总体均数估计假设检验
总体均数的假设检验
$number {01}
目 录
• 引言 • 假设检验的基本原理 • 总体均数的假设检验方法 • 实例分析 • 总结与展望
01 引言
目的和背景
确定样本数据是否与假设的总体均数 存在显著差异,从而对总体均数进行 假设检验。
在科学实验、统计学、医学研究等领 域广泛应用,用于评估样本数据是否 支持或拒绝关于总体均数的假设。
配对样本均数假设检验实例
总结词
配对样本均数假设检验用于比较同一组研究对象在不同条件下的均数是否存在统计学显 著性差异。
详细描述
例如,为了比较同一组患者在接受两种不同治疗措施前后的改善程度,研究者收集了患 者的基线数据和接受不同治疗措施后的数据,并计算出各自治疗组的平均改善程度。然 后,研究者使用配对样本均数假设检验来比较同一组患者在不同治疗措施下的平均改善
概念简介
假设检验是一种统计推断方法,通过 检验样本数据是否符合某个假设,从 而对总体参数进行推断。
它基于概率论原理,通过计算样本数 据与假设的总体参数之间的差异,评 估这种差异是否具有统计学上的显著 性。
02
假设检验的基本原理
假设检验的步骤
建立假设
根据研究目的,提出一个关于总 体参数的假设,通常包括零假设 和备择假设。
收集样本数据
从总体中随机抽取一定数量的样 本,并记录样本数据。
确定检验水准
选择合适的检验水准,如α和β, 以平衡第一类和第二类错误的概 率。
计算统计量
根据样本数据计算适当的统计量, 如t值、Z值或χ^2值。
假设检验的类型
1 2
3
单样本均数检验
比较一个样本均数与已知总体均数或正常值范围。
两样本均数比较
统计学教案习题04总体均数的估计和假设检验
第四章 总体均数的估计和假设检验一、教学大纲要求(一) 掌握内容1. 抽样误差、可信区间的概念及计算; 2. 总体均数估计的方法;3. 两组资料均数比较的方法,理解并记忆应用这些方法的前提条件; 4. 假设检验的基本原理、有关概念(如I 、II 类错误)及注意事项。
(二) 熟悉内容 两样本方差齐性检验。
(三) 了解内容1. t 分布的图形与特征;2. 总体方差不等时的两样本均数的比较; 3. 等效检验。
二、教学内容精要(一) 基本概念 1. 抽样误差抽样研究中,样本统计量与总体参数间的差别称为抽样误差(sampling error )。
统计上用标准误(standard error ,SE )来衡量抽样误差的大小。
不同的统计量,标准误的表示方法不同,如均数的标准误用X S 表示,率的标准误用S P 表示,回归系数的标准误用S b 表示等等。
均数的标准误与标准差的区别见表4-1。
表4-1 均数的标准误与标准差的区别均数的标准误标准差意义 反映的抽样误差大小 反映一组数据的离散情况 记法X σ(样本估计值X S )σ(样本估计值S )计算X σ=nσ X S =nSσ =nX 2)(∑-μS=1)(2--∑n X X控制方法增大样本含量可减小标准误。
个体差异或自然变异,不能通过统计方法来控制。
2.可信区间(1)定义、涵义:即按预先给定的概率确定的包含未知总体参数的可能范围。
该范围称为总体参数的可信区间(confidence interval ,CI )。
它的确切含义是:CI 是随机的,总体参数是固定的,所以,CI 包含总体参数的可能性是1-α。
不能理解为CI 是固定随机的,总体参数是随机固定的,总体参数落在CI 范围内可能性为1-α。
当0.05α=时,称为95%可信区间,记作95%CI 。
当0.01α=时,称为99%可信区间,记作99%CI 。
(2)可信区间估计的优劣:一定要同时从可信度(即1-α的大小)与区间的宽度两方面来衡量。
总体均数估计与假设检验
t 检验
t-test
三、t检验和Z检验(参数检验)
以t分布为基础的检验称为t检验。 t分布的发现使得小样本统计推断成为 可能。因而,它被认为是统计学发展历 史中的里程碑之一。
在医学统计学中,t检验是重要的 假设检验方法之一。常用于两个均数之 间差别的比较,并根据资料的分布情况 及设计类型,选择不同的t检验方法。
配对样本t检验
Paired design t-test
关系:随着样本含量增加,都减小。
联系:都是表示变异度的指标,当样本量一定时,两者成正比。
标准误用途
衡量样本均数的可靠性:标准误越小,表明 样本均数越可靠;
参数估计:估计总体均数的置信区间(区 域);
假设检验:用于总体均数的假设检验(比 较)。
二、t分布:
标准正态分布
开创了小样本统计的新纪元,t分布主要用于总体均数的 区间估计和t检验!
假设检验(Hypothesis test)
假设检验的推断原理 假设检验的基本步骤 t检验和Z检验 两样本总体方差齐性检验 正态性检验 假设检验的两类错误 注意事项
一、假设检验的推断原理
上面介绍过的区间估计方法是统计 推断的内容之一,假设检验是统计推 断的另一重要内容。正是应用统计推 断的理论和方法,人们才能顺利地通 过有限的样本信息去把握总体特征, 实现抽样研究的目的。
s / n 25.74 36
在H0成立的前提下,当前t值出现的概率有多 大???
如何给出这个量的界限?
小概率事件在一次试验 中基本上不会发生 !
从附表2中查出在显著性水平 =0.05(双侧),自由度为35所 对应的t界值=2.318,即为拒绝 域与接受域的界限。如果计算
医用统计学-总体均数的估计与假设检验练习题
医用统计学-总体均数的估计与假设检验练习题一、名词解释1.抽样误差2.标准误3.置信区间4.第一类错误5.第二类错误二、是非题1.即使变量偏离正态分布,只要样本含量相当大,样本均数也近似正态分布。
()2.同一批计量资料的标准差不会比标准误大。
()3.两次t检验都是对两样本均数的差别做统计检验,一次P<0.01,另一次0.01<P<0.05,就表明前者两样本均数差别大,后者两样本均数差别小。
()4.对两样本均数的差别做统计检验,两组数据具有方差齐性,但与正态分布相比略有偏离,样本含量都较大,因此仍可做t检验。
()5.t检验可用于同一批对象的身高与体重均数差别的统计检验。
()三、最佳选择题1、()小,表示用该样本均数估计总体均数的可靠性大。
D、RE、四分位间距A、CVB、SC、x2、两样本均数比较的t检验,差别有统计学意义时,P越小,说明()。
A、两样本均数差别越大B、两总体均数差别越大C、越有理由认为两总体均数不同D、越有理由认为两样本均数不同E、越有理由认为两总体均数不同3、甲乙两人分别随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得X1和S12,X2和S22,则理论上()。
A、X1=X 2B、S12= S22C、作两样本均数的t检验,必然得出无差别的结论D、作两方差齐性的F检验,必然方差齐E、由甲、乙两样本均数之差求出的总体均数的95%可信区间,很可能包括04、在参数未知的正态总体中随机抽样,∣X-μ∣≥()的概率为5%。
A、1.96σB、1.96C、2.58D、t0.05,v SE、t0.05,vsx5、某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的均数为74g/L,标准差为4g/L,则其95%的参考值范围()。
A、74±4×4B、74±1.96×4C、74±2.58×4D、74±2.58×4÷10E、74±1.96×4÷106、关于以0为中心的t 分布,错误的是( )。
总体均数的估计和假设检验
无统计学意义,按 0.05检验水
准,不拒绝H0,尚不能认为两种
方法的检查结果不同。
成组设计的两样本均数的检验
01
完全随机设计(又称成组设计):将受试对象完全随机地分配到各个处理组中或分别从不同总体中随机抽样进行研究。
02
01
若n1 ,n2 较小,且σ12=σ22
02
两独立样本的t检验(例3.7);
01
方差分析法。
02
单侧检验和双侧检验(根据 研究目的和专业知识选择)
假设检验(1)双侧检验:如要比较A、B两个药物的疗效,无效假设为两药疗效相同(H0:μA=μB),备择假设是两药疗效不同(H1:μA≠μB),可能是A药优于B药,也可能B药优于A药,这就是双侧检验。
01
02
单侧检验:若实际情况是A药的疗效不劣差于B药,则备择假设为A药优于B药(H1:μA>μB),此时,备择假设成立时只有一种可能(另一种可能已事先被排除了),这就是单侧检验。
01
备注:单侧检验和双侧检验中计算统计量t的过程是一样的,但确定概率时的临界值是不同的。
01
统计推断应包括统计结论和专业结论两部分。统计结论只说明有统计学意义(statistical significance) 或无统计学意义,而不能说明专业上的差异大小。只有将统计结论和专业知识有机地相结合,才能得出恰如其分的专业结论。
A,B处理。
2
0.05
H0:μd =0 H1:μd ≠0
其中
式中d为每对数据的差值, 为差值的样本均数, Sd为差值的标准差, 为差值样本均数的标准误, n为对子数。
开机: 进入统计状态: 清除内存:
SHIFT
b. 近似t检验,即t'检验(n1,n2 较小,且σ12≠σ22)
第三章 总体均数的估计与假设检验
Sd
d
d Sd / n
2
(
d)
n
n 1
S d 0.1087 t 2.7424 0.1087/ 10 7.925
v 10 1 9
3)确定P值,作出推断结论 T0.05,9=2.262, 7.925>2.262,故P<0.05.可以认为两种 方法对脂肪含量的测定结果不同。
167.41, 2.74
165.56, 6.57
168.20, 5.36 n j=10
…. 165.69, 5.09
将上述100个样本均数看成新变量值,则这个 100个样本均数构成一新分布,绘制直方图
样本均数的抽样分布具有如下特点:
1) 各样本均数未必等于总体均数
2) 各样本均数间存在差异
3) 样本均数的分布很有规律,围绕着总体均 数,中间多,两边少,左右基本对称,也 服从正态分布
假设检验的基本步骤:
1、建立检验假设
H0: 检验假设, 无效假设,零假设 μ=μ0
H1: 备择假设,对立假设
μ≠μ0
2、确定检验水准 α=0.05 单双侧
3、选定检验方法和计算检验统计量
4、确定P值和作出推论结论。
P值是指从H0所规定的总体进行随机抽样,获 得大于(或等于及小于)现有样本获得的检验 统计量值的概率。
(1012/L)
血红蛋白 (g/L)
女
男 女
255
360 255
4.18
134.5 117.6
0.29
7.1 10.2
4.33
140.2 124.7
*标准值:使用内科学(1976年)所载均数(转位法定单位)
1)说明女性的红细胞数与血红蛋白的变异程度何者为大? 2)抽样误差是? 3)试估计该地健康成年女性红细胞数的均数? 4) 该地健康成年男女血红蛋白含量是否不同? 5)该地男性两项血压指标是否均低于上表的标准值(若测 定方法相同)?
总体均数的假设检验
n 1 n 2 2 1 2 1 2 2 2 2
(3) 确定P值,作出统计推断
查附表3 , t界值表,
0.002<P<0.005,按=0.05水准拒 绝H0,接受H1,差异有统计学意
义,可认为…..
方差齐性检验
F
S12(较大) S22(较小)
1 n1 1 2 n2 1
总体方差不等时处理方式
H0
160 样本均值
P (t≥4.841)
0 t=4.841 t分布
若只考虑单侧,P值就是统计量t≥4.841的概率
QUESTION
如果考虑双侧,即回答例7.3的问题, P是什么?
结论
➢若P≤,表示在H0成立的条件下,出现等
于及大于(或等于及小于)现有统计量的概 率是小概率,按小概率事件原理现有样本
P93例8.3
某医生研究血清白介素-6(IL-6)与银屑病的 关系,收集了12例处于进行期的银屑病患者 及12例正常人的血清标本进行IL-6检测,得 到表8.2结果,问银屑病患者与正常人的血 清IL-6均数是否不同?
未知总体 1 ?
(银屑病患者)
未知总体 2 (正常人)
样本1
X1 182.4
样本2
I 型错误与II 型错误(p85)
拒绝了实际上成立的H0,这类“弃真” 的错误为I 型错误(type I error);
不拒绝实际上不成立的H0,这类“存伪” 的错误为II 型错误(type II error)。
0.08
0.06 0.04
=0
0.02 0 40
,
60
X80
100
120
0.07 0.06 0.05 0.04 0.03 0.02 0.01
医学统计学总体均数的估计与假设检验
一、 均数的抽样误差与标准误( )
例4.1某市随机抽查12岁男孩100人,得身高均数139.6cm,标准差6.85cm,资料,求标准误?
第三章 总体均数的估计与假设检验
添加副标题
汇报人姓名
均数的抽样误差与标准误
t分布
总体均数的估计
假设检验的一般步骤
t检验
u 检验
两均数的等效检验
正态性检验
两样本方差齐性检验
假设检验时应注意的问题
利用总体均数的可信区间进行假设检验
课堂讨论
第三章 总体均数的估计与假设检验
一、 均数的抽样误差与标准误( )
等效检验的假设
七、两均数的等效检验
H0: | 1- 2| H1: | 1- 2|< 为等效界值,若两总体均数差值在范围内为等效,超过则为不等效。 是推断两种处理效果是否相近或相等的统计方法。 为什么推断两种处理效果是否相近或相等不能用前面所述的假设检验方法?
检验水准、自由度及结果判断同t检验。
=n- 1=25 -1=24 查t界值表(P804),得单侧 t0.05,24 = 1.711 因: t =1.833> t0.05,24 所以:P < 0.05
结论:按照 = 0.05水准,拒绝H0 ,故可认为该山区健康成年男子脉搏高于一般人群。
1
上例如用双侧检验,查表得双侧 t0.05,24 = 2.064
样本含量一定时,增大,则减少,减少则增大,所以, 的确定并不是越小越好,一般取0.05较合理。
结论时,尽可能明确相结合。
02
总体均数的估计与假设检验(练习题)
练 习 题一、最佳选择题1.( C )小,表示用该样本均数估计总体均数的可靠性大。
A. CV B. S C. σXD. RE.四分位数间距2.两样本均数比较的t 检验,差别有统计意义时,P 越小,说明( C )。
A.两样本均数差别越大 B.两总体均数差别越大 C.越有理由认为两总体均数不同 D.越有理由认为两样本均数不同E.越有理由认为两总体均数相同3.甲乙两人分别从随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得1X 和21S ;2X 和22S ,则理论上( E )。
A.12X X =B.2212S S =C.作两样本均数的t 检验,必然得出无差别的结论D.作两方差齐性的F 检验,必然方差齐E.由甲、乙两样本均数之差求出的总体均数95%可信区间,很可能包括0 4.在参数未知的正态总体中随机抽样,X μ-≥( A )的概率为5%。
A. 1.96σ B. 1.96 C. 2.58 D.0.05, t S ν E.0.05, X t S ν 5.某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的平均数为74g/L ,标准差为4g/L ,则其95%的参考值范围(B )。
A.74±4⨯4B.74±1.96×4C.74±2.58⨯4D.74±2.58⨯4÷10E. 74±1.96⨯4÷10 6.关于以0为中心的t 分布,错误的是( E )。
A. t 分布是一簇曲线B. t 分布是单峰分布C.当ν→∝时,t →uD. t 分布以0为中心,左右对称E.相同ν时,|t|越大,P 越大7.在两样本均数比较的t 检验中,无效假设是( D )。
A.两样本均数不等 B.两样本均数相等 C.两总体均数不等D.两总体均数相等E.样本均数等于总体均数8.两样本均数比较时,分别取以下检验水准,以( E )所取第二类错误最小。
医学统计学总体均数的估计和假设检验
3.106
3.055
3.012 2.977 2.947 2.921 2.898 2.878 2.861 2.845 2.750 2.704 2.678 2.626
2.58
3.497
3.428
3.372 3.326 3.286 3.252 3.222 3.197 3.174 3.153 3.030 2.971 2.937 2.871 2.8070
t x
sX
统计量是t的分布就是t分布。
t分布的特征: ① 以0为中心,左右对称呈单峰分布; ② t分布是一簇曲线,分布参数为自由度υ。 ③ t分布的形状与样本例数n有关,高峰比正态分
布略低,两侧尾部翘得比正态分布略高。越大, 曲线越近正态分布,当ν=∞时,t分布即为z分布。 由于t分布是一簇曲线,为了便于应用,统计学 家编制了表4-4-1 t界值表。
3)与例数的关系不同:当样本含量足够大时,标准 差趋向稳定。而标准误随例数的增大而减小,甚至趋 向于0。若样本含量趋向于总例数,则标准误接近于0。
联系;二者均为变异指标,如果把总体中各样本均 数看成一个变量,则标准误可称为样本均数的标准差。 当样本含量不变时,均数的标准误与标准差成正比。 两者均可与均数结合运用,但描述的内容各不相同。
活量的95%的可信区间。
本例n=5, =4,t0.05,4=2.776
x t0.05sx =2.44±2.776×0.33/ 5 =2.03~2.85(L)
该地17岁女中学生肺活量均数的95%可信区间为2.03L~2.85L。
例4-4-3 由例4-2-1 101名30~49岁健康男子血清总 胆固醇 X 4.735mmol·L-1,S=0.88 mmol·L-1,求该 地健康男子血清总胆固醇值均数的95%可信区间。
03总体均数的估计及假设检验
●统计推断(statistical inference):通过样本指标来说明总体特征,这种从样本获取有关总体信息的过程称为统计推断。
●抽样误差(sampling error):由个体变异产生的,随机抽样造成的样本统计量与总体参数的差异,称为抽样误差。
●标准误(standard error of mean,SEM )及X s :通常将样本统计量的标准差称为标准误。
许多样本均数的标准差X s称为均数的标准误,它反映了样本均数间的离散程度,也反映了样本均数与总体均数的差异,说明均数抽样误差的大小。
可通过增加样本含量,设计减少标准差来降低标准误。
●可信区间(confidence interval,CI):按预先给定的概率确定的包含未知总体参数的可能范围。
该范围称为总体参数的可信区间。
它的确切含义是:可信区间包含总体参数的可能性是1- a ,而不是总体参数落在该范围的可能性为1-a 。
●参数估计:指用样本指标值(统计量)估计总体指标值(参数)。
参数估计有两种方法:点估计和区间估计。
●假设检验中P 的含义:指从H0 规定的总体随机抽得等于及大于(或等于及小于)现有样本获得的检验统计量值的概率。
●I 型和II 型错误:I 型错误(type I error ),指拒绝了实际上成立的H0,这类“弃真”的错误称为I 型错误,其概率大小用a 表示;II 型错误(type II error),指接受了实际上不成立的H0,这类“存伪”的误称为II 型错误,其概率大小用b 表示。
●检验效能:1- b 称为检验效能(power of test),它是指当两总体确有差别,按规定的检验水准a 所能发现该差异的能力。
●检验水准:是预先规定的,当假设检验结果拒绝H0,接受H1,下“有差别”的结论时犯错误的概率称为检验水准(level ofa test),记为a 。
●抽样误差:由个体变异和抽样造成的样本统计量与总体参数的差异为★标准差与标准误的区别标准差与标准误的意义、作用和使用范围均不同。
总体均数的区间估计和假设检验
【疑难点】
标准误的意义 可信区间的含义 t分布的概念 假设检验的基本原理 P值的意义 Ⅰ型错误和Ⅱ型错误
学习目标
掌握: ① 均数抽样误差的概念和计算方法; ② 总体均数区间的概念,意义和计算方法; ③ 假设检验的基本步骤及注意问题; ④ u检验和t分布的概念,意义,应用条件和计 算方法。
➢ 反之,标准误愈大,估计总体均数可信区间的范 围也愈宽,说明样本均数距总体均数愈远,对总 体均数的估计也愈差。
标 准 差(S)
标 准 误( S ) X
1.表示个体变量值的变异度大小,即原始变量值的
1.表示样本均数抽样误差的大小,即样本均数的离散程
离散程度。公式为: S (X X )2 n 1
称差异有统计学意义。
假设检验的一般步骤
1.建立检验假设
❖ 一种是无效假设(null hypothesis)符号为H0; ❖ 一种是备择假设(alternative hypothesis)符
号为H1。
H0: 0
H1: 0
表3-2 样本均数所代表的未知总体均数 与已知总体均数的比较
双侧检验 单侧检验
第四节 假设检验的意义和基本步骤
假设检验(hypothesis test)亦称显著 性检验(significance test),是统计 推断的重要内容。它是指先对总体的参数 或分布作出某种假设,再用适当的统计方 法根据样本对总体提供的信息,推断此假 设应当拒绝或不拒绝。
例3.3 根据调查,已知健康成年男子脉搏的均数为72次/分 钟,某医生在一山区随机测量了25名健康成年男子脉搏数, 求得其均数为74.2次/分钟,标准差为6.5次/分钟,能否认为 该山区成年男子的脉搏数与一般健康成年男子的脉搏数不同?
总体均数估计和假设检验
THANKS
感谢观看
检验的步骤与逻辑
步骤
提出假设、选择合适的统计量、计算P值、根据P值做出决策。
逻辑
基于样本信息推断总体特征,利用统计量进行假设检验,并根据P值判断假设是否成立。
03
常见假设检验方法
t检验
t检验是一种常用的参数检验方法,用 于比较两组数据的均值是否存在显著 差异。
t检验基于假设和样本数据计算t统计 量,并根据临界值判断假设是否成立。 通常用于小样本数据或已知总体分布 的情况。
当实际无差异时,由于误差率较高或检验效能不足,错误地判断 出差异,导致得出阳性结论。
多重比较与校正
多重比较问题
在多个样本或组别的比较中,如果没有采取适当的校正措施,会导致假阳性结论增多。
校正方法
为控制多重比较导致的假阳性风险,可以采用Bonferroni校正、Holm-Bonferroni校 正等校正方法,对显著性水平进行调整。
卡方检验
卡方检验是一种非参数检验方法,用于比较实际观测频数 与期望频数之间的差异。
卡方检验基于卡方统计量,通过比较实际观测频数与期望 频数,评估分类变量之间是否存在显著关联。
04
假设检验中的问题与注意 事项
样本选择与偏差
样本选择偏差
在选择样本时,如果未能遵循随机抽 样的原则,或者存在选择偏见,会导 致样本不能代表总体,从而影响估计 的准确性。
Z检验
Z检验是用来检验比例或比率是否显 著不同于预期值。
Z检验基于正态分布理论,通过计算Z 统计量来评估样本比例或比率与预期 值之间的差异程度。
方差分析
方差分析(ANOVA)用于比较两个或多个组间的均值是否存 在显著差异。
方差分析通过比较组间和组内方差,评估各组均值是否存在 显著差异,适用于多组数据的比较。
均数假设检验的基本步骤
均数假设检验的基本步骤
均数假设检验是数据分析中一种常用的统计检验方法,它可以用来检验某一总体数据的均值是否与预先根据实际情况所建立的一个均值假设进行比较。
均数假设检验的基本步骤如下:
1. 确定总体参数:首先,确定检验的总体参数,其中可包括总体的均数μ、总体的方差σ、总体的规模n等多种参数;
2. 建立假设:其次,将以上总体参数转化为假设,如均数假设,即μ0=μ,μ0为假设的均数,μ为实际的总体均数;
3. 检验统计量:然后,根据检验的假设类型,选取相应的检验统计量,通常采用Z统计量
来检验均数假设;
4. 计算临界值:接着,根据所采用的检验统计量,根据拒绝域理论计算出相应的临界值;
5. 检验:最后,结合样本数据,运用检验统计量及临界值,做出检验结论,即根据检验统计量的值与临界值的比较,得出是拒绝原假设还是不拒绝原假设。
以上是均数假设检验的基本步骤,必要时还需要根据假设的类型,重复上述步骤,进行进
一步的检验;也可以根据样本数据特点,采用其它更契合的统计检验方法,以得出精准有
效的检验结论。
医学统计学第3章
均数的抽样示意图
X1 S1
μσ
X2 S2 XI Si Xn Sn
σx
X服从什么分布?
例3-1 若某市1999年18岁男生身高服从均数 =167.7cm、标准差 =5.3cm的正态分布。从该正态分布N(167.7,5.32)总体中随机抽样 100次即共抽取样本g=100个,每次样本含量nj=10人,得到每个样 本均数 及标准差Sj 如图3-1和表3-1所示。
95%CL 175.72 173.44 174.31 170.90 171.04 170.83 173.11 171.90 172.52 172.00 169.40 171.56 171.53 172.94
171.21 170.33 169.03 167.63 168.66 168.84 169.31 168.46 168.60 168.47 165.68 165.68 168.03 169.37
171.00 170.10 170.47 175.98 169.97 171.91 173.37
样本号 61 62 63 64 65 66 67 68 69 70 71 72 73 74
x
j
Sj 6.30 4.34 7.38 4.58 3.33 2.78 5.31 4.81 5.48 5.05 5.19 8.22 4.89 5.00 166.70 167.23 163.75 164.36 166.27 166.85 165.51 165.02 164.88 164.86 161.97 159.80 164.53 165.79
抽样误差:样本统计量与参数之间的差异, 称抽样误差。 样本统计量是一个随机变量,在随机的原则 下从同一总体抽取不同的样本,即使每个样 本的样本含量n相同,它们的结果也会不同。
统计学--第三章总体均数的估计与假设检验
总体均数的估计 与假设检验
课件
1
统计推断的目的:
用样本的信息去推论总体。
医学研究中大多数是无限总体, 即使是有限总体,但也经常受各种条 件的限制,不可能直接获得总体的信 息。
课件本科生卫生学(5)
2
第一节 均数的抽样误差与标准误
• 抽样误差(sampling
error):因各样本 包含的个体不同,所得的各个样本统计量 (如均数)往往不相等,这种由于个体差 异和抽样造成的样本统计量与总体参数的 差异,称为抽样误差。
均数的95%可信区间为3.47~ 3.81(mmol / L) 95%参考值范围为1.29~ 5.99(mmol / L)
S 1.20 X u / 2 S X X 1.96 3.64 1.96 n 200 (3.47, 3.81)
X 1.96S 3.64 1.961.20 (1.29, 5.99) 32 课件本科生卫生学(5)
t分布的应用: 总体均数的区间估计 t检验
课件本科生卫生学(5) 18
第三节 总体均数的置信区间估计 confidence interval
可信区间的概念 总体均数可信区间的计算 均数可信区间与参考值范围的区别
课件本科生卫生学(5)
19
一、可信区间的概念
统计推断:参数估计与假设检验。 参数估计: parametric estimation,用样本统 计量估计总体参数的方法。 点(值)估计:point estimation,直接用样 本统计量作为总体参数的估计值。方法简 单但未考虑抽样误差大小。 区间估计:interval estimation,按预先给定 的概率95%,或(1-),确定的包含未知总 体参数的可能范围。考虑了抽样误差。
医学统计学--第三章 总体均数的估计与假设检验
32
本例 n=10,按公式(3-2)算得样本均数的标准误为
S1=101=9,双尾 =0.05,
查附表 2 的 t 界值表得 t0.05 2,9 2.262 。 按公式(3-5) (166.95 2.262 1.1511) 即(164.35, 169.55)cm 故该地 18 岁男生身高均数的 95%可信区间 为(164.35, 169.55)cm。
X
2 X
、
) ,则 通
过同样方式的 u 变换( X
2
)也 可 将 其 转 换 为
标 准 正 态 分 布 N (0 , 1 ), 即 u 分 布 。
17
3.实际工作中,由于 X 未知,用S X 代替,
则(X
) / SX
不再服从标准正态分布,而
服从t 分布。
t X SX X S n , n 1
2
第一节 均数的抽样误差与标准误
3
统计推断:由样本信息推断总体特征。
样本统计指标 (统计量)
总体统计指标 (参数)
2
正态(分布)总体:N 说明!
~ ( , )
推断 !
为说明抽样误差规律,先用一个实例,后 引出理论。
4
例 3-1 若某市 1999 年 18 岁男生身高服从均 数μ =167.7cm、标准差 =5.3cm 的正态分布。对 该总体进行随机抽样,每次抽 10 人, n =10) ( , 共抽得 100 个样本( g =100) ,计算得每个样本均 数 X 及标准差 S 如图 3-1 和表 3-1 所示。
1 2 3 4 5 6 7 8 9 10 21 22 23 24 25
单侧 双侧
研究生统计学讲义第3讲总体均数估计和假设检验
所谓小概率原理,就是“在一次试验中,概率很小 (接近于零)的事件认为是实际上不可能发生的事件” 。例如,假设在1000支复方大青叶注射液针剂中只有 一支是失效的,现在从中随机抽取一支,则取得“失 效的那支”概率为1/1000,这个概率是很小的,因此 ,可以认为在一次抽取中是不会发生的,若从中任取 一支恰好为“失效的那支”,我们就有理由怀疑“失 效概率为1/1000”的假设不成立,而认为失效率不是 1/1000,从而否定假设。否定假设的依据就是小概率 原例理4.3。已知正常成年男子脉博平均为72次/分,现随 机检查20名慢性胃炎所致脾虚男病人,其脉博均数 为75次/分,标准差为6.4次/分,能否认为此类脾虚 男病人的脉博快于健康成年男子的脉博?
13
4.单个总体均数的估计 样本均数是总体均数μ的一个 点估计。σ已知时,按(式4-3)计算的统计量服从标 准正态分布,根据标准正态分布的规律
P(-uα/2< u <uα/2) =1-α ,有
σ已知时,正态总体均数μ的双侧(1-α)可信 区间计算公式为(4-7)
而σ往往未知
σ未知时,按(式4-4)计算的统计量服从 t 分布,由t 分布的规律 P(-tα/2<t<tα/2) =1-α
14
有了抽样分布,对任何样本,在预先不知道总体特性
的任何知识时,利用抽样分布可以产生总体均数的置
信区间 .
C
t
0
X
s/ n
t0
1
t0=tα/2
解这个不等式,把关心的参数μ从中间分离出来,就
得到置信度为1-α的总体均数的置信区间为:
X t0 s X t0 s (4-8)
n
n
S
注意-t 0和t 0由自由度n-1和置信水平确定,X 和 n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如 n>50),样本均数 X 也近似服从正态分布。 2. 从均数为 ,标准差为 的正态总体中抽取例数为 n 的样本,
样本均数的总体均数也为 ,样本均数的标准差为 X
其中为了与反映观察值离散程度( x )的标准差 相区别,统
计学中把样本均数( x )的标准差 X 称为样本均数的标准误,
简称为标准误(standard error)。
第四章 总体均数的估计、假设检验
2021/3/15
1 整理课件
集中趋势
统计描述 离散趋势
统计分析
点值估计 参数估计
统计推断
区间估计
假设检验
2021/3/15
2
整理课件
七、区间 与假设检 验的关系
一、总体均 数的估计
二、假设检 验
六、P> α 时检验效能 1-β的估算
2021/3/15
五、假设检 验注意问题
整理课件
由于个体变异是客观存在的,因此抽样误差(均数)
是不可避免的,但是有一定的规律可循,可以用特定
的指标描述抽样误差的大小
表 1 N(167.7,5.32)总体中 100 个随机样本的 X j 、 S j
样本号
1 2 3 … 100
Xj
Sj
167.41
2.74
165.56
6.57
168.20
5.36
100个
图1. 1999年某市18岁男生身高N(167.7,5.32)的抽样示意
2021/3/15
6
整理课件
抽样示意图显示: 1. 样本均数与总体均数之间不一定恰好
相等。 2. 样本均数之间也不一定恰好相等。 思考:样本均数与总体均数以及样本均数之 间的差异是有什么原因造成的?
均数的抽样误差:由个体变异引起,由抽样产生的 样本均数与总体均数之间以及样本均数与样本均数 之间的差异。
2021/3/15
7
整理课件
美国科学院院士-C.R.劳
C.R.劳指出“如果错 误是不可避免的,则 在一定的规律下做出 抉择,最好知道犯错 误的概率,是我们减 少盲目性,使错误决 策产生损失最小”。
C.R.劳 美国科学院院士,当今仍健在 的国际上最伟大的统计学家之一
2021/3/15
8
摘自《统计与真理—怎样运用偶然性》 (美)C.R.劳/著
X / n (理论值)
式中 为总体标准差,n 为样本含量 在实际工作中,总体标准差 常常未知,而用样本标准差 S 来
估计。因而均数标准误的估计值为
SX S / n
从上述标准误的公式可以看出标准误的大小与标准差成正比,与 样本含量的平方根成反比。即可通过增加样本含量 n 和减少标准 差来减少均数的标准误,从而降低均数的抽样误差
2021/3/15
13
ቤተ መጻሕፍቲ ባይዱ
整理课件
例:2000年某研究者随机调查某地健康成年男子 27人,得到血红蛋白量的均数为125g/L,标准差 为15g/L。试估计该样本均数的抽样误差。
Sx s / n 15 / 27 2.89g/L
所以该样本均数的抽样误差为2.89g/L。
2021/3/15
14
整理课件
总体标准差为σ 的正态分布N(μ, σ 2),则
X
X
可通过u变换将( x )一般正态分布
转化为标准正态分布N(0, 12),即u分布。
2021/3/15
17
整理课件
2021/3/15
18
整理课件
2021/3/15
19
整理课件
T分布创始人---William Gosset
❖ 英国统计学家William Gosset发现t 分布与正 态分布不同,曲线下面 积与抽样例数有关。
…
…
165.69
5.09
2021/3/15
9
整理课件
我们把样本均数 X j (j=1、2、3、…、100)看作是 一个新的变量,那么这 100 个变量值构成一个新的 分布,绘制频数分布图如下:
25
20
样本均数的分布特征:围绕着总
15
体均数(167.7cm),中间多,两
边少,左右基本对称,也服从正
10
3
三、正态 性、方差 齐性检验
四、t检 验
整理课件
第一节 总体均数的估计
2021/3/15
4
整理课件
一、标准误、样本均数分布
例 若某市 1999 年 18 岁男生身高服从均数 167.7cm 、标准差 2 5.32 cm 的正态分布。 从该正态分布 N(167.7,5.32)总体中随机抽样, 共抽了 100 次,每次样本含量 nj=10 人,得到每 个样本均数 X j 及标准差 S j 如图 1
2021/3/15
5
整理课件
总体
167.7cm
5.3cm
… ..
样本(n1=10) X1 167.41, S1 2.74
样本(n2=10) X 2 165.56, S2 6.57
样本(n3=10) X3 168.20, S3 5.36
样本(n100=10) X100 165.69, S100 5.09
X ~ N(, 2) X ~ N(, 2)
x
x
2021/3/15
11
整理课件
样本均数的抽样分布具有如下特点:
① X ,各样本均数 X未必等于总体均数;
② 各样本均数间存在差异; ③ 样本均数的分布为中间多,两边少,左右基本 对称。 ④ 样本均数的变异范围较之原变量的变异范围大 大缩小。
2021/3/15
12
整理课件
均数标准误的含义:均数标准误就是均数的标准差,因此它反映 的是样本均数间的离散程度,也反映样本均数与相应总体均数间 的差异,因而它说明了均数抽样误差的大小,也就是说标准误越 大,抽样误差也就越大,样本均数的离散程度高,与总体均数的 差异程度越大——标准误是描述均数的抽样误差大小的统计指 标。可证明均数标准误的计算公式为
态分布
5
0 163 164 165 166 167 168 169 170 171 172 173
平均身高
2021/3/15
10
整理课件
从上面的实例可以看出(以下两个结论可通过中心极限定理证 明):
1. 从正态总体中随机抽取例数为 n 的样本,样本均数 X 同样也 服从正态分布;即使是从偏态总体中抽样,当 n 足够大时(比
样本均数分布的常用性质
2021/3/15
15
整理课件
二、t分布
1、若某一随机变量X服从总体均数为μ, 总体标准差为σ的正态分布N(μ, σ2),则可 通过u变换( x )将一般正态分布转化为
标准正态分布N(0, 12),即u分布。
2021/3/15
16
整理课件
2、若某一随机变量服 X 从总体均数为μ,