初高中衔接教材含答案

合集下载

初升高衔接教材答案英语

初升高衔接教材答案英语

初升高衔接教材答案英语尊敬的学生和家长:欢迎使用我们的初升高衔接教材英语答案。

本答案集旨在帮助学生巩固所学知识,提升英语能力,为高中阶段的学习打下坚实的基础。

请确保在独立完成练习后,再参考以下答案进行核对。

Unit 1: Greetings and IntroductionsExercise 1: Fill in the blanks1. Hello, my name is ______.2. Nice to meet you, I'm ______.3. How do you do? I'm ______.4. It's a pleasure to meet you, my name is ______.Answers:1. (Your Name)2. (Your Name)3. (Your Name)4. (Your Name)Exercise 2: Match the words with their meanings1. Greeting - a2. Introduction - b3. Pleasant - c4. Name - dAnswers:1. a2. b3. c4. dUnit 2: Daily RoutinesExercise 1: Complete the sentences with the correct form of the verbs1. I usually ______ (wake) up at 6:30 in the morning.2. She ______ (brush) her teeth after breakfast.3. He ______ (go) to school by bus every day.4. We ______ (have) lunch at school.Answers:1. wake up2. brushes3. goes4. haveExercise 2: Choose the correct answer1. What time do you ______ every morning?a. get upb. wake upc. stand upd. rise upAnswers:1. bUnit 3: School SubjectsExercise 1: Translate the following sentences into English1. 我喜欢数学。

初升高衔接教材语文答案

初升高衔接教材语文答案

初升高衔接教材语文答案语文开学第一课一、论述类文本阅读(本题共3小题)1.【答案】C【解析】文中原句“读书是要清算过去人类成就的总账,把几千年的人类思想经验在短短的几十年内重温一遍,把过去无数人辛苦获来的知识教训,集中到读者一个人身上去受用”表述的是“读书”,而非“书籍”。

2.【答案】B【解析】此项表述的是文化学术与学问的关系,而非读书与学问的关系。

3.【答案】D【解析】A.原文说的是“皓首穷年才能治一经,书虽读得少,读一部却就是一部”,并不是一生只研究一部经书。

B.原文说的是“其中真正不可不读的基本著作往往不过数千部甚至于数部”,并不是说必须读的著作只有几部。

C.所读之书要选得精,并不代表一定要选择经典作品阅读。

语短情长,组词有方——短语的基本类型一、语言文字运用(本题共2小题)1.【答案】“严重沙化”应改为“沙化严重”。

【解析】观察画线句发现,除“严重沙化”是状中偏正短语外,其前后“气候恶劣”“粮食短缺”“交通不便”皆为主谓短语,四个短语并列,应保持结构一致,据此可知该句子有语序不当的问题,可将“严重沙化”改为“沙化严重”。

2.【答案】世人的印象里,他一头灰白乱蓬蓬的头发,眼窝深陷,胡髭密集,神情严肃,好像一直都在沉思;而实际上,他除了聪明外,还活泼可爱,喜欢卓别林的默剧,回答高中生的数学问题,面对镜头吐舌搞怪……关于爱因斯坦,在他的相对论之外,还有太多等待我们去了解。

【解析】结合本课思维方法,综合运用多种类型的短语。

木叶华滋,句法生趣——句子成分的划分一、语言文字运用(本题共3小题)1.【答案】A【解析】先为句子划分成分:①(我们)的生活||幸福。

②我们||生活得〈幸福〉。

③幸福||来之〈不易〉。

④(幸福)生活||[万年]长。

由此可知,①中“幸福”是谓语,陈述主语“生活”的状态;②中“幸福”在“生活”谓语之后,由“得”连接,是典型的补语;③和④虽然“幸福”都在句首,但在③中直接作主语,在④中作定语修饰“生活”。

文学类文本阅读-初高中语文衔接教材(解析版)

文学类文本阅读-初高中语文衔接教材(解析版)

一、认识文学类文本高考文学类文本阅读,主要是考察小说、散文,人物传记、新闻等等一些体裁。

近几年高考主要是考察小说和散文两种体裁,尤其是以小说居多。

二、悟文学之美,探内在规律——探求文学类文本阅读方法表达技巧的基本常识(一)表达方式1.记叙顺叙:按照时间或空间顺序较清楚地进行记叙。

倒叙:从结尾或情节中的某一段写起,造成悬念,引人人胜。

插叙:对主要情节或中心事件做必要的铺垫照应,补充说明,使情节更加完整,结构更加严密,内容更加充实丰满。

补叙:对上文内容加以补充解释,对下文做某些交代。

可起到补充、丰富、深化原叙述的作用。

2.描写(1)肖像描写:描写相貌、神情、打扮,揭示身份个性,甚至还可以暗示人物际遇。

(2)动作描写:描写人物的行为举止,表现人物心理,刻画人物性格。

(3)语言描写:描写人物之间的对话,表现人物性格特点。

(4)心理描写:描写人物内心世界,表现人物的思想感情与性格。

(5)环境描写(6)细节描写:描写小举动,小事情,刻画人物性格,反映人物心理活动,可以生动传神地表现人物个性特点。

(7)描写角度:①动景与静景,②远景与近景,③仰望、平视、俯看,④整体(面)与局部(点),⑤视觉、听觉、味觉与触觉。

3.抒情:直接抒情和间接抒情。

4.议论5.叙述人称(1)第一人称:①叙述亲切自然,便于直接抒情,能自由自在地表达思想感情,②能给读者以真实、生动之感。

③第一人称在结构上有线索作用。

(鲁迅《藤野先生》《纪念刘和珍君》)(2)第二人称:①拉近距离,形成对话,便于作者直接抒发抒情,③有时运用人格化手法,增强文章的抒情性和亲切感。

(朱自清《绿》)(3)第三人称:①能直接客观地展现丰富多彩的生活,不受时间、空间的限制,②可以灵活自由地反映生活。

6.常见的表现手法(1)虚实结合:把抽象的述说与具体的描写结合起来,或者是把眼前现实生活的描写与回忆、想象结合起来。

“实”是指客观存在的实象、事实、实境。

虚”包括三种类型:①虚幻世界和梦境,②回忆往事、历史。

初高中数学衔接教材word版配答案

初高中数学衔接教材word版配答案

数学目录阅读材料:1)高中数学与初中数学的联系2)如何学好高中数学3)熟知高中数学特点是高一数学学习关键4)高中数学学习方法和特点5)怎样培养好对学习的良好的习惯?第一课: 绝对值第二课: 乘法公式第三课: 二次根式(1)第四课: 二次根式(2)第五课: 分式第六课: 分解因式(1)第七课: 分解因式(2)第八课:根的判别式第九课:根与系数的关系(韦达定理)(1)第十课:根与系数的关系(韦达定理)(2)第十一课:二次函数y=ax2+bx+c的图像和性质第十二课:二次函数的三种表示方式第十三课:二次函数的简单应用第十四课:分段函数第十五课: 二元二次方程组解法第十六课: 一元二次不等式解法(1)第十七课: 一元二次不等式解法(2)第十八课:国际数学大师陈省身第十九课: 中华民族是一个具有灿烂文化和悠久历史的民族第二十课: 方差在实际生活中的应用第二十一课: 平行线分线段成比例定理第二十二课:相似形第二十三课:三角形的四心第二十四课:几种特殊的三角形第二十五课:圆第二十六课:点的轨迹1.高中数学与初中数学的联系同学们,首先祝贺你们进入高中数学殿堂继续学习。

在经历了三年的初中数学学习后,大家对数学有了一定的了解,对数学思维有了一定的雏形,在对问题的分析方法和解决能力上得到了一定的训练。

这也是我们继续高中数学学习的基础。

良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。

高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想、分类讨论思想、等价转化思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。

高考题中与函数思想方法有关的习题占整个试题的60%以上。

1、有良好的学习兴趣两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。

”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。

初高中衔接教材

初高中衔接教材

专题二 分解因式
因式分解就是把一个多项式化成几个因式积的形式.我们已经学习过的方法有: 提公因式法; 公式法。

还有如下三种常用方法: 十字相乘法;分组分解法; 方程求根法.
1.十字相乘法
例1 分解因式:
()37212+-x x ()57622--x x ()6232-+y y 练习: 将下列二次三项式进行分解因式:
()2x x ++7612 ()1013322--x x
2.分组分解法
例2 :把下列各多项式分解因式
()cy by ay cx bx ax +++++1 ()32232y y x xy x -+-
3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.
若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式
2(0)ax bx c a ++≠就可分解为12()()a x x x x --.
例3 把下列关于x 的二次多项式分解因式:
(1)221x x +-; (2)2244x xy y +-.
练 习
1.选择题:
多项式22
215x xy y --的一个因式为 ( )
(A )25x y - (B )3x y - (C )3x y + (D )5x y -
2.分解因式:
(1)x 2+6x +8; (2)8a 3-b 3;
(3)x 2-2x -1; (4)4(1)(2)x y y y x -++-.
参考答案:
1. B
2.(1)(x +2)(x +4) (2)22(2)(42)a b a ab b -++
(3)(12)(12)x x ---+ (4)(2)(22)y x y --+.。

初高中数学衔接教材:第3课 因式分解(1)及答案

初高中数学衔接教材:第3课 因式分解(1)及答案

因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中它都有着重要的作用.因式分解的方法较多,除了初中教材中涉及到的提取公因式法和运用公式法(只讲平方差公式和完全平方公式)外,还有运用公式法(立方和、立方差公式)、十字相乘法、分组分解法等.因式分解的问题形式多样,富有综合性与灵活性,因此,因式分解也是一种重要的基本技能.一、提取公因式法例13x2-6x+3.二、公式法例2(1)8+x3;(2)x2+2xy+y2-z2.三、分组分解法例3(1)2ax-10ay+5by-bx;(2)x3-x2+x-1.四、配方法例4(1)x2+6x-16;(2)x2+2xy-3y2.五、拆项添项法例5(1)x3-3x2+4;(2)x3-2x+1.六、求根公式法例6(1)x2-x-1;(2)2x2-3x-1.七、十字相乘法(1)x2+(p+q)x+pq型式子的因式分解我们来讨论x2+(p+q)x+pq这类二次三项式的因式分解.这类式子在许多问题中经常出现,它的特点是(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.对这个式子先去括号,得到x2+(p+q)x+pq=x2+px+qx+pq,于是便会想到继续用分组分解法分解因式,即x2+px+qx+pq=(x 2+px )+(qx +pq )=x (x +p )+q (x +p )=(x +p )(x +q ).因此,x 2+(p +q )x +pq =(x +p )(x +q ).运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.例7 把下列各式分解因式:(1)x 2+3x +2;(2)x 2-x -20;(3)x 2-52x +1;(4)x 2+11x +24. 八、ax 2+bx +c 型因式分解我们知道,(a 1x +c 1)(a 2x +c 2)=a 1a 2x 2+a 1c 2x +a 2c 1x +c 1c 2=a 1a 2x 2+(a 1c 2+a 2c 1)x +c 1c 2.反过来,就得到a 1a 2x 2+(a 1c 2+a 2c 1)x +c 1c 2=(a 1x +c 1)(a 2x +c 2).我们发现,二次项的系数a 分解成a 1×a 2,常数项c 分解成c 1×c 2,并且把a 1,a 2,c 1,c 2排列如图:,这里按斜线交叉相乘,再相加,就得到a 1c 2+a 2c 1,如果它正好等于ax 2+bx +c 的一次项系数b ,那么ax 2+bx +c 就可以分解成(a 1x +c 1)(a 2x +c 2),其中a 1,c 1位于上图上一行,a 2,c 2位于下一行.像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解.例8 (1)6x 2+5x +1;(2)6x 2+11x -7;(3)42x 2-33x +6;(4)2x 4-5x 2+3;(5)2t 6-14t 3-16.1.把下列各式分解因式:(1)a 3+27;(2)8-m 3;(3)-27x 3+8;(4)-18p 3-164q 3;(5)8x 3y 3-1125;(6)1216x 3y 3+127c 3.2.把下列各式分解因式:(1)xy3+x4;(2)x n+3-x n y3;(3)a2(m+n)3-a2b3;(4)y2(x2-2x)3+y2.3.把下列各式分解因式:(1)x2-3x+2;(2)x2+37x+36;(3)x2+11x-26;(4)x2-6x-27;(5)m2-4mn-5n2;(6)(a-b)2+11(a-b)+28.4.把下列各式分解因式:(1)ax5-10ax4+16ax3;(2)a n+2+a n+1b-6a n b2;(3)(x2-2x)2-9;(4)x4-7x2-18;(5)6x2-7x-3;(6)t6-9t3+8;(7)7(a+b)2-5(a+b)-2;(8)(6x2-7x)2-25.5.把下列各式分解因式:(1)3ax-3ay+xy-y2;(2)8x3+4x2-2x-1;(3)5x2-15x+2xy-6y;(4)4a2-20ab+25b2-36;(5)4xy+1-4x2-y2;(6)a4b+a3b2-a2b3-ab4;(7)x6-y6-2x3+1;(8)x2(x+1)-y(xy+x).答案精析例1 解 3(x 2-2x +1)=3(x -1)2例2 解 (1)(x +2)(x 2-2x +4).(2)(x +y )2-z 2=(x +y +z )(x +y -z ).例3 解 (1)2a (x -5y )-b (x -5y )=(x -5y )(2a -b ).(2)x 2(x -1)+(x -1)=(x -1)(x 2+1).例4 解 (1)(x +3)2-25=(x +8)(x -2).(2)(x +y )2-(2y )2=(x +3y )(x -y ).例5 解 (1)x 3-2x 2-(x 2-4)=x 2(x -2)-(x -2)(x +2)=(x -2)2(x +1).(2)(x 3-x )-(x -1)=(x -1)(x +1+52)(x --1+52). 例6 解 (1)(x -1+52)(x -1-52). (2)(x -3+174)(x -3-174). 例7 解 (1)(x +1)(x +2);(2)(x +4)(x -5); (3)(x -2)(x -12);(4)(x +8)(x +3). 例8 解 (1)(2x +1)(3x +1);(2)(2x -1)(3x +7);(3)(6x -3)(7x -2);(4)2(x +62)(x -62)(x +1)·(x -1);(5)2(t -2)(t 2+2t +4)(t +1)(t 2-t +1). 强化训练1.解 (1)(a +3)(a 2-3a +9);(2)-(m -2)(m 2+2m +4);(3)(2-3x )(9x 2+6x +4);(4)-18(p +q 2)·(p 2-12pq +q 24);(5)(2xy -15)(4x 2y 2+25xy +125);(6)(16xy +13c )(136x 2y 2-118xyc +c 29)=127(12xy +c )(x 2y 24-12xyc +c 2). 2.解 (1)x (x +y )(x 2-xy +y 2) (2)x n (x -y )(x 2+xy +y 2) (3)a 2(m +n -b )[(m +n )2+b (m +n )+b 2] (4)y 2(x -1)2(x 4-4x 3+3x 2+2x +1).3.解 (1)(x -1)(x -2);(2)(x +1)(x +36);(3)(x +13)(x -2);(4)(x +3)(x -9);(5)(m +n )(m -5n);(6)(a-b+4)(a-b+7).4.解(1)ax3(x-2)(x-8);(2)a n(a+3b)(a-2b);(3)(x+1)(x-3)(x2-2x+3);(4)(x+3)(x-3)·(x2+2);(5)(3x+1)(2x-3);(6)(t-1)(t-2)(t2+t+1)(t2+2t+4);(7)[7(a+b)+2][(a+b)-1];(8)(2x+1)(3x-5)(6x2-7x+5).5.解(1)(x-y)(3a+y);(2)(2x-1)(2x+1)2;(3)(x-3)(5x+2y);(4)(2a-5b+6)(2a-5b-6);(5)(1+2x-y)(1-2x+y);(6)ab(a-b)(a+b)2;(7)(x3+y3-1)(x3-y3-1);(8)x(x-y)(x+y+1).。

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初高中数学衔接教材1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式2 2 (a b)(a b) a b ;(2)完全平方公式 2 2 2(a b) a 2 a b .b我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2 2 3 3(a b) (a a b b ) a ;b(2)立方差公式 2 2 3 3(a b) (a a b b ) a ;b(3)三数和平方公式2 2 2 2 (a b c ) a b c 2 ( a b b c ;)a c(4)两数和立方公式 3 3 2 2 3(a b) a 3 a b 3 a b ;b(5)两数差立方公式3 3 2 2 (a b) a 3 a b 3 a b .b 对上面列出的五个公式,有兴趣的同学可以自己去证明.例 1 计算:2 2 (x 1)(x 1)(x x 1)(x x 1).解法一: 原式= 2 2 2 2(x 1) (x 1) x = 2 4 2 (x 1)(x x 1)= 6 1 x .解法二: 原式=2 2 (x 1)(x x 1)(x 1)(x x1)= 3 3 (x 1)(x1)= 6 1x .例 2 已知 a b c 4,ab bc ac 4,求2 2 2 a b c 的值.解:2 2 2 ( )22( ) 8a b c a b c ab bc ac .练 习1.填空:(1)1 1 1 12 2a b ( b a) ( ); 9 4 2 3(2)(4 m 22 ) 16m 4m ( ) ;(3 )2 2 2 2 (a 2b c) a 4b c ( ) . 2.选择题:(1)若2 1x mx k 是一个完全平方式,则k 等于()2(A )2m (B)142m (C)132m (D)1162m(2)不论 a,b 为何实数, 2 2 2 4 8a b a b 的值()(A )总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:2 2(1)x -3x+2;(2)x +4x-12;2 ( ) 2(3)x a b xy aby ;(4)xy 1 x y .2解:(1)如图1.1-1,将二次项 x 分解成图中的两个x 的积,再将常数项 2 分解成-1初中升高中数学教材变化分析2与-2 的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x -3x+2 中的一次项,所以,有2-3x+2=(x-1)(x-2).xx 1-1 1 -2 x -ay-1x -2 x1 -2 6 -by1图 1.1-1 图 1.1-3 图1.1-4图 1.1-2说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1 中的两个x 用 1 来表示(如图1.1-2 所示).(2)由图 1.1-3,得2x +4x-12=(x-2)( x+6).(3)由图 1.1-4,得2 ( ) 2x a b xy aby =(x ay)( x by)x -1(4)xy 1 x y =xy+(x-y)-1=(x-1) (y+ 1) (如图 1.1-5 所示).课堂练习一、填空题:y图 1.1-511、把下列各式分解因式:2 x(1) 5 6x __________________________________________________ 。

初升高化学衔接教材高一化学附练习及答案

初升高化学衔接教材高一化学附练习及答案

初高中衔接——化学基本概念和原理【本讲主要内容】化学基本概念和原理【知识掌握】【知识点精析】1. 物质的变化及性质(1)物理变化:没有新物质生成的变化。

①宏观上没有新物质生成,微观上没有新分子生成。

②常指物质状态的变化、形状的改变、位置的移动等。

例如:水的三态变化、汽油挥发、干冰的升华、木材做成桌椅、玻璃碎了等等。

(2)化学变化:有新物质生成的变化,也叫化学反应。

①宏观上有新物质生成,微观上有新分子生成。

②化学变化常常伴随一些反应现象,例如:发光、发热、产生气体、改变颜色、生成沉淀等。

有时可通过反应现象来判断是否发生了化学变化或者产物是什么物质。

(1)混合物和纯净物混合物:组成中有两种或多种物质。

常见的混合物有:空气、海水、自来水、土壤、煤、石油、天然气、爆鸣气及各种溶液。

纯净物:组成中只有一种物质。

①宏观上看有一种成分,微观上看只有一种分子;②纯净物具有固定的组成和特有的化学性质,能用化学式表示;③ 纯净物可以是一种元素组成的(单质),也可以是多种元素组成的(化合物)。

(2)单质和化合物单质:只由一种元素组成的纯净物。

可分为金属单质、非金属单质及稀有气体。

化合物:由两种或两种以上的元素组成的纯净物。

(3)氧化物、酸、碱和盐氧化物:由两种元素组成的,其中有一种元素为氧元素的化合物。

氧化物可分为金属氧化物和非金属氧化物;还可分为酸性氧化物、碱性氧化物和两性氧化物;酸:在溶液中电离出的阳离子全部为氢离子的化合物。

酸可分为强酸和弱酸;一元酸与多元酸;含氧酸与无氧酸等。

碱:在溶液中电离出的阳离子全部是氢氧根离子的化合物。

碱可分为可溶性和难溶性碱。

盐:电离时电离出金属阳离子和酸根阴离子的化合物。

盐可分为正盐、酸式盐和碱式盐。

4. 化学用语⎪⎪⎩⎪⎪⎨⎧反应类型化学方程式化学式元素符号(1)相对原子质量和相对分子质量、分子—原子运动论、核外电子的排布规律(2)元素符号的意义 ① 某一种元素。

② 这种元素的一个原子。

衔接教材一本通初升高答案

衔接教材一本通初升高答案

衔接教材一本通初升高答案尊敬的教师和同学们:在初升高的过渡阶段,学生们面临着学科知识的深化和学习方法的转变。

为了帮助学生更好地适应这一变化,我们编写了这本《衔接教材一本通初升高答案》。

本书旨在提供全面的学习指导和答案解析,帮助学生巩固基础知识,提高解题能力。

第一部分:数学1. 代数基础- 一元一次方程的解法- 二元一次方程组的解法- 多项式的运算和因式分解2. 几何初步- 平面图形的性质- 立体图形的认识- 几何证明的基本方法3. 函数与方程- 函数的概念与性质- 一次函数和二次函数的图像与性质- 函数的单调性和极值第二部分:语文1. 文言文阅读- 文言文词汇的积累- 文言文句式的理解- 文言文篇章的翻译与分析2. 现代文阅读- 现代文的阅读技巧- 现代文的文学鉴赏- 现代文的写作训练3. 写作指导- 记叙文的写作方法- 议论文的写作技巧- 说明文的写作要点第三部分:英语1. 词汇积累- 高频词汇的记忆方法- 词根词缀的运用- 同义词和反义词的辨析2. 语法精讲- 时态和语态的运用- 非谓语动词的用法- 从句的构成与应用3. 阅读理解- 快速阅读技巧- 细节理解与推理判断- 长难句的解析第四部分:物理1. 力学基础- 力的基本概念- 牛顿运动定律- 功和能的关系2. 电磁学初步- 电场和磁场的基本概念 - 欧姆定律- 电磁感应现象3. 物理实验- 基本实验操作- 实验数据的处理- 实验误差的分析第五部分:化学1. 化学基本概念- 原子和分子- 化学键和化合物- 化学反应的类型2. 化学计算- 化学方程式的平衡- 摩尔质量的计算- 溶液的浓度计算3. 化学实验- 实验室安全规则- 常见化学实验的操作- 实验现象的观察与记录结语希望这本《衔接教材一本通初升高答案》能成为同学们学习的好帮手,帮助大家顺利过渡到高中学习阶段。

我们鼓励同学们在学习过程中不断提问、探索和实践,以培养独立思考和解决问题的能力。

初高中物理衔接教材:衔接点06 自由落体运动和竖直上抛运动(解析版)

初高中物理衔接教材:衔接点06  自由落体运动和竖直上抛运动(解析版)

衔接点06 自由落体运动和竖直上抛运动1、自由落体运动(1)条件:物体只受重力,从静止开始下落.(2)运动性质:初速度v0=0,加速度为重力加速度g的匀加速直线运动.(3)基本规律①速度公式:v=gt.②位移公式:h=21gt2.③速度位移关系式:v2=2gh.2、竖直上抛运动(1)条件:物体只受重力,初速度不为0,且方向竖直向上.(2)运动特点:加速度为g,上升阶段做匀减速直线运动,下降阶段做自由落体运动.(3)基本规律①速度公式:v=v0-gt.②位移公式:h=v0t-21gt2.③速度位移关系式:v2-v20=-2gh.④上升的最大高度:gvH22=.⑤上升到最高点所用时间:gvt0=.1.某升降机用绳子系着一个重物,以10 m/s的速度匀速竖直上升,当到达40 m高度时,知识点梳理绳子突然断开,重物从绳子断开到落地过程(不计空气阻力,重力加速度g 取10 m/s 2) A .距地面的最大高度为45 m B .在空中的运动时间为5 s C .落地速度的大小为10 m/s D .落地速度的大小为30 m/s 【答案】AD【解析】物体上升过程,根据速度位移关系公式,有:-v 02=2(-g )h ,解得2201052210v h m m g ⨯===;故物体距离地面的最大高度为45m ,故A 正确;根据位移时间关系公式,有:h =v 0t −12gt 2,代入数据得:-40=10t-12×10×t 2,解得:t=4s 或者t=-2s ;故B 错误;根据速度时间关系公式,有:v=v 0-gt=10-10×4=-30m/s ,故C 错误,D 正确;故选AD .2.一物体做自由落体运动,取g =10 m/s 2。

该物体 A .第2 s 末的速度为20 m/s B .第2 s 末的速度为40 m/s C .第2 s 内下落的距离为15 m D .第2 s 内下落的距离为25 m 【答案】AC【解析】AB.根据20m/s v gt ==,A 正确B 错误。

2024年暑期初升高数学衔接教材-专项训练(精编版配答案)

2024年暑期初升高数学衔接教材-专项训练(精编版配答案)

2024年暑期初升高数学衔接教材-专项训练现有初高中数学知识存在以下“脱节”1.立方和与差的公式初中已删去不讲,而高中的运算还在用。

2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。

3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。

4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。

配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。

5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。

6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。

7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。

方程、不等式、函数的综合考查常成为高考综合题。

8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。

另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。

目录1.1数与式的运算1.1.1绝对值1.1.2乘法公式1.1.3二次根式1.1.4分式1.2分解因式2.1一元二次方程2.1.1根的判别式2.1.2根与系数的关系(韦达定理)2.2二次函数2.2.1二次函数y=ax2+bx+c的图像和性质2.2.2二次函数的三种表示方式2.2.3二次函数的简单应用2.3方程与不等式2.3.1二元二次方程组解法2.3.2一元二次不等式解法3.1相似形3.1.1.平行线分线段成比例定理3.1.2相似形3.2三角形3.2.1三角形的“四心”3.2.2几种特殊的三角形3.3圆3.3.1直线与圆,圆与圆的位置关系3.3.2点的轨迹1.1数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.例1解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->,即24x -+>4,解得x <0,又x <1,∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4,解得x >4.又x ≥3,\点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式‘由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.x <0,或x >4.练习1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________.2.选择题:下列叙述正确的是()(A )若a b =,则a b =(B )若a b >,则a b >(C )若a b <,则a b <(D )若a b =,则a b =±3.化简:|x -5|-|2x -13|(x >5).1.1.2.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式33223()33a b a a b ab b +=+++;(5)两数差立方公式33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=.练习1.填空:(1)221111()9423a b b a -=+();(2)(4m +22)164(m m =++);(3)2222(2)4(a b c a b c +-=+++).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于()(A )2m (B )214m (C )213m(D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值()(A )总是正数(B )总是负数(C )可以是零(D )可以是正数也可以是负数1.1.3.二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b +等是无理式,212x ++,22x y ++等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,,-等等.一般地,,+与-,b +与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2的意义a ==,0,,0.a a a a ≥⎧⎨-<⎩例1将下列式子化为最简二次根式:(1(20)a ≥;(30)x <.解:(1=(20)aa ==≥;(3220)x x x ==-<.例2(3-.解法一:(3=393+-=1)6+=12+.解法二:(3÷==12+.例3试比较下列各组数的大小:(1;(2解:(1)∵1==,1==,>,∴-.(2)∵1==又4>22,∴6+4>6+22,<.例4化简:20042005+⋅-.解:20042005+⋅-=20042004+⋅-⋅=2004⎡⎤+⋅⋅⎣⎦=20041⋅-=-.例5化简:(1;(21)x <<.解:(1)原式===2=2=-.(2)原式1x x=-,∵01x <<,∴11x x>>,所以,原式=1x x-.例6已知x y ==22353x xy y -+的值.解:∵2210x y +=+=,1xy =,∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.练习1.填空:(1)=_____;(2(x =-x 的取值范围是_____;(3)-_____;(4)若2x =+=________.2.选择题:=()(A )2x ≠(B )0x >(C )2x >(D )02x <<3.若1b a =+,求a b +的值.4.比较大小:2-35-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质:A A M B B M⨯=⨯;A A MB B M÷=÷.上述性质被称为分式的基本性质.2.繁分式像ab c d+,2m n pm n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解:∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩解得2,3A B ==.例2(1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯;(3)证明:对任意大于1的正整数n ,有11112334(1)2n n +++<⨯⨯+.(1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯11111(1()()223910=-+-++-1110=-=910.(3)证明:∵1112334(1)n n +++⨯⨯+=111111(()()23341n n -+-++-+=1121n -+,又n ≥2,且n 是正整数,∴1n +1一定为正数,∴1112334(1)n n +++⨯⨯+<12.例3设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.解:在2c 2-5ac +2a 2=0两边同除以a 2,得2e 2-5e +2=0,∴(2e -1)(e -2)=0,∴e =12<1,舍去;或e =2.∴e =2.练习1.填空题:对任意的正整数n ,1(2)n n =+(112n n -+);2.选择题:若223x y x y -=+,则xy=()(A )1(B )54(C )45(D )653.正数,x y 满足222x y xy -=,求x yx y-+的值.4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1A 组1.解不等式:(1)13x ->;(2)327x x ++-<;(3)116x x -++>.2.已知1x y +=,求333x y xy ++的值.3.填空:(1)1819(2(2+-=________;(22,则a 的取值范围是________;(3________.B组1.填空:(1)12a =,13b =,则2223352a aba ab b -=+-________;(2)若2220x xy y +-=,则22223x xy y x y++=+____;2.已知:11,23x y ==的值.C组1(1=,则()(A )a b <(B )a b >(C )0a b <<(D )0b a <<(2)计算等于()(A )(B )(C )(D )2.解方程2212(3()10x x x x +-+-=.3.计算:1111132435911++++⨯⨯⨯⨯.4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14.1.1.1.绝对值1.(1)5±;4±(2)4±;1-或32.D 3.3x -181.1.2.乘法公式1.(1)1132a b -(2)11,24(3)424ab ac bc--2.(1)D(2)A1.1.3.二次根式1.(12-(2)35x ≤≤(3)-(42.C 3.14.> 1.1.4.分式1.122.B3.1-4.99100习题1.1A 组1.(1)2x <-或4x >2)-4<x <3(3)x 3,或x >32.13.(1)2-(2)11a -≤≤(31-B 组1.(1)37(2)52,或-152.4.C 组1.(1)C(2)C2.121,22x x ==3.36554.提示:1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++1.2分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1分解因式:(1)x 2-3x +2;(2)x 2+4x -12;(3)22()x a b xy aby -++;(4)1xy x y -+-.解:(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6).(3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by --(4)1xy x y -+-=xy +(x -y )-1=(x -1)(y+1)(如图1.2-5所示).2.提取公因式法与分组分解法例2分解因式:(1)32933x x x +++;(2)222456x xy y x y +--+-.解:(1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3把下列关于x 的二次多项式分解因式:(1)221x x +-;(2)2244x xy y +-.解:(1)令221x x +-=0,则解得11x =-+21x =--,-1-2x x图1.2-1-1-211图1.2-2-2611图1.2-3-ay -byx x图1.2-4-11x y图1.2-5∴221x x +-=(1(1x x ⎡⎤⎡⎤--+---⎣⎦⎣⎦=(11x x +-++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y +++.练习1.选择题:多项式22215x xy y --的一个因式为()(A )25x y -(B )3x y-(C )3x y+(D )5x y-2.分解因式:(1)x 2+6x +8;(2)8a 3-b 3;(3)x 2-2x -1;(4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1)31a +;(2)424139x x -+;(3)22222b c ab ac bc ++++;(4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+;(2)23x --;(3)2234x xy y +-;(4)222(2)7(2)12x x x x ---+.3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状.4.分解因式:x 2+x -(a 2-a ).1.2分解因式1.B2.(1)(x +2)(x +4)(2)22(2)(42)a b a ab b -++(3)(11x x --+(4)(2)(22)y x y --+.习题1.21.(1)()()211a a a +-+(2)()()()()232311x x x x +-+-(3)()()2b c b c a +++(4)()()3421y y x y -++-2.(1)5522x x ⎛⎫⎛+--- ⎪ ⎪⎪⎝⎭⎝⎭;(2)(x x ---;(3)2727333x y x y ⎛⎫⎛⎫-+++ ⎪⎪ ⎪⎪⎝⎭⎝⎭;(4)()3(1)(11x x x x -+---+.3.等边三角形4.(1)()x a x a -++ 2.1一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224(24b b acx a a -+=.①因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-±;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根x 1=x 2=-2b a;(3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有(1)当Δ>0时,方程有两个不相等的实数根x 1,2=42b a-±;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a;(3)当Δ<0时,方程没有实数根.例1判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x 2-3x +3=0;(2)x 2-ax -1=0;(3)x 2-ax +(a -1)=0;(4)x 2-2x +a =0.解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根.(2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根12a x +=,22a x -=.(3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以,①当a =2时,Δ=0,所以方程有两个相等的实数根x 1=x 2=1;②当a ≠2时,Δ>0,所以方程有两个不相等的实数根x 1=1,x 2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ),所以①当Δ>0,即4(1-a )>0,即a <1时,方程有两个不相等的实数根11x =21x =-;②当Δ=0,即a=1时,方程有两个相等的实数根x1=x2=1;③当Δ<0,即a>1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a的取值的变化而变化,于是,在解题过程中,需要对a的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2根与系数的关系(韦达定理)若一元二次方程ax2+bx+c=0(a≠0)有两个实数根.所以,一元二次方程的根与系数之间存在下列关系:如果ax2+bx+c=0(a≠0)的两根分别是x1,x2,那么x1+x2=ba ,x1·x2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x2+px+q=0,若x1,x2是其两根,由韦达定理可知x1+x2=-p,x1·x2=q,即p=-(x1+x2),q=x1·x2,所以,方程x2+px+q=0可化为x2-(x1+x2)程x2+px+q=0的两根,出k的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k的值.解法一:∵2是方程的一个根,∴5×22+k×2-6=0,∴k=-7.所以,方程就为5x2-7x-6=0,解得x1=2,x2=-3 5.所以,方程的另的平方和比两个根的积大21得到关于m的方程,从而解得m的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x1,x2是方程的两根,由韦达定理,得x1+x2=-2(m-2),x1·x2=m2+4.∵x12+x22-x1·x2=21,∴(x1+x2)2-3x1·x2=21,即[-2(m-2)]2-3(m2+4)=21,化简,得m2-16m-17=0,解得m=-1,或m=17.当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;当m=17时,方程为x2+30x+293=0,Δ=302-4×1×293<0,不合题意,舍去.综上,m=17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元大方向个数分别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x,y,则x+y=4,①xy=-12.②由①,得y=4-x,代入②,得x(4-x)=-12,即x2-4x-12=0,∴x 1=-2,x 2=6.∴112,6,x y =-⎧⎨=⎩或226,2.x y =⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程x 2-4x -12=0的两个根.解这个方程,得x 1=-2,x 2=6.所以,这两个数是-2和6.说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷.例5若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根.(1)求|x 1-x 2|的值;(2)求221211x x +的值;(3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-)22221212122222221212125325()2()3()2113722439()9(24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x 13+x 23=(x 1+x 2)(x 12-x 1x 2+x 22)=(x 1+x 2)[(x 1+x 2)2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158.说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2ax 2+bx +c =0(a ≠0),则,22b x a--=,∴|x 1-x 2|=4||||a a ==.于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则|x 1-x 2|=||a (其中Δ=b 2-4ac ).今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0,①且Δ=(-1)2-4(a -4)>0.②由①得a <4,由②得a <174.∴a 的取值范围是a <4.练习1.选择题:(1)方程2230x k -+=的习题2.1A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是()(A )-3(B )3(C )-2(D )2(2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7;②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3x 2-7=0的两根之和为0,两根之积为73-;④方程3x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是()(A )1个(B )2个(C )3个(D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是()(A )0(B )1(C )-1(D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k =.(2)方程2x 2-x -4=0的两根为α,β,则α2+β2=.(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是.(4)方程2x 2+2x -1=0的两根为x 1和x 2,则|x 1-x 2|=.3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1)x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B组1.选择题:若关于x 的方程x 2+(k 2-1)x +k +1=0的两根互为相反数,则k 的值为()(A )1,或-1(B )1(C )-1(D )02.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于.(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是.3.已知关于x 的方程x 2-kx -2=0.4.-1提示:(x 1-3)(x 2-3)=x 1x 2-3(x 1+x 2)+9习题2.12.(1)2006提示:∵m +n =-2005,mn =-1,∴m 2n +mn 2-mn =mn (m +n -1)=-1×(-2005-1)=2006.(2)-3提示;∵a +b =-1,ab =-1,∴a 3+a 2b +ab 2+b 3=a 2(a +b )+b 2(a +b )=(a +b )(a 2+b 2)=(a +b )[(a +b )2-2ab ]=(-1)×[(-1)2-2×(-1)]=-3.3.(1)∵Δ=(-k )2-4×1×(-2)=k 2+8>0,∴方程一定有两个不相等的实数根.(2)∵x 1+x 22,∴2k >-2,即k >-1.4.(1)|x 1-x 2|=||a ,122x x +=2b a -;(2)x 13+x 23=333abc b a -.5.∵|x 1-x 2|2==,∴m =3.把m =3代入方程,Δ>0,满足题意,∴m =3.C 组1.(1)B(2)A(3)C提整数的实数k 的整数值为-2,-3和-5.(3)当k =-2时,x 1+x 2=1,①x 1x 2=18,②①2÷②,得1221x x x x ++2=8,即16λλ+=,∴2610λλ-+=,∴3λ=±4.(1)Δ=22(1)20m -+>;(2)∵x 1x 2=-24m ≤0,∴x 1≤0,x 2≥0,或x 1≥0,x 2≤0.①若x 1≤0,x 2x 2=-,∴x 1+x 2=2,∴m -2=2,∴m =4.此时,方程为x 2-2x -4=0,∴11x =+,21x =-②若x 1≥0,x 2≤0,则-x 2=x 1+2,∴x 1+x 2=-2,∴m -2=-2,∴m =0.此时,方程为x 2+2=0,∴x 1=0,x 2=-2.5.设方程的两根为x 1,x 2,则x 1+x 2=-1,x 1x 2=a ,由一根大于1、另一根小于1,得(x 1-1)(x 2-1)2.2.1二次函数y =ax 2+bx +c 的图像和性质问题1函数y =ax 2与y =x 2的图象之间存在怎样的关?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象.先列表:x …-3-2-10123…x 2…9410149…2x 2…18822818从表中不难看出,要得到2x 2的值,只要把相应的x 2的值扩大两倍就可以了.再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.问题2函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.yy =2x 2y =2(x +1)2y =2(x +1)2+1y =x 2y =2x2图2.2-1x O y通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+bx a+224b a )+c -24b a 224()24b b aca x a a-=++,所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b a-时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x=-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2b a-时,函数取最大值y =244ac b a-.上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.例1求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.解:∵y =-3x 2-6x +1=-3(x +1)2+4,∴函数图象的开口向例2某种产品的成本是120元/件,试销阶段每件产品的售价x (元)与产品的日销售量y (件)之间关系如下表所示:x /元130150165y /件705035若日销售量y 是销售价x 的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?分析:由于每天的利润=日销售量y ×(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.解:由于设每天的利润为z (元),则z =(-x +200)(x -120)=-x 2+320x -24000=-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.例3把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.解法一:y =x 2+bx +c =(x +2b )224bc +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y x c =+++-+的图像,也就是函数y =x 2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩解得b =-8,c =14.解法二:把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,等价于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x 2+bx +c 的图像.由于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图b =-8,c =都是x =a 时,函数取=0时,函数取最小值y =0①②③说明:在本例中,利用了分类讨论的方法,对a的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题.练习1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是()(A)y=2x2(B)y=2x2-4x+2(C)y=2x2-1(D)y=2x2-4x(2)函数y=2(x-1)2+2是将函数y=2x2()(A)向左平移1个单位、再向上平移2个单位得到的(B)向右平移2个单位、再向上平移1个单位得到的(C)向下平移2个单位、再向右平移1个单位得到的(D)向上平移2个单位、再向右平移1个单位得到的2.填空题(1)二次函数y=2x2-mx+n图象的顶点坐标为(1,-2),则m=,n=.(2)已知二次函数y=x2+(m-2)x-2m,当m=时,函数图象的顶点在y轴上;当m=时,函数图象的顶点在x轴上;当m=时,函数图象经过原点.(3)函数y=-3(x+2)2+5的图象的开口向,对称轴为,顶点坐标为;当x=时,函数取最值y=;当x时,y随着x的增大而减小.3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象.(1)y=x2-2x-3;(2)y=1+6x-x2.4.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3.2.2.2二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k(a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点;反过来,若抛物线y =ax 2+bx +c (a ≠0)与x 轴没有交点,则Δ<0也成立.于是,若抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点A (x 1,0),B (x 2,0),则x 1,x 2是方程ax 2+bx +c =0的两根,所以x 1+x 2=b a -,x 1x 2=ca,即b a =-(x 1+x 2),ca=x 1x 2.所以,y =ax 2+bx +c =a (2b c x x a a++)=a [x 2-(x 1+x 2)x +x 1x 2]=a (x -x 1)(x -x 2).由上面的推导过程可以得到下面结论:若抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (x 1,0),B (x 2,0)两点,则其函数关系式可以表示为y =a (x -x 1)(x -x 2)(a ≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.例1已知某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1),求二次函数的解析式.分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a .解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y =x +1上,所以,2=x +1,∴x =1.∴顶点坐标是(1,2).设该二次函数的解析式为2(2)1(0)y a x a =-+<,∵二次函数的图像经过点(3,-1),∴21(32)1a -=-+,解得a =-2.∴二次函数的解析式为22(2)1y x =--+,即y =-2x 2+8x -7.说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.例2已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,求此二次函数的表达式.分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x 轴的交点坐标,于是可以将函数的表达式设成交点式.解法一:∵二次函数的图象过点(-3,0),(1,0),∴可设二次函数为y =a (x +3)(x -1)(a ≠0),展开,得y =ax 2+2ax -3a ,顶点的纵坐标为2212444a a a a--=-,由于二次函数图象的顶点到x 轴的距离2,∴|-4a |=2,即a =12±.所以,二次函数的表达式为y =21322x x +-,或y =-21322x x -+.分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x =-1,又由顶点到x 轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式.解法二:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x =-1.又顶点到x 轴的距离为2,∴顶点的纵坐标为2,或-2.于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2,由于函数图象过点(1,0),∴0=a (1+1)2+2,或0=a (1+1)2-2.∴a =-12,或a =12.所以,所求的二次函数为y =-12(x +1)2+2,或y =12(x +1)2-2.说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.例3已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.解:设该二次函数为y =ax 2+bx +c (a ≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得22,8,842,a b c c a b c -=-+⎧⎪-=⎨⎪=++⎩解得a =-2,b =12,c =-8.所以,所求的二次函数为y =-2x 2+12x -8.通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式?练习1.选择题:(1)函数y =-x 2+x -1图象与x 轴的交点个数是()(A )0个(B )1个(C )2个(D )无法确定(2)函数y =-12(x +1)2+2的顶点坐标是()(A )(1,2)(B )(1,-2)(C )(-1,2)(D )(-1,-2)2.填空:(1)已知二次函数的图象经过与x 轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y =a(a ≠0).(2)二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为.3.根据下列条件,求二次函数的解析式.(1)图象经过点(1,-2),(0,-3),(-1,-6);(2)当x =3时,函数有最小值5,且经过点(1,11);(3)函数图象与x 轴交于两点(1-2,0)和(1+2,0),并与y 轴交于(0,-2).2.2.3二次函数的简单应用一、函数图象的平移变换与对称变换1.平移变换问题1在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可.例1求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位;(2)向上平移3个单位,向左平移2个单位.分析:由于平移变换只改变函数图象的位置而不改变其形状(即不改变二次项系数),所以只改变二次函数图象的顶点位置(即只改变一次项和常数项),所以,首先将二次函数的解析式变形为顶点式,然后,再依据平移变换后的二次函数图象的顶点位置求出平移后函数图像所对应的解析式.解:二次函数y =2x 2-4x -3的解析式可变为y =2(x -1)2-1,其顶点坐标为(1,-1).(1)把函数y =2(x -1)2-1的图象向右平移2个单位,向下平移1个单位后,其函数图象的顶点坐标是(3,-2),所以,平移后所得到的函数图象对应的函数表达式就为y =2(x -3)2-2.(2)把函数y =2(x -1)2-1的图象向上平移3个单位,向左平移2个单位后,其函数图象的顶点坐标是(-1,2),所以,平移后所得到的函数图象对应的函数表达式就为y =2(x +1)2+2.2.对称变换问题2在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,具有这样的特点——只改变函数图象的位置或开口方向、不改变其形状,因此,在研究二次函数图象的对称变换问题时,关键是要抓住二次函数的顶点位置和开口方向来解决问题.例2求把二次函数y =2x 2-4x +1的图象关于下列直线对称后所得到图象对应的函数解析式:(1)直线x =-1;(2)直线y =1.解:(1)如图2.2-7,把二次函数y =2x 2-4x +1的图象关于直线x =-1作对称变换后,只改变图象的顶点位置,不改变其形状.由于y =2x 2-4x +1=2(x -1)2-1,可知,函数y =2x 2-4x +1图象的顶点为A (1,-1),所以,对称后所得到图象的顶点为A 1(-3,1),所以,二次函数y =2x 2-4x +1的图象关于直线x =-1对称后所得到图象的函数解析式为y =2(x +3)2-1,即y =2x 2+12x +17.(2)如图2.2-8,把二次函数y =2x 2-4x +1的图象关于直线x =-1作对称变换后,只改变图象的顶点位置和开口方向,不改变其形状.由于y =2x 2-4x +1=2(x -1)2-1,可知,函数y =2x 2-4x +1图象的顶点为A (1,-1),所以,对称后所得到图象的顶点为B (1,3),且开口向下,所以,二次函数y =2x 2-4x +1的图象关于直线y =1对称后所得到图象的函数解析式为y =-2(x-1)2+3,即y =-2x 2+4x +1.二、分段函数一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,这种函数,叫作分段函数.例3在国内投递外埠平信,每封信不超过20g 付邮资80分,超过20g 不超过40g 付邮资160分,超过40g 不超过60g 付邮资240分,依此类推,每封x g(0<x ≤100)的信应付多少邮资(单位:分)?写出函数表达式,作出函数图象.分析:由于当自变量x 在各个不同的范围内时,应付邮资的数量是不同的.所xyOx =-1A (1,-1)A 1(-3,-1)图2.2-7xyOy =1A (1,-1)B (1,3)图2.2-8。

初高中数学衔接教材:第2课 数与式的运算(2)及答案

初高中数学衔接教材:第2课 数与式的运算(2)及答案

一、比例与齐次式我们在式的运算中,常常会碰到比例关系或齐次等式、齐次分式,这就要求我们掌握比例关系具有哪些性质和它的一般转化方向;齐次式常常会同除以某一个数,转化过程在本质上起到消元作用,从而会出现整体思想.例1 已知三角形的三边长之比为3∶4∶5.求证:此三角形为直角三角形.例2 已知:a b =c d. 求证:(1)a -b b =c -d d ;(2)a +b b =c +d d; (3)a b =c d =a +c b +d .例3 已知△ABC 中,有AB AD =AC AE ,求证:AD DB =AE EC . 例4 已知:a +b =1且1b =2a,求a 和b . 例5 已知y =2x (x ≠0).(1)求x 2-3xy +y 2xy +y 2的值. (2)求证:x 2+32xy -y 2=0. 例6 已知:x ∶y ∶z =1∶2∶3.求x 3-yz 2+3z 3xyz的值.二、二次根式 一般地,形如a (a ≥0)的代数式叫做二次根式.其运算性质如下:1.(a )2=a (a ≥0).2.a 2=|a |.3.ab =a ·b (a ≥0,b ≥0).4. b a =b a(a >0,b ≥0). 例7 将下列式子化为最简根式. (1)12b ;(2)a 2b (a ≥0); (3)4x 6y (x <0).例8 试比较下列各组数的大小. (1)12-11和11-10; (2)26+4和22- 6. 例9 化简:(3+2)2 012·(3-2)2 013.例10 化简:(1)9-45;(2) x 2+1x 2-2(0<x <1). 例11 已知:x =3-23+2,y =3+23-2. 求:3x 2-5xy +3y 2的值.例12 已知:x >0,y >0,x +2xy -15y =0. 求x -y x +xy的值. 例13 化简:x 2+6x +9+x 2-4x +4.1.若a b +c =b c +a =c a +b=k ,则k =________. 2.已知:x 2-3xy +2y 2=0,则x y=________. 3.已知x ∶y =1∶2,求:x 2-3xy +4y 2x 2+y 2的值.4.已知:x 2+5xy -6y 2=0,求:2x +3y 2x -y的值.5.已知三角形的三边之比为5∶12∶13.求证:此三角形为直角三角形.6.已知:a 2=b 2+c 2(a >0,b >0,c >0).(1)b a =12,求c a 的值.(2)b a ≥12,求c a 的取值范围.7.已知:a 2+b 2=c 2(a >0,b >0,c >0).(1)c a =2,求b a的值. (2)c a ≥2,求b a的取值范围.8.已知a ∶b ∶c =2∶3∶4,求a 2+b 2-c 22ab的值.9.化简下列各式.(1) 8-28; (2)12+1+13+2+14+3+…+1100+99.10.已知:x =3-52,求x 2x 4+x 2+1的值.11.计算:23×6-(2-5)2+15+2.12.已知:x =a +1a (a >0),化简:x +2+x -2x +2-x -2.答案精析例1 证明 设三角形的三边分别为a ,b ,c ,∵a ∶b ∶c =3∶4∶5,设a =3k ,b =4k ,c =5k ,k >0,∵a 2+b 2=9k 2+16k 2=(5k )2=c 2,∴三角形为直角三角形.例2 证明 (1)∵a b =c d ,∴a b -1=c d -1,a -b b =c -d d. (2)∵a b +1=c d +1,∴a +b b =c +d d. (3)设a b =c d=k ,则a =kb ,c =kd , a +cb +d =kb +kd b +d=k ,∴a b =c d =a +c b +d . 例3 证明 ∵AB AD =AC AE ,由例2可知:AB -AD AD =AC -AE AE ,∴DB AD =EC AE ,即AD DB =AE EC . 例4 解 ∵1b =2a =1+2a +b =3,∴b =13,a =23. 例5 (1)解 原式=1-3y x +(y x )2y x +(y x)2=-16. (2)证明 原式=x 2[1+32(y x )-(y x)2]=0. 例6 解 设x =k ,y =2k ,z =3k ,原式=k 3-2k ·(3k )2+3(3k )3k ·2k ·3k =323. 例7 解 (1)23b (2)a b (3)-2x 3y .例8 解 (1)∵12+11>11+10>0, ∴112+11<111+10,∴12-11<11-10.(2)∵22-6=222+6,又∵4>22, ∴24+6<222+6=22- 6. 例9 解 原式=(3+2)2 012(3-2)2 012(3-2)=3- 2.例10 解 (1)原式= 22-45+52 =(2-5)2=|2-5|=5-2. (2)原式=(x -1x )2=|x -1x |=1x -x (∵0<x <1). 例11 解 xy =1,x +y =10,原式=289.例12 解 x +2xy -15y =0,(x +5y )(x -3y )=0,∵x +5y >0,∴x =9y ,原式=23. 例13 解 原式=|x +3|+|x -2|=⎩⎪⎨⎪⎧ -2x -1 (x ≤-3)5 (-3<x <2)2x +1 (x ≥2).强化训练1.122.2或1 3.解 由y =2x ,得:原式=x 2-3x ×(2x )+4(2x )2x 2+(2x )2=115. 4.解 由条件得:x =-6y 或x =y ,∴原式=913或5. 5.证明 设a ∶b ∶c =5∶12∶13,则a =5k ,b =12k ,c =13k (k >0) a 2+b 2=(25+144)k 2=(13k )2=c 2.所以三角形为直角三角形.6.解 (1)c a =32 (2)0<c a ≤327.解 (1)c 2a 2=2,1+(b a )2=2,(b a )2=1,b a=1(∵a >0,b >0) (2)c 2a 2≥2,1+b 2a 2≥2,(b a )2≥1,b a≥1(∵a >0,b >0). 8.解 设a =2k ,b =3k ,c =4k ,原式=-14.9.解 (1)7-1;(2)910.解 x 2=7-352,1x 2=7+352,x 2+1x 2=7,原式=1x 2+1x 2+1=18. 11.解 原式=23×2×3-|5-2|+(5-2)=2. 12.解 x +2=(a +1a )2=a +1a,x -2=|a -1a |, a >1时,x -2=a -1a ,原式=a +1a +(a -1a )a +1a -(a -1a)=a .a =1时,x =2,原式=1. 0<a <1时,x -2=1a -a ,原式=a +1a +1a -a a +1a +a -1a =1a .∴原式=⎩⎪⎨⎪⎧ a a >11 a =11a 0<a <1。

初高中数学衔接教材 §2.1 一元二次方程(含答案)

初高中数学衔接教材 §2.1 一元二次方程(含答案)

初高中数学衔接教材 2.1 一元二次方程2.1.1根的判别式{情境设置:可先让学生通过具体实例探索二次方程的根的求法,如求方程的根: (1)0322=-+x x ;(2)0122=++x x ;(3)0322=++x x 。

} 用配方法可把一元二次方程ax 2+bx +c =0(a ≠0)变为2224()24b b ac x a a -+=①a ≠0,∴4a 2>0。

于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-±;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根x 1=x 2=-2b a;(3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根。

由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示。

综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有(1)当Δ>0时,方程有两个不相等的实数根,x 1,2(2)当Δ=0时,方程有两个相等的实数根,x 1=x 2=-2ba; (3)当Δ<0时,方程没有实数根。

例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根。

(1)x 2-3x +3=0;(2)x 2-ax -1=0;(3) x 2-ax +(a -1)=0;(4)x 2-2x +a =0。

解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根。

(2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根12a x +=,22a x -=(3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以,①当a =2时,Δ=0,所以方程有两个相等的实数根x 1=x 2=1; ②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根x 1=1,x 2=a -1。

第19讲 共点力平衡——2022年【衔接教材】初高中物理完美衔接(解析版)

第19讲 共点力平衡——2022年【衔接教材】初高中物理完美衔接(解析版)

第19讲共点力平衡图甲、乙、丙、丁分别画出了重力为G 的木棒在力F 1和F 2的共同作用下处于静止状态。

观察四个图中的作用力的作用点的特点,找出它们的区别,总结什么是共点力。

提示:图丁中,三个力共同作用在同一点上;图甲中,三个力虽然不作用在同一点上,但它们的延长线交于一点,具有以上两个特点的力叫作共点力。

图乙、丙中的力不但没有作用在同一点上,它们的延长线也不能交于一点,所以不是共点力。

一、共点力几个力如果都作用在物体的同一点,或者它们的作用线相交于一点,这几个力叫作共点力.二、共点力平衡的条件1.平衡状态:物体受到几个力作用时,保持静止或匀速直线运动的状态.2.在共点力作用下物体平衡的条件是合力为0.即F 合=0x 合=0y 合=0,其中F x 合和F y 合分别是将力进行正交分解后,在x 轴和y 轴上所受的合力.例题1.重力为G 的体操运动员在进行自由体操比赛时,有如图所示的比赛动作,当运动员竖直倒立保持静止状态时,两手臂对称支撑,夹角为θ,则()A .当θ=60°时,运动员单手对地面的压力大小为G 2B .当θ=120°时,运动员单手对地面的压力大小为GC .当θ不同时,运动员受到的合力不同D .当θ不同时,运动员与地面之间的相互作用力不相等【答案】A【解析】运动员受力模型如图所示,地面对手的支持力F 1+F 2=G ,则F 1=F 2=G 2,即运动员单手对地面的压力大小为G 2,与夹角θ无关,选项A 正确,选项B 错误;不管夹角如何,运动员处于静止状态,受到的合力为零,与地面之间的相互作用力总是等大,选项C 、D 错误。

对点训练1.如图所示,在水平天花板上用绳AC 、BC 和CD 吊起一个物体,使其处于静止状态,结点为C ,绳子的长度分别为AC =4dm ,BC =3dm ,悬点A 、B 间距为5dm 。

则AC 绳、BC 绳、CD 绳上的拉力大小之比为()A .40∶30∶24B .4∶3∶5C .3∶4∶5D .因CD 绳长未知,故无法确定【答案】C【解析】对三条绳的结点C 进行受力分析,如图所示,由共点力平衡的条件知,AC 、BC 绳上拉力的合力与CD 绳上的拉力等大反向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄冈中学初高中数学衔接教材{新课标人教A版}100页超权威超容量完整版典型试题举一反三理解记忆成功衔接{黄冈中学教材系列}第一部分如何做好初高中衔接 1-3页第二部分现有初高中数学知识存在的“脱节” 4页第三部分初中数学与高中数学衔接紧密的知识点 5-9页第四部分分章节讲解 10-66页第五部分衔接知识点的专题强化训练 67-100页第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。

但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。

在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。

相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。

渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。

造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。

下面就对造成这种现象的一些原因加以分析、总结。

希望同学们认真吸取前人的经验教训,搞好自己的数学学习。

一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。

不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。

1确实,初、高中的数学语言有着显著的区别。

初中的数学主要是以形象、通俗的语言方式进行表达。

而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。

2 思维方法向理性层次跃迁。

高中数学思维方法与初中阶段大不相同。

初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。

即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。

因此,初中学习中习惯于这种机械的、便于操作的定势方式。

高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。

当然,能力的发展是渐进的,不是一朝一夕的。

这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。

高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。

3 知识内容的整体数量剧增。

高中数学在知识内容的“量”上急剧增加了。

例如:高一《代数》第一章就有基本概念52个,数学符号28个;《立体几何》第一章有基本概念37个,基本公理、定理和推论21个;两者合在一起仅基本概念就达89个之多,并集中在高一第一学期学习,形成了概念密集的学习阶段。

加之高中一年级第一学期只有七十多课时,辅助练习、消化的课时相应地减少了。

使得数学课时吃紧,因而教学进度一般较快,从而增加了教与学的难度。

这样,不可避免地造成学生不适应高中数学学习,而影响成绩的提高。

这就要求:第一,要做好课后的复习工作,记牢大量的知识。

第二,要理解掌握好新旧知识的内在联系,使新知识顺利地同化于原有知识结构之中。

第三,因知识教学多以零星积累的方式进行的,当知识信息量过大时,其记忆效果不会很好,因此要学会对知识结构进行梳理,形成板块结构,实行“整体集装”。

如表格化,使知识结构一目了然;类化,由一例到一类,由一类到多类,由多类到统一;使几类问题同构于同一知识方法。

第四,要多做总结、归类,建立主体的知识结构网络。

二不良的学习状态1 学习习惯因依赖心理而滞后。

初中生在学习上的依赖心理是很明显的。

第一,为提高分数,初中数学教师将各种题型都一一罗列,学生依赖于教师为其提供套用的“模子”;第二,家长望子成龙心切,回家后辅导也是常事。

升入高中后,教师的教学方法变了,套用的“模子”没有了,家长辅导的能力也跟不上了。

许多同学进入高中后,还象初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。

表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。

2 思想松懈。

有些同学把初中的那一套思想移植到高中来。

他们认为自已在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,有的还是重点中学里的重点班,因而认为读高中也不过如此。

高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。

存有这种思想的同学是大错特错的。

有多少同学就是因为高一、二不努力学习,临近高考了,发现自己缺漏了很多知识再弥补后悔晚矣。

3 学不得法。

老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。

而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆;课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。

还有些同学晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

4 不重视基础。

一些“自我感觉良好”的同学,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海。

到正规作业或考试中不是演算出错就是中途“卡壳”。

5 进一步学习条件不具备。

高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。

这就要求必须掌握基础知识与技能为进一步学习作好准备。

高中数学很多地方难度大、方法新、分析能力要求高。

如二次函数值的求法、实根分布与参变量的讨论、,三角公式的变形与灵活运用、空间概念的形成、排列组合应用题及实际应用问2题等。

有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求。

三科学地进行学习高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。

1 培养良好的学习习惯。

反复使用的方法将变成人们的习惯。

什么是良好的学习习惯?良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

(1)制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动主动学习和克服困难的内在动力。

但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。

(2)课前自学是上好新课、取得较好学习效果的基础。

课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。

自学不能走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。

(3)上课是理解和掌握基础知识、基本技能和基本方法的关键环节。

“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。

(4)及时复习是高效率学习的重要一环。

通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。

(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。

这一过程也是对意志毅力的考验,通过运用使对所学知识由“会”到“熟”。

(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。

解决疑难一定要有锲而不舍的精神。

做错的作业再做一遍。

对错误的地方要反复思考。

实在解决不了的要请教老师和同学,并要经常把易错的知识拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,使所学到的知识由“熟”到“活”。

(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。

小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。

经常进行多层次小结,能对所学知识由“活”到“悟”。

(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。

课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。

2 循序渐进,防止急躁。

由于同学们年龄较小,阅历有限,为数不少的同学容易急躁。

有的同学贪多求快,囫囵吞枣;有的同学想靠几天“冲刺”一蹴而就;有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。

同学们要知道,学习是一个长期地巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。

为什么高中要学三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。

3 注意研究学科特点,寻找最佳学习方法。

数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题、解决问题的能力的重任。

它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。

学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。

对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。

华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。

方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。

3第二部分,现有初高中数学知识存在以下“脱节”1.立方和与差的公式初中已删去不讲,而高中的运算还在用。

2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。

3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。

4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。

配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。

5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。

6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。

相关文档
最新文档