2019年云南省_全国统一高考数学试卷(理科)(新课标ⅲ)及解析
【全国Ⅲ卷】(精校版)2019年高等学校招生全国统一考试理数试题(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A . 16B . 8C .4D . 26.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -= ,1b =-7.函数3222x xx y -=+在[]6,6-的图象大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B. 5122-C. 6122-D. 7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .324B .322C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④ 二、填空题:本题共4小题,每小题5分,共20分。
2019全国3卷高考理科数学试题及答案解析
2019普通高等学校招生全国统一考试
理科数学
注意事项:
1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目
的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
A.{-1,0,1}
B.{0,1}
C.{-1,1}
D.{0,1,2}
2. 若z(1+i)=2i,则z
A.-1-i
B.-1+i
C.1-i
D.1+i
3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文
学瑰宝,并成为中国古典小说四大名著。
某中学为了了解本小学生
阅读四大名著的情况,随机调查看了100位学生,期中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值
的估计值为
A.0.5
B.0.6
C.0.7
D.0.8。
2019年全国高考试题(真题)——--理科数学(全国卷Ⅲ)-Word版含解析
2019年普通高等学校招生全国统一考试(全国 III 卷)理科数学一.选择题1、已知集合,则( )}1|{},2,1,0,1{2≤=-=x x B A =⋂B A A.}1,0,1{-B. B.{0,1}C. C.}1,1{-D. D.}2,1,0{答案:A 解答:,所以.}11|{}1|{2≤≤-=≤=x x x x B }1,0,1{-=⋂B A 2.若,则( )i i z 2)1(=+=z A.i --1B.i +-1C.i -1D.i +1答案:D 解答:,.i i z 2)1(=+i i i i i i i i i z +=-=-+-=+=1)1()1)(1()1(212 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A.5.0B.6.0C.7.0D.8.0答案:C 解答:7.0100608090=+-4.的展开式中的系数为( )42)1)(21(x x ++3x A.12B.16C.20D.24答案:A 解答:由题意可知含的项为,所以系数为.3x 33142334121211x x C x x C =⋅⋅⋅+⋅⋅⋅125.已知各项均为正数的等比数列的前项和为,且,则(){}n a 41553134a a a =+3a =A. 16B. 8C. 4D. 2答案:C 解答:设该等比数列的首项,公比,由已知得,,1a q 4211134a q a q a =+因为且,则可解得,又因为,10a >0q >2q =231(1)15a q q q +++=即可解得,则.11a =2314a a q ==6.已知曲线在点处的切线方程为,则( )x x ae y x ln +=)1(ae ,b x y +=2A.,e a =1-=b B.,e a =1=b C.,1-=e a 1=b D.,1-=e a 1-=b 答案:D 解析:令,则,,得.x x ae x f xln )(+=1ln )(++='x ae x f x21)1(=+='ae f 11-==e ea ,可得.故选D.b ae f +==2)1(1-=b7.函数在的图像大致为( )3222xx x y -=+[6,6]-A.B.C.D.答案:B 解析:∵,∴,∴为奇函数,32()22x x x y f x -==+332()2()()2222x x x xx x f x f x ----==-=-++()f x 排除选项C.又∵,根据图像进行判断,可知选项B 符合题意.334442424(4)8222f -⨯⨯=≈=+8.如图,点为正方形的中心,为正三角形,平面平面,是线段的中点,则()A.,且直线,是相交直线B.,且直线,是相交直线C.,且直线,是异面直线D.,且直线,是异面直线答案:B解析:因为直线,都是平面内的直线,且不平行,即直线,是相交直线,设正方形的边长为,则由题意可得:,根据余弦定理可得:,,所以,故选B.9.执行右边的程序框图,如果输出为,则输出的值等于()A.B.C.D.答案:C解析:第一次循环:;第二次循环:;第三次循环:;第四次循环:;…第七次循环:,此时循环结束,可得.故选C.10.双曲线:的右焦点为,点为的一条渐近线的点,为坐标原点.若C 22142x y -=F P C O 则的面积为( )||||PO PF =PFO ∆C:D:答案:A 解析:由双曲线的方程可得一条渐近线方程为;在中过22042x y -=y x =PFO ∆||||PO PF =点做垂直因为;所以P PH OF tan POF=∠PO =故选A;12S PFO ∆==11.若是定义域为的偶函数,且在单调递减,则( )()f x R (0,)+∞A. 233231(log )(2)(2)4f f f -->>B.233231(log (2)(2)4f f f -->>C.233231(2)(2)(log )4f f f -->>D.233231(2)(2)(log )4f f f -->>答案:C 解析:依据题意函数为偶函数且函数在单调递减,则函数在上单调递增;因为(0,)+∞(,0)-∞;又因为;所以3331(log )(log 4)(log 4)4f f f =-=233230221log 4--<<<<;故选C.233231(2)(2)(log )4f f f -->>12.设函数,已知在有且仅有个零点,下述四个()()sin 05f x x πωω⎛⎫=+> ⎪⎝⎭()f x []02π,5结论:在有且仅有个极大值点○1()f x ()0,2π3在有且仅有个极小值点○2()f x ()0,2π2在单调递增○3()f x 0,10π⎛⎫⎪⎝⎭的取值范围是 ○4ω1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是A. B. C. D.○1○4○2○3○1○2○3○1○3○4答案:D解析:根据题意,画出草图,由图可知,[)122,x x π∈由题意可得,,解得,125565x x πωππωπ⎧+=⎪⎪⎨⎪+=⎪⎩12245295x x πωπω⎧=⎪⎪⎨⎪=⎪⎩所以,解得,故对;2429255πππωω≤<1229510ω≤<○4令得,∴图像中轴右侧第一个最值点为最大值点,故对;52x ππω+=3010x πω=>y ○1∵,∴在有个或个极小值点,故错;[)122,x x π∈()f x ()0,2π23○2∵,∴,故对.1229510ω≤<1149251051002πππππω≤⋅+<<○3二.填空题13.已知,为单位向量,且,若,则 .ab 0a b ⋅= 2c a =- cos ,a c =答案:23解析:∵,∴,()22222459c a a b b ==+-⋅= 3c =∵,∴.()2222a c a a a b ⋅=⋅=-⋅= 22cos ,133a c a c a c ⋅===⨯⋅14.记为等差数列的前项和,若,,则 .n S {}n a n 10a ≠213a a =105S S =答案:4解析:设该等差数列的公差为,∵,∴,故,d 213a a =113a d a +=()1120,0d a a d =≠≠∴.()()()1101101551102292102452452a a a d S d a a S a d d++⨯====++15.设、为椭圆的两个焦点,为上一点且在第一象限,若1F 2F 1203622=+y x C :M C 为等腰三角形,则的坐标为________.21F MF ∆M 答案:)15,3(解析:已知椭圆可知,,,由为上一点且在第一象限,故等腰三1203622=+y x C :6=a 4=c M C角形中,,,21F MF ∆8211==F F MF 4212=-=MF a MF 415828sin 2221=-=∠M F F ,代入可得.故的坐标为.15sin 212=∠=M F F MF y M 1203622=+y x C :3=M x M )15,3(16.学生到工厂劳动实践,利用D 打印技术制作模型。
2019年高考全国卷Ⅲ理科数学解析版
2019年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{|1012}A x =-,,,,2{|1}B x x =≤,则A ∩B =A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}解析:{}[]{}1,0,11,11|2-=⇒-=⇒≤=B A B x x B ,故选A2. 若(1i)2i z +=,则z =A .-1-iB .-1+iC .1-iD .1+i解析:()()()()()()i i i z i i z i i i i z i i z +=-=⇒-=⇒-=-+⇒=+11122121121, 故选D3. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古代文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》和《红楼梦》的学生共有90位,阅读过《红楼梦》的学生有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5D .0.8解析:由韦恩图知 阅读过《西游记》的学生人数与该校学生总数比值的估计值为7.0100=故选C4. 24(12)(1)x x ++的展开式中3x 的系数为 A .12B .16C .20D .24解析:3x 项为3342314121211x x C x x C =⋅⋅⋅+⋅⋅⋅,故选A5. 已知各项为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =A .16B .8C .4D .2解析:由244343224135=⇒=⇒+=⇒+=q q q q a a a 又()1414152121a a S =--=则41151521311=⋅=⇒=⇒=q a a a a ,故选C6.已知曲线e ln x y a x x =+在点(1e)a ,处的切线方程为2y x b =+,则A .e 1a b ==-,B .e 1a b ==,C .-1e 1a b ==,D .-1e 1a b ==-,解析:1|1ln 1+='∴++='=ae y x ae y x x,由题意知121-=∴=+e a ae 则点()ae ,1即为()11,把()11,带入12-=⇒+=b b x y ,故选D 7. 函数3222x xx y -=+在[6,6]-的图象大致为解析:()()x f xx f xx -=+-=--2223,则()x f 为奇函数,故C 错,又当0>x时()0>x f 故D 错,而()64272622262663663>=⨯≈+⨯=-f 故A 错,故选B.8. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则 A .BM =EN ,且直线BM ,EN 是相交直线 B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线解析:N 是正方形ABCD 的中心,则B N D ,,三点共线且NB DN =,MN NB DN MEDM ⇒⎩⎨⎧==是EDB ∆的中位线BE MN //⇒且BE MN 21=EN BM ,∴是相交直线,故C,D 错,若EN BM =则梯形MNBE 为等腰梯形,则DBDC DE DB BN ME =⇒=⇒=矛盾,故A 错,故选B9.执行右边的程序框图,如果输入的ε为0.01,则输出s 的值为A .4122-B .5122-C .6122-D .7122-解析:当ε<==1281217x ,676221221121112121211-=-⎪⎭⎫ ⎝⎛-⋅=+++=∴ s 故选C. 10.双曲线C :22142x y -=的右焦点为F ,点P 在C||||PO PF =,则△PFO 的面积为A B C .D 解析:如图由题意知6==c OF ,tan ∠POF 取OF的中点M ,OF PM ⊥∴,22tan ==∠∴OM PM POF 2322=⋅=∴OM PM ,42321=⋅=∴∆PM OF POF S ,故选A 11.设()f x 是定义域为R 的偶函数,且在(0+)∞,单调递减,则A .233231(log )(2)(2)4f f f -->>B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>解析:因()x f 是偶函数,则()()()434343413log log log log 1f f f f =-==⎪⎪⎭⎫ ⎝⎛-又x y 2=是单调递增的函数,1222003223=<<<∴--,又1log log 3343=> 433223log 1220<<<<∴--,()x f 在()+∞,0单调递减,()433223log 22f f f >⎪⎪⎭⎫ ⎝⎛>⎪⎪⎭⎫ ⎝⎛∴--,即,⎪⎪⎭⎫ ⎝⎛>⎪⎪⎭⎫ ⎝⎛>⎪⎪⎭⎫ ⎝⎛--4133223log 22f f f 故选C.12.设函数()sin()(0)5f x x ωωπ=+>,已知()f x 在[02]π,有且仅有5个零点,下列四个结论:① ()f x 在(02)π,有且仅有3个极大值点② ()f x 在(02)π,有且仅有2个极小值点③ ()f x 在(0)10π,单调递增④ ω在取值范围是1229[)510,其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④解析:()ωππππω550-=⇒=+⇒=k x k x x f ,由题意知102951256255<≤⇒-<≤-ωωπππωππ故而④正确,在④的条件下,当210049510102951050100πππππωππωπ<=+<+<+<⇒<<x x ,有正弦函数的单调性知()x f 在⎪⎭⎫⎝⎛100π,单调递增。
2019年全国高考新课标3卷理科数学试题(解析版)【杨顺国】
2019年普通高等学校招生全国统一考试新课标3卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x-1NO},B={0,l,2},则ADB=()A.{0}B.{1}C.{1,2}D.{0,1,2}解析:选C2.(l+i)(2-i)=()A.-3-iB.-3+iC.3-iD.3+i解析:选D3.中国古建筑借助样卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A BCD解析:选A4.若sin a日,则cos2a=()7-97-9-C.8-9-D.]8解析:选B cos2a=l-2sin2 a=1--=-y y25・或+-)5的展开式中x,的系数为()xA.10B.20C.40D.809解析:选C展开式通项为Tr+i=C5r x10-2r(-)r=C5r2r x10-3r,r=2,T3=。
522七[故选C6.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y=2±,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[血3艘]D.[2近,3也]解析:选A,线心距d=2带,P到直线的最大距离为3彖,最小距离为^2,|AB|=2V2,S min=2,S max=67,函数y=-x4+x,+2的图像大致为()解析:选D原函数为偶函数,设t=x2,tNO,f(t)=-t2+t+2,故选D8.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.3解析:选B X〜B(10,p),DX=10p(l-p)=2.4,解得p=0.4或p=0.6,p=0.4时,p(X=4)=Cio4(0.4)4(0.6)6>P(X=6)= Cio6(O.4)6(0.6)4,不合。
2019年全国统一高考数学试卷(理科)真题解析(解析版)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设z =-3+2i ,则在复平面内z 对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C 【解析】 【分析】本题考查复数的共轭复数和复数在复平面内的对应点位置,渗透了直观想象和数学运算素养.采取定义法,利用数形结合思想解题.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .【点睛】本题考点为共轭复数,为基础题目,难度偏易.忽视共轭复数的定义致错,复数与共轭复数间的关系为实部同而虚部异,它的实部和虚部分别对应复平面上点的横纵坐标.3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A. -3 B. -2 C. 2 D. 3【答案】C 【解析】 【分析】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.【详解】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A.B.C.D.【答案】D 【解析】 【分析】本题在正确理解题意的基础上,将有关式子代入给定公式,建立α的方程,解方程、近似计算.题目所处位置应是“解答题”,但由于题干较长,易使考生“望而生畏”,注重了阅读理解、数学式子的变形及运算求解能力的考查. 【详解】由rRα=,得r R α= 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得3α=所以3.r R α==【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形出错.5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A. 中位数B. 平均数C. 方差D. 极差【答案】A 【解析】 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x <<<,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数234817x x x x x '=<<<()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()22221119q S x x x x x x ⎡⎤=-+-++-⎢⎥⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 显然极差变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.6.若a >b ,则 A. ln(a −b )>0B. 3a <3bC. a 3−b 3>0D. │a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3xy =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.7.设α,β为两个平面,则α∥β的充要条件是 A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. α,β平行于同一条直线 D. α,β垂直于同一平面 【答案】B 【解析】 【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A. 2B. 3C. 4D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │ D. f (x )= sin│x │【答案】A 【解析】 【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos2y x =图象,由图象知,其周期为2π,在区间单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间单调递减,排除B ,故选A .【点睛】利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数;10.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15B.5C. D.【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=B .【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.11.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A.B. C. 2 D.【答案】A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A. 9,4⎛⎤-∞ ⎥⎝⎦B. 7,3⎛⎤-∞ ⎥⎝⎦ C. 5,2⎛⎤-∞ ⎥⎝⎦ D. 8,3⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.14.已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】 【分析】本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案. 【详解】因为()f x 是奇函数,且当0x <时,()ax f x e -=-.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e --=-,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3π. 【点睛】本题主要考查函数奇偶性,对数的计算.15.V ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则V ABC 的面积为__________.【答案】【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】 (1). 共26个面. (2). 1. 【解析】 【分析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决. 【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则A B B E x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==.【点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.三、解答题:共70分。
2019年云南省高考理科数学试题及答案
云南省高考理科数学试题及答案(满分150分,时间120分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共5页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共12小题 ,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知Z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(-3,1) (B )(-1,3) (C )()1,+∞ (D )(),3-∞-(2)已知集合{}1,2,3A =,{}|(1)(2)0,B x x x x Z =+-<∈,则AB =(A ){1} (B ){1,2} (C ){0,1,2,3} (D ){-1,0,1,2,3}(3)已知向量a=(1,m ),b=(3,-2),且(a+b )⊥b ,则m=(A )-8 (B )-6 (C )6 (D )8(4)圆22x +y -2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=(A )4-3 (B )3-4(C )3 (D )2 (5)如图,小明从街道的E 处出发,先到F 处与小明回合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数2sin 2y x = 的图像向左平移12π个单位长度,则平移后的图像对称轴为 (A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈(8)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图。
执行该程序框图,若输入的 x=2,n=2,依次输入的a 为2,2,5,则输入的s=(A )7 (B )12 (C )17 (D )34 (9)若cos (4π-α)=35,则sin2α=(A )725 (B )15 (C )-15 (D )-725(10)从区间[]0,1随机抽取2n 个数12,,...,nx x x , 12,,...,n y y y 构成n 个数对11,x (y ),22,x (y ),…,,n n x (y ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11 1F ,2F 是双曲线E :22221a x y b+=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,121sin 3MF F ∠=,则E 的离心率为(A (B )32(C (D )2(12)已知函数f x ∈()(R )满足f x =f x (-)2-(),若函数x 1y=x+与y=f x ()图像的x 1y=f x x +()交点为(1x ,1y );(2x ,2y ),…,(m x ,m y ),则1()mi i i x y =+=∑ (A )0 (B)m (C)2m (D)4m第II 卷本卷包括必考题和选考题两部分,第13~21题为必考题,每个试题考生都必须作答。
2019年高考真题——理科数学(全国卷Ⅲ) Word版含解析
x1
由题意可得,
x2
5
5
5 6
x1
,解得
x2
24 5 29 5
,
所以 24 5
2
29 5
,解得 12 5
29 ,故○4 对;
10
令x
5
2
得
x
3 10
0
,∴图像中
y
轴右侧第一个最值点为最大值点,故○1 对;
∵ 2 x1, x2 ,∴ f (x) 在 0, 2 有 2 个或 3 个极小值点,故○2 错;
A. B. C. D. 答案: B 解析:
,且直线 ,且直线 ,且直线 ,且直线
, 是相交直线 , 是相交直线 , 是异面直线 , 是异面直线
因为直线 , 都是平面 内的直线,且不平行,即直线 , 是相交直线,设正方形
的边长为 ,则由题意可得:
,根据余弦定理
可得:
,
9.执行右边的程序框图,如果输出 为 A.
见解析
解析:
证明:(1)由题意知,
,
,又
,
平面 ,又
平面 , 平面
平面 .
(2)分别取 , 的中点为 , ,连结 , ,则
,
四边形 为棱形,且
60 ,
,
又
平面 ,
,即 平面 ,
以点 为坐标原点,
分别为 轴, 轴, 轴,建立空间直角坐标系,
,
,
,
设平面 的一个法向量为
,
,令 ,则
,
得到
,
平面 的一个法向量为
形
MF1F2
中
MF1 F1F2 8
,
MF2 2a MF1 4 , sin F1F2M
2019年高考理科数学全国卷Ⅲ理数(附参考答案和详解)
绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(全国卷Ⅲ)数学(理工农医类)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019全国卷Ⅲ·理)已知集合{1,0,1,2}A =-,2{|1}B x x =≤,则A B =I ()A.{1,0,1}-B.{0,1}C.{1,1}-D.{0,1,2}【解析】因为2{|1}{|11}B x x x x =≤=-≤≤,又{1,0,1,2}A =-,所以A B =I {1,0,1}-.故选A. 【答案】A2.(2019全国卷Ⅲ·理)若(1i)2i z +=,则z =()A.1i --B.1i -+C.1i -D.1i +【解析】由(1i)2i z +=,得2i 2i(1i)2i(1i)i(1i)1i 1i (1i)(1i)2z --====-=+++-.故选D 【答案】D3.(2019全国卷Ⅲ·理)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8【解析】设调查的100位学生中阅读过《西游记》的学生人数为x ,则806090x +-=,解得70x =,所以该校阅读过《西游记》的学生人数与该校总人数的比值的估计值为700.7100=,故选C.【答案】C4.(2019全国卷Ⅲ·理)24(12)(1)x x ++的展开式中3x 的系数为( )A.12B.16C.20D.24【解析】24(12)(1)x x ++的展开式中3x 的系数为31441C 2C 12⨯+=.故选A.【答案】A5.(2019全国卷Ⅲ·理)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =()A.16B.8C.4D.2【解析】设正数的等比数列{}n a 的公比为q ,则123111142111150,,,,340a a a q a q a q a q q a q a >⎧⎪++==>+⎨⎪+⎩解得11,2,a q =⎧⎨=⎩所以2314a a q ==.故选C.【答案】C6.(2019全国卷Ⅲ·理)已知曲线e ln x y a x x =+在点(1,e)a 处的切线方程为2y x b =+,则() A.e a =,1b =- B.e a =,1b =C.1e a -=,1b =D.1e a -=,1b =-【解析】e ln 1x y a x '=++,1|e 1x k y a ='==+,所以切线方程为e (e 1)(1)y a a x -=+-, 即(e 1)1y a x =+-.又因为切线方程为2y x b =+, 所以e 121a b +=⎧⎨=-⎩,,即1e a -=,1b =-.故选D.【答案】D7.(2019全国卷Ⅲ·理)函数3222x xx y -=+在[]6,6-的图象大致为( ) A. B.C. D.【解析】因为32(),[6,6]22x x x y f x x -==∈-+,所以332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,排除选项C.当4x =时,34424128(7,8)1221616y -⨯==∈++,排除选项A ,D.故选B.【答案】B8.(2019全国卷Ⅲ·理)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ABCD ⊥平面,M 是线段ED 的中点,则()A.BM EN =,且直线BM ,EN 是相交直线B.BM EN ≠,且直线BM ,EN 是相交直线C.BM EN =,且直线BM ,EN 是异面直线D.BM EN ≠,且直线BM ,EN 是异面直线【解析】取CD 的中点O ,连接EO ,ON .由ECD △是正三角形,平面ECD ⊥平面ABCD ,知EO ⊥平面ABCD ,所以EO ⊥CD ,EO ⊥ON .又N 是正方形ABCD 的中心,所以ON ⊥CD .以CD 的中点O 为原点,ON u u u r方向为x 正方向建立空间直角坐标系,如图所示. 不妨设2AD =,则E ,(0,1,0)N,12M ⎛ ⎝⎭,(1,2,0)B -,所以||2EN =,||BM =所以EN BM ≠. 连接BD ,BE ,因为点N 是正方形ABCD 的中心,所以点N 在BD 上,且BN DN =, 所以BM ,EN 是DBE △的中位线, 所以BM ,EN 必相交.故选B.【答案】B9.(2019全国卷Ⅲ·理)执行如图的程序框图,如果输入的ε为0.01,则输出s 的值等于()A.4122-B.5122-C.6122-D.7122-【解析】0.01ε=,11,0,011,,2x s s x x ε===+==<不成立;111,,24s x x ε=+=<不成立;1111,,248s x x ε=++=<不成立; 11111,,24816s x x ε=+++=<不成立; 111111,,2481632s x x ε=++++=<不成立; 1111111,,248163264s x x ε=+++++=<不成立; 11111111,,248163264128s x x ε=++++++=<成立, 此时输出6122s =-,故选C. 【答案】C10.(2019全国卷Ⅲ·理)双曲线C :22142x y -=的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若||||PO PF =,则PFO △的面积为( )C. D.【解析】双曲线22142x y -=的右焦点坐标为坐标为,一条渐近线的方程为y ,不妨设点P 在第一象限,由于||||PO PF =,则点P =PFO 的底边,所以它的面积为12=故选A. 【答案】A11.(2019全国卷Ⅲ·理)设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则()A.233231log 224f f f --⎛⎫⎛⎫⎛⎫ ⎪> ⎪> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B.233231log 224f f f --⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C.23323122log 4f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.23323122log 4f f f --⎛⎫⎛⎫⎛⎫ ⎪> ⎪> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【解析】因为()f x 是定义域为R 的偶函数,所以3331log (log 4)(log 4)4f f f ⎛⎫=-= ⎪⎝⎭,又因为23323(log 4)1220f -->>>>,且函数()f x 在(0,)+∞上单调递增减,所以23323122log 4f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C.【答案】C12.(2019全国卷Ⅲ·理)设函数πsin (0)5()x f x ωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[0,2π]有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点;②()f x 在(0,2π)有且仅有2个极小值点;③()f x 在π0,10⎛⎫ ⎪⎝⎭单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭.其中所有正确结论的编号是( )A.①④B.②③C.①②③D.①③④【解析】已知πsin (0)5()x f x ωω⎛⎫=+> ⎪⎝⎭在[0,2π]上有且仅有5个零点,如图,其图像的右端点的横坐标在区间[,)a b 上,此时()f x 在(0,2π)上有且仅有3个极大值点,()f x 在(0,2π)上可能有2或3个极小值点,所以①正确,②不正确;当[0,2π]x ∈时,πππ,2π555x ωω⎡⎤+∈+⎢⎥⎣⎦,由()f x 在[0,2π]上有且仅有5个零点可得ππ5π2π56ω≤+<,解得ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭,所以④正确;当π0,10x ⎛⎫∈ ⎪⎝⎭时,ππππ49ππ551051002x ωω<+<+<<,所以()f x 在π0,10⎛⎫⎪⎝⎭单调递增,所以③正确.故选D.【答案】D第Ⅱ卷二、填空题:本题共4小题,每小题5分。
【全国Ⅲ卷】(精校版)2019年高等学校招生全国统一考试理数试题(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x ,,则A BA .1,0,1B .0,1C .1,1D .0,1,22.若(1i)2i z ,则z=A .1iB .1+iC .1iD .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A .16B .8C .4D . 2 6.已知曲线e ln x y a x x 在点(1,ae )处的切线方程为y=2x+b ,则A .e 1a b ,B .a=e ,b=1C .1e 1a b ,D .1e a ,1b 7.函数3222x x x y 在6,6的图象大致为A .B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的为0.01,则输出s 的值等于A.4122 B. 5122 C. 6122 D. 712210.双曲线C :2242x y =1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .324B .322C .22D .3211.设f x 是定义域为R 的偶函数,且在0,单调递减,则A .f (log 314)>f (322)>f (232)B .f (log 314)>f (232)>f (322)C .f (322)>f (232)>f (log 314)D .f (232)>f (322)>f (log 314)。
2019年云南省高考理科数学试题与答案
云南省高考理科数学试题与答案(考试时间:120分钟 试卷满分:150分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={}22(,)1x y x y +=│,B={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .02.设复数z 满足(1+i)z=2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .805. 已知双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线方程为5y x =,且与椭圆221123x y += 有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f(x)=cos(x+3π),则下列结论错误的是 A .f(x)的一个周期为−2πB .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6πD .f(x)在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a=A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为A.3 B.CD.2二、填空题:本题共4小题,每小题5分,共20分。
2019年全国卷Ⅲ理科数学高考真题及答案解析(word精编)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =I A .{}1,0,1- B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.84.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12B .16C .20D .245.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A . 16B . 8C .4D . 26.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-7.函数3222x xx y -=+在[]6,6-的图象大致为 A . B .C .D .8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于A.4122-B.5122-C.6122-D.7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .324B .322C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④ 二、填空题:本题共4小题,每小题5分,共20分。
精品解析:2019年全国统一高考数学试卷(理科)(新课标Ⅲ)(解析版)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( ) A. {}1,0,1-B. {}0,1C. {}1,1-D. {}0,1,2【答案】A【解析】【分析】先求出集合B 再求出交集. 【详解】由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A .【点睛】本题考查了集合交集的求法,是基础题.2.若(1i)2i z +=,则z =( )A. 1i --B. 1+i -C. 1i -D. 1+i 【答案】D【解析】【分析】根据复数运算法则求解即可. 【详解】()(2i 2i 1i 1i 1i 1i 1i )()z -===+++-.故选D .【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题.3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A. 0.5B. 0.6C. 0.7D. 0.8【答案】C【解析】【分析】根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.4.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A. 12B. 16C. 20D. 24【答案】A【解析】【分析】 本题利用二项展开式通项公式求展开式指定项的系数.【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.5.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( )A. 16B. 8C. 4D. 2【答案】C【解析】【分析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值.【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C . 【点睛】应用等比数列前n 项和公式解题时,要注意公比是否等于1,防止出错.6.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A. ,1a e b ==-B. ,1a e b ==C. 1,1a e b -==D. 1,1a e b -==-【答案】D【解析】【分析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b .【详解】详解:/ln 1,x y ae x =++ /11|12x k y ae a e =-==+=∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.7.函数3222x x x y -=+在[]6,6-的图像大致为A. B. C.D.【答案】B【解析】【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f的近似值即可得出结果.【详解】设32()22x xxy f x-==+,则332()2()()2222x x x xx xf x f x----==-=-++,所以()f x是奇函数,图象关于原点成中心对称,排除选项C.又34424(4)0,22f-⨯=>+排除选项D;36626(6)722f-⨯=≈+,排除选项A,故选B.【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.8.如图,点N为正方形ABCD的中心,ECD∆为正三角形,平面ECD⊥平面,ABCD M是线段ED的中点,则()。
2019年高考理科数学全国卷3(附参考答案和详解)
!!请 考 生 在 第 $$$+ 题 中 任 选 一 题 作 答如 果 多 做则 按 所 做 的 第 一 题 计 分 !作 答 时 请 写 清 题 号 ! $$!$本 小 题 满 分 !# 分 %选 修 )2),坐 标 系 与 参 数 方 程
$ % 如 图#在 极 坐 标 系 3# 中#+ $$##%#0 槡$#) # $ % . 槡$#+) #5$$#%#弧+50#05 .!#.55所 在 圆 的 圆 心 分 别 是 $ % $!##%# !#$ #$!#%#曲 线 "! 是 弧+50#曲 线 "$ 是 弧
甲离子残留百分比直方图
乙离子残留百分比直方图 第 !7 题 图
记. 为事件,&乙离子残留在体内的百分比不低于"!"'#根 据直方图得到 1$.%的估计值为#!7#! $!%求 乙 离 子 残 留 百 分 比 直 方 图 中 '#( 的 值 $$%分别估计甲/乙离子残留 百 分 比 的 平 均 值$同 一 组 中 的 数 据 用 该 组 区 间 的 中 点 值 为 代 表 %!
记 2和 1红 楼 梦 2的 人 数 之 间 的 关 系 如 图 ,
易知调查的 !## 位 学 生 中 阅
读 过 1西 游 记 2的 学 生 人 数
为 7#!
所以该校阅读 过 1西 游 记2的
学生人数与该校学生总数比
值的估 计 值 为!7###*#!7!故
第(题图
选 %!
2!答 案 !;
解析!方法!,"!)"""#"!)"#2 的 展 开 式 中 "( 的 系 数 为 !
(!答 案 !% 解析!
2019年全国统一高考数学试卷(理科)(新课标ⅲ)-解析版
2019年全国统一高考数学试卷(理科)(新课标Ⅲ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合{1A =-,0,1,2},2{|1}B x x = ,则(A B = )A .{1-,0,1}B .{0,1}C .{1-,1}D .{0,1,2}【解答】解:因为{1A =-,0,1,2},2{|1}{|11}B x x x x ==- ,所以{1A B =- ,0,1},故选:A .2.(5分)若(1)2z i i +=,则(z =)A .1i--B .1i-+C .1i -D .1i+【解答】解:由(1)2z i i +=,得22(1)12i i i z i -==+1i =+.故选:D .3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A .0.5B .0.6C .0.7D .0.8【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,作出韦恩图,得:∴该学校阅读过《西游记》的学生人数为70人,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:700.7100=.故选:C .4.(5分)24(12)(1)x x ++的展开式中3x 的系数为()A .12B .16C .20D .24【解答】解:24(12)(1)x x ++的展开式中3x 的系数为:3311133414311121112C C C C ⨯⨯⨯⨯+⨯⨯⨯⨯=.故选:A .5.(5分)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a =)A .16B .8C .4D .2【解答】解:设等比数列{}n a 的公比为(0)q q >,则由前4项和为15,且53134a a a =+,有231111421111534a a q a q a q a q a q a ⎧+++=⎪⎨=+⎪⎩,∴112a q =⎧⎨=⎩,∴2324a ==,故选:C .6.(5分)已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则()A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-【解答】解:x y ae xlnx =+的导数为1x y ae lnx '=++,由在点(1,)ae 处的切线方程为2y x b =+,可得102ae ++=,解得1a e -=,又切点为(1,1),可得12b =+,即1b =-,故选:D .7.(5分)函数3222x xx y -=+在[6-,6]的图象大致为()A .B .C .D .【解答】解:由32()22x x x y f x -==+在[6-,6],知332()2()()2222x x x xx x f x f x ----==-=-++,()f x ∴是[6-,6]上的奇函数,因此排除C又f (4)1182721=>+,因此排除A ,D .故选:B .8.(5分)如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM EN =,且直线BM ,EN 是相交直线B .BM EN ≠,且直线BM ,EN 是相交直线C .BM EN =,且直线BM ,EN 是异面直线D .BM EN ≠,且直线BM ,EN 是异面直线【解答】解: 点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,BM ∴⊂平面BDE ,EN ⊂平面BDE ,BM 是BDE ∆中DE 边上的中线,EN 是BDE ∆中BD 边上的中线,∴直线BM ,EN 是相交直线,设DE a =,则2BD a =,2235244BE a a a =+=,62BM a ∴=,223144EN a a a =+=,BM EN ∴≠,故选:B .9.(5分)执行如图所示的程序框图,如果输入ò为0.01,则输出的s 值等于()A .4122-B .5122-C .6122-D .7122-【解答】解:第一次执行循环体后,1s =,12x =,不满足退出循环的条件0.01x <;再次执行循环体后,112s =+,212x =,不满足退出循环的条件0.01x <;再次执行循环体后,211122s =++,312x =,不满足退出循环的条件0.01x <;⋯由于610.012>,而710.012<,可得:当261111222s =++++⋯,712x =,此时,满足退出循环的条件0.01x <,输出2661111122222s =+++⋯=-.故选:C .10.(5分)双曲线22:142x y C -=的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若||||PO PF =,则PFO ∆的面积为()A .4B .2C .D .【解答】解:双曲线22:142x y C -=的右焦点为F 0),渐近线方程为:y =,不妨P 在第一象限,可得2tan 2POF ∠=,P ,所以PFO ∆的面积为:1224=.故选:A .11.(5分)设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则()A .233231(log )(2)(2)4f f f -->>B .233231(log (2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>【解答】解:()f x 是定义域为R 的偶函数∴331(log )(log 4)4f f =,33log 4log 31>= ,2303202221--<<<<=,23323022log 4--∴<<<()f x 在(0,)+∞上单调递减,∴233231(2)(2)()4f f f log -->>,故选:C .12.(5分)设函数()sin(0)5f x x πωω=+>,已知()f x 在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π有且仅有3个极大值点②()f x 在(0,2)π有且仅有2个极小值点③()f x 在(0,)10π单调递增④ω的取值范围是12[5,29)10其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④【解答】解:当[0x ∈,2]π时,[55x ππω+∈,25ππω+,()f x 在[0,2]π有且仅有5个零点,5265πππωπ∴+< ,∴1229510ω<,故④正确,因此由选项可知只需判断③是否正确即可得到答案,下面判断③是否正确,当(0,10x π∈时,[55x ππω+∈,(2)]10ωπ+,若()f x 在(0,)10π单调递增,则(2)102ωππ+<,即3ω<,1229510ω<,故③正确.故选:D .二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={﹣1,0,1,2},B={x|x2≤1},则A∩B=()A.{﹣1,0,1}B.{0,1}C.{﹣1,1}D.{0,1,2} 2.(5分)若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.84.(5分)(1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.245.(5分)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.26.(5分)已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣1 7.(5分)函数y=在[﹣6,6]的图象大致为()A.B.C.D.8.(5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.(5分)执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()A.2﹣B.2﹣C.2﹣D.2﹣10.(5分)双曲线C:﹣=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点.若|PO|=|PF|,则△PFO的面积为()A.B.C.2D.311.(5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)12.(5分)设函数f(x)=sin(ωx+)(ω>0),已知f(x)在[0,2π]有且仅有5个零点.下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点②f(x)在(0,2π)有且仅有2个极小值点③f(x)在(0,)单调递增④ω的取值范围是[,)其中所有正确结论的编号是()A.①④B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)已知,为单位向量,且•=0,若=2﹣,则cos<,>=.14.(5分)记S n为等差数列{a n}的前n项和.若a1≠0,a2=3a1,则=.15.(5分)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为.16.(5分)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD ﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18.(12分)△ABC的内角A、B、C的对边分别为a,b,c.已知a sin=b sin A.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.19.(12分)图1是由矩形ADEB、Rt△ABC和菱形BFGC组成的一个平面图形,其中AB =1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B﹣CG﹣A的大小.20.(12分)已知函数f(x)=2x3﹣ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为﹣1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.21.(12分)已知曲线C:y=,D为直线y=﹣上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
[选修4-4:坐标系与参数方程](10分)22.(10分)如图,在极坐标系Ox中,A(2,0),B(,),C(,),D(2,π),弧,,所在圆的圆心分别是(1,0),(1,),(1,π),曲线M1是弧,曲线M2是弧,曲线M3是弧.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=,求P的极坐标.[选修4-5:不等式选讲](10分)23.设x,y,z∈R,且x+y+z=1.(1)求(x﹣1)2+(y+1)2+(z+1)2的最小值;(2)若(x﹣2)2+(y﹣1)2+(z﹣a)2≥成立,证明:a≤﹣3或a≥﹣1.2019年全国统一高考数学试卷(理科)(新课标Ⅲ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)【考点】1E:交集及其运算.【分析】解求出B中的不等式,找出A与B的交集即可.【解答】解:因为A={﹣1,0,1,2},B={x|x2≤1}={x|﹣1≤x≤1},所以A∩B={﹣1,0,1},故选:A.【点评】本题考查了两个集合的交集和一元二次不等式的解法,属基础题.2.(5分)【考点】A5:复数的运算.【分析】利用复数的运算法则求解即可.【解答】解:由z(1+i)=2i,得z==1+i.故选:D.【点评】本题主要考查两个复数代数形式的乘法和除法法则,虚数单位i的幂运算性质,属于基础题.3.(5分)【考点】B2:简单随机抽样.【分析】作出维恩图,得到该学校阅读过《西游记》的学生人数为70人,由此能求出该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值.【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,作出维恩图,得:∴该学校阅读过《西游记》的学生人数为70人,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:=0.7.故选:C.【点评】本题考查该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值的求法,考查维恩图的性质等基础知识,考查推理能力与计算能力,属于基础题.4.(5分)【考点】DA:二项式定理.【分析】利用二项式定理、排列组合的性质直接求解.【解答】解:(1+2x2)(1+x)4的展开式中x3的系数为:1×+2×=12.故选:A.【点评】本题考查展开式中x3的系数的求法,考查二项式定理、排列组合的性质等基础知识,考查推理能力与计算能力,属于基础题.5.(5分)【考点】88:等比数列的通项公式.【分析】设等比数列{a n}的公比为q(q>0),根据条件可得,解方程即可.【解答】解:设等比数列{a n}的公比为q(q>0),则由前4项和为15,且a5=3a3+4a1,有,∴,∴,故选:C.【点评】本题考查了等差数列的性质和前n项和公式,考查了方程思想,属基础题.6.(5分)【考点】6H:利用导数研究曲线上某点切线方程.【分析】求得函数y的导数,可得切线的斜率,由切线方程,可得ae+1+0=2,可得a,进而得到切点,代入切线方程可得b的值.【解答】解:y=ae x+xlnx的导数为y′=ae x+lnx+1,由在点(1,ae)处的切线方程为y=2x+b,可得ae+1+0=2,解得a=e﹣1,又切点为(1,1),可得1=2+b,即b=﹣1,故选:D.【点评】本题考查导数的运用:求切线的斜率,考查直线方程的运用,考查方程思想和运算能力,属于基础题.7.(5分)【考点】3A:函数的图象与图象的变换.【分析】由y=的解析式知该函数为奇函数可排除C,然后计算x=4时的函数值,根据其值即可排除A,D.【解答】解:由y=f(x)=在[﹣6,6],知f(﹣x)=,∴f(x)是[﹣6,6]上的奇函数,因此排除C又f(4)=,因此排除A,D.故选:B.【点评】本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.8.(5分)【考点】LO:空间中直线与直线之间的位置关系.【分析】推导出BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,从而直线BM,EN是相交直线,设DE=a,则BD=,BE==,从而BM≠EN.【解答】解:∵点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,∴BM⊂平面BDE,EN⊂平面BDE,∵BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,∴直线BM,EN是相交直线,设DE=a,则BD=,BE==,∴BM=a,EN==a,∴BM≠EN,故选:B.【点评】本题考查两直线的位置关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.9.(5分)【考点】EF:程序框图。