . 化简得023=+--z y x . 5 {}.6,9,2-=→op∴ .116cos ,119cos ,112cos -===∂γβ 则该平面的法式方程为:.011116119112=--+z y x既 .0121692=--+z y x6平面0138=-+-z y x 的法向量为{}3,8,1-=→n ,{}1,6,121=M M ,点从()2,1,4写出平面的点位式方程为0161381214=----z y x ,则,261638-=-=A74282426,141131,21113-=++⨯-=====D C B ,则一般方程,0=+++D Cz By Ax 即:.037713=---z y x 6.将下列平面的一般方程化为法式方程; 解:.3-=D∴将已知的一般方程乘上.301=λ得法式方程.030330530230=-+-z y x()∴-=∴=.21.12λD 将已知的一般方程乘上.21-=λ得法式方程.0212121=-+-y x()∴-=∴=.1.2.3λD 将已知的一般方程乘上.1-=λ得法式方程.02=--x().91.0.4±=∴=λD 即91=λ或91-=λ将已知的一般方程乘上91=λ或.91-=λ得法式方程为0979494=+-z y x 或.0979494=-+-z y x 7.求自坐标原点自以下各平面所引垂线的长和指向平面的单位法矢量的方向余弦;解:().71.35.1=-=λD 化为法式方程为05767372=-++z y x 原点指向平面π的单位法矢量为,76,73,72⎭⎬⎫⎩⎨⎧=u 它的方向余弦为.76cos ,73cos ,72cos ===γβα原点o 到平面π的距离为.5=-=D P λ().31.21.2-==λD 化为法式方程为-07323231=--+-z y x 原点指向平面π的单位法矢量为,32,32,310⎭⎬⎫⎩⎨⎧--=n 它的方向余弦为122cos ,cos ,cos .333αβγ=-==-原点o到平面π的距离7.p D λ=-= 第20页8.已知三角形顶点()()()0,7,0,2,1,1,2,2,2.A B C --求平行于ABC 所在的平面且与她相距为2各单位的平面方程;解:设,.AB a AC b ==点()0,7,0.A -则{}{}2,6,1,2,9,2a b ==写出平面的点位式方程72610292x y z += 设一般方程0. 3.2,6,140.Ax By Cz D A B C D +++=∴====-< 则1. 2.7p D λλ==-=相距为2个单位;则当4p =时28.D =-当0p =时0.D =∴所求平面为326280.x y z -+-=和3260.x y z -+=9.求与原点距离为6个单位,且在三坐标轴,ox oy 与oz 上的截距之比为::1:3:2a b c =-的平面;解:设,3,2.0.a x b x c x abc =-==≠∴设平面的截距方程为 1.x y z a b c++= 即.bcx acy abz abc ++= 又原点到此平面的距离 6.d =6.=∴所求方程为7.32y zx -++= 10.平面1x y z a b c++=分别与三个坐标轴交于点,,.A B C 求ABC 的面积;解 (,0,0)A a , (0,,0)B b ,(0,0,)C c {},,0AB a b =-,{},0,AC a c =-.{},,AB AC bc ca ab ⨯=;2AB AC b ⨯=.∴S ABC11.设从坐标原点到平面的距离为;求证1.p p =∴= 从而有22221111.p a b c =++ § 平面与点的相关位置1.计算下列点和平面间的离差和距离: 1)3,4,2(-M , :π 0322=++-z y x ; 2)3,2,1(-M , :π 0435=++-z y x . 解: 将π的方程法式化,得:01323132=--+-z y x ,故离差为:311332431)2()32()(-=-⨯-⨯+-⨯-=M δ,M 到π的距离.31)(==M d δ2类似1,可求得0354353356355)(=-++-=M δ,M 到π的距离.0)(==M d δ2.求下列各点的坐标:1在y 轴上且到平面02222=--+z y 的距离等于4个单位的点; 2在z 轴上且到点)0,2,1(-M 与到平面09623=-+-z y x 距离相等的点; 3在x 轴上且到平面01151612=++-z y x 和0122=--+z y x 距离相等的点;解:1设要求的点为)0,,0(0y M 则由题意∴ 610=-y ⇒50-=y 或7.即所求的点为0,-5,0及0,7,0; 2设所求的点为),0,0(0z 则由题意知: 由此,20-=z 或-82/13; 故,要求的点为)2,0,0(-及)1382,0,0(-; 3设所求的点为)0,0,(0x ,由题意知: 由此解得:20=x 或11/43; 所求点即2,0,0及11/43,0,0;3.已知四面体的四个顶点为)4,1,1(),5,11,2(),3,5,3(),4,6,0(---C B A S ,计算从顶点S 向底面ABC 所引的高; 解:地面ABC 的方程为: 所以,高335426=+⨯--=h ;4.求中心在)2,5,3(-C 且与平面01132=+--z y x 相切的球面方程; 解:球面的半径为C 到平面π:01132=+--z y x 的距离,它为:142142814116532==+++⨯=R ,所以,要求的球面的方程为:56)2()5()3(222=++++-z y x .即:0184106222=-++-++z y x z y x .5.求通过x 轴其与点()5,4,13M 相距8个单位的平面方程;解:设通过x 轴的平面为0.By Cz +=它与点()5,4,13M 相距8个单位,从而228.481041050.B BC C =∴--=因此()()1235430.B C B C -+=从而得12350B C -=或430.B C +=于是有:35:12B C =或():3:4.B C =-∴所求平面为35120y z +=或340.y z -=6. 求与下列各对平面距离相等的点的轨迹. ⑴053407263=--=--+y x z y x 和; ⑵062901429=++-=-+-z y x z y x 和. 解: ⑴ ()0726371:1=--+z y x π 令()()53451726371--=--+y x z y x化简整理可得:0105113=+-z y x 与07010943=--+z y x . ⑵对应项系数相同,可求42614221'-=+-=+=D D D ,从而直接写出所求的方程:0429=-+-z y x .9 判别点M2 -1 1和N 1 2 -3在由下列相交平面所构成的同一个二面角内,还是在相邻二面角内,或是在对顶的二面角内 11:3230x y z π-+-=与2:240x y z π--+= 21:2510x y z -+-=与2:32610x y z π-+-= 解:1将M2 -1 1,N1 2 -3代入1π,得: 6123032630++-〉⎧⎨---〈⎩则M,N 在1π的异侧 再代入2π,得:221470143440+-+=〉⎧⎨-++=〉⎩∴MN 在2π的同侧 ∴MN 在相邻二面角内2将M2 -1 1N1 2 -3代入1π,得:4151902215180++-=〉⎧⎨---=-〈⎩则MN 在1π的异侧; 再代入2π,得:662113034181200++-=>⎧⎨---=-<⎩则MN 在2π的异侧∴ MN 在对顶的二面角内10 试求由平面1π:2230x y z -+-=与2π:32610x y z +--=所成的二面角的角平分方程,在此二面角内有点1, 2, -3解:设px y z 为二面角的角平分面上的点,点p 到12ππ的距离相等=5332190(1)234240(2)x y z x y z +--=⎧⎨---=⎩把点p 代入到12ππ上,10δ< 20δ> 在1上取点1850 0代入12ππ,''1200δδ>>; 在2上取点0 0 -6代入12ππ,""1200δδ<>∴2为所求,∴解平面的方程为:34240x y z ---=两平面的相关位置1.判别下列各对直线的相关位置: 10142=+-+z y x 与0324=--+z y x ; 20522=---z y x 与013=--+z y x ; 305426=--+z y x 与029639=--+z y x ;解:1 )1(:21:41)4(:2:1-=-, ∴ 1中的两平面平行不重合; 2 )1(:3:1)2(:)1(:2-≠--, ∴ 2中两平面相交; 3 )6(:3:9)4(:2:6-=-, ∴ 3中两平面平行不重合;2.分别在下列条件下确定n m l ,,的值:1使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面;2使0532=-++z my x 与0266=+--z y lx 表示二平行平面; 3使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面; 解:1欲使所给的二方程表示同一平面,则: 即:从而:97=l ,913=m ,937=n ; 2欲使所给的二方程表示二平行平面,则: 所以:4-=l ,3=m ;3欲使所给的二方程表示二垂直平面,则: 所以: 71-=l ;3.求下列两平行平面间的距离: 10218419=++-z y x ,0428419=++-z y x ; 207263=--+z y x ,014263=+-+z y x ; 解:1将所给的方程化为: 所以两平面间的距离为:2-1=1;2同1可求得两平行平面间的距离为1+2=3; 4.求下列各组平面所成的角: 1011=-+y x ,083=+x ;2012632=-+-z y x ,0722=-++z y x ; 解:1设1π:011=-+y x ,2π:083=+x∴ 4),(21πππ=∠或43π; 2设1π:012632=-+-z y x ,2π:0722=-++z y x218cos ),(121-=∠ππ或218cos ),(121--=∠πππ; 5. 求下列平面的方程:1 通过点()1,0,01M 和()0,0,32M 且与坐标面xOy 成060角的平面;2 过z 轴且与平面0752=--+z y x 成060角的平面. 解 ⑴ 设所求平面的方程为.113=++z b y x 又xoy 面的方程为z=0,所以21113110103160cos 222=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅+⋅=b b ο 解得203±=b ,∴所求平面的方程为12633=+±+z yx , 即03326=-+±z y x⑵设所求平面的方程为0=+By Ax ;则21514260cos 22=+++±+=B A BA ο 3,038322BA B AB A =∴=-+或B A 3-= ∴所求平面的方程为03=+y x 或03=-y x .§ 空间直线的方程1.求下列各直线的方程:1通过点)1,0,3(-A 和点)1,5,2(-B 的直线; 2通过点),,(0000z y x M 且平行于两相交平面i π:)2,1(=i 的直线;3通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线;4通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; 5通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线; 解:1由本节—6式,得所求的直线方程为: 即:01553-=-=+z y x ,亦即01113-=-=+z y x ; 2欲求直线的方向矢量为: 所以,直线方程为:221102211022110B A B A z z A C A C y y C B C B x x -=-=-; 3欲求的直线的方向矢量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为:132511--=+=-z y x ; 4欲求直线的方向矢量为:{}{}{}2,1,10,1,11,1,1---=-⨯-, 所以,直线方程为:22111+==-z y x ; 5欲求的直线的方向矢量为:{}5,3,6--, 所以直线方程为:553362-+=--=-z y x ; 2.求以下各点的坐标: 1在直线381821-=-=-z y x 上与原点相距25个单位的点; 2关于直线⎩⎨⎧=+-+=+--03220124z y x z y x 与点)1,0,2(-P 对称的点;解:1设所求的点为),,(z y x M ,则: 又222225=++z y x即:222225)38()8()21(=+++++t t t ,解得:4=t 或762-所以要求的点的坐标为:)7130,76,7117(),20,12,9(---; 2已知直线的方向矢量为:{}{}{}3,6,62,1,24,1,1-=-⨯--,或为{}1,2,2-, ∴过P 垂直与已知直线的平面为:0)1(2)2(2=++--z y x ,即0322=-+-z y x ,该平面与已知直线的交点为)3,1,1(,所以若令),,(z y x P '为P 的对称点,则:221x +=,201y +=,213z+-= ∴7,2,0===z y x ,即)7,2,0(P ';3.求下列各平面的方程: 1通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; 2通过直线115312-+=-+=-z y x 且与直线 平行的平面; 3通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面; 4通过直线⎩⎨⎧=-+-=+-+014209385z y x z y x 向三坐标面所引的三个射影平面;解:1因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于矢量{}3,1,2-,所以要求的平面方程为: 即015=-++z y x ;2已知直线的方向矢量为{}{}{}5,3,11,2,11,1,2-=-⨯-, ∴平面方程为:即015211=-++z y x3要求平面的法矢量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x ; 4由已知方程⎩⎨⎧=-+-=+-+014209385z y x z y x分别消去x ,y ,z 得到:0231136=+-z y ,079=+-z x ,06411=+-y x此即为三个射影平面的方程;4.化下列直线的一般方程为射影式方程与标准方程,并求出直线的方向余弦: 1⎩⎨⎧=---=+-+0323012z y x z y x 2⎩⎨⎧=+--=-+064206z y x z x3⎩⎨⎧==-+20x z y x解:1直线的方向数为:)5(:1:)3(1312:3221:2111--=------∴射影式方程为: ⎪⎩⎪⎨⎧-+-=--+--=59515253z y z x , 即⎪⎩⎪⎨⎧--=+=59515253z y z x ,标准方程为:z y x =-+=-51595352, 方向余弦为:35353553cos ±=±=α,35153551cos =-±=β,3555351cos ±=±=γ;2已知直线的方向数为:)4(:3:44201:2111:1410-=----,射影式方程为:⎪⎩⎪⎨⎧--+-=--+-=4184342444z y z x , 即⎪⎩⎪⎨⎧+-=+-=29436z y z x 标准方程为:z y x =--=--432916, 方向余弦为:4144411cos =-±=α,41344143cos =-±=β, 4144411cos ±=±=γ;3已知直线的方向数为:1:1:0)1(:)1(:00111:1011:0011=--=--, ∴射影式方程为: ⎩⎨⎧-==22z y x ,标准式方程为:z y x =+=-1202, 方向余弦为:0cos =α,21cos ±=β,21cos ±=γ;5. 一线与三坐标轴间的角分别为,,αβγ.证明222sin sin sin 2.αβγ++= 证 ∵222cos cos cos 1αβγ++=, ∴2221sin 1sin 1sin 1αβγ-+-+-=,即222sin sin sin 2.αβγ++=§ 直线与平面的相关位置1.判别下列直线与平面的相关位置:137423zy x =-+=--与3224=--z y x ; 2723z y x =-=与8723=+-z y x ; 3⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ; 4⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x ; 解:1 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-, 而017302)4(234≠=-⨯--⨯-⨯,, 所以,直线与平面平行; 2 0717)2(233≠⨯+-⨯-⨯ 所以,直线与平面相交,且因为772233=--=, ∴ 直线与平面垂直;3直线的方向矢量为:{}{}{}1,9,51,1,22,3,5=--⨯-,0179354=⨯+⨯-⨯,而点)0,5,2(--M 在直线上,又07)5(3)2(4=--⨯--⨯, 所以,直线在平面上; 4直线的方向矢量为{}9,2,1-,∴直线与平面相交;2.试验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角;解: 032111)1(2≠-=⨯-⨯+-⨯∴ 直线与平面相交;又直线的坐标式参数方程为: ⎪⎩⎪⎨⎧+=+=-=t z t y t x 211设交点处对应的参数为0t ,∴10-=t ,从而交点为1,0,-1;又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ, ∴ 6πθ=;3.确定m l ,的值,使: 1直线13241zy x =+=-与平面0153=+-+z y lx 平行; 2直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直;解:1欲使所给直线与平面平行,则须: 即1=l ;2欲使所给直线与平面垂直,则须: 所以:8,4-==m l ;4.决定直线⎩⎨⎧=++=++00222111z C y B x A z C y B x A 和平面0)()()(212121=+++++z C C y B B x A A 的相互位置;解:在直线上任取),,(1111z y x M ,有:这表明1M 在平面上,所以已给的直线处在已给的平面上;5.设直线与三坐标平面的交角分别为.,,υμλ证明.2cos cos cos 222=++υμλ 证明 设直线与X,Y,Z 轴的交角分别为.,,γβα而直线与yoz,zox,xoy 面的交角依次为.,,γμλ那么,υπγμπβλπα-=-=-=2,2,2.而.1cos cos cos 222=++γβα∴.12cos 2cos 2cos 222=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-υπμπλπ从而有.2cos cos cos 222=++υμλ 6.求下列球面的方程1与平面x+2y+3=0相切于点()3,1,1-M 且半径r=3的球面;2 与两平行平面6x-3y-2z-35=0和6x-3y-2z+63=0都相切且于其中之一相切于点()1,1,5--M 的球面.解: ⑴⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+=+=t z t y t x 323321311为过切点M 且垂直与已知平面的直线,显见32,32,31是这条直线的方向余弦. 取3=t ,则得3,2==y x ; 取3-=t ,则得5,1,0-=-==z y x .故所求球面有两个:()()()9132222=++-+-z y x ,与()()951222=++++z y x . ⑵t z t y t x 21,31,65--=--=+=为过点M 且垂直于两平面的直线,将其代入第二个平面方程,得2-=t ,反代回参数方程,得3,5,7==-=z y x .设球之中心为C ,半径为r ,则()()()()49112115,1,2,12222=--+--++=-r C .故所求球面方程为()()()49121222=-+-++z y x .空间直线的相关位置1.直线方程⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 的系数满足什么条件才能使:1直线与x 轴相交; 2直线与x 轴平行; 3直线与x 轴重合; 解:1所给直线与x 轴相交⇔ ∃ 0x 使0101=+D x A 且0202=+D x A⇔02211=D A D A 且 1A ,2A 不全为零;2 x 轴与平面01111=+++D z C y B x A 平行 又x 轴与平面02222=+++D z C y B x A 平行,所以 即021==A A ,但直线不与x 轴重合,∴ 21,D D 不全为零;3参照2有021==A A ,且021==D D ; 2.确定λ值使下列两直线相交: 1⎩⎨⎧=-++=-+-01540623z y x z y x λ与z 轴;2λ12111-=+=-z y x 与z y x ===+11; 解:1若所给直线相交,则有类似题1: 从而 5=λ;2若所给二直线相交,则 从而:45=λ;3.判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面;如果是异面直线,求出它们之间的距离;1⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;2131833-=--=-z y x 与462733-=+=-+z y x ; 3⎪⎩⎪⎨⎧--=+==212t z t y tx 与5217441-+=-=-z y x ; 解:1将所给的直线方程化为标准式,为:-2:3:4=2:-3:-4 ∴二直线平行;又点)0,43,23(与点7,2,0在二直线上,∴矢量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法矢量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x , 即 0919225=++-z y x ;2因为0270423113637833≠-=---++=∆,∴二直线是异面的;二直线的距离:{}{}30327031562704,2,31,1,34231133156222==++=-⨯----=d ;3因为0574121031=--=∆,但是:1:2:-1≠4:7:-5所以,两直线相交,二直线所决定的平面的法矢量为{}{}{}1,1,35,7,412,1--=-⨯-,∴平面的方程为:33++-z y x ;4.给定两异面直线:01123-==-z y x 与10211zy x =-=+,试求它们的公垂线方程;解:因为{}{}{}1,2,11,0,10,1,2--=⨯, ∴公垂线方程为:即⎩⎨⎧=--+=-+-022220852z y x z y x ,亦即⎩⎨⎧=--+=-+-010852z y x z y x ;5.求下列各对直线间的角 1 .61932256231+=-=-=+=-z y x z y x 与 2.02302640220243⎩⎨⎧=+-=--+⎩⎨⎧=-+=--z y z y x z y x z y x 与解 1 777236814436912546cos 222222212121212121±=++++++±=++++++±=z y x z y x z z y y x x θ ∴ .7772arccos 7772arccos -=πθ或(2) 直线43412630230264,11210:0220243+=+=⎩⎨⎧=+-=--+=⎩⎨⎧==-+=--z y x z y z y x zy x z y x z y x 的对称式方程为:的对称式方程为 ∴ .19598arccos 19598arccos-=πθ或 6. 设d 和d '分别是坐标原点到点(,,)M a b c 和(,,)M a b c ''''的距离,证明当aa bb cc dd ''''+++时,直线MM '通过原点.证 {},,OM a b c =,{},,OM a b c ''''=,OM OM aa bb cc ''''⋅=++,而当OM OM OM OM ''⋅=⋅,cos(,)OM OM dd ''=时,必有cos(,)1OM OM '=,∴//OM OM ',∴当aa bb cc dd ''''+++时, 直线MM '通过原点.7.求通过点()2,0,1-P 且与平面0123=-+-z y x 平行,又与直线12341zy x =--=-相交的直线方程.解 设过点()2,0,1-P 的所求直线为∵ 它与已知平面0123=-+-z y x 平行,所以有023=+-z y x 1 又∵ 直线与已知直线相交,那么必共面. ∴ 又有 即 7x+|8y-12z=02由1,2得 31:50:48713:71232:12821::-=----=Z Y X而 ()1:2:431:50:4-≠- ∴ 所求直线的方程为.3125041+==--z y x 8. 求通过点()1,0,4-P 且与两直线⎩⎨⎧=-+=--⎩⎨⎧=--=++4423,221z y x z y x z y x z y x 与都相交的直线方程.解 设所求直线的方向矢量为{}z y x v ,,=→, 则所求直线可写为.14Zz Y y X x +==- ∵ 直线1l 平行于矢量{}{}{}3,3,01,1,21,1,121-=--⨯=⨯→→n n ∴矢量{}3,3,0-=→v 为直线1l 的方向矢量. 由于02111≠-因此令y=o 解方程组得x=1,z=o∴ 点1,o,o 为直线1l 上的一点. ∴ 直线1l 的标准方程为62155+=-=-z y x . ∵ (){}.3,3,01.0,0,1,1121-=→v M l l l l 方向矢量为过点都相交且与∴ 有0330103,,11=--=⎪⎭⎫⎝⎛→→→ZYXv v p m即 X+3Y+3Z=0. 即 X-13Y-3Z=0. 得 X:Y:Z=30:6:-16 又∵ ,3:3:016:6:30-≠- 即 .1→→v v 不平行6:1:516:6:30≠-, 即 .2→→v v 不平行 ∴ 所求直线方程为: 9. 求与直线137182-=-=+z y x 平行且和下列两直线相交的直线. ⑴⎩⎨⎧+=-=⎩⎨⎧+=-=5342,3465y z x z x z x z ⑵⎪⎩⎪⎨⎧=-=+=⎪⎩⎪⎨⎧=+=-=t z t y t x t z t y t x 74105,5332 解 ⑴ 在两直线上分别取两点()(),4,3,0,39,0,921--M M 第一条直线的方向矢量为{}0,1,01→v , 第二条直线的方向矢量为{}6,2,32→v , 作两平面:即 ,03198;03038=---=+-z y x z x将其联立即为所求直线的方程⑵021532,017813253=++-=-+z y x z y x 即1017,0178145710=---=+-z y x z y x 即212联立: .017021532⎩⎨⎧=---=++-z y x z y x这就是所要求的直线方程. 10. .求过点()0,1,2P 且与直线垂直225235:-+==-z y x l 相交的直线方程. 解 设所求直线的方向矢量为{}Z Y X v ,,0=→则所求直线0l 可写为.012Zz Y y X x -=-=- ∴ 3X+2Y-2Z=0 1 即 50X-69Y+6Z=0 2 由1,2得 311:131:120::=Z Y X ∴所求直线0l 为:§ 空间直线与点的相关位置1.直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 通过原点的条件是什么解:已知直线通过原点⇔ 故条件为021==D D ; 2.求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离;解:直线的标准方程为:所以,p 到直线的距离为:1534532025)2(1212392292421243222222===-++-+--+-=d ; § 平面束1.求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面:1通过原点; 2与y 轴平行; 3与平面0352=-+-z y x 垂直;解:1设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ, 故所求的平面方程为: 即:0539=++z y x ; 2同1中所设,可求出51=λ;故所求的平面方程为:0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x ;3如1所设,欲使所求平面与平面0352=-+-z y x 垂直,则须: 从而:3=λ,所以所求平面方程为:05147=++y x ;2.求平面束0)42()53(=+--+-+z y x y x λ,在y x ,两轴上截距相等的平面; 解:所给的方程截距式为: 据要求:λλλλ--=+-345145 ⇒ 1=λ; 所以,所求的平面为:01222=--+z y x ;3.求通过直线⎩⎨⎧=+-=++0405z x zy x 且与平面01284=+--z y x 成4π角的平面;解:设所求的平面为:0)4()5(=+-+++z x z y x λμ 则:22)8()4(1)()5()()8()()4(5)(222222=-+-+-+++-⨯-+-⨯++±λμμλμλμμλμ 从而 ,1:0:=λμ或3:4- 所以所求平面为:04=+-z x或012720=-++z y x ;4.求通过直线32201-=+=+zy x 且与点)2,1,4(p 的距离等于3的平面; 解:直线的一般方程为:设所求的平面的方程为0)223()1(=++++z y x μλ, 据要求,有:∴有λμμλμλ908125)13(92222++=+∴ 1:6:-=μλ或8:3即所求平面为:0)223()1(6=++++-z y x或 0)223(8)1(3=++++z y x即:04236=+--z y x 或01916243=+++z y x ;5. 求与平面0432=-+-z y x 平行且满足下列条件之一的平面. ⑴通过点()3,2,1-; ⑵y 轴上截距为3-; ⑶与原点距离为1.解: ⑴设所求的平面为032=-+-λz y x ,将点()3,2,1-的坐标代入方程得14=λ,则所求平面方程为01432=-+-z y x .⑵设所求的平面为λ=+-z y x 32.6,32,132=-=-=-=-=λλλλλ得令zyx.故所求平面为0632=-+-z y x .⑶设所求的平面为032=++-λz y x ,将其法化为()032141=++-±λz y x ,将原点的坐标代入得141±=λ,故所求平面为014132=±+-z y x .6.设一平面与平面x+3y+2z=0平行,且与三坐标平面围成的四面体体积为6,求这平面的方程;解 设所求平面方程为:x+3y+2z+0=λ 原点到该平面的距离为.14222λ=++=CB A D d∴ λλλ21,31,---分别叫做平面在三坐标轴上的截距. 四面体体积.31Sh V = ∴ )21)(31)((21316λλλ---=∴ .6±=λ∴ 这个平面的方程为0623=±++z y x8.直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 的系数满足什么条件才能使直线在坐标平面XOZ 内解 坐标平面XOZ 属于平面束化简为()()()()021212121=+++++++mD lD z mC lC y mB lB x mA lA 设平面XOZ 面.0,0,0≠≠=z x y有⎪⎩⎪⎨⎧=+=+=+000212121mD lD mC lC mA lA ∴.212121D D C C A A ==。
《解析几何》(第四版)吕林根许子道编第2章轨迹与方程21平面曲线的方程
线直一同示表都后t 去消在
与 .t � 2 � y � � ,t � 1 � x �
如,程方数参的式形同 不种多有以可线曲条一同① 意注应还,时此
参去消于在键关 , 时 程方通普为程方数参化)1(
.t 数
程方数参的圆椭则 , � � � � � � 且数参为� 取以所
�� nis b� � y �� soc a � x �� nis b � � y
迹轨的点一的上周圆
圆求�动滚地动滑
程方通普得可即) 能可若( t 去消中)5 � 1. 2 ( 从
.0 � ) y , x ( F
无上是线直一在圆个一 1例
)6-1.2( , j ) � soc � 1( a � i ) � nis � �( a � r � � � , j a � CA , i � a � AO 以所 � �
齿为用采被常上业工在 , 线曲种这 , 线展切或
)31 -1. 2(
为程方数
参
式标坐的迹轨该得可则 ,) y , x ( 为标坐的点 P 设
当适择选要仅不 ,时 .3 � y � x
.程方通普成化能都程方数参有所是不并②
. t3 � 2 � y , t3 � 1 � x
程方数参为程方通普化 ) 2 (
三意任上线曲双轴等是 R , Q , P 设 7 例
上线曲双轴等一同在必 H 心垂的 RQP �
参的线曲双轴等知已设 , 图如 证
,
2 1
tc � 0 x
tc � 0 x
�
c � 2 t0y c � 1t 0 y
得, ② ÷ ①
②
,) 2 tc � 0x ( 3 t 2 t1t � c � 2 t 0 y
则
解析几何第四版吕林根课后习题答案一至三章
PA1 PO PA2 PO PAn PO 0
即
PA1 PA2 PAn n PO
§1.4 向量的线性关系与向量的分解
1.在平行四边形 ABCD 中, (1)设对角线 AZ a, BD b, 求 AB, BC , CD, DA. 解: AB
解?a?b?b?a?b?a?b?a?b?a?b?a?b?a?????????????????yxyyxxyyxxyxyx22?e?e?e?e?e?e?e?e?b?a?????????3132132142232?e?e?e?e?e?e?e?e?e?b?a???????????3213213213422232?e?e?e?e?e?e?e?e?e?b?a???????????321321321710322322323
OA OB + OC = OL + OM + ON .
7. 设 L、M、N 是△ABC 的三边的中点,O 是任意一点,证明 [证明] OA OL LA
OB OM MB OC ON NC OA OB OC OL OM ON ( LA MB NC )
1 1 1 1 b a , BC b a , CD b a , DA b a .设边 BC 和 CD 的 2 2 2 2
(2)中点 M 和 N,且 AM P, AN q 求 BC , CD 。 解: AC
1 1 q P , BC 2MC 2 q P P q 3P 2 2
解析几何第四版吕林根课后习题答案解析第二章
第二章 轨迹与方程 §2.1平面曲线的方程1.一动点M 到A )0,3(的距离恒等于它到点)0,6(-B 的距离一半,求此动点M 的轨迹方程,并指出此轨迹是什么图形?解:动点M 在轨迹上的充要条件是MB MA 21=。
设M 的坐标),(y x 有2222)6(21)3(y x y x ++=+- 化简得36)6(22=+-y x 故此动点M 的轨迹方程为36)6(22=+-y x此轨迹为椭圆2.有一长度为a 2a (>0)的线段,它的两端点分别在x 轴正半轴与y 轴的正半轴上移动,是求此线段中点的轨迹。
A ,B 为两端点,M 为此线段的中点。
解:如图所示 设(,),A x o (,)B o y .则(,)22x yM .在Rt AOB 中有 222()(2)x y a +=.把M 点的坐标代入此式得:222()x y a +=(0,0)x y ≥≥.∴此线段中点的轨迹为222()x y a +=.3. 一动点到两定点的距离的乘积等于定值2m ,求此动点的轨迹.解:设两定点的距离为2a ,并取两定点的连线为x 轴, 两定点所连线段的中垂线为y 轴.现有:2AM BM m ⋅=.设(,)M x y 在Rt BNM中 222()a x y AM++=. (1) 在Rt BNM中222()a x y BM -+=. (2) 由(1)(2)两式得:22222244()2()x y a x y m a +--=-.4.设,,P Q R 是等轴双曲线上任意三点,求证PQR 的重心H 必在同一等轴双曲线上. 证明:设等轴双曲线的参数方程为x ct c y t =⎧⎪⎨=⎪⎩11(,)P x y ,22(,)Q x y ,33(,)R x y .重心H 123123(,)33x x x y y y ++++5.任何一圆交等轴双曲线2xy c =于四点11(,)c P ct t ,22(,)cQ ct t ,33(,)c R ct t 及44(,)cS ct t .那么一定有12341t t t t =.证明:设圆的方程22220x y Dx Ey F ++++=.圆与等轴双曲线交点(,)c ct t,则代入得2222220.c Ec c t Dct F t t++++=整理得:24322220.c t Dct Ft Ect c ++++=可知(1,2,3,4i =是它的四个根,则有韦达定理1234t t t t ⋅⋅⋅=242(1)1c c-=.8. 把下面的平面曲线的普通方程化为参数方程. ⑴32x y =; ⑵ ()0,212121>=+a a yx ; ⑶()0,0333>=-+a axy y x .解:⑴⎪⎩⎪⎨⎧==ty t x 32令θ4cos a x =,代入方程212121a y x =+ 得θθθ42212212121sin ,sin cosa y a a a y ==-=∴参数方程为⎪⎩⎪⎨⎧==θθ44sin cos a y a x . ⑶令,tx y =代入方程0333=-+axy y x得()031233=-+atx x t()[]03132=-+⇒at x t x3130t at x x +==⇒或当0=x 时,;0=y 当313t at x +=时,3213tat y += 故参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=3231313t at y t at x .§2.2 曲面的方程1、 一动点移动时,与)0,0,4(A 及xoy 平面等距离,求该动点的轨迹方程。
《解析几何》第二章(吕林根-许子道第四版)
吕林根 许子道等编
第一章 向量与坐标
第二章 轨迹与方程 第三章 平面与空间直线
第四章 柱面锥面旋转曲面与二次曲面
第五章 二次曲线的一般理论
第二章 轨迹与方程
§2.1 平面曲线的方程 §2.2 曲面的方程 §2.3 母线平行与坐标轴的柱面方程 §2.4 空间曲线的方程
§2.2 曲面的方程
曲面的实例: 水桶的表面、台灯的罩子面等.
曲面在空间解析几何中被看成是点的几何轨 迹.
曲面方程的定义:
如果曲面S 与三元方程F ( x, y, z) 0有下述关系:
(1)曲面S 上任一点的坐标都满足方程; (2)不在曲面S 上的点的坐标都不满足方程;
那么,方程F(x, y, z) 0就叫做曲面 S 的方程,
特殊地:球心在原点时方程为 x2 y2 z2 R2
上一页 下一页
返回
由 x x0 2 y y0 2 z z0 2 R2
得上、下半球面的方程分别是:
z z0 R2 (x x0)2 ( y y0)2
z z0 R2 (x x0)2 ( y y0)2
由上述方程可得球面的一般式方程为:
化简得所求方程 2x 6 y 2z 7 0.
上一页 下一页
返回
例 2 求与原点O 及M 0 (2,3,4)的距离之比为1 : 2
的点的全体所组成的曲面方程.
解 设M( x, y, z)是曲面上任一点,
根据题意有 | MO | 1 , | MM0 | 2
x2 y2 z2
1,
x 22 y 32 z 42 2
z vt
y 螺旋线的参数方程
返回
螺旋线的参数方程还可以写为
x a cos
解析几何第四版吕林根 期末复习 课后习题(重点)详解
第一章 矢量与坐标§ 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21AC AB AL +=Θ )(21+=)(21CB CA CN +=0)(21=+++++=++∴7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL ++.[证明] LA OL OA +=Θ MB OM OB += NC ON OC +=)(OM +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++ ON OM OL OC OB OA ++=++∴ 从而三中线矢量,,构成一个三角形。
8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB ++OD =4OM .[证明]:因为OM =21(OA +), OM =21(OB +OD ), 所以 2=21(OA +OB +OC +) 所以OA +OB ++OD =4OM .10、用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.图1-5证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN . →→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即§ 矢量的线性关系与矢量的分解3.、设一直线上三点A , B , P 满足AP =(-1),O 是空间任意一点,求证:OP =λλ++1[证明]:如图1-7,因为=-OA ,PB =OB -,所以 -OA = (OB -),(1+)OP =+,从而 OP =λλ++1OB.4.、在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合; (2)设AT 是角A 的平分线(它与BC 交于T 点),将分解为21,e e 的线性组合 解:(1)()12123131,e e e e -==-=-=Θ, 2111231323131e e e e e BD AB AD +=-+=+=,同理123132e e AE +=(2)因为||||TC ||11e e , 且 BT 与方向相同, 所以 BT ||21e e .由上题结论有AT ||||1||212211e e e e e +||||212112e e e e e e +.5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量对于矢量,,,的分解式。
(完整版)解析几何课件(吕林根许子道第四版)(精)
任意向量 r可以由向量 e1 , e2 , e3线性表示,或说空间
任意向量 r可以分解成向量 e1 , e2 , e3的线性组合,即
r xe1 ye2 ze3 ,
(1.4 3) 上一页 下一页
并且其中系数 x, y, z被e1 , e2 , e3 , r唯一确定.
返回
第一章 向量与坐标 §1.4向量的线性关系与向量的分解
这时e1 , e2 , e3叫做空间向量的基底 .
例2 证明四面体对边中点的连线交于一点,且
互相平分.
证 设四面体ABCD一组
D
对边AB,CD的中点E, F的连
线为EF ,它的中点为P1,其余
e3
两组对边中点分别为 P2 , P3 ,
下只需证P1 , P2 , P3三点重合
就可以了.取不共面的三向量 A
设 是一个数,向量a与 的乘积a规定为
(1) 0, (2) 0,
aa与a0同向,| a| | a|
(3) 0, a与a反向,| a|| | | a|
a 2a
1 a 2
下一页
返回
第一章 向量与坐标 §1.3 数乘向量
|
a a|
ea .
上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
上一页 下一页
返回
第一章 向量与坐标 §1.3 数乘向量
例1设AM是三角形ABC的中线,求证:
uuuur AM
1
uuur ( AB
uuuur AC)
2
如图
证
uuuur uuur uuuur uuuur uuur uuuur
D
解析几何第四版吕林根课后习题答案一至三章
第一章向量与坐标§1.1 向量的概念1.下列情形中的向量终点各构成什么图形?(1)把空间中一切单位向量归结到共同的始点;(2)把平行于某一平面的一切单位向量归结到共同的始点;(3)把平行于某一直线的一切向量归结到共同的始点;(4)把平行于某一直线的一切单位向量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在向量OA、、OC、、、OF、、BC、CD、、EF和FA中,哪些向量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的向量对是:图1-1.DEOFCDOEABOCFAOBEFOA和;和;和;和;和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在∆BAC中,21AC. KL与AC方向相同;在∆DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对向量中,找出相等的向量和互为相反向量的向量:(1) AB、; (2) AE、; (3) 、;(4) AD、; (5) BE、.[解]:相等的向量对是(2)、(3)和(5);互为反向量的向量对是(1)和(4)。
§1.2 向量的加法1.要使下列各式成立,向量ba,应满足什么条件?(1-=+(2+=+(3-=+(4+=-E(5=[解]:(1),-=+(2),+=+(3≥且,=+ (4),+=-(5),≥-=-§1.3 数量乘向量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从向量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出向量→x ,→y . 解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线向量AL , BM ,可 以构成一个三角形.[证明]: )(21+=)(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线向量CN BM AL ,,构成一个三角形。
解析几何第四版 第二章
本章主要内容: 1) 平面曲线的方程 2) 曲面的方程 3) 空间曲线的方程 本章基本要求: 1) 理解轨迹与方程的关系 2) 熟悉曲面、曲线的一般式和参数式 3) 熟练掌握球面、特殊柱面、圆柱螺旋线的方程
2.1 平面曲线的方程
1、曲线方程
曲线上点的特征性质: 1)曲线上的点都具有这些性质; 2)具有这些性质的点都在曲线上。 曲线上 点的特 征性质
例 3
一个质点一方面绕一条轴线作等角速度的圆周运动,
另一方面作平行于轴线的等速直线运动,其速度与角
速度成正比,求这个质点运动的轨迹方程.
参数方程
x a cos y a sin z b ( )
z
x
a
O
(圆柱螺线)
a
y
参数方程
x a cos y a sin z b ( )
例 1 求圆心在原点,半径为R的圆的方程。 例 2 已知两点A(2,2)和B(2,2),求满足条件MA MB 4
的动点M的轨迹方程。
2、参数方程
(t ),
at b
建立坐标系
{O;e1,e2}
(t ) x(t )e1 y(t )e2
or x x(t ) y y(t )
例4. 维维安尼曲线
x 2 + y 2 + z2 = a 2 2 2 2 (xa/2) + y = a /4
x=a (1+cos t ) 2 y = a sint 2 t z = asin 2 (0 t < 2)
(-2 t < 2)
例5. 双柱面曲线
y 2 + z2 = a 2 (b a > 0) 2 2 2 x +z =b 令y = acost, z = asint, 代入x2 + z2 = b2得 x = b2 a2sin2t 由此可得该双柱面曲线的参数方程为 x = b2 a2sin2t y = acost (0 t < 2) z = asint
《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.1平面曲线的方程
r
a(
sin )i
a(1 cos ) j , (2.1-6)
(2.1-6) 是P点轨迹的向量式参数方程,参数
( ).
设P点坐标(x, y),由(2.1 6)得P点的坐标式参 数方程
x a( sin ),
y
a(1
cos
),
(
第二章 轨迹与方程
取定相应坐标系后
平面上的点 一一对应 空间上的点 一一对应
二元有序数组 (x, y). 三元有序数组(x, y, z).
将图形看作点的轨迹,本章将建立轨迹与方程的 对应。
2.1平面曲线的方程
曲线上点的特性,在坐标面上,反映为曲线上
点的坐标 x与y 应满足的制约条件,一般用方程表
示为
).
(2.1-7)
取0 时,消去 ,得P点轨迹在0 时
的一段的普通方程 x a arccosa y 2ay y2 . a
(2.1-8)
此方程要比参数方程 (2.1 7)复杂得多. 当圆在直线上每转动一 周时,点P在一周前后 的运动情况是相同的 ,因此曲线是由一系列完 全相 同的拱形组成 (如图),曲线叫旋轮线或摆线 .
F (x, y) 0.
例1 一个圆在一直线是上无 滑动地滚动,求圆 圆周上的一点的轨迹.
解 取直角坐标系,设半径为a的圆在x轴上滚动,
开始时点P恰在原点O
y
(如图),经一段时间的
滚动, 与直线的切点移
P r
Ca
到A点,圆心移到C的位 o A
x
置, 这时有
r OP OA AC CP.
P(x(t), y(t)) r (a)