带电粒子在匀强电场中的偏转运动
带电粒子在电场中的偏转(含答案解析)
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd 离开电场时的偏移量:y =12at 2=Uql 22mdv 2离开电场时的偏转角:tan θ=v yv 0=Uqlmdv 20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 20y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10 C ,质量为m =1.0×10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N ·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2a =F m =qU dmL =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm 粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L12L +12 cm=yY,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cmk qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2L v 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv 20解法二 x =v y ·Lv 0+y =3qEL 22mv 20.解法三 由xy =L +L2L 2得:x =3y =3qEL 22mv 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11 kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C ≈1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c ,最后分别落在1、2、3三点.则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c 所带电荷量最多 答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间内,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R =2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有y =v 0t x 2+y 2=R 2解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12mv 20代入数据解得E k=2.5×10-5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域答案BD解析粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE之间某点,选项A错误,B正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C错误,D正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE 2+mg 2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20 解得v 0= 103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3.。
《带电粒子在匀强电场中的偏转》 知识清单
《带电粒子在匀强电场中的偏转》知识清单一、基本概念带电粒子在匀强电场中的偏转,指的是带电粒子以一定的初速度垂直进入匀强电场后,受到电场力的作用而发生偏转的现象。
匀强电场是指电场强度的大小和方向都相同的电场。
在这种电场中,带电粒子所受的电场力是恒定的。
二、运动规律1、水平方向带电粒子在水平方向不受力,做匀速直线运动。
其水平速度 vx 保持不变,水平位移 x = vxt,其中 vx 为初速度在水平方向的分量,t 为粒子在电场中的运动时间。
2、竖直方向带电粒子在竖直方向受到恒定的电场力,做匀加速直线运动。
其加速度 a = Eq/m,其中 E 为电场强度,q 为粒子的电荷量,m 为粒子的质量。
竖直速度 vy = at,竖直位移 y = 1/2at²三、偏转角度带电粒子离开电场时的偏转角度可以通过正切值来表示,tanθ =vy/vx四、偏移量粒子在电场中的偏移量 y 与粒子的初速度 v0、电场强度 E、粒子的电荷量 q、质量 m 以及极板长度 L 和极板间距 d 等因素有关。
偏移量的表达式为:y = qEL²/2mv₀²d五、应用实例1、示波器示波器是利用带电粒子在匀强电场中的偏转来显示电信号的变化。
电子枪发射的电子经过加速后,垂直进入偏转电场,通过控制电场的强度和方向,使电子束在荧光屏上产生不同的偏转,从而显示出信号的波形。
2、喷墨打印机在喷墨打印机中,带电的墨滴在匀强电场的作用下发生偏转,准确地喷射到纸张的指定位置,形成文字或图像。
六、解题思路与方法1、分析受力首先要明确带电粒子在匀强电场中所受的电场力,根据电场力的方向和大小,判断粒子在竖直方向的运动情况。
2、运动分解将带电粒子的运动分解为水平方向的匀速直线运动和竖直方向的匀加速直线运动,分别列出相应的运动方程。
3、联立方程求解根据已知条件,联立水平和竖直方向的运动方程,求解出粒子的偏转角度、偏移量等物理量。
七、常见错误与注意事项1、忽略粒子的重力在一些情况下,粒子的重力相比电场力可以忽略不计,但在某些特殊问题中,重力可能不能忽略,需要具体情况具体分析。
(一)带电粒子在匀强电场中的运动
带电粒子在匀强电场中的运动(一)一、知识点击:1.带电粒子的加速(或减速)运动(1)从运动状态分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做匀加(减)速直线运动,可以用牛顿第二定律求解。
(2)从功能观点分析:粒子动能的变化量等于电场力所做的功(电场可以是匀强电场或非匀强电场,即:qU mv mv t =-2022121 2.带电粒子的偏转(仅限于匀强电场)运动(1)从运动状态分析:带电粒子以速度垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向垂直的电场力的作用而做匀变速曲线运动,其轨迹一定是一条抛物线,是类平抛运动。
此时可用平抛运动的相关公式求解。
(2)运动的几个特点:①运动过程中速度的偏转角度的正切为位移偏转角度正切的两倍;②带电粒子飞出电场好像是从电场的中点飞出一样;3.平衡带电粒子在电场中处于平衡状态,则一定所受合力为零,mg=qE=qU/d 。
二、能力激活:题型一:电场力做功是粒子动能增加的原因:示例1:氢核(质子)和氦核(α粒子)由静止开始经相同的电压加速后,则有( )A .α粒子速度较大,质子的动能较大;B .α粒子动能较大,质子的速度较大;C .α粒子速度和动能都较大;D .质子的速度和动能都较大。
题型二:以用动力学方法解决:示例2:一个质量为m 电量为e 的电子,以初速度v 0与电场线平行的方向射入匀强电场,经过t 秒时间,电子具有的电势能与刚好入射到电场的动能相同(取电子刚进入电场时的位置为零电势能处),则此匀强电场的电场强度E =_____________;带电粒子在电场中所通过的总路程是__________。
题型三:用平抛的运动规律解决: 示例3:水平放置的两块平行金属板A 、B 、,板长L ,相距为d ,使它们分别带上等量的异种电荷,两板间的电压为U ,有一质量为m ,带电量为-q 的粒子以速度v 0沿水平方向紧靠着B 板射入电场,如图所示,在电场中,粒子受的电场力F =___,方向___,带电粒子在电场中做____,在水平方向上做____运动,在竖直方向上做___运动,加速度a =_____,方向_____,带电粒子飞越电场的时间t =______,水平方向的分速度v x =_________带电粒子离开电场时在竖直方向上的分速度v y =_____,带电粒子离开电场时的速度v =______,其方向与水平方向的夹角θ=_______,带电粒子离开电场时在竖直方向的侧位移y=__________。
专题 带电粒子在匀强电场中的偏转问题
专题带电粒子在匀强电场中的偏转问题【专题简介】带电粒子在匀强电场中的偏转问题是一种特殊的曲线运动,是高考的高频考点。
此类运动往往与平抛运动类似,故也称之为“类平抛运动”,故在处理此类问题时的方法和思想也是——“化曲为直”,即将运动分解为初速度方向的匀速直线运动和合外力方向的匀变速直线运动。
它与平抛的不同之处就在于要通过受力分析来求解合外力,从而根据牛顿第二定律求出加速度。
带电粒子在匀强电场中的偏转问题的特征:所受合外力为恒力且与初速度垂直。
带电粒子在匀强电场中的偏转问题的相关公式:1.牛顿第二定律:F合=ma2.匀强电场:E=Ud3.水初速度方向:x =v 0t,v x=v04.合外力方向:y=12at2,v y=at5.合运动:v=√v02+v y2,s=√x2+y26.角度问题:(1)速度夹角α:tanα=v yv0;(2)位移夹角θ:tanα=yx【高考真题】1.(2013广东卷)喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中()A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关2.(2022浙江卷)如图所示,带等量异种电荷的两正对平行金属板M、N间存在匀强电场,板长为L(不考虑边界效应)。
t=0时刻,M板中点处的粒子源发射两个速度大小为v0的相同粒子,垂直M板向右的粒子,到达N板时速度大小为√2v0;平行M板向下的粒子,刚好从N板下端射出。
不计重力和粒子间的相互作用,则()A.M板电势高于N板电势B.两个粒子的电势能都增加C.粒子在两板间的加速度a=2v02LD.粒子从N板下端射出的时间t=(√2−1)L2v0速度关系位移关系2.(2007海南卷)一平行板电容器中存在匀强电场,电场沿竖直方向。
两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子a和b,从电容器的P点(如图)以相同的水平速度射入两平行板之间。
一轮复习:带电粒子在电场中的偏转
6.示波器的工作原理 (1)构造:①电子枪;②偏转极板;③荧光屏。(如图所示) (2)工作原理 ①YY′上加的是待显示的信号电压,XX′上是仪器自身产生的锯 齿形电压,叫做扫描电压。
②观察到的现象
a.如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出 的电子沿直线运动,打在荧光屏中心,在那里产生一个亮斑。
6.(多选)如图所示,水平放置的平行金属板A、B连接一恒定 电压,两个质量相等的带电粒子M和N同时分别从极板A的边缘
和两极板的正中间沿水平方向进入板间电场,两带电粒子恰好
在板间某点相遇。若不考虑带电粒子的重力和它们之间的相互 作用,则下列说法正确的是A( C ) A.M的电荷量大于N的电荷量 B.两带电粒子在电场中运动的加速度相等 C.从两带电粒子进入电场到两带电粒子相遇,电场力对M做 的功大于电场力对N做的功 D.M进入电场的初速度大小与N进入电场的初速度大小一定相 同
3.两个结论 (1)不同的带电粒子从静止开始经过同一电场加速后再 从同一偏转电场射出时,偏移量和偏转角总是相同的。 证明:由 qU0=12mv20 y=12at2=12·qmUd1·vl02 tanθ=mqUdv1l20 得:y=4UU10l2d,tanθ=2UU10ld。 (2)粒子经电场偏转后,合速度的反向延长线与初速度延 长线的交点 O 为粒子水平位移的中点,即 O 到偏转电场边 缘的距离为2l 。
(1)13.5 cm (2)30 cm
Байду номын сангаас
2L qEL 3qEL2 (1) v0 (2)mv20 (3) 2mv20
2.(多选)如图,质子(11H)、氘核(21H)和 α 粒子(42He)都沿
平行板电容器中线 OO′方向垂直于电场线射入板间的匀强
高三物理带电粒子在匀强电场中的偏转
d 当 y 2
A L θ d/2 d ( L 2b ) Y' θ y0 解得 2L d ( L 2b ) 则粒子可能到达屏上区域的长度为 L
y0
040.江苏淮安市07—08学年度第一次调查测试15 15.(12分)现代科学实验中常用的一种电子仪器叫 示波器,它的核心部件是示波管,其工作原理如图所 示,电量大小为 e 的电子在电势差为 U1 的加速电场中 由静止开始运动,然后射入电势差为U2的两块平行极 板间的偏转电场中,入射方向跟极板平行,偏转电场 的极板间距离为d,板长为L,整个装置处在真空中, 电子重力可忽略,电子能射出平行板区. ( 1 )偏转电场中,若单位偏转电压引起的偏移距离 叫示波管的灵敏度,请通过计算说明提高示波管的灵 敏度的办法; (2)求电子离开偏转电场 U2 U1 θ
043.南通、扬州、泰州三市08届第二次调研测试6 6.如图所示,两种不同的正离子(不计重力)垂直射人 偏转电场,从偏转电场射出时具有相同的偏转距离 y
和偏转角θ(偏转电压U保持不变),则两种离子进入偏
转电场前只要满足 A.速度相同 B.动能相同 C.比荷和速度都相同 ( C D)
L d
v0 y θ
⑥ ⑦
A板电势突然变为-U后,质点所受电场力与重力平衡, 做匀速直线运动,经过时间t′恰好射出极板, 则
x2' l x2 v0 t'
d y2' y2 v y t' 2
⑧
⑨
⑩
d 由以上各式解得 t ( 2 3) 2g
/ 时彩后二计划软件
eU 2 eU1 y Ek 0 d
将②③式代入⑤,得
2 2 eU2 L Ek eU1 4U1d 2
带电粒子在三种典型电场中的运动问题解析
带电粒子在三种典型电场中的运动问题解析张路生淮安贝思特实验学校 江苏 淮安 邮编:211600淮安市经济开发区红豆路8号 tel:带电粒子在电场中的运动是每年高考的热点和重点问题,带电粒子在电场中的运动主要有直线运动、往复运动、类平抛运动等。
考查的类型主要有:带电粒子在点电荷电场中的运动、带电粒子在匀强电场中的运动和带电粒子在交变电场中的运动。
这类试题可以拟定不同的题设条件,从不同角度提出问题,涉及力学、电学的很多关键知识点,要求学生具有较强的综合分析能力。
下面笔者针对三种情况分别归纳总结。
初速度与场强方向的关系 运动形式 υ0∥E 做变速直线运动 υ0⊥E 可能做匀速圆周运动 υ0与E 有夹角 做曲线运动【例1】如图1所示,在O 点放置正点电荷Q ,a 、b 两点连线过O 点,且Oa=ab ,则下列说法正确的是A 将质子从a 点由静止释放,质子向b 点做匀加速运动B 将质子从a 点由静止释放,质子运动到b 点的速率为υ,则将α粒子从a 点由静止释放后运动到b 点的速率为2/2υC 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2υD 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2/2υ 〖解析〗:由于库仑力变化,因此质子向b 做变加速运动,故A 错;由于a 、b 之间电势差恒定,根据动能定理有2/2qU m υ=,可得2/qU m υ=,由此可判断B 正确;当电子以O 为圆心做匀速圆周运动时,有22Qq k m r r υ=成立,可得/kQq mr υ=,据此判断C 错D 对。
答案:BD2、根据带电粒子在电场的运动判断点电荷的电性【例2】 如图2所示,实线是一簇未标明方向的由点电荷Q 产生的电场线,若带电粒子q (|Q|>>|q |)由a 运动到b ,电场力做正功。
《带电粒子在电场中的偏转》知识讲解
③
④ a qU
md
⑤
qE yEk1 2m 21 2m 0 2
L2 0t2 ① y2 t2 ②
y总(L21 L2)tan
【例1】一束电子流在经U =5000V的加速电压 加速后,在距两极板等距处垂直进入平行 板间的匀强电场,如图所示.若两板间距d =1.0 cm,板长l =5.0 cm,那么,要使电子 能 从平行板间飞出,两个极板上最多能加
2
若经电压U0加速后射入偏转电场,则
与带电粒子的质量m、电荷量q及 射入偏转电场的初速无关
小结: 加速电压U1
-
d
L0
qU1
1 2
m02
①
L0
2
t加速
②
沿初速 方向:
沿电场 方向:
0
2qU1 m
y 偏转电压U2 v0
l1
L2
L 0t
E U2 d
①
t L
②
0
a qE m
y 1 at 2 2
at
大而增大。
3、离开电场速度大小:
(1)用速度合成方法:
E U d
①
Hale Waihona Puke a qE m②02 2
at ③
(2)用动能定理求解:
02
2qEy m
qE 1 2 ym 21 2m 0 21 2m 2
y
m
2
2 qE
4、偏转角θ的计算
E U d
①
a qE ② m
at ③
v
v0
y L tan
(3)粒子在整个运动过程中动能的变化量。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
带电粒子在匀强电场中的偏转(解析版)
带电粒子在匀强电场中的偏转1.运动规律沿初速度方向为匀速直线运动,运动时间 vl t 0=沿电场力方向为初速度为零的匀加速直线运动,加速度:a = F/m = qU/dm 离开电场时的偏移量 222mdv qULy =离开电场时的偏转角:L ymdV qUL 2tan 2==θ2.分析带电粒子在匀强电场中的偏转问题的关键(1)条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动.(2)运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动.3.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的. (2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点为粒子水平位移的中点. 【典例1】如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场E 2平行的屏。
现将一电子(电荷量为e ,质量为m )无初速度地放入电场E 1中的A 点,A 与虚线MN 的间距为L2,最后电子打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角θ的正切值tan θ; (3)电子打到屏上的点P ′到点O 的距离x 。
【答案】 (1)3mLeE(2)2 (3)3L 【解析】 (1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,时间为t 1,由牛顿第解得:tan θ=2。
(3)如图,设电子在电场E 2中的偏转距离为x 1 x 1=12a 2t 32tan θ=x 2L解得:x =x 1+x 2=3L 。
【典例2】 如图甲所示,长为L 、间距为d 的两金属板A 、B 水平放置,ab 为两板的中心线,一个带电粒子以速度v 0从a 点水平射入,沿直线从b 点射出,若将两金属板接到如图乙所示的交变电压上,欲使该粒子仍能从b 点以速度v 0射出,求:(1)交变电压的周期T 应满足什么条件?(2)粒子从a 点射入金属板的时刻应满足什么条件? 【答案】 (1)T =L nv 0,其中n 取大于等于L2dv 0qU 02m的整数 (2)t =2n -14T (n =1,2,3,…)【解析】 (1)为使粒子仍从b 点以速度v 0穿出电场,在垂直于初速度方向上,粒子的运动应为:加速,减速,反向加速,反向减速,经历四个过程后,回到中心线上时,在垂直于金属板的方向上速度正好等于零,这段时间等于一个周期,故有L =nTv 0,解得T =Lnv 0粒子在14T 内离开中心线的距离为y =12a ⎝⎛⎭⎫14T 2所以粒子的周期应满足的条件为 T =L nv 0,其中n 取大于等于L 2dv 0qU 02m的整数. (2)粒子进入电场的时间应为14T ,34T ,54T ,…故粒子进入电场的时间为t =2n -14T (n =1,2,3,…). 【跟踪短训】1.如图所示,真空中水平放置的两个相同极板Y 和Y ′长为L ,相距为d ,足够大的竖直屏与两板右侧相距b .在两板间加上可调偏转电压U YY ′,一束质量为m 、带电荷量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出.(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O 点; (2)求两板间所加偏转电压U YY ′的范围; (3)求粒子可能到达屏上区域的长度.【答案】 (1)见【解析】 (2)-d 2mv 20qL 2≤U YY ′≤d 2mv 20qL 2 (3)d L +2b L【解析】 (1)设粒子在电场中的加速度大小为a ,离开偏转电场时偏转距离为y ,沿电场方向的速度为v y ,偏转角为θ,其反向延长线通过O 点,O 点与板右端的水平距离为x ,如图所示,则有y =12at 2L =v 0tv y =at ,tan θ=v y v 0=y x ,联立解得x =L2故粒子在屏上可能到达的区域的长度为 H =2y 0=d L +2bL.2. 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器板长和板间距离均为L =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如图乙所示.(每个电子穿过平行板的时间都极短,可以认为电压是不变的)求:(1)在t =0.06 s 时刻,电子打在荧光屏上的何处. (2)荧光屏上有电子打到的区间有多长?【答案】 (1)打在屏上的点位于O 点上方,距O 点13.5 cm (2)30 cm【解析】 (1)电子经电场加速满足qU 0=12mv 2经电场偏转后侧移量y =12at 2=12·qU 偏mL ⎝⎛⎭⎫L v 2所以y =U 偏L4U 0,由图知t =0.06 s 时刻U 偏=1.8U 0,所以y =4.5 cm设打在屏上的点距O 点的距离为Y ,满足Yy =L +L 2L2所以Y =13.5 cm.(2)由题知电子侧移量y 的最大值为L2,所以当偏转电压超过2U 0,电子就打不到荧光屏上了,所以荧光屏上电子能打到的区间长为3L =30 cm.课后作业1. 喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v 垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( ).A .向负极板偏转B .电势能逐渐增大C .运动轨迹是抛物线D .运动轨迹与带电量无关【答案】 C2. 如图,带电粒子由静止开始,经电压为U 1的加速电场加速后,沿垂直电场方向进入电压为U 2的平行板电容器,经偏转落在下板的中间位置。
专题07 带电粒子在匀强电场中的偏转、带电粒子在交变电场中的运动(解析版)
高二物理期末综合复习(特训专题+提升模拟)专题07 带电粒子在匀强电场中的偏转、带电粒子在交变电场中的运动一、带电粒子在匀强电场中的偏转1.如图所示,偏转电场可看作匀强电场,极板间电压为U ,极板长度为L ,间距为d =0.125L 。
质子由静止开始经加速电场加速后。
沿平行于极板的方向射入偏转电场,并从另一侧射出。
已知质子的比荷为k ,加速电场电压为U 0,忽略质子所受重力。
质子射入偏转电场时的初速度v 0和从偏转电场射出时沿垂直板面方向的偏转距离Δy 分别是( )A2ULU B 04ULU C2ULU D 04ULU 【答案】C【详解】质子在加速电场中,根据动能定理有20012mv qU = ①解得0v =②根据牛顿第二定律可得质子在偏转电场中的加速度大小为qUa md= ③根据运动学规律可得质子在偏转电场中的运动时间为0L t v = ④并且21Δ2y at = ⑤由题意知d =0.125L ⑥联立①③④⑤⑥解得2ΔULy U =⑦故选C 。
2.示波器是一种多功能电学仪器,如图所示。
大量电性相同的带电粒子在电压为U 1的电场中由静止开始加速,从M 孔射出,然后水平射入电压为U 2的平行金属板间的电场中,在满足带电粒子能射出平行板电场区域的条件下(不计粒子重力和粒子之间的相互作用),下列说法正确的是( )A .若电荷量q 相等,则带电粒子在偏转场板间的加速度大小相等B .若电荷量q 相等,则带电粒子从M 孔射出的动能不相等C .无论比荷qm是否相等,全过程中电场力做功均相同 D .无论比荷qm是否相等,带电粒子均从偏转电场中同位置射出 【答案】D【详解】A .根据牛顿第二定律得带电粒子在偏转电场中的加速度大小2qU qE a m md==知电荷量相等,质量未知,则带电粒子在偏转电场中的加速度大小不一定相等,故A 错误;B .带电粒子在加速度电场中加速过程,根据动能定理得21k 012qU E mv ==解得0v =电粒子电荷量相等,则带电粒子从M 孔射出的动能相等,故B 错误;D .带电粒子进入平行金属板间做类平抛运动,设极板长度为L ,板间距离为d ,粒子在水平方向做匀速直线运动,则有0L v t =得0Lt v =粒子射出电场时偏转角度正切值00tan y v at v v θ==结合0v =2qU a md =;0L t v =联立得21tan 2U L U d θ=可知tan θ与q m 无关,因为位移偏转角的正切值总为速度偏转角正切值的二分之一,即tan 2tan θα=可得无论比荷qm是否相等,带电粒子均从偏转电场中同位置射出,故D 正确;C .由D 选项可知,所有带电粒子在电场偏转电场中沿着电场方向的位移相等设为y ,则电场力对带电粒子所做的功为21qU yW qU d=+知只有电荷量相等时,电场力做功相等,故C 错误。
带电粒子在电场中的运动问题2(偏转)知识讲解
带电粒子在电场中的偏转一、如图所示,某带电粒子以速度0v 沿垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向垂直的电场力作用而做匀变速曲线运动。
1、处理方法:类平抛运动,运动的合成与分解求解相关问题;水平方向:匀速直线运动; 竖直方向:匀加速直线运动。
2、所涉及的方程及结论 ①加速度:mdqU m qE m F a ===②运动时间: A 、能飞出极板间时,0v l t = B 、打在极板上时,由qUmd a d t at d 22,212===得 ③竖直上的偏转量:A 、离开电场时,dmv U ql at y 2022221==,如果综合加速电场0U 时,由20021mv qU =得dU Ul y 024=,即经过加速电场后进入偏转电场时,竖直方向上的偏转量与粒子的比荷无关。
换句话说,就是不同的粒子经过相同的加速电场和进入相同的偏转电场,离开电场时竖直方向上的偏转量都是一样的。
B 、打在极板上时,2d y =,水平方向的位移为qUmd v a d v t v x 2000=== ④偏转角:dmv qUl v at v v y2000tan ===θ,结合20021mv qU =得d U Ul 02tan =θ即经过加速电场后进入偏转电场时,偏转角与粒子的比荷无关。
换句话说,即不同的粒子经过相同的加速电场和进入相同的偏转电场,离开电场时速度的方向都是一样的。
⑤如果粒子能离开偏转电场,离开电场时速度方向的反向延长线交水平位移的中点2l 处。
⑥速度:220y v v v +=或者根据动能定理:y dU U mv mv qU y y =-=,2121202例1、如图所示,离子发生器发射出一束质量为m ,电荷量为q 的离子,从静止经加速电压U 1加速后,获得速度0v ,并沿垂直于电场线方向射入两平行板中央,受偏转电压U 2作用后,以速度v 离开电场,已知平行板长为l ,两板间距离为d ,求:①0v 的大小;②离子在偏转电场中运动时间t ;③离子在偏转电场中受到的电场力的大小F ;④离子在偏转电场中的加速度;⑤离子在离开偏转电场时的横向速度y v ;⑥离子在离开偏转电场时的速度v 的大小;⑦离子在离开偏转电场时竖直方向上的偏移量y ;⑧离子离开偏转电场时的偏转角θ的正切值tanθ举一反三1、如图所示,质子(11H)、氘核(H21)和α粒子(42He),以相同的初动能垂直射入偏转电场(粒子不计重力),三个粒子均能射出电场;求①这三个粒子射出电场时所花时间比;②这三个粒子射出电场时竖直方向上的偏转量的比;③这三个粒子射出电场时速度的偏转角的比;2、如图所示,氕、氘、氚的原子核自初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么()A.经过加速电场过程,电场力对氚核做的功最多B.经过偏转电场过程,电场力对三种核做的功一样多C.三种原子核打在屏上时的速度一样大D.三种原子核都打在屏上的同一位置上3、在上题的基础上,求:①进入偏转电场到离开时所需时间比;二、示波器工作原理例2、如图所示是示波管的原理图.它由电子枪、偏转电极(XX′和YY′)、荧光屏组成,管内抽成真空.给电子枪通电后,如果在偏转电极XX′和YY′上都没有加电压,电子束将打在荧光屏的中心O点,在那里产生一个亮斑.下列说法正确的是()A.要想让亮斑沿OY向上移动,需在偏转电极YY′上加电压,且Y′比Y电势高B.要想让亮斑移到荧光屏的右上方,需在偏转电极XX′、YY′上加电压,且X比X′电势高、Y比Y′电势高C.要想在荧光屏上出现一条水平亮线,需在偏转电极XX′上加特定的周期性变化的电压(扫描电压)D.要想在荧光屏上出现一条正弦曲线,需在偏转电极XX′上加适当频率的扫描电压、在偏转电极YY′上加按正弦规律变化的电压举一反三1、如图所示,是一个示波器工作原理图,电子经过加速后以速度v0垂直进入偏转电场,离开电场时偏转量是h,两平行板间距离为d,电势差为U,板长为l,每单位电压引起的偏移量(h/U)叫示波器的灵敏度.若要提高其灵敏度,可采用下列办法中的()A.增大两极板间的电压B.尽可能使板长l做得短些C.尽可能使板间距离d减小些D.使电子入射速度v0大些2、如图所示的示波管,当两偏转电极XX′、YY′电压为零时,电子枪发射的电子经加速电场加速后会打在荧光屏上的正中间(图示坐标的O点,其中x轴与XX′电场的场强方向重合,x轴正方向垂直于纸面向里,y轴与YY′电场的场强方向重合).若要电子打在图示坐标的第Ⅲ象限,则()A.X、Y极接电源的正极,X′、Y′接电源的负极B.X、Y′极接电源的正极,X′、Y接电源的负极C.X′、Y极接电源的正极,X、Y′接电源的负极D.X′、Y′极接电源的正极,X、Y接电源的负极。
带电粒子在匀强电场中运动的规律总结
带电粒子在匀强电场中运动的规律总结1.带电粒子在匀强电场中平衡带电粒子在电场中处于静止状态或匀速直线运动状态。
设匀强电场两极电压为U ,板减距离为d ,则:mg=qE ,Umgd E mg q ==2.带电粒子在匀强电场中的加速 带电粒子沿电场线平行的方向进入匀强电场,受到电场俩的方向与运动方向在同一条直线上,做匀加速直线运动,粒子的动能的变化量等于电势能的变化量。
即:2022121mv mv qU -=。
3.带电粒子在匀强电场中的偏转 带电粒子以速度v 0垂直于电场线方向飞入匀强电场时,受到的恒的与初速度方向成900角的电场力作用做匀变速曲线运动,可用类似平抛运动的方法处理。
即: md qU m qE a ==,0v L t =(L 为平行板的板长)。
偏转距离:2022221mdv qUL at y ==; 偏转角:200mdv qUL v at tg ==θ; 横向速度:0mdv qUL ai v ==⊥ 拓展讨论:如图3所示,质量为m ,带电量为q 的带正电的粒子,以初速度v 0垂直于电场的方向,从两个极板中间射入匀强电场。
已知极板间的电压为U ,且上极板带正电,极板的长度为L ,两极板间的距离为d 。
则带电粒子在匀强电场中运动的时间为:(1)带电粒子打不出电场时,带电粒子在电场中运动的时间是由电场中的加速时间决定的,其值为:mqU Uqd t =1。
(2)带电粒子打出电场时,带电粒子在电场中运动的时间是由垂直电场方向上的匀速运动时间决定的,其值为:2v L t =。
(3)带电粒子恰打出电场时,带电粒子在电场中运动的时间是由垂直电场方向上的匀速运动时间决定的,也可以说是由沿电场方向上的加速运动决定。
即有:图3t 1=t 2。
4.带同种电荷的不同粒子经过同一个加速电场进入同一个偏转电场,它们的运动轨迹相同。
即偏转位移、横向速度、偏转角皆相同,如果在偏转电场一侧沿电场方向放一个荧光屏,则荧光屏上只有一个亮点。
带电粒子在电场中偏转
·O
U2
D.使U2变为原来的1/2倍
U1
解:电子先经加速电场加速后进入偏转电场做类平抛运动.
qU 1
1 2
mv
2 0
①
y 1 at2 2
联立①②两式可得电子的偏移量
y
q U2 x 2 2mUd2 xv022
② ③
电学搭 台,力 学唱戏。
要使电子的轨迹不变,则应使电子进入偏4U转1d电场后,任一水
平位移x所对应的侧移距离y不变. U2 U1 由此选项A正确.
运动的位移和初速度为零的匀加速运动的分运动的位移大小相等均为两板间的距离d.
过加速后以速度v0垂直进入偏转电场,离开偏转电场时 偏移量为h,两平行板间距为d,电压为U,板长为L,每
单位电压引起的偏移量(h/U)叫做示波管的灵敏度,
为了提高灵敏度,可采用的办法是( C )
A.增加两极板间的电势差U
B.尽可能缩短板长L C.尽可能减小板间距d
v0
D.使电子的入射速度v0大些
h
h 1 (eU )( L )2 2 m d v0
2U0 d ④ U
⑵对电子运动的整个过程根据动能定理可求出电子穿出电场
时的动能
EK
eU
0
e
U 2
e(U 0
U 2
)
⑤
提升物理思想:整个过程运用动能定理解题
例5.空间某区域有场强大小为E的匀强电场,电场的边
界MN和PQ是间距为d的两个平行平面,如果匀强电场的
方向第一次是垂直于MN指向PQ界面,第二次是和MN界面
④
联立②④两式可得
y1 4 y2
⑤
模型化归:带电粒子在匀强 电场中做“类平抛运动”
2024届高考一轮复习物理教案(新教材鲁科版):带电粒子在电场中的偏转
第4讲 带电粒子在电场中的偏转目标要求 1.掌握带电粒子在电场中的偏转规律.2.会分析带电粒子在电场中偏转的功能关系.3.掌握带电粒子在电场和重力场的复合场中的运动规律.4.会分析、计算带电粒子在交变电场中的偏转问题.考点一 带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =lv 0(如图).(2)沿电场力方向做匀加速直线运动 ①加速度:a =F m =qE m =qUmd.②离开电场时的偏移量:y =12at 2=qUl 22md v 02.③离开电场时的偏转角:tan θ=v y v 0=qUlmd v 02.1.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12m v 02在偏转电场偏移量y =12at 2=12·qU 1md ·(l v 0)2偏转角θ,tan θ=v y v 0=qU 1lmd v 02得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 02,其中U y=Ud y ,指初、末位置间的电势差.考向1 带电粒子在匀强电场中的偏转例1 (2023·广东佛山市模拟)如图所示,正方形ABCD 区域内存在竖直向上的匀强电场,质子(11H)和α粒子(42He)先后从A 点垂直射入匀强电场,粒子重力不计,质子从BC 边中点射出,则( )A .若初速度相同,α粒子从CD 边离开B .若初速度相同,质子和α粒子经过电场的过程中速度增量之比为1∶2C .若初动能相同,质子和α粒子经过电场的时间相同D .若初动能相同,质子和α粒子经过电场的过程中动能增量之比为1∶4 答案 D解析 对任一粒子,设其电荷量为q ,质量为m ,粒子在电场中做类平抛运动,水平方向有 x =v 0t ,竖直方向有y =12at 2=12·qE m ·x 2v 02,若初速度相同,水平位移x 相同时,由于α粒子的比荷比质子的小,则α粒子的偏转距离y 较小,所以α粒子从BC 边离开,由t =xv 0知两个粒子在电场中的运动时间相等,由Δv =at =qE m t ,知Δv ∝qm ,则质子和α粒子经过电场的过程中速度增量之比为2∶1,故A 、B 错误;粒子经过电场的时间为t =xv 0,若初动能相同,质子的初速度较大,则质子的运动时间较短,故C 错误;由y =12·qE m ·x 2v 02,E k =12m v 02得y =qEx 24E k ,若初动能相同,已知x 相同,则y ∝q ,根据动能定理知:经过电场的过程中动能增量ΔE k =qEy ,E 相同,则ΔE k ∝q 2,则质子和α粒子经过电场的过程中动能增量之比为1∶4,故D正确.例2 (2020·浙江7月选考·6)如图所示,一质量为m 、电荷量为q ()q >0的粒子以速度v 0从MN 连线上的P 点水平向右射入大小为E 、方向竖直向下的匀强电场中.已知MN 与水平方向成45°角,粒子的重力可以忽略,则粒子到达MN 连线上的某点时( )A .所用时间为m v 0qEB .速度大小为3v 0C .与P 点的距离为22m v 02qED .速度方向与竖直方向的夹角为30° 答案 C解析 粒子在电场中只受电场力,F =qE ,方向向下,如图所示.粒子的运动为类平抛运动.水平方向做匀速直线运动,有x =v 0t ,竖直方向做初速度为0的匀加速直线运动,有y =12at 2=12·qE m t 2,yx =tan 45°,联立解得t =2m v 0qE,故A 错误;v y =at =qE m ·2m v 0qE =2v 0,则速度大小v =v 02+v y 2=5v 0,tan θ=v 0v y =12,则速度方向与竖直方向夹角θ≠30°,故B 、D 错误;x =v 0t =2m v 02qE ,与P 点的距离s =x cos 45°=22m v 02qE ,故C 正确.考向2 带电粒子在组合场中的运动例3 (2023·广东湛江市模拟)示波管原理图如图甲所示.它由电子枪、偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX ′和YY ′之间都没有加电压,电子束从电子枪射出后沿直线运动,打在荧光屏中心,产生一个亮斑如图乙所示.若板间电势差U XX′和U YY′随时间变化关系图像如丙、丁所示,则荧光屏上的图像可能为()答案 A解析U XX′和U YY′均为正值,两偏转电极的电场强度方向分别由X指向X′,Y指向Y′,电子带负电,所受电场力方向与电场强度方向相反,所以分别向X、Y方向偏转,可知A正确.例4(多选)(2023·福建福州市模拟)如图所示是一个示波器工作的原理图,电子经过电压为U1的电场加速后垂直进入偏转电场,离开偏转电场时偏转位移是y,两平行板间的距离为d,电压为U2,板长为L,每单位电压引起的偏移yU2叫作示波管的灵敏度,为了提高示波管的灵敏度.下列方法可行的是()A.增大U2B.增大LC.减小d D.增大U1答案BC解析 电子在加速电场中运动,根据动能定理有qU 1=12m v 2,电子在偏转电场中运动时有y=12at 2=12·U 2q dm ⎝⎛⎭⎫L v 2,联立解得y U 2=L 24U 1d ,增大U 2,灵敏度不变,A 错误;增大L 或者减小d ,灵敏度都增大,B 、C 正确;增大U 1,灵敏度减小,D 错误.考点二 带电粒子在重力场和电场复合场中的偏转例5 (多选)(2023·福建龙岩市第一中学模拟)如图所示,在竖直平面内xOy 坐标系中分布着与水平方向成45°角的匀强电场,将一质量为m 、带电荷量为q 的小球,以某一初速度从O 点竖直向上抛出,它的轨迹恰好满足抛物线方程x =ky 2,且小球通过点P ⎝⎛⎭⎫1k ,1k ,已知重力加速度为g ,则( )A .电场强度的大小为mg qB .小球初速度的大小为g 2kC .小球通过点P 时的动能为5mg4kD .小球从O 点运动到P 点的过程中,电势能减少2mgk答案 BC解析 小球做类平抛运动,则电场力与重力的合力沿x 轴正方向,可知qE =2mg ,电场强度的大小为E =2mg q ,选项A 错误;因为F 合=mg =ma ,所以a =g ,由类平抛运动规律有1k=v 0t ,1k =12gt 2,得小球初速度大小为v 0=g2k ,选项B 正确;由P 点的坐标分析可知v 0v x =12,所以小球通过点P 时的动能为12m v 2=12m (v 02+v x 2)=5mg4k ,选项C 正确;小球从O 到P 过程中电势能减少,且减少的电势能等于电场力做的功,即W =qE ·1k ·1cos 45°=2mgk ,选项D 错误.例6 (2019·全国卷Ⅲ·24)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点.从O 点沿水平方向以不同速度先后发射两个质量均为m 的小球A 、B .A 不带电,B 的电荷量为q (q >0).A 从O 点发射时的速度大小为v 0,到达P 点所用时间为t ;B 从O 点到达P 点所用时间为t2.重力加速度为g ,求:(1)电场强度的大小; (2)B 运动到P 点时的动能. 答案 (1)3mgq(2)2m (v 02+g 2t 2)解析 (1)设电场强度的大小为E ,小球B 运动的加速度为a .根据牛顿第二定律、运动学公式和题给条件,有mg +qE =ma ① 12a (t 2)2=12gt 2② 解得E =3mg q③(2)设B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,O 、P 两点的高度差为h ,根据动能定理有mgh +qEh =E k -12m v 12④且有v 1·t2=v 0t ⑤h =12gt 2⑥ 联立③④⑤⑥式得E k =2m (v 02+g 2t 2).考点三 带电粒子在交变电场中的偏转1.带电粒子在交变电场中的运动,通常只讨论电压的大小不变、方向做周期性变化(如方波)的情形.当粒子垂直于交变电场方向射入时,沿初速度方向的分运动为匀速直线运动,沿电场方向的分运动具有周期性.2.研究带电粒子在交变电场中的运动,关键是根据电场变化的特点,利用牛顿第二定律正确地判断粒子的运动情况.根据电场的变化情况,分段求解带电粒子运动的末速度、位移等. 3.注重全面分析(分析受力特点和运动规律):抓住粒子运动时间上的周期性和空间上的对称性,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的临界条件. 4.对于锯齿波和正弦波等电压产生的交变电场,若粒子穿过板间的时间极短,带电粒子穿过电场时可认为是在匀强电场中运动.例7 在如图甲所示的极板A 、B 间加上如图乙所示的大小不变、方向周期性变化的交变电压,其周期为T ,现有一电子以平行于极板的速度v 0从两板中央OO ′射入.已知电子的质量为m 、电荷量为e ,不计电子的重力,问:(1)若电子从t =0时刻射入,在半个周期内恰好能从A 板的边缘飞出,则电子飞出时速度的大小为多少?(2)若电子从t =0时刻射入,恰能平行于极板飞出,则极板至少为多长?(3)若电子恰能沿OO ′平行于极板飞出,电子应从哪一时刻射入?两极板间距至少为多大? 答案 见解析解析 (1)由动能定理得e U 02=12m v 2-12m v 02解得v =v 02+eU 0m. (2)t =0时刻射入的电子,在垂直于极板方向上做匀加速运动,向A 极板方向偏转,半个周期后电场方向反向,电子在该方向上做匀减速运动,再经过半个周期,电子在电场方向上的速度减小到零,此时的速度等于初速度v 0,方向平行于极板,以后继续重复这样的运动;要使电子恰能平行于极板飞出,则电子在OO ′方向上至少运动一个周期,故极板长至少为L =v 0T .(3)若要使电子沿OO ′平行于极板飞出,则电子在电场方向上应先加速、再减速,减速到零后反向加速、再减速,每阶段时间相同,一个周期后恰好回到OO ′上,可见应在t =T 4+k T2(k=0,1,2,…)时射入,极板间距离要满足电子在加速、减速阶段不打到极板上,设两板间距为d ,由牛顿第二定律有a =eU 0md ,加速阶段运动的距离s =12·eU 0md ⎝⎛⎭⎫T 42≤d4,解得d ≥TeU 08m,故两极板间距至少为T eU 08m. 例8 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器极板长L =10 cm ,极板间距d =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,荧光屏足够长,在电容器两极板间接一交变电压,上极板与下极板的电势差随时间变化的图像如图乙所示.每个电子穿过极板的时间都极短,可以认为电子穿过极板的过程中电压是不变的.求:(1)在t =0.06 s 时刻,电子打在荧光屏上的位置到O 点的距离; (2)荧光屏上有电子打到的区间长度. 答案 (1)13.5 cm (2)30 cm解析 (1)设电子经电压U 0加速后的速度为v 0,根据动能定理得eU 0=12m v 02,设电容器间偏转电场的场强为E ,则有E =Ud,设电子经时间t 通过偏转电场,偏离轴线的侧向位移为y ,则沿中心轴线方向有t =Lv 0,垂直中心轴线方向有a =eE m ,联立解得y =12at 2=eUL 22md v 02=UL 24U 0d,设电子通过偏转电场过程中产生的侧向速度为v y ,偏转角为θ,则电子通过偏转电场时有v y =at ,tan θ=v y v 0,则电子在荧光屏上偏离O 点的距离为Y =y +L tan θ=3UL 24U 0d ,由题图乙知t=0.06 s 时刻,U =1.8U 0,解得Y =13.5 cm.(2)由题知电子偏移量y 的最大值为d 2,根据y =UL 24U 0d 可得,当偏转电压超过2U 0时,电子就打不到荧光屏上了,所以代入得Y max =3L2,所以荧光屏上电子能打到的区间长度为2Y max =3L =30 cm.课时精练1.(多选)如图所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球()A.做直线运动B.做曲线运动C.速率先减小后增大D.速率先增大后减小答案BC解析对小球受力分析,小球受重力、电场力作用,合外力的方向与初速度的方向不在同一条直线上,故小球做曲线运动,故A错误,B正确;在运动的过程中合外力方向与速度方向间的夹角先为钝角后为锐角,故合外力对小球先做负功后做正功,所以速率先减小后增大,故C正确,D错误.2.(多选)(2023·辽宁葫芦岛市高三检测)如图所示,在竖直向上的匀强电场中,A球位于B球的正上方,质量相等的两个小球以相同初速度水平抛出,它们最后落在水平面上同一点,其中只有一个小球带电,不计空气阻力,下列判断正确的是()A.如果A球带电,则A球一定带负电B.如果A球带电,则A球的电势能一定增加C.如果B球带电,则B球一定带负电D.如果B球带电,则B球的电势能一定增加答案AD解析平抛时的初速度相同,在水平方向通过的位移相同,故下落时间相同,A球在上方,竖直位移较大,由h=12可知,A球下落的加速度较大,所受合外力较大,如果A球带电,2at则A球受到向下的电场力,一定带负电,电场力做正功,电势能减小,故A正确,B错误;如果B球带电,由于B球的竖直位移较小,加速度较小,所受合外力较小,则B球受到的电场力向上,应带正电,电场力对B球做负功,电势能增加,故C错误,D正确.3.(多选)(2023·福建省福州第十五中学月考)如图所示,a、b两个不同的带电粒子,从同一点平行于极板方向射入电场,a粒子打在B板的a′点,b粒子打在B板的b′点,不计重力,下列判断正确的是( )A .若粒子比荷相同,则初速度一定是b 粒子大B .若粒子比荷相同,则初速度一定是a 粒子大C .两粒子在电场中运动的时间一定相同D .若粒子初动能相同,则带电荷量一定是a 粒子大 答案 AD解析 对每个粒子,水平方向有s =v t ,竖直方向有h =12·qE m t 2=qEs 22m v 2.若粒子比荷相同,因b粒子的水平位移大,则初速度一定较大,选项A 正确,B 错误;由h =12·qEm t 2可知,因两粒子的比荷不确定,则时间关系不能确定,选项C 错误;由h =12·qE m t 2=qEs 22m v 2=qEs 24E k ,则若粒子初动能相同,因a 粒子的水平位移较小,则带电荷量一定较大,选项D 正确.4.(多选)(2021·全国乙卷·20)四个带电粒子的电荷量和质量分别为(+q ,m )、(+q ,2m )、(+3q ,3m )、(-q ,m ),它们先后以相同的速度从坐标原点沿x 轴正方向射入一匀强电场中,电场方向与y 轴平行.不计重力,下列描绘这四个粒子运动轨迹的图像中,可能正确的是( )答案 AD解析 带电粒子在匀强电场中做类平抛运动,加速度为a =qEm ,由类平抛运动规律可知,带电粒子在电场中运动时间为t =lv 0,离开电场时,带电粒子的偏转角的正切值为tan θ=v y v x =at v 0=qElm v 02,因为四个带电的粒子的初速度相同,电场强度相同,水平位移相同,所以偏转角只与比荷有关,(+q ,m )粒子与(+3q ,3m )粒子的比荷相同,所以偏转角相同,轨迹相同,且与(-q ,m )粒子的比荷也相同,所以(+q ,m )、(+3q ,3m )、(-q ,m )三个粒子偏转角相同,但(-q ,m )粒子与上述两个粒子的偏转角方向相反,(+q ,2m )粒子的比荷比(+q ,m )、(+3q ,3m )粒子的比荷小,所以(+q ,2m )粒子比(+q ,m )(+3q ,3m )粒子的偏转角小,但都带正电,偏转方向相同,故A 、D 正确,B 、C 错误.5.如图所示,一电子枪发射出的电子(初速度很小,可视为零)经过加速电场加速后,垂直射入偏转电场,射出后偏转位移为Y .要使偏转位移增大,下列哪些措施是可行的(不考虑电子射出时碰到偏转极板的情况)( )A .增大偏转电压UB .增大加速电压U 0C .增大偏转极板间距离D .将发射电子改成发射负离子 答案 A解析 设偏转极板长为l ,极板间距为d ,由eU 0=12m v 02,t =l v 0,a =eU md ,y =12at 2,联立得偏转位移y =Ul 24U 0d ,增大偏转电压U ,减小加速电压U 0,减小偏转极板间距离,都可使偏转位移增大,选项A 正确,B 、C 错误;由于偏转位移y =Ul 24U 0d 与粒子质量、带电荷量无关,故将发射电子改成发射负离子,偏转位移不变,选项D 错误.6.(多选)如图甲所示,真空中水平放置两块长度为2d 的平行金属板P 、Q ,两板间距为d ,两板间加上如图乙所示最大值为U 0且周期性变化的电压,在两板左侧紧靠P 板处有一粒子源A ,自t =0时刻开始连续释放初速度大小为v 0、方向平行于金属板的相同带电粒子,t =0时刻释放的粒子恰好从Q 板右侧边缘离开电场,已知电场变化周期T =2dv 0,粒子质量为m ,不计粒子重力及相互间的作用力,则( )A .在t =0时刻进入的粒子离开电场时速度大小仍为v 0B .粒子的电荷量为m v 022U 0C .在t =18T 时刻进入的粒子离开电场时电势能减少了18m v 02D .在t =14T 时刻进入的粒子刚好从P 板右侧边缘离开电场答案 AD解析 粒子进入电场后,水平方向做匀速运动,则t =0时刻进入电场的粒子在电场中运动时间t =2dv 0,此时间正好是交变电压的一个周期,粒子在竖直方向先做加速运动后做减速运动,经过一个周期,粒子的竖直速度为零,故粒子离开电场时的速度大小等于水平速度v 0,选项A 正确;在竖直方向,t =0时刻进入电场的粒子在T 2时间内的位移为d 2,则d 2=12a ·(T 2)2=U 0q 2dm (d v 0)2,计算得出q =m v 02U 0,选项B 错误;在t =T8时刻进入电场的粒子,离开电场时在竖直方向上的位移为d =2×12a (38T )2-2×12a (T 8)2=d 2,故电场力做功为W =U 0q d ×12d =12U 0q =12m v 02,电势能减少了12m v 02,选项C 错误;t =T 4时刻进入的粒子,在竖直方向先向下加速运动T4,然后向下减速运动T 4,再向上加速T 4,然后再向上减速T4,由对称可以知道,此时竖直方向的位移为零,故粒子从P 板右侧边缘离开电场,选项D 正确.7.(2023·重庆市高三模拟)如图所示,一圆形区域有竖直向上的匀强电场,O 为圆心,两个质量相等、电荷量大小分别为q 1、q 2的带电粒子甲、乙,以不同的速率v 1、v 2从A 点沿AO 方向垂直射入匀强电场,甲从C 点飞出电场,乙从D 点飞出,它们在圆形区域中运动的时间相同,已知∠AOC =45°,∠AOD =120°,不计粒子的重力,下列说法正确的是( )A.v 1v 2=2-22+3B.v 1v 2=2-23 C.q 1q 2=32 D.q 1q 2= 2 答案 B解析 甲、乙在电场中均做类平抛运动,沿初速度方向做匀速直线运动,它们在圆形区域中运动时间t 相同,在水平方向上,根据题图中几何关系可得x AC =v 1t =R -R cos 45°,x AD =v 2t =R +R cos 60°,联立可得v 1v 2=1-221+12=2-23,A 错误,B 正确;甲、乙在电场中沿电场力方向均做初速度为零的匀加速直线运动,则有y AC =12·q 1E m t 2=R sin 45°,y AD =12·q 2Em t 2=R sin 60°,联立可得q 1q 2=sin 45°sin 60°=23,C 、D 错误.8.(2022·浙江6月选考·9)如图所示,带等量异种电荷的两正对平行金属板M 、N 间存在匀强电场,板长为L (不考虑边界效应).t =0时刻,M 板中点处的粒子源发射两个速度大小为v 0的相同粒子,垂直M 板向右的粒子,到达N 板时速度大小为2v 0;平行M 板向下的粒子,刚好从N 板下端射出.不计重力和粒子间的相互作用,则( )A .M 板电势高于N 板电势B .两个粒子的电势能都增加C .粒子在两板间的加速度为a =2v 02LD .粒子从N 板下端射出的时间t =(2-1)L2v 0答案 C解析 由于不知道两粒子的电性,故不能确定M 板和N 板的电势高低,故A 错误;根据题意垂直M 板向右的粒子到达N 板时速度增加,动能增加,则电场力做正功,电势能减小,则平行M 板向下的粒子到达N 板时电场力也做正功,电势能同样减小,故B 错误;设两板间距离为d ,对于平行M 板向下的粒子刚好从N 板下端射出,在两板间做类平抛运动,有L2=v 0t ,d =12at 2,对于垂直M 板向右的粒子,在板间做匀加速直线运动,因两粒子相同,则在电场中加速度相同,有(2v 0)2-v 02=2ad ,联立解得t =L2v 0,a =2v 02L,故C 正确,D 错误. 9.(多选)如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,板长为L ,板间距离为d ,距板右端L 处有一竖直屏M .一带电荷量为q 、质量为m 的质点以初速度v 0沿中线射入两板间,最后垂直打在M 上,则下列说法中正确的是(已知重力加速度为g )( )A .两极板间电压为mgd2qB .板间电场强度大小为2mgqC .整个过程中质点的重力势能增加mg 2L 2v 02D .若仅增大两极板间距,则该质点不可能垂直打在M 上 答案 BC解析 据题分析可知,质点在平行板间轨迹应向上偏转,做类平抛运动,飞出电场后,轨迹向下偏转,才能最后垂直打在M 屏上,前后过程质点的运动轨迹有对称性,如图所示,可知两次偏转的加速度大小相等,对两次偏转分别由牛顿第二定律得qE -mg =ma ,mg =ma ,解得a =g ,E =2mg q ,由U =Ed 得两极板间电压为U =2mgd q ,故A 错误,B 正确;质点在电场中向上偏转的距离y =12at 2,t =L v 0,解得y =gL 22v 02,故质点打在屏上的位置与P 点的距离为s =2y =gL 2v 02,整个过程中质点的重力势能的增加量E p =mgs =mg 2L 2v 02,故C 正确;仅增大两极板间的距离,因两极板上电荷量不变,根据E =U d =Q Cd =Q εr S 4πkd d =4πkQεr S可知,板间电场强度不变,质点在电场中受力情况不变,则运动情况不变,仍垂直打在M 上,故D 错误. 10.(2023·黑龙江佳木斯市第八中学调研)如图所示,两平行金属板A 、B 长L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一个不计重力的带正电的粒子电荷量q =10-10C 、质量m =10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2×106 m/s ,粒子飞出平行板电场后,可进入界面MN 和光屏PS 间的无电场的真空区域,最后打在光屏PS 上的D 点(未画出).已知界面MN 与光屏PS 相距12 cm ,O 是中心线RO 与光屏PS 的交点.sin 37°=0.6,cos 37°=0.8,求:(1)粒子穿过界面MN 时偏离中心线RO 的距离; (2)粒子射出平行板电容器时偏转角; (3)OD 两点之间的距离.答案 (1)0.03 m (2)37° (3)0.12 m解析 (1)带电粒子垂直进入匀强电场后做类平抛运动,加速度为a =F m =qU md水平方向有L =v 0t 竖直方向有y =12at 2联立解得y =qUL 22md v 02=0.03 m(2)设粒子射出平行板电容器时偏转角为θ,v y =at tan θ=v y v 0=at v 0=qUL md v 02=34,故偏转角为37°.(3)带电粒子离开电场时速度的反向延长线与初速度延长线的交点为水平位移的中点,设两界面MN 、PS 相距为L ′,由相似三角形得L2L 2+L ′=yY ,解得Y =4y =0.12 m.11.(2023·辽宁大连市第八中学高三检测)如图甲所示,真空中的电极可连续不断均匀地逸出电子(设电子的初速度为零),经加速电场加速,由小孔穿出,沿两个彼此绝缘且靠近的水平金属板A 、B 的中线射入偏转电场,A 、B 两板距离为d ,A 、B 板长为L ,AB 两板间加周期性变化的电场U AB ,如图乙所示,周期为T ,加速电压U 1=2mL 2eT 2,其中m 为电子质量、e 为电子电荷量,T 为偏转电场的周期,不计电子的重力,不计电子间的相互作用力,且所有电子都能离开偏转电场,求:(1)电子从加速电场U 1飞出后的水平速度v 0的大小;(2)t =0时刻射入偏转电场的电子离开偏转电场时距A 、B 间中线的距离y ;(3)在0~T2内射入偏转电场的电子中从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比.答案 (1)2L T (2) eU 0T 28md (3)50%解析 (1)电子在加速电场中加速, 由动能定理得eU 1=12m v 02-0解得v 0=2LT(2) 电子在偏转电场中做类平抛运动,水平方向L =v 0t ,解得t =T2,t =0时刻进入偏转电场的电子加速度a =eE m =eU 0md ,电子离开电场时距离A 、B 中心线的距离y =12at 2,解得y =eU 0T 28md(3)在0~T2内射入偏转电场的电子,设向上的方向为正方向,设电子恰在A 、B 间中线离开偏转电场,则电子先向上做初速度为零、加速度大小为a 的匀加速直线运动,经过时间t ′后速度v =at ′,此后两板间电压大小变为3U 0,加速度大小变为a ′=eE ′m =3eU 0md =3a电子向上做加速度大小为3a 的匀减速直线运动,速度减为零后,向下做初速度为零、加速度大小为3a 的匀加速直线运动,最后回到A 、B 间的中线,经历的时间为T 2,则12at ′2+v (T2-t ′)-12×3a (T 2-t ′)2=0,解得t ′=T4,则能够从中线上方向离开偏转电场的电子的发射时间为t ″=T 4,则在0~T2时间内,从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比η=T 4T 2×100%=50%.12.(多选)如图,质量为m 、带电荷量为q 的质子(不计重力)在匀强电场中运动,先后经过水平虚线上A 、B 两点时的速度大小分别为v a =v 、v b =3v ,方向分别与AB 成α=60°角斜向上、θ=30°角斜向下,已知AB =L ,则( )A .质子从A 到B 的运动为匀变速运动 B .电场强度大小为2m v 2qLC .质子从A 点运动到B 点所用的时间为2Lv D .质子的最小速度为32v 答案 ABD解析 质子在匀强电场中受力恒定,故加速度恒定,则质子从A 到B 的运动为匀变速运动,A 正确;质子在匀强电场中做抛体运动,在与电场垂直的方向上分速度相等,设v a 与电场线的夹角为β,如图所示.则有v a sin β=v b cos β,解得β=60°,根据动能定理有qEL cos 60°=12m v b 2-12m v a 2,解得E =2m v 2qL ,B 正确;根据几何关系可得,AC 的长度为L sin 60°=32L ,则质子从A 点运动到B 点所用的时间为t =32L v a sin β=Lv ,C 错误;在匀变速运动过程中,当速度方向与电场力方向垂直时,质子的速度最小,有v min =v a sin β=32v ,D 正确.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点5.2 带电粒子在匀强电场中的偏转运动1.带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdyqU.②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =qUmd离开电场时的偏移量:y =12at 2=qUl 22mdv20.离开电场时的偏转角:tan θ=v y v 0=qUl mdv20.2.带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 2y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1l mdv 2得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3.带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y=U d y ,指初、末位置间的电势差.1. 喷墨打印机的简化模型如图4所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v 垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( C ) A. 向负极板偏转 B. 电势能逐渐增大 C. 运动轨迹是抛物线 D. 运动轨迹与所带电荷量无关2. 如图所示,两极板与电源相连接,电子从负极板边缘垂直电场方向射入匀强电场,且恰好从正极板边缘飞出,现在使电子的入射速度变为原来的2倍,而电子仍从原来位置射入,且仍从正极板边缘飞出,则两极板间的距离应变为原来的( C ) A.2倍 B.4倍 C.12 D.143. 如图所示,分别将带正电、负电和不带电的三个等质量小球,以相同的水平速度由P 点射入水平放置的平行金属板间,已知上板带负电,三小球分别落在图中A 、B 、C 三点,其中小球B 不带电,则( D ) A. A 带负电、C 带正电B. 三小球在电场中加速度大小关系是:a A >a B >a CC. 三小球在电场中运动时间相等D. 三小球到达下板时的动能关系是E k C >E k B >E k A4. 一束带有等量电荷的不同离子从同一点垂直电场线进入同一匀强偏转电场,飞离电场后打在荧光屏上的同一点,则( C ) A. 离子进入电场的v 0相同 B. 离子进入电场的mv 0相同 C. 离子进入电场的初动能相同 D. 离子在电场中的运动时间相同5. 如图所示,氕、氘、氚的原子核自初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么( D )A.经过加速电场的过程中,电场力对氚核做的功最多B.经过偏转电场的过程中,电场力对氚核做的功最多C.三种原子核打在屏上的速度一样大D.三种原子核都打在屏的同一位置上6.(多选)真空中的某装置如图所示,现有质子、氘核和α粒子都从O点由静止释放,经过相同加速电场和偏转电场,射出后都打在同一个与OO′垂直的荧光屏上,使荧光屏上出现亮点(已知质子、氘核和α粒子质量之比为1∶2∶4,电荷量之比为1∶1∶2,重力不计).下列说法中正确的是(CD)A.三种粒子在偏转电场中运动时间之比为2∶1∶1B.三种粒子出偏转电场时的速度相同C.在荧光屏上将只出现1个亮点D.偏转电场的电场力对三种粒子做功之比为1∶1∶27.(多选)示波管是示波器的核心部件,它由电子枪、偏转电极和荧光屏组成,如图所示.如果在荧光屏上P点出现亮斑,那么示波管中的(AC)A.极板X应带正电B.极板X′应带正电C.极板Y应带正电D.极板Y′应带正电8.示波器是一种常见的电学仪器,可以在荧光屏上显示出被检测的电压随时间变化的情况.电子经电压u1加速后进入偏转电场.下列关于所加竖直偏转电压u2、水平偏转电压u3与荧光屏上所得的图形的说法中不正确的是()A.如果只在u2上加上甲图所示的电压,则在荧光屏上看到的图形如图(a)B.如果只在u3上加上乙图所示的电压,则在荧光屏上看到的图形如图(b)C.如果同时在u2和u3上加上甲、乙所示的电压,则在荧光屏上看到的图形如图(c)D.如果同时在u2和u3上加上甲、乙所示的电压,则在荧光屏上看到的图形如图(d)9.如图所示,质子、氘核和α粒子都沿平行板电容器两板中线OO′方向垂直于电场线射入板间的匀强电场,且都能射出电场,射出后都打在同一个荧光屏上,使荧光屏上出现亮点.若微粒打到荧光屏的先后不能分辨,则下列说法中正确的是(B)A.若它们射入电场时的速度相等,在荧光屏上将只出现3个亮点B.若它们射入电场时的速度相等,在荧光屏上将出现2个亮点C.若它们射入电场时的动能相等,在荧光屏上将只出现1个亮点D.若它们是由同一个电场从静止加速后射入偏转电场的,在荧光屏上将只出现1个亮点10.如图所示,带电的粒子以一定的初速度v0沿两板的中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出.已知板长为L,板间距离为d,板间电压为U,带电粒子的电荷量为q,粒子通过平行金属板的时间为t,不计粒子的重力,则(BD)A.在前t2时间内,电场力对粒子做的功为qU4B. 在后t 2时间内,电场力对粒子做的功为38qUC. 在粒子下落前d 4和后d4的过程中,电场力做功之比为1∶2D. 在粒子下落前d 4和后d4的过程中,电场力做功之比为1∶111. 如图所示,平行金属板A 、B 水平正对放置,分别带等量异号电荷.一带电微粒水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么( C ) A. 若微粒带正电荷,则A 板一定带正电荷 B. 微粒从M 点运动到N 点电势能一定增加 C. 微粒从M 点运动到N 点动能一定增加 D. 微粒从M 点运动到N 点机械能一定增加12. (多选)长为l 、间距为d 的平行金属板M 、N 带等量异种电荷,A 、B 两带电粒子分别以不同速度v 1、v 2从金属板左侧同时射入板间,粒子A 从上板边缘射入,速度v 1平行金属板,粒子B 从下板边缘射入,速度v 2与下板成一定夹角θ(θ≠0),如图8所示.粒子A 刚好从金属板右侧下板边缘射出,粒子B 刚好从上板边缘射出且速度方向平行金属板,两粒子在板间某点相遇但不相碰.不计粒子重力和空气阻力,则下列判断正确的是( BC ) A. 两粒子带电荷量一定相同 B. 两粒子一定有相同的比荷 C. 粒子B 射出金属板的速度等于v 1 D. 相遇时两粒子的位移大小相等13. (多选)如图所示,两平行金属板间有一匀强电场,板长为L ,板间距离为d ,在板右端L处有一竖直放置的光屏M ,一带电荷量为q ,质量为m 的质点从两板中央射入板间,最后垂直打在M 屏上,已知重力加速度为g ,忽略电场的边缘效应和带电粒子对极板电荷分布的影响,则下列结论正确的是( BC ) A. 板间电场强度大小为mgqB. 板间电场强度大小为2mgqC. 质点在板间的运动时间和它从板的右端运动到光屏的时间相等D. 质点在板间的运动时间大于它从板的右端运动到光屏的时间14. 如图所示,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h .质量均为m 、带电荷量分别为+q 和-q 的两粒子,由a 、c 两点先后沿ab 和cd 方向以速率v 0进入矩形区(两粒子不同时出现在电场中).不计重力.若两粒子轨迹恰好相切,则v 0等于( B ) A.s 22qE mhB.s 2qE mh C.s 42qE mh D.s4qEmh15. 在xOy 平面内,有沿y 轴负方向的匀强电场,场强大小为E (图中未画出),由A 点斜射出一质量为m ,带电量为+q 的粒子,B 和C 是粒子运动轨迹上的两点,如图所示,其中l 0为常数。
粒子所受重力忽略不计。
求: (1) 粒子从A 到C 过程中电场力对它做的功; (2) 粒子从A 到C 过程所经历的时间; (3) 粒子经过C 点时的速率。
【答案】(1)3qEl 0 (2)32ml 0qE(3)17qEl 02m16. 如图所示,水平放置的平行板电容器,两板间距为d =8 cm ,板长为l =25 cm ,接在直流电源上,有一带电液滴以v 0=0.5 m/s 的初速度从板间的正中央水平射入,恰好做匀速直线运动,当它运动到P 处时迅速将下板向上提起43cm ,液滴刚好从金属板末端飞出,求:(g 取10 m/s 2)(1) 将下板向上提起后,液滴的加速度大小;(2)液滴从射入电场开始计时,匀速运动到P点所用的时间.【答案】(1)2 m/s2(2)0.3 s17.如图所示,有一质子(电荷量为q,质量为m )由静止经电压U1加速后,进入两块间距为d,电压为U2的平行金属板间.若质子从两板正中间垂直电场方向射入,且正好能从下板右边缘穿出电场,求:(1)质子刚进入偏转电场U2时的速度;(2)在偏转电场U2中运动的时间和金属板的长度L;(3)质子穿出电场时的动能.【答案】(1) 2qU1m(2)mqU2d2U1U2d(3)e(U1+U22)18.如图所示,在两条平行的虚线内存在着宽度为L、电场强度为E的匀强电场,在与右侧虚线相距也为L处有一与电场平行的屏.现有一电荷量为+q、质量为m的带电粒子(重力不计),以垂直于电场线方向的初速度v0射入电场中,v0方向的延长线与屏的交点为O.试求:(1)粒子从射入到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向夹角的正切值tan α;(3) 粒子打在屏上的点P 到O 点的距离x . 【答案】(1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 2019. 两平行金属板A 、B 水平放置,一个质量为m =5×10-6 kg 的带电粒子,以v 0=2 m/s 的水平速度从两板正中位置射入电场,如图所示,A 、B 两板间距离为d =4 cm ,板长L =10 cm.(g =10 m/s 2)(1) 当A 、B 间的电压为U AB =1 000 V 时,粒子恰好不偏转,沿图中虚线射出电场,求该粒子的电荷量和电性.(2) 令B 板接地,欲使该粒子射出偏转电场,求A 板所加电势的范围.【答案】 (1)2×10-9 C 粒子带负电(2)-600 V≤φA ≤2 600 V20. 如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L =0.1m ,两板间距离d = 0.4 cm ,有一束相同微粒组成的带电粒子流从两板中央平行极板射入,由于重力作用微粒能落到下板上,已知微粒质量为m = 2×10-6kg ,电量q = 1×10-8 C ,电容器电容为C =10-6 F .求(1) 为使第一粒子能落点范围在下板中点到紧靠边缘的B 点之内,则微粒入射速度v 0应为多少? (2) 以上述速度入射的带电粒子,最多能有多少落到下极板上?【答案】(1) 2.5 m/s≤v 0≤5 m/s (2)600个21.如图所示,水平放置的平行板电容器,与某一电源相连,它的极板长L=0.4m,两板间距离d=4×10-3m,有一束由相同带电微粒组成的粒子流,以相同的速度v0从两板中央平行极板射入,开关S闭合前,两板不带电,由于重力作用微粒能落到下板的正中央,已知微粒质量为m=4×10-5kg,电量q=+1×10-8C.(g=10m/s2)求:(1)微粒入射速度v0为多少?(2)为使微粒能从平行板电容器的右边射出电场,电容器的上板应与电源的正极还是负极相连?所加的电压U应取什么范围?【答案】(1)10m/s(2)与负极相连120V<U<200V22.如图甲所示,静电除尘装置中有一长为L、宽为b、高为d的矩形通道,其前、后面板使用绝缘材料,上、下面板使用金属材料.图乙是装置的截面图,上、下两板与电压恒定的高压直流电源相连,质量为m、电荷量为-q、分布均匀的尘埃以水平速度v0进入矩形通道,当带负电的尘埃碰到下板后其所带电荷被中和,同时被收集,通过调整两板间距d 可以改变收集效率η,当d=d0时,η为81%(即离下板0.81d0范围内的尘埃能够被收集).不计尘埃的重力及尘埃之间的相互作用.(1)求收集效率为100%时,两板间距的最大值d m;(2)求收集效率η与两板间距d的函数关系;(3)若单位体积内的尘埃数为n,求稳定工作时单位时间下板收集的尘埃质量ΔM/Δt与两板间距d的函数关系,并绘出图线.【答案】 (1)0.9d 0,(2)η=0.81(d 0d )2,(3)23. 质谱分析技术已广泛应用于各前沿科学领域.汤姆孙发现电子的质谱装置示意如图所示,M 、N 为两块水平放置的平行金属极板,板长为L ,板右端到屏的距离为D ,且D 远大于L ,O ′O 为垂直于屏的中心轴线,不计离子重力和离子在板间偏离O ′O 的距离.以屏中心O 为原点建立xOy 直角坐标系,其中x 轴沿水平方向,y 轴沿竖直方向. (1) 设一个质量为m 0、电荷量为q 0的正离子以速度v 0沿O ′O 的方向从O ′点射入,板间不加电场和磁场时,离子打在屏上O 点.若在两极板间加一沿+y 方向场强为E 的匀强电场,求离子射到屏上时偏离O 点的距离y 0;(2) 假设你利用该装置探究未知离子,试依照以下实验结果计算未知离子的质量数.上述装置中,保留原电场,再在板间加沿-y 方向的匀强磁场.现有电荷量相同的两种正离子组成的离子流,仍从O′点沿O′O方向射入,屏上出现两条亮线.在两线上取y 坐标相同的两个光点,对应的x坐标分别为3.24 mm和3.00 mm,其中x坐标大的光点是碳12离子击中屏产生的,另一光点是未知离子产生的.尽管入射离子速度不完全相同,但入射速度都很大,且在板间运动时O′O方向的分速度总是远大于x方向和y方向的分速度.【答案】(1)y0=q0ELDm0v20(2)未知离子的质量数为14- 11 -。