第17章 生存分析 医学统计学
医学统计学--生存分析
肾移植术后生存时间、心脏起搏器的保留时间、
种植牙的保留时间等。 2.疾病危险因素分析和疾病预后的影响因素分析。 如肺癌发病危险因素分析、肾移植手术效果的影 响因素分析等。
3.特殊人群卫生保健措施的效果评价。如中老 年糖尿病预防效果评价、青少年控制吸烟的健康 教育干预试验效果评价、食管癌高发区干预措施 的效果评价、不同种类宫内节育器的节育效果评 价(宫内保留时间或有效避孕时间)、某疫苗接种 效果评价(观察抗体滴度了解免疫力持续时间或
生存概率 pt
0.9286 0.9231 0.9167 0.9091 0.9000 0.8889 0.8750 0.8571 0.8333 1.0000 0.7500 1.0000 0.5000 1.0000
生存率 S(t)
0.9268 0.8572 0.7858 0.7144 0.6429 0.5715 0.5001 0.4286 0.3571 0.3571 0.2678 0.2678 0.1339 0.1339
生存率(survival rate, survival function)表示 观察对象经历tk个单位时间段后仍存活的可能性。
0 S (t ) 1 。若无截尾数据,则
tk时刻仍存活的例数 S (tk ) P(T tk ) 观察总例数
若有截尾数据,须分时段计算生存概率。假 定观察对象在各个时段的生存事件独立,应用概 率乘法定理:
2. 某时点生存率不能反映整个生存过程,比较时可 能出现不正确的结论。
分析生存资料的统计方法称为生存分析 (survival analysis)。它是将事件的结局和发生 这种结局所经历的时间两个因素综合起来分析 的一种统计方法。它能够处理截尾数据, 并对整个生存过程进行分析或比较。
医学统计学-生存分析
A meta-analysis is a two-stage process. 提取单个研究的数据,并估计其进行点估计和可信区间; 决定是否合适将结果汇总,若是,计算其汇总值。
Meta分析不仅是简单将单个研究的数据累加
Meta分析
系统综述的特征:最佳证据
*
规范的临床问题
1
全面、完整的资料
2
对原始研究的质量评价,纳入合格的研究
结果解读(2)
结果解读:生存函数
Gehan比分检验:其基本思想是,在假定无效假设(两总体生存曲线相同)成立的前提下,则两样本来自分布相同的总体,两样本的Gehan比分合计V值应为0,若V值偏离0太远,则无效假设成立的可能性就很小。
对数秩检验:其基本思想是,在假定无效假设(两总体生存曲线相同)成立的前提下,可根据不同日期两种处理的期初人数和死亡人数,计算各种处理在各个时期的理论死亡数。若无效假设成立,则实际死亡数与理论死亡数不会相差太大。
检索方法:常未说明 有明确检索策略
文献选择:有潜在偏倚 有明确入选/排除标准
文献评价:方法不统一 有严格评价方法
结果合成:定性 定量/定性
结论推断:有时遵循研究依据 大多遵循研究依据
生存分析的主要内容:
1
描述生存过程(估计生存函数)
2
比较生存过程(比较生存函数)
3
影响生存时间的因素分析
4
SPSS中的菜单位置
第一章
生存率的估计方法有参数法和非参数法。常用非参数法,非参数法主要有二个,即乘积极限法与寿命表法。
01
寿命表法适用于观察例数较多而分组的资料,不同的分组寿命表法的计算结果亦会不同,当分组资料中每一个分组区间中最多只有 1个观察值时,寿命表法的计算结果与乘积极限法完全相同。
医学统计学-生存分析课件
PPT学习交流
26
【例2】某医院对100例胰腺癌切除术后的患者进行随 访,得资料如下。试分析其生存过程。
PPT学习交流
27
• (7)=(6)-(5)/2
• (8)=(4)/(7)
• (9)= 1-(8)
PPT学习交流
28
PPT学习交流
29
SPSS软件操作
• 第一步:建立变量。
PPT学习交流
30
医学统计学 (11)
PPT学习交流
1
•第一部分
•生存分析
•第二部分
•Meta分析
PPT学习交流
2
•第一部分
•生存分析
PPT学习交流
3
在医学研究中,常常用追踪的方式来研究事 物发展的规律。如:了解某药物的疗效,了解手 术的存活时间,了解某医疗仪器设备使用寿命等 等。
PPT学习交流
4
生存资料的特点
如:急性白血病病人从治疗开始到复发为止之间的缓解期, 冠心病病人两次发作之间的时间间隔,戒烟开始到重新吸烟 之间的时间间隔,接触危险因素到发病的时间间隔等。
生存分析中最基本的问题就是计算生存时间,要明确规定事 件的起点、终点及时间的测度单位,否则就无法分析比较。
PPT学习交流
8
中位生存时间是指寿命中位数,表示有且只有 50%的观察对象还可以活这么长时间。由于截尾 数据的存在,中位生存期的计算不同于普通的中 位数,它可以利用生存函数公式或生存曲线图, 令生存率为50%时,推算出生存时间。
21
• 第三步:生存分析(2)
PPT学习交流
22
• 第三步:生存分析(3)
PPT学习交流
23
• 第四步:结果解读(1)
医学统计学:生存分析(sun)
T T
)
2
组数-1
(14.13)
式中A为实际死亡数,T为理论 死亡数。
用log-rank检验对样本的生存率进行比较 时,要求各组生存曲线不能交叉,生存 曲线的交叉提示存在某种混杂因素,此 时应采用分层的办法或多因素的办法来 校正混杂因素。
第四节 Cox比例风险回归模型
对于生存数据的分析,常见的有生存时间的分位数、 中位生存时间、生存函数估计、log-rank检验等,这些 方法已广泛应用于医学的疗效评价和预后分析。在实 践中,人们发现生存分析资料,尤其是医学临床随访 资料具有一定的特殊性,主要表现在生存时间的分布 种类繁多且难以确定,存在截尾数据,需要考虑多个 协变量的影响等。
Cox模型的注意事项
①注意研究资料的代表性及可靠性,保证研究对象是 总体中的一个随机样本;协变量在研究对象中的分布 要适中,否则会给参数的估计带来困难;应将一切可 能因素都包括在调查分析之中,否则容易造成分析结 果的偏差;②对研究生存时间要有明确的规定,如果 以“发病”作为观察的起点,则要对“发病”有一个 明确的规定,对终止事件也要有一个明确的规定,如 果将“治愈”作为结局的终止事件,则要对“治愈” 有一个明确的规定;③如果研究的变量随时间而发生 变化,可以采用伴时协变量的Cox模型进行分析。④ Cox模型分析时,样本含量不宜过小,一般在40例以上。 随着协变量的增加其样本含量应适当的增加,要求样 本含量为观察协变量的5~20倍。要尽量避免观察对象 的失访,过多的失访容易造成研究结果的偏倚。
四、Cox模型的统计描述
1.回归系数和标准回归系数 Cox模 型在分析时可以给出回归系数和标准回 归系数,回归系数用来反映因素对生存 时间影响的强度,一般而言,回归系数 愈大,则因素对生存时间的影响也愈大。 标准回归系数可以比较不同因素间对生 存时间的影响程度,标准回归系数绝对 值较大的因素对生存时间的影响也较大。
原题目:医学统计学的生存分析
原题目:医学统计学的生存分析
生存分析是医学统计学中常用的方法之一,用于研究某个事件发生或终止的时间,并分析这个事件与其他相关因素的关系。
本文将介绍生存分析的基本概念、应用场景和常用方法。
1. 基本概念
生存分析是一种统计方法,用于研究个体观测时间的分布和影响这个时间的因素。
其中,个体观测时间指的是从某个初始时间点开始,到某个事件发生或终止的时间间隔。
2. 应用场景
生存分析在医学领域中有着广泛的应用,特别是在研究疾病的发展、治疗效果和生存率等方面。
它可以帮助研究人员比较不同治疗方案的效果,评估疾病的预后和风险因素,并进行患者生存时间的预测。
3. 常用方法
生存分析的常用方法包括Kaplan-Meier曲线、Cox比例风险模型和Log-rank检验等。
Kaplan-Meier曲线是用来描述生存分析结果
的一种方法,可以根据不同组别或不同因素的生存时间进行比较。
Cox比例风险模型可以用来评估各个因素对生存时间的影响,并得到相对风险的估计值。
Log-rank检验则用于比较不同组别或不同因素下的生存时间差异是否显著。
在进行生存分析时,需要注意以下几点:
- 数据收集要准确可靠,避免遗漏或错误的观测;
- 样本量要足够大,以保证结果的可靠性;
- 统计方法要恰当选择,根据研究目的和数据特点采用合适的方法;
- 结果的解读要谨慎,避免过度解读或误导性的解释。
综上所述,生存分析在医学统计学中是一项重要的研究方法,可以帮助研究人员了解事件发生或终止的时间分布规律,并评估影响时间的因素。
在进行生存分析时,需要遵循科学的方法和原则,以确保研究结果的可靠性和准确性。
医学统计学PPT课件
验结果,每次都有如此好的吻合. 的概率约10万分之4。 6
绪论 Introduction
讲授内容:
一、医学统计学的意义
二、统计学中的几个基本概念
三、统计资料的类型
四、医学统计工作的基本步骤
五、学习医学统计学应注意的问题
.
7
一、医学统计学的意义
• 1.统计学(statistics):应用数学的原理与 方法,研究数据的搜集、整理与分析的科 学,对不确定性数据作出科学的推断。
例如:某药治疗高血压患者30名
样本含量(n)为30
.
21
二、统计学中的几个基本概念
• 4、参数(parameter)和统计量(statistic)
• (1)参数(parameter):根据总体个体 值统 计计算出来的描述总体的特征量。
• 一般用希腊字母表示
• (2)、统计量(statistic):根据样本个体值统 计计算出来的描述样本的特征量。
(120.2cm,118.6cm,121.8cm,…)
研究某人群性别构成 变量值:男、女。
.
15
二、统计学中的几个基本概念
• 2、同质(homogeneity)和变异 (variation)
• (1)、同质(homogeneity):根据研究 目的给研究单位确定的相同性质。
• 研究长沙市2004年7岁 男孩身高的正常值范围?
.
27
二、统计学中的几个基本概念
• (3)、抽样误差(sampling error):由 于抽样所造成的样本统计量与总体参数 的差别。
• 例如:=120.0cm
n=100
•
N=5万 → X =118.6cm
• 特点:1)不可避免性
医学统计学之生存分析
7
资料仅供参考,不当之处,请联系改正。
截尾值(Censored value)出现的原因
截尾的原因主要有3种: ①失访:生存但中途失访:包括拒绝访问、失去联
系等。 ②退出:中途退出试验、改变治疗方案、死于其它
与研究无关的原因:如肺癌患者死于心机梗塞、 自杀或因车祸死亡,终止随访时间为死亡时间。 ③终止:指观察期结束时仍未出现结局。
生存率(survival rate):指研究对象经历 t 个时段后仍存
活的概率,即生存时间大于等于 t 的概率,用 PT t
表示。
生存率随时间 t 变化而变化,即生存率是相对于时间 t 的
函数,称为生存函数(survival function),记为 S t 。
生存函数在某时点的函数值就是生存率。
8
资料仅供参考,不当之处,请联系改正。
关于截尾或删失
删失的模式图
患者进入期间
随访开始
失访 失访 研究截止时仍存活
事件
研究截止时点
9
资料仅供参考,不当之处,请联系改正。
3.生存时间资料的整理:
对于随访资料,需记录的原始数据包括开始观 察的时点(起始事件发生的时间)、终止观察的 时点、研究对象的结局、考虑的影响因素。生 存时间为反映时间长短的指标,属数值变量:
其研究内容主要包括 3 个方面:① 对生存状况 进行统计描述(生存概率、生存率、中位生存期等); ② 寻找影响生存时间的“危险因素”和“保护因素”; ③ 估计生存率和生存时间长短,进行预后评价。
5
资料仅供参考,不当之处,请联系改正。
一、基本概念
(一)生存时间(survival time): 1.定义:广义的生存时间是指从某个起始事件开
医学统计学课件:生存分析
5.88 2
19 .6 82
Es ti m ate 11 .0 00
S td. Er ror
4.64 2
95 % C on fi den ce In terva l
Lower Bou n d Upper Bou nd
1.90 1
20 .0 99
a. Es ti m ati on i s l i m ite d to the la rge st survi val ti me i f i t i s cen sored.
生存分析 Survival Analysis
起始
终止
手术疗法和化学疗法治疗乳腺癌的疗效比较
生存分析
根据试验或调查得到的数据 对生物或人的生存时间进行分析和推断, 研究生存时间和结局与众多影响因素间关系 及其程度大小的方法, 也称生存率分析或存活率分析
死亡事件,失效事件,failure event 截尾值,删失值,censored value 生存时间,survival time 生存率,survival rate
生存率曲线 Kaplan - Meier曲线
时间t为横轴, 生存率P(X>t)为纵轴, 水平横线代表一个时点到下一个时点的距离, 表示时间与生存率关系的曲线
生存率曲线,Kaplan—Meier曲 线
总体生存率的置信区间
正态近似原理
p( x t) u sp( xt)
Life Table
.4364 .3273 .2182 .1091
Censored:
生存率标准误 累积死亡数
.0867
1
.1163
2
.1343
3
.1450
4
.1501
《医学统计学》习题解答(最佳选择题和简答题)
《医学统计学》习题解答(最佳选择题和简答题)孙振球主编.医学统计学习题解答. 第2版. 北京:人民卫生出版社2005目录第二章计量资料的统计描述 (2)第三章总体均数的估计与假设检验 (3)第四章多个样本均数比较的方差分析 (6)第五章计数资料的统计描述 (7)第六章二项分布与Poisson分布 (9)第七章χ2检验 (11)第八章秩和检验 (13)第九章回归与相关 (14)第十章统计表与统计图 (17)第十一章多因素试验资料的方差分析 (19)第十二章重复测量设计资料的方差分析 (19)第十五章多元线性回归分析 (20)第十六章logistic回归分析 (22)第十七章生存分析 (23)第二十五章医学科学研究设计概述 (26)第二十六章观察性研究设计 (26)第二十七章实验研究设计 (28)第二十七章临床试验研究设计 (29)第二章 计量资料的统计描述(注:题号上有“方框” 的简答题为基本概念,下同)第三章总体均数的估计与假设检验简答题:第四章多个样本均数比较的方差分析简答题:第五章计数资料的统计描述简答题:第六章二项分布与Poisson分布简答题:第七章χ2检验简答题:1. 说明χ2检验的用途2. 两个样本率比较的u检验与χ2检验有何异同?3. 对于四格表资料,如何正确选用检验方法?4. 说明行×列表资料χ2检验应注意的事项?5. 说明R×C表的分类及其检验方法的选择。
第八章秩和检验简答题:5. 两独立样本比较的Wilcoxon秩和检验,当n1>10或n2-n1>10时用u检验,这时检验是属于参数检验还是非参数检验,为什么?6. 随机区组设计多个样本比较的Friedman M 检验,备择假设H1如何写?为什么?第九章回归与相关简答题:第十章统计表与统计图简答题:5. 统计表与统计图有何联系和区别?6. 茎叶图与频数分布图相比有何区别,有何优点?第十一章多因素试验资料的方差分析一、简答题1. 简述析因试验与正交试验的联系与区别。
医学统计学中的生存分析方法
医学统计学中的生存分析方法一、引言在医学领域中,了解疾病的生存状况对于预测患者的预后、制定治疗方案以及评估新药疗效至关重要。
为了帮助我们更好地理解疾病的生存情况,医学统计学中的生存分析方法应运而生。
本文将介绍生存分析的基本概念、常用的生存分析方法以及其在医学研究中的应用。
二、生存分析的基本概念生存分析是一种用于研究事件发生时间的统计方法,常用于分析疾病的生存状况。
其核心概念是生存时间(Survival Time)、生存状态(Survival Status)以及危险比(Hazard Ratio)。
生存时间是指从一个特定事件(例如诊断疾病)发生到另一个特定事件(例如死亡或复发)发生的时间间隔。
生存状态是指在某个特定时间点上,观察的个体是否存活。
危险比是比较两组生存时间的风险差异,通常用来评估不同因素对生存时间的影响。
三、常用的生存分析方法1. Kaplan-Meier曲线Kaplan-Meier曲线是一种常用的生存分析方法,它可以估计在不同时间点上的生存概率。
通过绘制Kaplan-Meier曲线,我们可以直观地观察到不同组别、不同变量对生存时间的影响。
2. Log-Rank检验Log-Rank检验是一种常用的假设检验方法,用于比较两组或多组生存曲线之间是否有差异。
通过计算观察到的生存时间与预期生存时间之间的差异,可以判断不同因素对生存时间的影响是否显著。
3. Cox比例风险回归模型Cox比例风险回归模型是一种常用的多变量生存分析方法,用于评估多个因素对生存时间的影响。
该模型可以控制其他潜在影响因素,并计算危险比,从而确定不同因素对生存时间的相对危险性。
四、生存分析方法在医学研究中的应用生存分析方法在医学研究中有着广泛的应用,以下是其中一些典型的例子:1. 癌症研究生存分析方法可以用于评估不同治疗方法对癌症患者生存时间的影响,帮助医生制定个体化的治疗方案。
此外,生存分析还可以确定某种基因突变是否与癌症预后相关,从而为基因治疗提供依据。
医学统计学中的生存分析方法研究
医学统计学中的生存分析方法研究生存分析是医学统计学中非常重要的一个分析方法,它的主要用途是研究人类或动物在某种特定条件下的生存情况。
例如,在药物临床试验过程中,生存分析可以帮助医生或研究人员评估药物对患者的疗效。
除此之外,生存分析还可以应用于其他领域,如生态学、工程学、经济学等。
在本文中,我们将详细探讨医学统计学中的生存分析方法及其应用。
1. 生存分析概述生存分析又称事件史分析、时间性数据分析或存活分析,是一种用于探讨时间到达某个重要事件的统计学方法。
生存分析所研究的事件主要包括死亡、疾病恶化、再入院等。
它的一个重要优点是可以分析不同事件发生的时间,还可以考虑到不同个体可能有不同的去留时间。
在生存分析中,有一个核心概念:生存函数,它是指某一时间点时患者仍然存活的概率。
生存函数通常用Kaplan-Meier曲线来表示,可直观地向我们展示不同时间点生存率的变化情况。
2. 生存分析的应用在医学研究中,生存分析常用于药物疗效评估、预后评价、风险评估等方面。
例如,在药物研究中,我们需要了解药物治疗作用的持续时间、不同疾病状态下药物效果的差异、治疗后患者生存期延长的效应等。
通过生存分析,研究人员可以计算药物的中位生存期、生存曲线、相对风险等,从而更好地判断药物的疗效是否显著。
除了药物研究,生存分析还可以应用于遗传学研究、人群流行病学调查等领域。
例如,通过对家族中患有某种疾病的人员进行生存分析,可以了解这种疾病的潜在遗传风险,进而为家族成员提供有效的遗传咨询。
在流行病学调查中,生存分析可以用来计算不同暴露因素对某种疾病罹患率的影响,从而对公众健康做出科学的评估。
3. 生存分析的方法生存分析的方法有很多,其中比较常用的是Kaplan-Meier生存曲线、Cox回归分析和Logistic回归分析。
(1)Kaplan-Meier生存曲线Kaplan-Meier生存曲线是一种经验生存函数曲线,它能够通过分析研究对象的生存时间来计算生存率。
17 第17章(全C)生存分析20110910
G ( X t )的95 %可信区间为 G ( X t ) 1.96 S G ( X t ) exp exp[ G ( X t ) 1 96 S G ( X t ) ] 。 (17 8) (17 9) 对公式(17 8)取反对数, 得到总体生存率可信区间
第17章 生存分析 第20页
第17章 生存分析 第2页
章目录
END
研究生用《医学统计学》
孙振球 主编 人民卫生出版社 2005年8月第2版
第17章 生存分析 第3页
章目录
END
第十七章 生存分析
目录
第一节 生存分析中的基本概念 第二节 生存率的估计与生存曲线
第三节 生存分析的log-rank检验
第四节 Cox 比例风险回归模型概念
第17章 生存分析 第17页
章目录
END
2.生存率标准误计算
有两个公式 S P ( X t ) d P( X t ) n( n d ) 1 P( X t ) nd (17 3) (17 4)
S P ( X t ) P ( X t ) 例: S P ( X t )
1 1 1 0.430 0.1041 23 22 22 21 10 9
第17章 生存分析 第18页
章目录ቤተ መጻሕፍቲ ባይዱ
END
计算总体率可信区间:公式及例题
计算总体率1 可信区间 P(X t) u /2 S P ( X t ) (17 5) 生存率为P( X 17 ) 0.430, 可信区间为 0.430 1.96 0.1041 (0.226 , 0.634 )
第五节 寿命表
作业及思考题
第17章 生存分析 第4页
医学统计学-生存分析
是否随机 是 否
有 分析性研究
无 描述性研究
时间方向 暴露→结局 结局→暴露 病例 对照 研究
随机 对照 试验
非随机 对照 试验
队列 研究
横断面 研究
Meta分析
• 系统综述和meta分析的基本概念 • 系统综述的基本步骤介绍 • Meta分析 • 软件操作-----Rev Man
系统综述
对某一具体的临床问题,系统、全面地收集 所有已发表或未发表的相关的临床研究文章,用 统一、科学的评价标准筛选出合格的研究质量评 价,应用统计学方法定量综合/描述性方法进行 定性综合,得出可靠的结论,并随着新的临床研 究结果的出现及时作出更新。
生存分析基本概念
起始事件是反映生存时间起始特征的事件,如疾 病确诊、某种疾病治疗开始、接触毒物等。
在生存分析随防研究过程中,一部分研究对象可 观察到死亡,可以得到准确的生存时间,它提供 的信息是完全;这种事件称为失效事件,也称之 为死亡事件、终点事件。
生存时间(survival time)是指任何两个有联系事件之间的
组别 放疗组 15 放+中
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、生存分析的意义
生存分析不仅仅是字面上的“生存分析”,它 代表了一种基本的分析思想。 ▪原义:
生存分析原先是用来分析特定人群的生命过程 或死亡过程的统计方法。该人群出生后,按照一定 的年龄组死亡率先后死去,直到全部死亡为止,用 统计学方法推算出该人群在不同年龄组的“生存概 率”、“预期寿命”等指标。
N of Re m ai ni n g
Cas es
1
1
1
.909
.087
1
10
2
2
1
.818
.116
2
9
3
3
1
.727
.134
3
8
4
5
1
.636
.145
4
7
5
6
1
.545
.150
5
6
6
9
0
.
.
5
5
7
11
1
.436
.155
6
4
8
13
1
.327
.150
7
3
9
16
1
.218
.134
8
210 261 Nhomakorabea.109
月数 0~ 1~ 2~ 3~ 4~ 5~ 6~ 7~ 8~9
失访数 2 1
3
2
0
1
0
1
0
死亡数 17 26 27 15 2
2
0
0
1
10
4、生存率(survival rate)
实际应当是生存概率,指某个观察对象活过t时 刻的概率,常用P(X>t)表示。如P(X>10)表示某对 象活过10天(或10月、10年)的概率。
7
2、截尾值(censored value) :删失值。 有的观察对象终止随访不是由于失败事件发生,
而是由于中途失访、死于其它原因、随访截止。由 于不知道这些观察对象发生失败事件的时间,他们 的资料不能提供完全的信息,这些对象的观察值称 为截尾值,常用符号“+”表示。如140+天。
8
3、生存时间(survival time) 即随访观察持续的实足时间,按失败事件发生或
Breslow检验。
19
3、生存过程的影响因素分析 比较不同亚人群的生存状况,进行两组或多组生
存率比较,以了解哪些因素会影响目标人群的生存过 程,这是生存分析方法最重要的研究内容,在临床医 学中应用非常广泛。
例如分析影响乳腺癌病人手术后预后的因素,可 以是病人的年龄、病程、术前健康状况、有无淋巴结 转移、术后有无感染、辅助治疗措施、营养等。
5.88 2
19 .6 82
Es ti m ate 11 .0 00
S td. Er ror
4.64 2
95 % C on fi den ce In terva l
Lower Bou n d Upper Bou nd
1.90 1
20 .0 99
a. Es ti m ati on i s l i m ite d to the la rge st survi val ti me i f i t i s cen sored.
6
4
13
1
.3273
.1497
7
3
16
1
.2182
.1337
8
2
26
1
.1091
.1021
9
1
37
0
9
0
Number of Cases: 11
Censored: 2
( 18.18%) Events: 9
Survival Time Standard Error 95% Confidence Interval
失访前最后一次的随访时间记录。按天、周、月、 年等时间单位记录,常用符号t表示。
一般情况下较细的时间单位准确性较高,应尽量 以个体为单位采用较细的时间单位来记录。但在许 多大型的随访中,不可能做到按个体记录,常见的 是按固定时间段(如一月一次等)记录有多少人失 访及多少人发生失败事件,此为分组生存资料。
平均存活时间: 13
4
(
6,
20 )
(Limited to
37 )
中位存活时间: 11
5
(
2,
20 )
25
S urvival Tabl e
Ti m e
Cumulative Proportion
Surviving at the Time
N of
C u mu la ti ve
Status Es timate Std. Error Events
点,计算某个时点的生存率、生存率曲线的变动趋势 等。
例如根据白血病化疗后的缓解年数资料,可以估 计不同年数的缓解率P(X>t),如P(X>3)、P(X>5)等, 也可以获得这些病人的缓解率曲线。 常用方法:乘积极限法和寿命表法。
18
2、比较生存过程 两组或多组生存曲线比较。 常用方法:对数秩检验、Gehan比分检验、
6
1、“死亡”事件或称失败事件(failure event) : 表示观察到随访对象出现了我们所规定的结局,是 反映处理因素失败或失效的特征。如乳腺癌病人手 术后复发、肾移植病人肾功能衰竭、白血病患者化 疗后的复发等。 失败事件的认定是生存分析的基石,必须绝对准确。 注意:失效事件应当由研究目的而定,并非一定是 死亡,而死亡也并非一定是失败事件。
2
▪原理及方法在其他领域的应用
利用生存分析的原理和方法,把“出生”、“死亡” 的涵义稍加变通,在医学研究中可以有广泛的应用。
3
应用举例: ▪ 观察某“手术或化疗”对恶性肿瘤病人的疗效,可将
“手术或化疗”代替“出生”,用生存分析来分析接 受该处理患者的生存时间以及活过某时点的概率。 ▪ 以第一次心肌梗死代替“出生”,以第二次心肌梗死 代替“死亡”,用生存分析可以预计在多少年或月内 发生第二次心肌梗死的概率。
34
35
36
Survival Function
1.2
1.0
.8
.6
.4
.2
0.0
0
2
4
6
生存时间
Cases weighted by 人数
生存率曲线
与未分组资料的生存率 曲线的不同之处是:
生存率的各点在各 组段的上限处,用折线 连接各点。
8
10
37
总体生存率可信区间的估计
用正态近似原理估计某时点总体生存率的可信区
l,2,3,5,6,9+,11,13,16,26,37+ 试估计各时点生存率及其标准误。
21
(1)死亡数(dx):与生存时间对应的发生死 亡时间的人数。
(2)期初病例数(nx):恰好在X时刻以前的病 例数。
(3)条件死亡概率(qx):恰好在X月前的观察 对象在X月时点死亡的概率。
(4)条件生存概率:恰好在X月前的观察对象活 过X月时点的概率。
Cox比例风险回归模型。
20
三、生存资料的统计描述和生存 率的区间估计
(一)未分组资料的生存分析(小样本,原始数据形式)
用乘积极限法(product-limited estimates);又称 Kaplan-Meier法,是一种非参数方法,主要适用于 观察例数不多时。
例:某种治疗方案治疗Ⅲ期肺癌患者11例,随访时间(月)记 录如下:
27
2、生存率曲线
未分组资料的生存率曲线也称Kaplan—Meier曲线, 它是以时间t为横轴,生存率P(X>t)为纵轴,水平横 线的长短代表一个t时点到下一个t时点的距离,从而 表示时间与生存率关系的曲线。
28
Survival Function
1.2
1.0
.8
.6
.4
.2
0.0 0
Survival Function
.102
9
1
11 37
0
.
.
9
0
26
Me an s an d Medi an s fo r Su rvi va l Ti me
Me ana
Me di an
Es ti m ate 12 .7 82
S td. Er ror
3.52 1
95 % C on fi den ce In terva l
Lower Bou n d Upper Bou nd
13
记录影响生存的有关因素
如病人年龄、病程、健康状况、经济、文化、 职业等因素,以便分析这些因素对生存率的影响。
14
随访资料数据的特点: (1)应变量有两个,即生存时间(天数)和结局(死亡与否)。 (2)生存时间存在观察不完全的数据。
15
(四)生存分析的主要内容和基本方法
1、描述生存过程 研究人群生存状态的规律,如生存时间的分布特
31
(二)分组资料的生存分析
▪应用:
1、当随访资料的例数较多(如n>50)时,可先将原始资料分组 再进行分析。 2、很多随访研究设计的随访时间是一年或一个月一次,随访 结果只有该年或该月期间的若干观察人数、发生失败事件人数 和截尾人数,没有各个病例的确切观察时间,所获得的资料只
能视为分组资料。
32
qx
dx nx
pˆ x
1
qx
1
dx nx
23
(5)生存率 P(X>t):即观察对象活过某时点 的概率。
某时点的生存率为≤t时刻的各时点条件生 存率的乘积。
p(x t) pˆ x 如:p(x 3) pˆ 1 pˆ 2 pˆ 3 0.7273