中考数学作图专项训练
中考数学作图题60例
中考数学作图题60例一、解答题(共60小题)1.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.2.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.3.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.4.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.6.如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.7.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G•Pick,1859~1942年)证明了格点多边形的面积公式S=a+b﹣1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+×6﹣1=6(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)8.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.9.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.10.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c,直线l及l外一点A.求作:Rt△ABC,使直角边为AC(AC⊥l,垂足为C),斜边AB=c.11.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.12.在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.13.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).14.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)15.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.16.如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′和△ABC关于点O成中心对称;(2)请在方格网中标出所有使以点A、O、C′、D为顶点的四边形是平行四边形的D点.17.下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.18.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.19.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).21.如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜想并证明:判断四边形AECF的形状并加以证明.23.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C (1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.24.如图,在△ABC中,∠ACB=90°,AC=BC=AD.(1)作∠A的平分线交CD于E;(2)过B作CD的垂线,垂足为F;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.25.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).26.如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC边扫过的面积是.27.如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.28.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为.29.如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法)30.如图,已知锐角△ABC.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.31.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C (﹣2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的AC边上一点,△ABC经平移后点P的对称点P′(a+3,b+1),请画出平移后的△A2B2C2.32.如图,已知BD平分∠ABF,且交AE于点D,(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD 是菱形.33.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点).(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为.34.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.35.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.36.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80°B.90°C.100°D.105°37.已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.38.在每个小正方形的边长为1的网格中.点A,B,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).39.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.理由:连接AH,EH.∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED,∴△ADH∽.∴,即DH2=AD×DE.又∵DE=DC∴DH2=,即正方形DFGH与矩形ABCD等积.(2)操作实践平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.如图②,请用尺规作图作出与▱ABCD等积的矩形(不要求写具体作法,保留作图痕迹).(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的(填写图形名称),再转化为等积的正方形.如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n﹣1边形,…,直至转化为等积的三角形,从而可以化方.如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).40.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD 是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD 的长.41.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.42.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.43.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.44.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.45.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(2,﹣4),B(4,﹣4),C(1,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1,直接写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).46.如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.47.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C (﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.48.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.49.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径50.如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)51.如图,将线段AB放在边长为1的小正方形网格,点A点B均落在格点上,请用无刻度直尺在线段AB上画出点P,使AP=,并保留作图痕迹.(备注:本题只是找点不是证明,∴只需连接一对角线就行)52.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.53.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).54.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)55.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以56.将正方形纸片以适当的方式折叠一次,沿折痕剪开后得到两块小纸片,用这两块小纸片拼接成一个新的多边形(不重叠、无缝隙),给出以下结论:①可以拼成等腰直角三角形;②可以拼成对角互补的四边形;③可以拼成五边形;④可以拼成六边形.其中所有正确结论的序号是.57.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.58.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.59.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种60.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.2015年全国中考数学作图题60例参考答案与试题解析一、解答题(共60小题)1.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.考点:作图—复杂作图;平行四边形的性质.专题:作图题.分析:(1)根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;(2)根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.解答:解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.点评:考查了作图﹣复杂作图,关键是作一个角的角平分线,同时考查了平行四边形的性质,角平分线的性质,平行线的性质和等腰三角形的性质的知识点.2.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.考点:正多边形和圆;圆锥的计算;作图—复杂作图.专题:作图题.分析:(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.解答:(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.点评:本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.3.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是等腰直角三角形.考点:作图-位似变换.专题:作图题.分析:(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.解答:解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.点评:本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.考点:作图-旋转变换;弧长的计算;作图-平移变换.专题:作图题.分析:(1)根据图形平移的性质画出平移后的△A1B1C1即可;(2)根据图形旋转的性质画出△ABC绕点O旋转180°后得到的△A2B2C2;(3)根据弧长的计算公式列式即可求解.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示:(3)∵OA=4,∠AOA2=180°,∴点A绕着点O旋转到点A2所经过的路径长为=4π.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.也考查了弧长的计算.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.考点:作图-位似变换;作图-平移变换.专题:作图题.分析:(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.解答:解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.点评:此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.6.如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.考点:作图—复杂作图;勾股定理;垂径定理的应用.专题:作图题.分析:(1)连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;(2)连接OA,OC,OC交AB于D,如图2,根据垂径定理的推论,由C为的中点得到OC⊥AB,AD=BD=AB=40,则CD=20,设⊙O的半径为r,在Rt△OAD中利用勾股定理得到r2=(r﹣20)2+402,然后解方程即可.解答:解:(1)如图1,点O为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为的中点,∴OC⊥AB,∴AD=BD=AB=40,设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵OA2=OD2+BD2,∴r2=(r﹣20)2+402,解得r=50,即所在圆的半径是50m.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了勾股定理和垂径定理.7.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G•Pick,1859~1942年)证明了格点多边形的面积公式S=a+b﹣1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+×6﹣1=6(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)考点:作图—应用与设计作图.专题:作图题.分析:(1)根据皮克公式画图计算即可;(2)根据题意可知a=3,b=3,画出满足题意的图形即可.解答:解:(1)如图所示,a=4,b=4,S=4+×4﹣1=5;(2)因为S=,b=3,所以a=3,如图所示,点评:本题考查了应用与设计作图,关键是理解皮克公式,根据题意求出a、b的值.8.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.考点:作图—复杂作图;切线的性质;弧长的计算.专题:作图题.分析:(1)过点C作AB的垂线,垂足为点D,然后以C点为圆心,CD为半径作圆即可;(2)先根据切线的性质得∠ADC=90°,则利用互余可计算出∠DCE=90°﹣∠A=60°,∠BCD=90°﹣∠ACD=30°,再在Rt△BCD中利用∠BCD的余弦可计算出CD=,然后根据弧长公式求解.解答:解:(1)如图,⊙C为所求;(2)∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt△BCD中,∵cos∠BCD=,∴CD=3cos30°=,∴的长==π.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的性质和弧长公式.9.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.。
2023年九年级数学中考专题:尺规作图类训练题(含简单答案)
2023年九年级数学中考专题:尺规作图类训练题一、单选题1.如图,Rt ABC △中,由90ACB ∠=︒,30B ∠=︒,要求用圆规和直尺作图,分成两个三角形,其中至少有一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .2.如图,在ABC 中,已知45B ∠=︒,30C ∠=︒,分别以点A 、C 为圆心,大于12AC长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若3DE =,则AB 的长为( )A .B .5C .6D .3.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,交BC 于点E ,连接BD ,则ABD △的周长为( )A .AB BC + B .BC AC + C .+AB ACD .AB AC BC ++4.请仔细观察用直尺和圆规作一个角等于已知角的示意图如图所示,请你根据所学的三角形全等有关的知识,说明画出D O C DOC '''∠=∠的依据是( )A .SASB .AASC .SSSD .SSA5.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点 E ,F , 再以点 E 为圆心,以EF 长为半径画弧,交弧①于点 D ,画射线OD .若28AOB ∠︒=,则BOD ∠的补角的度数为( )A .124︒B .39︒C .56︒D .144︒6.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图①,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N 作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ∠,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL7.如图,在Rt ABC △中,90B ,分别以A 、C 为圆心,大于AC 长的一半为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别相交于点D 、E ,连接AE ,当3AB =,5AC =时,ABE 周长为( )A .7B .8C .9D .108.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .①分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .①连接OE 交CD 于点M .下列结论中不正确的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形二、填空题9.如图,在ABC 中,AC BC =,以点A 为圆心,AB 长为半径作弧交BC 于点D ,交AC 于点E ,再分别以点C ,D 为圆心,大于CD 的长为半径作弧,两弧相交于F ,G两点,作直线FG .若直线FG 经过点E ,则C ∠的度数为______︒,AEG ∠的度数为______︒.10.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP的最小值为______.11.如图,在ABC 中,90C ∠=︒.按以下步骤作图:①以点A 为圆心,适当长为半径作圆弧,分别交边AB 、AC 于点M 、N ;①分别以点M 和点N 为圆心、大于MN 一半的长为半径作圆弧,在BAC ∠内,两弧交于点P ;①作射线AP 交边BC 于点D .若DAC ABC ∽△△,则B ∠的大小为______度.12.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,BC 长为半径画弧,交AB 于点D ,再分别以点C ,D 为圆心,大于12CD 长为半径画弧,两弧交于点E ,作射线BE交AC 于点F .若12BC =,15AB =,若BCF △的面积为24,则ABC 的面积为__________.13.如图,在四边形ABCD 中,30A ∠=︒,AB AD =,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则EBD ∠的度数为______.14.如图,在t R ABC 中,90C ∠=︒,以点B 为圆心,以任意长为半径作弧,分别交,AB BC于点M ,N ;①分别以M ,N 为圆心12MN 的长为半径作弧,两弧在ABC ∠内交于点P ,交AC 于点D .若16,8ABDSAB ==,则线段CD 的长为 ___________.15.如图,在ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F ,分别以F 、B 为圆心,大于12BF 长为半径画弧,两弧交于点G ,作射线AG 交BC 于点E ,6BF =,5AB =,则AE 的长为 ___________.16.如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于点E ,分别以点C ,E 为圆心、大于12CE 的长为半径作弧,两弧交于点P ,作射线BP交AD 的延长线于点F ,60CBE ∠=︒,6BC =,则BF =___________.三、解答题17.如图,在ABC 中,50A ∠=︒,30C ∠=,请用尺规作图法,在AC 上求作一点D ,使得BDC ABC ∽.(保留作图痕迹,不写作法)18.(1)操作实践:ABC 中,90A ∠=︒,22.5B ∠=︒,请画出一条直线把ABC 分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求画出一种分割方法即可)(2)分类探究:ABC 中,最小内角24B ∠=︒,若ABC 被一直线分割成两个等腰三角形,请画出相应示意图并写出ABC 最大内角的所有可能值;(3)猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)19.如图,在ABC 中,点P ,Q 分别在边BC 及CB 的延长线上,且BQ CP =.(1)实践与探索:利用尺规按下列要求作图(不写作法,保留作图痕迹). ①作PQM CBA ∠=∠,且点M 在QC 的上方; ①在QM 上截取QR BA =; ①连接PR .(2)猜想与验证:试猜想线段AC 和RP 的数量关系,并证明你的猜想.20.如图,点D 是等边ABC 内部一点,且DB DC =,请仅用无刻度的直尺......,分别按下列要求画图.(1)在图①中BC 上找一点E ,使12BE BC =; (2)若2BDC A ∠=∠,在图①中AB AC 、边上分别找点M 、N ,使12MN BC =.参考答案:1.B2.A3.C4.C5.A6.C7.A8.C9.3612610.12 511.30 12.54 13.45︒14.4 15.816.18.(2)ABC的最大内角可能值是117︒或108︒或90︒或84︒;19.(2)RP AC=,答案第1页,共1页。
初三尺规作图练习题及答案
初三尺规作图练习题及答案一、作图题:1. 作图:在空白平面上画一条长为5cm的线段AB;2. 作图:在平面上任意选择一点O,画一条长为3cm的线段OA,并作出∠AOB为45°的角;3. 作图:在空白平面上画一条长为4cm的线段OA,再在OA上作一点B,且OB=2cm;4. 作图:已知三条线段AB、BC、AC的长度分别为3cm、4cm、5cm,画出三角形ABC;5. 作图:已知四边形ABCD,其中AB=3cm,BC=4cm,∠C=90°,CD=5cm,画出该四边形;6. 作图:在平面上画一条直线,再取一点P,使得P到该直线的距离为4cm;7. 作图:在空白平面上画一条长为6cm的线段AB,然后以B为圆心,AB为半径作弧线;8. 作图:一个正方形边长为8cm,画出该正方形;9. 作图:在空白平面上任意选择一点O,以O为圆心,3cm为半径画出一个圆;10. 作图:在平面上给定一条线段AB和一点O,作出以线段AB为一边,点O为顶点的角。
二、答案及解析:1. 题目要求画一条长为5cm的线段AB,可以任意选择一个点作为起点,然后使用尺规在平面上作一条长为5cm的线段。
最终得到的线段即为所求的AB线段。
2. 题目要求画一条长为3cm的线段OA,并作出∠AOB为45°的角。
先在平面上选取一个点O,再利用尺规作出线段OA。
接着,以O为圆心,半径为3cm作一个圆,并选择圆上任意一点B。
最后,使用尺规作出∠AOB为45°的角。
3. 题目要求画一条长为4cm的线段OA,再在OA上任意选择一点B,且OB=2cm。
首先,利用尺规作出长度为4cm的线段OA。
然后,在OA上以O为起点,用尺子量取2cm并在该位置上作一点B。
最终得到的OB线段长度为2cm。
4. 题目要求已知三条线段AB、BC、AC的长度分别为3cm、4cm、5cm,画出三角形ABC。
首先,利用尺规作出线段AB的长度为3cm。
2024年中考数学复习--圆的尺规作图问题专项练习
圆的尺规作图问题专项练习核心知识点1 作三角形的外接圆和内切圆知识赋能1.熟悉五种基本的尺规作图方法,并能灵活应用.2.把复杂的尺规作图问题转化为几个基本的尺规作图问题来解决.例1 (1)作△ABC的外接圆(要求:尺规作图,保留作图痕迹,不写作法);(2)若△ABC是直角三角形,则其外接圆的圆心在 .例2 作三角形△ABC的内切圆.核心知识点2 圆的等分知识赋能1.掌握圆的等分问题等价的背后原理,再用尺规作图实现.2.掌握由简单到复杂、由特殊到一般的思考问题方法.例3 如图,请用尺规作图确定圆的圆心P,保留作图痕迹,不要求写作法.例4 作二等分弧(用尺规作图,保留作图痕迹).例5 用尺规将圆六等分以及八等分.六等分:八等分:核心知识点 3 尺规作图应用知识赋能1.把握需要解决的问题的本质特征,利用尺规作图辅助解决过程中的某些问题.2. 网格问题中,关注网格特点,设未知数,利用勾股定理列方程解决问题.例6 如图,M为⊙O内一点,请你利用直尺和圆规作一条弦AB,使得M为AB的中点(不写作法,保留作图痕迹).例7 (1)操作实践:如图,用无刻度直尺与圆规在矩形ABCD 的内部作出一点 P,使得∠BPC=∠BEC,且PB=PC(不写作法,保留作图痕迹);(2)迁移应用:已知在△ABC中, ∠A>∠B,∠C=60°,AB=4,,求BC 的取值范围.例8 如图,在每个小正方形的边长均为1的网格中,△ABC的顶点A, B, C均落在格点上.(1)△ABC的面积为 ;(2)请在如图1所示的网格中,用无刻度的直尺在AC上找出一点 M,使以M为圆心, MC 为半径的⊙M 与AB 相切, 并求出⊙M 的半径r=;(3)已知在四边形ABCD中, ∠D=∠C=45°,, P是CD边上一点, 且△ADP∪△PCB,在图2中用直尺和圆规作出所有满足条件的点P(保留作图痕迹,不写作法).中考满分学力训练1. 已知A,B是直线l上的两点. 作△ABC,,使得点C在直线l上方,且∠ACB=150°.使用直尺和圆规,依作法补全图形(保留作图痕迹).2. 在Rt△ABC中, ∠C=90°. 点 E 在 BC边上, 且△ACE的周长为AC+BC,以线段AE上一点O 为圆心的⊙O恰与AB,BC边都相切.请用无刻度的直尺和圆规确定点E, O的位置.3. 如图1, 在Rt△GMN中, ∠M=90°, P为MN的中点.(1)将线段MP绕着点M逆时针旋转60°得到线段MQ,点 P的对应点为Q,若点 Q刚好落在GN上,①在图1中画出示意图;②试问:以线段MQ 为直径的圆是否与GN 相切?请说明理由.(2)如图2, 用直尺和圆规在GN边上求作点 Q, 使得∠GQM=∠PQN.4. 如图, 点E为正方形 ABCD 边BC上一点, ⊙O 是△ABE 的外接圆, 与 AD 交于点 F.(1)尺规作图,在CD上求作点G,使△ABE∼△FDG(保留作图痕迹).(2)在(1)的条件下, ①证明: 直线 FG与⊙O 相切; ②若AB=4,DG=1,,求半径OA 的长.5. (1)如图1, AB是⊙O的直径, C, D是⊙O上两点, 且BC=BD,AD=CD.求证:∠ADC=2∠BDC.(2)如图2, AB是⊙O的直径, 点C在⊙O 上. 若平面内的点 D满足. AD=CD,且∠ADC=2∠BDC:①利用直尺和圆规在图2中作出所有满足条件的点 D(保留作图痕迹,不写作法);②若AB=4, BC长度为m(0<m<4),则平面内满足条件的点D 的个数随着m 的值变化而变化,请直接写出满足条件点 D的个数及对应m的取值范围.自主招生能力挑战6. 如图1, 在△ABC中, AB=5,AC=3√2,BC=7,半径为r的⊙O经过点A且与BC相切,切点M在线段 BC上(包含点M与点 B,点C重合的情况).(1)半径r的最小值等于;(2)设BM=x,,求半径r关于x的函数表达式;(3)当BM=11时,请在图2中作点M及满足条件的⊙O(尺规作图,不写作法,保留作图痕迹,并用2B铅笔或黑色水笔加黑加粗).7. 如图1, AE 是△ABC 的角平分线, D 是直线BC上一点, 如果点 D 满足. DA=DE,那么点 D叫做△ABC的边 BC上的“阿氏点”.(1)在图2中,利用直尺和圆规作△ABC 的边 BC 上的“阿氏点”,用字母 D 表示(不写作法,保留作图痕迹).(2)在(1)中, 求证: △DAB∽△DCA.(3)如图3, 四边形 ABCD 内接于⊙O, 对角线AC, BD 相交于点 E, 以D为圆心,DA为半径的圆恰好经过点C,且与BD交于点 F.①求证: 点 D 是△ABE的边 BE 上的“阿氏点”;,DE=2,AE=3,求⊙D和⊙O的半径长.②若BE=528. 如图1,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图2,小明的作图方法如下.第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;第二步: 连接OA, OB;第三步: 以O为圆心, OA长为半径作⊙O, 交l于P₁, P₂, 图2中P₁, P₂即为所求的点.(1)如图3,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°(不写作法,保留作图痕迹).(2)已知矩形ABCD, 若. BC=2,AB=m,, P为AD边上的点, 满足∠BPC=45°的点P恰有两个,则m的取值范围为 .9.如图,将⊙O 沿弦AB 折叠,使折叠后的劣弧 AB̂恰好经过圆心O ,连接AO 并延长交⊙O 于点 C, 点P 是优弧 ACB ̅̅̅̅̅̅上的动点, 连接A P, PB.(1)如图1,用尺规画出折叠后的劣弧 AB̂所在圆的圆心 O ′,并求出 ∠APB 的度数; (2)如图1, 若AP 是( ⊙O ′的切线, OA =4,求线段AP 的长;(3)如图2, 连接PC, 过点B 作BP 的垂线, 交PC 的延长线于点D, 求证: √3PC + PA =2PB.。
初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)
初中数学中考复习作图题专项练习及答案解析(专题试卷50道)一、选择题1、数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.2、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是A.B.C.D.3、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()4、下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.5、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形6、用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形7、如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A. AG平分∠DABB. AD=DHC. DH=BCD. CH=DH8、如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.下列叙述正确的是:A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD二、填空题9、阅读下面材料:在数学课上,老师提出如下问题:所以PB和PC就是所求的切线.请回答:小涵的作图依据是.10、如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.11、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= .12、如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为.三、计算题13、如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.14、如图所示,点C、D是∠AOB内部的两点.(1)作∠AOB的平分线OE;(2)在射线OE上,求作一点P,使PC=PD.(要求用尺规作图,保留作图痕迹)四、解答题15、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.16、(8分)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求点P到AB边的距离.17、已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)18、数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.(2)小聪的作法正确吗?请说明理由.(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)19、如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.20、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.21、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请找出截面的圆心;(不写画法,保留作图痕迹.)(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.22、如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平分△ABC的面积(不需写作法,保留作图痕迹)23、高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?24、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.25、如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法);(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.26、如图,107国道OA和302国道OB在甲市相交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且使PC=PD,试确定出点P的位置.(不写作法,保留作图痕迹,写出结论)27、用尺规作图从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大(保留作图痕迹,不要求写作法、证明)28、如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.29、如图,点A是半径为3的⊙O上的点,(1)尺规作图:作⊙O的内接正六边形ABCDEF;(2)求(1)中的长.30、已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E到B,D两点的距离相等.(1)用尺规作图作出点E;(不写作法,保留作图痕迹)(2)连接BE,求证:BD平分∠ABE.31、如图,BC是⊙O的一个内接正五边形的一边,请用等分圆周的方法,在⊙A中用尺规作图作出一个⊙A的内接正五边形(请保留作图痕迹).32、已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.33、如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)34、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.35、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.36、如图,△ABC中,∠C=90°,小王同学想作一个圆经过A、C两点,并且该圆的圆心到AB、AC距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D.(不写作法,保留作图痕迹).37、如图,将矩形ABCD沿对角线AC折叠,点B落在点E处,请用尺规作出点E.(不写画法,保留作图痕迹)38、如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧BC的长.39、如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠CAB的平分线,交BC边于点D(用尺规作图,保留作图痕迹,不要求写作法和证明);(2)求S△ACD:S△ABC的值.40、如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)41、如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.42、▱ABCD中,点E在AD上,DE=CD,请仅用无刻度的直尺,按要求作图(保留作图痕迹,不写作法)(1)在图1中,画出∠C的角平分线;(2)在图2中,画出∠A的角平分线.43、如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)44、从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明)(2)若AB=2m,∠CAB=30°,求裁出的△ABD的面积.45、如图,在中,.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作的垂直平分线,交于点,交于点;②以为圆心,为半径作圆,交的延长线于点.⑵在⑴所作的图形中,解答下列问题.①点与的位置关系是_____________;(直接写出答案)②若,,求的半径.46、在数轴上作出表示的点(保留作图痕迹,不写作法).47、△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点C顺时针旋转90°得到△A2B2C.48、如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)理由是:.49、如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)50、如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)参考答案1、A.2、D3、D4、B5、B.6、B7、D8、A9、直径所对的圆周角是直角.10、100.11、8.12、10.13、见解析14、见解析15、(1)详见解析;(2).16、(1)、答案见解析;(2)、5.17、答案见解析18、(1)SSS;(2)、理由见解析;(3)、答案见解析19、(1)、答案见解析;(2)、30m.20、(1)、答案见解析;(2)、r=8cm 21、(1)见试题解析;(2)这个圆形截面的半径是10cm.22、答案见解析23、(1)作图详见解析;(2)(﹣4)千米.24、(1)图形详见解析;(2) B′(﹣6,2),C′(﹣4,﹣2).25、26、作图详见解析.27、28、(1)作图见解析(2)作图见解析29、(1)见试题解析;(2)2π.30~33、详见解析.34、(1)、答案见解析;(2)、r=8cm35、(1)、答案见解析;(2)、36、作图参见解析.37、作图参见解析.38、(1)作图参见解析;(2)π.39、(1)作图见解析(2)1:340、答案见解析41、(1)作图见解解析;(2)AB=AD=BC.42、作图参见解析.43、44、(1)如图;(2)m245、(1)作图见解析;(2)①点B在⊙O上;②5.46、47、见解析48、见解析49、见解析50、答案见解析.答案详细解析【解析】1、试题分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.故选:A.考点:作图—基本作图.2、试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3、试题分析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.考点:基本作图4、试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.5、试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,由此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.6、试题分析:根据作图的痕迹以及菱形的判定方法解答.解:由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.7、试题分析:由角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH =BC,B、C正确,故答案选D.考点:平行四边形的性质;平行线的性质.8、试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.9、试题分析:∵OP是⊙A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC,∵OB、OC是⊙O的半径,∴PB、PC是⊙O的切线;则小涵的作图依据是:直径所对的圆周角是直角.故答案为:直径所对的圆周角是直角.【考点】切线的判定;作图—复杂作图.10、试题解析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;在△ADC中,∠B=60°,∠CAD=20°,∴∠ADB=100°,考点:作图—基本作图.11、试题解析:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=AE=4,∴AE=8.考点:1.作图—复杂作图;2.线段垂直平分线的性质;3.含30度角的直角三角形.12、试题分析:∵分别以点B和点C为圆心,以大于BC一半的长为半径画弧,两弧相交于点M和N,作直线MN.直线MN交AB于点D,连结CD,∴直线MN是线段BC的垂直平分线,∴BD=CD,∴BD+AD=CD+AD=AB,∵AB=6,AC=4,∴△ADC的周长=(CD+AD)+AC=AB+AC=6+4=10.故答案为:10.考点:线段垂直平分线的性质.13、解:如图所示.△ABC就是所求的三角形.14、试题分析:(1)根据赔付风险的画法画出图形即可.(2)画出作线段CD的垂直平分线MN,即可解决问题.解:(1)∠AOB的平分想如图所示,(2)作线段CD的垂直平分线MN与射线OE交于点P.点P就是所求的点.15、试题分析:(1)利用尺规作出∠ABC的平分线BD即可.(2)首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=•A1C•A1D计算即可.试题解析:(1)∠ABC的平分线BD,交AC于点D,如图所示,(2)在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A1C=,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC是等腰直角三角形,∴.考点:翻折变换(折叠问题);作图—基本作图.16、试题分析:(1)、做出线段AB的中垂线得出答案;(2)、设BP=x,则AP=x,CP=BC﹣PB=8﹣x,然后根据Rt△ACP的勾股定理得出答案.试题解析:(1)、如图,点P为所作;(2)、设BP=x,则AP=x,CP=BC﹣PB=8﹣x,在Rt△ACP中,∵PC2+AC2=AP2,∴(8﹣x)2+42=x2,解得x=5,即BP的长为5.考点:勾股定理17、试题分析:根据角平分线的作法以及过直线外一点向直线最垂线的作法得出即可.试题解析:如图所示:CD,AE即为所求.考点:作图—复杂作图.18、试题分析:(1)、本题都是作线段相等,则根据SSS来判定三角形全等;(2)、根据垂直得出∠OMP=∠ONP=90°,然后结合OP=OP,OM=ON得出直角三角形全等;(3)、根据三角形全等的性质得出角平分线.试题解析:(1)、SSS(2)、小聪的作法正确理由:∵PM⊥OM , PN⊥ON ∴∠OMP=∠ONP=90°在Rt△OMP和Rt△ONP中∵OP="OP" ,OM=ON∴Rt△OMP≌Rt△ONP(HL)∴∠MOP=∠NOP ∴OP平分∠AOB(3)、如图所示.步骤:①利用刻度尺在OA、OB上分别截取OG=OH. ②连结GH,利用刻度尺找出GH的中点Q.③作射线OQ.则OQ为∠AOB的平分线.考点:角平分线的做法.19、试题分析:(1)、利用轴对称最短路线求法得出P点关于OA,OB的对称点,进而得出行走路线;(2)、利用等边三角形的判定方法以及其性质得出此人行走的最短路线长为P′P″进而得出答案.试题解析:(1)、如图所示:此人行走的最短路线为:PC→CD→DP;(2)、连接OP′,OP″,由题意可得:OP′=OP″,∠P′OP″=60°,则△P′OP″是等边三角形,∵OP=30米,∴PC+CD+DP=P′P″=30(m),考点:(1)、作图—应用与设计作图;(2)、轴对称-最短路线问题.20、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质21、试题分析:(1)根据尺规作图的步骤和方法做出图即可;(2)先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.试题解析:(1)如图所示;(2)如图,OE⊥AB交AB于点D,则DE=4cm,AB=16cm,AD=8cm,设半径为Rcm,则OD=OE﹣DE=R﹣4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R﹣4)2,解得R=10.故这个圆形截面的半径是10cm.【考点】作图—应用与设计作图;垂径定理的应用.22、试题分析:首先作出BC的垂直平分线,可确定BC的中点记作D,再根据三角形的中线平分三角形的面积画出直线AD即可.试题解析:如图所示:,直线AD即为所求.考点:作图—复杂作图.23、试题分析:(1)在内圆(或外圆)任意作出两条弦,分别作出者两条弦的垂直平分线,它们的交点就是疫点(即圆心O);(2)利用垂径定理求出AB、CD的长度,问题解决.试题解析:(1)作图如下:(2)如图:连接OA、OC,过点O作OE⊥AB于点E,∴CE=CD=2km,AE=AB,在Rt△OCE中,OE==km,在Rt△OAE中,AE==km,∴AB=2AE=km,因此AC+BD=AB﹣CD=﹣4(km).答:这条公路在免疫区内有(﹣4)千米.考点:作图—应用与设计作图.24、试题分析:(1)延长BO到B′,使OB′=2OB,则B′就是B的对应点,同样可以作出C的对称点,则对应的三角形即可得到;(2)根据(1)的作图即可得到B′、C′的坐标.试题解析:(1)△OB′C′是所求的三角形;(2)B′的坐标是(﹣6,2),C′的坐标是(﹣4,﹣2).考点:作图-位似变换.25、试题分析:(1)连结PO并延长交BC于E,过点A、E作弦AD即可;(2)由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.试题解析:(1)如图所示:(2)∵直线l与⊙O相切与点P,∴OP⊥l,∵l∥BC,∴PE⊥BC,∴BE=CE,∴弦AE将△ABC分成面积相等的两部分.【考点】作图—复杂作图;三角形的外接圆与外心.26、试题分析:作∠AOB的平分线与线段CD的垂直平分线,两线相交于点P,点P即为所求.试题解析:点P即为所求.考点:作图——应用与设计作图.27、试题分析:利用△ABD是以AB为底边的等腰三角形,则点D在AB的垂直平分线上,于是作AB的垂直平分线交AC于D,则△ABD满足条件.试题解析:如图,△ABD为所作.考点:作图﹣复杂作图.28、试题分析:(1)作出BD、BC的垂直平分线,两线的交点就是⊙O的圆心O的位置,然后以O为圆心AO长为半径画圆即可;(2)以B为圆心,BC长为半径化弧,交⊙O于点D,再连接BD,CD即可.试题解析:(1)如图所示:⊙O即为所求;(2)如图所示:点D即为所求.考点:1、作图—复杂作图;2、圆周角定理;3、三角形的外接圆与外心29、试题分析:(1)由正六边形ABCDEF的中心角为60°,可得△OAB是等边三角形,继而可得正六边形的边长等于半径,则可画出⊙O的内接正六边形ABCDEF;(2)由(1)可求得∠AOC=120°,继而求得(1)中的长.试题解析:(1)首先连接OA,然后以A为圆心,OA长为半径画弧,交⊙O于B,F,再分别以B,F为圆心,OA长为半径画弧,交⊙O于点E,C,在以C为圆心,OA长为半径画弧,交⊙O于点D,则正六边形ABCDEF即为所求;(2)∵正六边形ABCDEF是⊙O的内接正六边形∴∠AOC=120°,∵⊙O的半径为3,∴的长为:=2π.【考点】正多边形和圆;弧长的计算;作图—复杂作图.30、试题分析:(1)、直接利用作一角等于已知角的作法结合线段垂直平分线的作法得出符合题意的图形;(2)、直接利用平行线的性质以及结合线段垂直平分线的性质得出答案.试题解析:(1)、如图所示:点E即为所求;(2)、∵DE∥AB,∴∠ABD=∠BDE,又∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=∠EBD,即BD平分∠ABE.考点:(1)、作图—复杂作图;(2)、平行线的性质;(3)、线段垂直平分线的性质.31、试题分析:如图,①作∠EAF=∠BOA.②在⊙A上截取,则五边形EFGHL即为所求.试题解析:如图,①作∠EAF=∠BOA.②在⊙A上截取.五边形EFGHL即为所求.考点:1、作图—复杂作图;2、正多边形和圆32、试题分析:(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.试题解析:(1)作出∠B的平分线BD;作出线段AB垂直平分线交AB于点E,点E是线段AB的中点.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).考点:作图—复杂作图;全等三角形的判定.33、试题分析:分别作∠B的平分线BE和线段AB的垂直平分线MN,利用角平分线的性质以及线段垂直平分线的性质得出即可.试题解析:如图,点P即为所求点.考点:作图——基本作图;角平分线的性质.34、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质35、试题分析:(1)、利用尺规作出∠ABC的平分线BD即可;(2)、首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=•A1C•A1D计算即可.试题解析:(1)、∠ABC的平分线BD,交AC于点D,如图所示,(2)、在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A1C=-1,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC 是等腰直角三角形,∴S=.考点:(1)、翻折变换(折叠问题);(2)、作图—基本作图.36、试题分析:根据角平分线的性质定理和线段垂直平分线的性质定理,先作∠BAC的平分线AE,再作AC的垂直平分线m交AE于点D,则点D满足条件.试题解析:如图,先作∠BAC的平分线AE,再作AC的垂直平分线m交AE于点D,点D为所作.考点:作图—复杂作图.37、试题分析:以点A为圆心以AB长为半径作弧,以C为圆心以BC长为半径作弧,两弧相交于点E.试题解析:以点A为圆心以AB长为半径作弧,以C为圆心以BC长为半径作弧,如图所示:两弧相交于点E.则点E即为所求.考点:1.翻折变换(折叠问题);2.矩形的性质.38、试题分析:(1)先找到圆心,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆即可;(2)先利用等腰直角三角形的性质求出AB的长,那么OB=OA=AB,又∠BOC=90°,将它们代入弧长公式计算即可.试题解析:(1)如图,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆,⊙O即为所作;(2)∵在等腰直角△ABC中,∠ACB=90°,AC=1,∴AB=AC=,∵线段AB的垂直平分线交AB于O点,∴∠BOC=90°,OB=OA=AB=,∴劣弧BC的长=π.考点:1.弧长的计算;2.作图—复杂作图.39、试题分析:(1)根据角平分线的基本作图画图即可;(2)根据角平分线的性质的到边之间的关系,然后根据三角形的面积公式计算即可.试题解析:(1)如图所示,AD为所求的角平分线;(2)∵∠C=90°,∠B=30°,∴∠CAB =60°,∵AD平分∠CAB,∴∠CAD ="∠DAB" =30°,∵∠ACD=90°,∴AD=2CD,∵∠B=30°,∴∠B=∠DAB,∴AD= BD,∴BD=2CD,∴BC=3CD,∵,,∴.考点:角平分线40、试题分析:作∠AOB的角平分线和线段MN的中垂线,两条直线的交点就是点P的位置.试题解析:如图所示:点P就是所求的点.考点:(1)、角平分线的作法;(2)、线段的中垂线的作法41、试题分析:(1)利用基本作图作BO⊥AC即可;(2)先利用平行线的性质得∠EAC=∠BCA,再根据角平分线的定义和等量代换得到∠BCA=∠BAC,则BA=BC,然后根据等腰三角形的判定方法由BD⊥AO,AO平分∠BAD得到AB=AD,所以AB=AD=BC.试题解析:(1)如图,BO为所作;(2)AB=AD=BC.证明如下:∵AE∥BF,∴∠EAC=∠BCA,∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC,∵BD⊥AO,AO平分∠BAD,∴AB=AD,∴AB=AD=BC.考点:作图—基本作图;作图题.42、试题分析:(1)连结CE,由DE=DC得到∠DEC=∠DCE,由AD∥BC得∠DEC=∠BCE,则∠DCE=∠BCE,即CE平分∠BCD;(2)连结AC、BD,它们相交于点O,延长EO交BC于F,则AF为所作.试题解析:(1)如图1,由DE=DC得到∠DEC=∠DCE,由AD∥BC得∠DEC=∠BCE,则∠DCE=∠BCE,即CE平分∠BCD.CE为所求作;(2)如图2,连结AC、BD,它们相交于点O,延长EO交BC于F,则AF为所作.因为三角形BOF和三角形DOE全等,导出BF=DE=AB=CD,从而得出∠BAF=∠BFA=∠FAD,则AF是所求作的角平分线.考点:1.基本作图;2.三角形全等的判定与性质;3.平行四边形的性质.43、试题分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.44、试题分析:(1)直接利用线段垂直平分线的性质作出AB的垂直平分线,交AC于点D,进而得出△ABD;(2)利用锐角三角形关系得出DE的长,进而利用三角形面积求法得出答案.试题解析:(1)如图所示:△ABD即为所求;(2)∵MN垂直平分AB,AB=2m,∠CAB=30°,∴AE=1m,则tan30°=,解得:DE=.故裁出的△ABD的面积为:×2×=(m2).考点:作图—复杂作图.45、试题分析:(1)先作AC的垂直平分线,然后作⊙O;(2)①通过证明OB=OA来判断点在⊙O上;②设⊙O的半径为r,在Rt△AOD中利用勾股定理得到r2=42+(r-2)2,然后解方程求出r 即可.试题解析:(1)如图所示;。
尺规作图练习题初三
尺规作图练习题初三尺规作图是几何学中的一种重要方法,它通过使用尺子和圆规来完成各种图形的构造。
对于初三学生来说,掌握尺规作图技巧是必不可少的。
本文将给出几个尺规作图的练习题,帮助初三学生锻炼尺规作图的能力。
练习一:等腰三角形的构造要求:构造一个等腰三角形ABC,已知底边BC和顶角A。
解答:1. 画出底边BC,任取一点A作为顶点。
2. 以B为圆心,BC为半径作一个弧交底边BC于点D。
3. 以C为圆心,CD为半径作一个弧交底边BC于点E。
4. 连接AE,得到等腰三角形ABC。
练习二:正方形的构造要求:构造一个正方形ABCD,已知边长AB。
解答:1. 以A为圆心,AB为半径作一个弧交边AB于点E。
2. 以E为圆心,EA为半径作一个弧交边AE于点F。
3. 连接BF,得到正方形ABCD。
练习三:等边三角形的构造要求:构造一个等边三角形ABC,已知边长AB。
解答:1. 以A为圆心,AB为半径作一个弧。
2. 以B为圆心,AB为半径作一个弧。
3. 这两个弧交于一点C,连接AC和BC,得到等边三角形ABC。
练习四:垂直平分线的构造要求:构造一个垂直平分线,已知线段AB。
解答:1. 以A为圆心,任取不等于AB的半径作一个弧交AB于点C。
2. 以B为圆心,作相同半径的弧交AB于点D。
3. 以C和D为圆心,作相同半径的弧,这两个弧交于一点E。
4. 连接AE和BE,得到线段AB的垂直平分线。
练习五:平行线的构造要求:构造一条与给定线段AB平行的线段CD。
解答:1. 以A为圆心,任取一定半径作一个弧。
2. 以B为圆心,作相同半径的弧,与前一个弧交于一点C。
3. 以C为圆心,再次作相同半径的弧,与前一个弧交于一点D。
4. 连接CD,得到平行于线段AB的线段CD。
通过以上几个练习题,初三学生可以进行尺规作图的练习,提高自己的几何构造能力。
尺规作图需要仔细观察和灵活运用尺规,希望同学们能够多加练习,熟练掌握这一技巧。
让我们一起享受几何的乐趣吧!。
初三专题画图练习题
初三专题画图练习题在初三数学学习中,画图是解决问题和理解概念的重要方法之一。
针对初三学生的需求,以下是一些专题画图练习题,旨在帮助学生巩固知识,提高解题能力。
一、关于平行四边形的画图练习1. 已知平行四边形ABCD中,AB = 5 cm,BC = 7 cm,绘制这个平行四边形。
解答:在纸上用尺子量取AB = 5 cm的长度,然后在纸上作一条直线段AB。
以点B为圆心,BC = 7 cm为半径作一条弧,与AB交于点D。
连接AD和CD,得到平行四边形ABCD。
2. 已知平行四边形ABCD中,AB = 6 cm,∠B = 120°,绘制这个平行四边形。
解答:在纸上用尺子量取AB = 6 cm的长度,然后在纸上作一条直线段AB。
以点B为圆心,半径为6 cm,画一条弧线。
接着用量角器在AB上量取120°的角度,并以B为顶点画一条射线。
射线与弧线交于一点,记作点D。
连接AD和CD,得到平行四边形ABCD。
二、关于三角形的画图练习1. 给定任意三条边长,绘制一个三角形。
解答:设给定的三条边长分别为a、b和c。
在纸上用尺子量取a的长度,然后在纸上作一条直线段AB,记作边a。
以点A为圆心,以边长b为半径,作一条弧线。
接着以点B为圆心,以边长c为半径,作一条弧线。
弧线与直线段AB的延长线交于点C。
连接AC和BC,得到所求的三角形。
2. 给定一个三角形的底边和底边上的两个角度,绘制这个三角形。
解答:设给定的三角形的底边为AB,底边上的两个角度分别为∠C 和∠D。
在纸上用尺子量取底边AB的长度,然后在纸上作一条直线段AB。
以点A为圆心,量取∠C的角度,并以AB为边绘制一条射线。
以点B为圆心,量取∠D的角度,并以BA为边绘制一条射线。
两条射线的交点记作C,连接AC和BC,得到所求的三角形。
三、关于圆的画图练习1. 已知一个圆的圆心和半径,绘制这个圆。
解答:在纸上选择一个点作为圆心O,然后在纸上选取尺子的一根脚,将其放在O点上,并以此为半径画出一个圆。
(完整word版)中考数学作图专项训练
考前作图题专项训练班级姓名座号一、几种根本的尺规作图1、画一条线段等于线段〔和、差、倍、半〕以以下图,线段 a 、线段 b、线段 c 试用尺规作图作〔 1〕 AB= a+b.〔2〕MN=c-b2、画一个角等于角〔和、差、倍、半〕B以以下图,∠AOB为角,试用尺规作图作(1) ∠CDE=∠ AOB,(2〕∠ MPN=2∠AOBo A3、画线段的垂直均分线以以下图,线段AB,画出它的垂直均分线.4、画角均分线利用直尺和圆规把一个角二均分.:如图,∠AOB 求作:射线OC,使∠ AOC=∠ BOCo BA5、作直线垂线〔 1〕过直线上一点作一条直线与直线垂直; 〔 2〕过直线上一点作一条直线与直线垂直AAl 1l 1二 | 综合训练:1、尺规作图,线段a, 画一个底边长度为 a ,底边上的高也为 a 的等腰三角形。
a2.尺规作图:请你作出一个以线段 a 和线段b为对角线的菱形 ABCD.abA 3、如图,∠AOB及 M、 N 两点,求作:点 P,使点 P 到∠ AOB的两边距离相等,且到 M、 N 的两点也距离相等。
MNB O4、三条直线表示三条互订交织的公路,现在要建一个货物中转站P,要求它到三条公路的距离相等,请作出它的地址。
5、如图有一破残的轮片现要制作一个与原轮片同样大小的圆形零件,请你依照所学的有关知识确定这个圆形零件的半径。
AL6、如图,∠ ABC和直线 L,求作⊙ O,使⊙ O与 BA、BC都相切,且圆心 O在 L 上。
三、选择填空题训练:感觉尺规作图的语文文字表达、数学语言、详尽几何图形三者之间的转变1、如图,分别以线段AC 的两个端点 A ,C 为圆心,大于AC 的长为半径画弧,两弧订交于 B ,D 两点,连接BD ,AB ,BC,CD ,DA ,以下结论:①BD垂直均分AC ;② AC 均分∠ BAD ;③ AC=BD ;④四边形ABCD 是中心对称图形.其中正确的有〔〕A .①②③B .①③④C.①②④D.②③④2.用直尺和圆规作一个角的均分线的表示图以以下图,那么能说明∠AOC= ∠ BOC 的依照是【】A . SSSB . ASA C. AAS D.角均分线上的点到角两边距离相等如图,点C 在∠AOB的OB边上,用尺规作出了CN∥OA,作图印迹中,弧 FG是【】3.A .以点 C 为圆心, OD 为半径的弧B.以点 C 为圆心, DM 为半径的弧C.以点 E 为圆心, OD 为半径的弧D.以点 E 为圆心, DM 为半径的弧4. 如图,在平面直角坐标系中,在x 轴、 y 轴的正半轴上分别截取OA 、 OB,使 OA=OB ;再分别以点 A, B 为圆心,以大于1AB 长为半径作弧,两弧交于点C.假设点 C 的坐标为 (m- 1,2n),那么 m与 n2的关系为【】(A)m + 2n=1(B)m - 2n=1(C)2n - m=1(D)n -2m=15、如图,以∠AOB的极点O 为圆心,合适长为半径画弧,交OA于点C,交OB于点D.再分别以点C、 D为圆心,大于CD的长为半径画弧,两弧在∠ AOB 内部交于点E,过点 E 作射线 OE,连接 CD .那么以下说法错误的选项是〔〕A.射线 OE 是∠ AOB 的均分线B.△ COD 是等腰三角形C. C、 D 两点关于OE 所在直线对称D. O 、E 两点关于CD 所在直线对称6、如图,在△ ABC 中,∠ C=90 °,∠ B=30 °,以 A 为圆心,任意长为半径画弧分别交AB、AC 于点 M 和 N,再分别以 M 、 N 为圆心,大于MN 的长为半径画弧,两弧交于点P,连接 AP 并延长交BC 于点 D ,那么以下说法中正确的个数是〔〕① AD 是∠ BAC 的均分线;②∠ADC=60 °;③点 D 在 AB 的中垂线上;④S△DAC: S△ABC =1: 3.A.1B.2C.3D.47. 数学活动课上,四位同学围绕作图问题:“如图,直线l 和PQ,使 PQ⊥ l 于点 Q. 〞分别作出了以下四个图形,其中作法错误的选项是〔l 处一点P,用直尺和圆规作直线〕Pl8、如图 , 数轴上点A, B 分别对应1,2,过点 B作 PQ⊥ AB,以点 B为圆心 , AB长为半径画弧 , 交PQ于点C, 以原点O为圆心 , OC长为半径画弧 , 交数轴于点M, 那么点M对应的数是 ( )A.3B.5C.6D.79、在数学课上, 同学们在练习过点B作线段 AC所在直线的垂线段时, 有一局部同学画出以下四种图形 , 请你数一数 , 错误的个数为 ( )A.1B. 2C. 3D. 410、如图,在△ ABC 中,∠ C=90 0,∠ CAB=50 0,按以下步骤作图:①以点A 为圆心,小于 AC 的长为半径,画弧,分别交 A B , AC 于点 E 、 F ;②分别以点 E,F 为圆心,大于1EF 的长为半径画弧,两弧订交于点 G ;③作射线 AG ,交 BC 边与点 D ,那么∠ ADC 的度数为 211、如图,在△ ABC 中, AD 均分∠ BAC ,按以下步骤作图: 第一步,分别以点 A 、 D 为圆心,以大于AD 的长为半径在 AD两侧作弧,交于两点 M 、 N ;第二步,连接 MN 分别交 AB 、 AC 于点 E 、 F ;第三步,连接 DE 、 DF .假设 BD=6,AF=4, CD=3,那么 BE 的长是四、尺规作图在解答题中的观察12、如图,△ ABC 中, AB=AC=4 , cosC= .( 1〕着手操作:利用尺规作以 AC 为直径的⊙ O ,并标出⊙ O 与 AB 的交点 D ,与 BC 的交点 E 〔保存作图印迹,不写作法〕 ;( 2〕综合应用:在你所作的图中,①求证:= ;②求点 D 到 BC 的距离.13. 如图,在四边形ABCD中, E 是 AD上一点,延长 CE到点 F,使.(1)求证:(2)用直尺和圆规在 AD上作出一点 P,使△ BPC∽△ CDP〔保存作图印迹,不写作法〕。
初三数学画图类模考30道-含答案
1.(2019•模拟)图①、图②均是4×4的正方形网格,每个小正方形的顶点称为格点,四边形ABCD的顶点均在格点上,仅用无刻度直尺,分别按下列要求画图.(1)在图①中的线段CD上找到一点E,连结AE,使得AE将四边形ABCD的面积分成1:2两部分.(2)在图②中的四边形ABCD外部作一条直线l,使得直线l上任意一点与点A、B构成三角形的面积是四边形ABCD的面积的.(保留作图痕迹)2.(2019•模拟)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.3.(2019•一模)如图,在10×10的网格中,有一格点三角形ABC.(说明:顶点都在网格线交点处的三角形叫做格点三角形)(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A′B′C′,请直接画出平移后的△A′B′C′;(2)将△A′B'C'绕点C′顺时针旋转90°,得到△A″B″C′,请直接画出旋转后的△A″B″C′.(友情提醒:别忘了标上相应的字母!)(3)在第(2)小题的旋转过程中,点A′所经过的路线长π(结果保留π).B均在格点上,在图①、图②中仅用无刻度的直尺各画一个以A,B,C,D为顶点的菱形.要求:(1)点C,D在格点上(2)所画的两个菱形不全等B、M、N均落在格点上,在图①、图②给定的网格中按要求作图.(1)在图①中的格线MN上确定一点P,使P A与PB的长度之和最小(2)在图②中的格线MN上确定一点Q,使∠AQM=∠BQM.要求:只用无刻度的直尺,保留作图痕迹,不要求写出作法.段AB的端点均在格点上,在图①、图②给定的网格中以点A和点B为四边形的相对的两个顶点各画一个四边形,使另外两个顶点在格点上,要求:7.(2019•模拟)如图,在12×6的正方形网格中,每个小正方形的边长均为1.平行四边形ABCD的四个顶点均在格点上,点E是边BC上任意一点,将△ABE沿AE翻折,得到△AB'E,使点B'落在ABCD的边上,按要求在图①、图②中各画出一个△AB'E,并写出此时BE的长.(要求:图①、图②中所画的△AB'E不全等)8.(2019•一模)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.9.(2019•三模)如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为底边的等腰三角形CDF,点F在小正方形的顶点上,且△CDF的面积为4,CF与(1)中所画线段BE平行.10.(2019一模)图①、图②均是边长为1的小正方形组成的6×6的网格,每个小正方形的顶点称为格点.点A、B、C均在格点上,按下列要求画出顶点均在格点上的四边形.(1)在图①中确定顶点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形;(2)在图②中确定顶点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(图①、图②中各画出一个符合条件的四边形即可).11.(2019•模拟)图①、图②、图③均是5×5的正方形网格,每个小正方形的顶点称为格点.点A、B、C均在格点上.在图①、图②、图③给定的网格中按要求画图.(1)在图①中,画△ABC的高线AD.(2)在图②中,画△ABC的中线CE.(3)在图③中,画△ABC的角平分线BF.要求:借助网格,只用无刻度的直尺,不要求写出画法.12.(2019•模拟)图①、图②均是边长为1的小方形组成的5×5的网格,每个小方形的顶点称为格点.线段AB的端点均在格点上.在图①、图②分别找到两个格点P、Q,连结PQ,交AB于点O.(1)在图①中,线段PQ垂直平分AB;(2)在图②中,使得BO=,要求保留画图痕迹,标好字母.13.(2019•模拟)图①,图②是两张相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图①,点P在小正方形的顶点上,在图①中作出点P关于直线AC的对称点Q,连结AQ、QC、CP、P A,并直接写出四边形AQCP的周长;(2)在图②中画出一个以段段AC为对角线,面积为8的平行四边形ABCD,且点B和点D均在小正方形的顶点上.∠BAD=45°,四边形ABCD的周长=.14.(2019•一模)图①、图②均是3×2的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上.在图①、图②给定的网格中各画一个△APC,使点P在线段AB上,点C为格点,且∠APC的正切值为2.要求:(1)图①中的△APC为直角三角形,图②中的△APC为锐角三角形.(2)只用无刻度的直尺,保留适当的作图痕迹15.(2019•模拟)定义:有一组对边相等而另一组对边不相等的凸四边形叫做“等对边四边形”.(1)已知:图①、图②是5×5的正方形网格,线段AB、BC的端点均在格点上.在图①、图②中,按要求以AB、BC为边各画一个等对边四边形ABCD.要求:四边形ABCD的顶点D在格点上,且两个四边形不全等.(2)若每个小正方形网格的边长为一个单位,请直接写出(1)问中所画每个等对边四边形ABCD的面积4.16.(2019•一模)图1、图2均是3×3的正方形网格,每个小正方形的顶点称为格点,线段AB的端点均在格点上,(1)点C在格点上,且△ABC为等腰三角形,在图1中用黑色实心圆点标出点C所有可能的位置,(2)如图2,点D、M、N均在格点上,请用无刻度的直尺在线段MN上找到一点E,使线段DE=AB.(保留作图痕迹)17.(2019•模拟)图①、图②、图③均为方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.【探究】在图①中,点A、B、C、D均为格点.证明:BD平分∠ABC.【应用】在图②、图③中,点M、O、N均为格点.(1)利用【探究】的方法,在图②、图③中分别找到一个格点P,使OP平分∠MON.要求:图②、图③中所画的图形不相同,保留画图痕迹.(2)cos∠MOP的值为.18.(2019•二模)图①、图②均为4×4的正方形网格,每个小正方形的顶点称为格点,线段AB、DE的端点均在格点上.(1)在图①中画出以AB为斜边的等腰直角△ABC,使点C在格点上;(2)在图②中画出以DE为斜边的直角△DEF,使点F在格点上且△DEF与△ABC不全等,再在DE上找到一点P,使得FP最短.(要求:只用无刻度的直尺,保留作图痕迹,不要求写出作法)19.(2019•四模)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画一个以线段AC为对角线、周长为20的四边形ABCD,且点B和点D 均在小正方形的顶点上,并求出BD的长;(2)在图2中画一个以线段AC为对角线、面积为10的四边形ABCD,且点B和点D 均在小正方形的顶点上.20.(2019•模拟)如图,在6×6的正方形网格中,每个小正方形的顶点称为格点,小正方形边长均为1线段AB的端点均在格点上.(1)在图中画出等腰直角△ABC,使∠BAC=90°,则△ABC面积为 6.5.(2)在图中找一点D,并连结AD、BD,使△ABD的面积为.(要求:只用无刻度的直尺,保留作图痕迹,不写作法)21.(2019•三模)图①、图②、图③都是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的顶点都在格点上.(1)利用图①以AB为边画一个面积最大的平行四边形,且这个平行四边形的其他两个顶点在格点上;(2)利用图②以AB为边画一个面积为4的平行四边形,且这个平行四边形的其他两个顶点在格点上;(3)利用图③以AB为边画一个面积为4的菱形,且这个菱形的其他两个顶点在格点上.22.(2018•模拟)如图,在平面直角坐标系中,两个村庄M、N的坐标分别是(4,6)、(1,0),两村庄之间有一条河,河的两岸线的纵坐标分别是2和3,现准备在河上建一座桥(桥近似看成一条线段),桥垂直于河岸线,再在桥的两端向两个村庄铺建直线型路段,当两路段之和最小时,完成下列问题.(1)请画出桥的位置.(用虚线画出必要的辅助线)(2)你所画的桥的位置的数学依据是两点之间,线段最短.(3)直接写出桥的横坐标.23.(2018•二模)图①、图②均为4×4的正方形网络,线段AB、BC的端点均在格点上.按要求在图①、图②中以AB和BC为边各画一个四边形ABCD.要求:四边形ABCD的顶点D在格点上,且有两个角相等(一组或两组角相等均可);所画的两个四边形不全等.24.(2018•二模)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为60米/分,a=960;并在图中画出y与x的函数图象(2)求小新路过小华家后,y与x之间的函数关系式.(3)直接写出两人离小华家的距离相等时x的值.25.(2019•一模)如图,在每个小正方形的边长为1的网格中,点O、M均在格点上,P为线段OM上的一个动点.(1)OM的长等于4;(2)当点P在线段OM上运动,OP=时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置(保留作图的痕迹)26.(2018•一模)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).27.(2018•三模)图①、图②均为3×3的正方形网格,每个小正方形的边长都为1,请在图①、图②中各画一个顶点在格点的三角形.要求:(1)所画的三角形为钝角三角形;(2)所画的三角形三边中有一边长是另一边长的倍;(3)图①、图②中所画的三角形不全等.28.(2019一模)如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.(1)在正方形网格中,作出△AB1C1;(不要求写作法)(2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形,然后求出它的面积.(结果保留π).29.(2019•模拟)如图,六个完全相同的小长方形拼成了一个大长方形,点M、N均在小长方形的顶点,请在大长方形中完成下列画图.要求:仅用无刻度的直尺.(1)在图①中,作一个等腰三角形MNP,使点P在小长方形的顶点.(2)在图②中,作一直线CD,使CD与直线MN垂直.30.(2018•二模)如图,在8×6的正方形网格中,每个小正方形的边长均为1,线段AB、BC的端点均在小正方形的顶点上.(1)在图1中找一点D(点D在小正方形的顶点上),连接AD、BD、CD,使△ABD与△BCD全等;(2)在图2中找一点E(点E在小正方形的顶点上),使△ABE与△BCE均为以BE为直角边的直角三角形,且其中一个三角形的面积是另一个三角形面积的2倍,画出图形,并直接写出△ABE的周长.1.【解答】解:(1)如图①中,线段AE即为所求.(2)如图②中,直线l即为所求.2.【解答】解:符合条件的图形如图所示:3.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,△A″B″C′即为所求.(3)∵A′C′==,∠A′C′A″=90°,∴点A′所经过的路线长为=π,故答案为:π.4.【解答】解:如图,菱形ABCD即为所求.5.【解答】解:(1)如图①,作A关于MN的对称点A′,连接BA′,交MN于P,此时P A+PB=P A′+PB=BA′,根据两点之间线段最短,此时P A+PB最小;(2)如图②,作B关于MN的对称点B′,连接AB′并延长交MN于Q,此时∠AQM =∠BQM.6.【解答】解:如图所示,四边形ADBC即为所求.(答案不唯一)7.【解答】解:如图所示,△AB′E即为所求.8.【解答】解:(1)△A1BC1即为所求;(2)△A2B2C2即为所求,C2的坐标为(﹣6,4).9.【解答】解:(1)△ABE即为所求.(2)△CDF即为所求.10.【解答】解:(1)如图①所示:(2)如图②所示:11.【解答】解:(1)如图所示,AD即为所求;(2)如图所示,CE即为所求;(3)如图所示,BF即为所求;12.【解答】解:(1)如图,线段PQ垂直平分线段AB,点O即为所求.13.【解答】解:(1)如图①所示,格点与边AQ构成直角三角形,由勾股定理得:AQ==2,同理可得:QC=CP=P A=2,四边形AQCP的周长=2×4=.答:四边形AQCP的周长为.(2)如图②所示,∵平行四边形ABCD的面积为8,∵底AD=4,高BE=2,在Rt△ABE中,∠ABE=45°,BE=2∴AE=BE=2,∴AB==2,∵ABCD是平行四边形,∵AB=CD=2,AD=BC=4,∴四边形ABCD的周长为.故答案为:.14.【解答】解:如图所示,图①中的△APC为直角三角形,图②中的△APC为锐角三角形.15.【解答】解:(1)满足条件的四边形如图所示.(2)图1中,四边形ABCD的面积=(1+3)×2=4,图2中,四边形ABCD的面积=2×4﹣×1×2﹣×1×2﹣×1×4=4.故四边形ABCD的面积都是4,故答案为4.16.【解答】解:(1)如图1所示;(2)如图2所示;17.【解答】【探宄】证明:∵AB==5,BC=5,∴AB=BC∵AD=CD==.BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,即BD平分∠ABC.【应用】解:(1)射线OP如图所示.(2)如图②连接MN交OP于K,∵四边形OMPN是菱形,∴MN⊥OP,∵OP=,OM=5,∴OK=,∴cos∠MOP==18.【解答】解:(1)△ABC即为所求.(2)Rt△DEF如图所示,取格点K,连接FK交DE于P,此时PF最短.19.【解答】解:(1)如图1所示,四边形ABCD即为所求,BD==4;(2)如图2,四边形ABCD即为所求.20.【解答】解:(1)如图所示:△ABC面积=×÷2=6.5;(2)点D在直线l上即可,答案不唯一.故答案为:6.5.21.【解答】(1)解:如图①.四边形ABCD即为所求.(2)解:知图②.四边形ABCD即为所求.(3)解:如围③.四边形ABCD即为所求.22.【解答】解:(1)如图所示,桥AB即本题所求.(2)两点之间,线段最短(3)设直线M'N的解析式y=kx+b根据题意得:解得:∴y=x﹣当y=2时,2=x﹣x=∴桥的横坐标为.23.【解答】解:如图所示:.24.【解答】解:(1)由图象可知,小新离小华家240米,用4分钟到达,则速度为60米/分;小新按此速度再走16分钟到达书店,则a=16×60=960米故答案为:60,960(2)当4≤x≤20时,设所求函数关系式为y1=kx+b(k≠0)将点(4,0)、(20,960)代入得解得∴y1=60x﹣240(4≤x≤20时)(3)当两人分别在小华家两侧时,两人到小华家距离相同240﹣6x=40x解得x=2.4当小新经过小华家并追上小华时,两人到小华家距离相同60x﹣240=40x解得:x=12∴两人离小华家的距离相等时,x的值为2.4或1225.【解答】解:(1)由勾股定理得:OM=4;故答案为:4;(2)如图,取AB=CD=,分别交格线于点E和F,连接EF交OM于P,点P即为所求;理由是:∵EM=5.5,OF=2.5,EM∥OF,∴△EMP∽△FOP,∴,∴,∴,∴,∴OP=.26.【解答】解:(1)如图1所示;(2)如图2、3所示;27.【解答】解:如图所示;28.【解答】解:(1)作图如图:(2)线段BC所扫过的图形如图所示.根据网格图知:AB=4,BC=3,所以AC=5,阴影部分的面积等于扇形ACC1与△ABC的面积和减去扇形ABB1与△AB1C1,故阴影部分的面积等于扇形ACC1减去扇形ABB1的面积,两个扇形的圆心角都90度.∴线段BC所扫过的图形的面积S=π(AC2﹣AB2)=(cm2).29.【解答】解:(1)如图①中,△MNP即为所求.(2)如图②中,直线CD即为所求.30.【解答】解:(1)点D如图1所示,(2)点E如图2所示,△ABE的周长=AB+BE+AE=2+2+2=4+2.。
中考数学作图题---精选
1、作图:(不写作法,但要保留作图痕迹)如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短.2、如图(1),A、B两单位分别位于一条封闭街道的两旁(直线L1、L2是街道两边沿),现准备合作修建一座过街人行天桥.(1)天桥应建在何处才能使由A经过天桥走到B的路程最短?在图(2)中作出此时桥PQ的位置,简要叙述作法并保留作图痕迹.(注:桥的宽度忽略不计,桥必须与街道垂直).(2)根据图(1)中提供的数据计算由A经过天桥走到B的最短路线的长.(单位:米)3、有一块三角形的土地,现要平均分给四个农户种植.请给出两种分法.(在下列所给的图形上画图,不要求写作法,保留作图痕迹且要有简要分法的说明)4、画图题.如图:求作一点P,使PC=PD,并且P到∠AOB两边的距离相等.(不写作法,保留作图痕迹.)5、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,且到∠AOB 的两边的距离相等.(要求用尺规画图,保留作图痕迹)6、如图,AC 、BD 为正方形ABCD 对角线,相交于点O,点D 为BC 边的中点,正方形边长为2cm,在BD 上找点P ,使DP+CP 之和最小,且最小值为________。
7、如图,点P 在∠AOB 内部,问如何在射线OA 、OB 上分别找点C 、D ,使PC+CD+DP 之和最小?请简要说明。
8、如图,P 是∠AOB 内任一点,分别在OA 、OB 上,求作两点P 1,P 2,使△PP 1P 2的周长最小(简要说明作法).9、如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点.(1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.A B C D D O P 0P BA。
中考数学 尺规作图专题练习(含答案)
2020中考数学尺规作图专题练习(含答案)A级 基础题1.下列各条件中,不能作出唯一三角形的条件是( )A.已知两边和夹角B.已知两边和其中一条边所对的角C.已知两角和夹边D.已知两角和其中一角的对边2.如图X6-3-1,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB =7,则△ABC的周长为( )图X6-3-1A.7 B.14C.17 D.203.如图X6-3-2,点C在∠AOB的OB边上,用尺规作出了CN∥OA,在作图痕迹中,是( )图X6-3-2A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧4.下列关于作图的语句,正确的是( )A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB平行5.已知线段AB和CD,如图X6-3-3,求作一线段,使它的长度等于AB+2CD.图X6-3-36.试把如图X6-3-4所示的角四等分(不写作法).图X6-3-47.已知等腰△ABC的顶角∠A=36°(如图X6-3-5).(1)作底角∠ABC的平分线BD,交AC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加墨);(2)通过计算,说明△ABD和△BDC都是等腰三角形.图X6-3-58.某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C 的位置如图X6-3-6,请在原图上利用尺规作图作出音乐喷泉M的位置(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图).图X6-3-69.如图X6-3-7已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠ABC=∠α.图X6-3-710.如图X6-3-8,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.图X6-3-811.如图X6-3-9,已知△ABC,画它的内切圆⊙O.图X6-3-9作法:(1)分别作____________,两平分线交于点O;(2)过点O作____的垂线段,交BC于点D;(3)以点__为圆心,以____的长为半径,画圆,那么,所画的⊙O就是△ABC的______.12.如图X6-3-10,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.图X6-3-10B级 中等题13.如图X6-3-11,画一个等腰△ABC,使得底边BC=a,它的高AD=h.图X6-3-1114.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等(A,B,C不在同一直线上,地理位置如图X6-3-12),请你用尺规作图的方法确定点P的位置.要求:写出已知,求作,不写作法,保留作图痕迹.解:已知:求作:图X6-3-12C级 拔尖题15.如图X6-3-13,已知△ABC,且∠ACB=90°.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作∠ABD=∠BAC.(2)请判断直线BD与⊙A的位置关系(不必证明).图X6-3-1316.如图X6-3-14,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A,B,C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD,CD;(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C__________,D__________;②⊙D的半径=____________(结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为________(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.图X6-3-14选做题17.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:如图X6-3-15(1),①在OA和OB上分别截取OD,OE,使OD=OE.②分别以D,E为圆心,以大于12DE的长为半径作弧,两弧在∠AOB内交于点C.③作射线OC,则OC就是∠AOB的平分线.小聪的作法步骤:如图X6-3-15(2),①利用三角板上的刻度,在OA和OB上分别截取OM,ON,使OM=ON.②分别过M,N作OM,ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是______;(2)小聪的作法正确吗?请说明理由;(3)请你帮小颖设计用刻度尺作角平分线的方法(要求:作出图形,写出作图步骤,不予证明).(1) (2)图X6-3-15参考答案1.B 2.C 3.D 4.D 5.略6.略 提示:首先把∠O二等分,再把得到的两部分分别再二等分即可.图D737.解:(1)如图D73,BD即为所求.(2)∵∠A=36°,∴∠ABC=∠C=(180°-36°)÷2=72°.∵BD平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°.∴∠CDB=180°-36°-72°=72°.∵∠A=∠ABD=36°,∠C=∠CDB=72°,∴AD=DB,BD=BC.∴△ABD和△BDC都是等腰三角形.8.解:如图D74.图D749.解:如图D75,①以α的顶点为圆心,任意长为半径画弧,交α的两边分别为A′,C′;②以相同长度为半径,B为圆心画弧,交BC于点F,以F为圆心,C′A′为半径画弧,交AB于点E;③在BF上取点C,使CB=a,以B为圆心,c为半径画圆交BE的延长线于点A,连接AC,则△ABC即为所求的三角形.图D7510.(1)解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=114°,∴∠CAB=66°.由作法知,AM是∠CAB的平分线,∴∠AMB=12∠CAB=33°.(2)证明:∵AM平分∠CAB,∴∠CAM=∠MAB.∵AB∥CD,∴∠MAB=∠CMA.∴∠CAM=∠CMA.又∵CN⊥AM,∴∠ANC=∠MNC.在△ACN和△MCN中,∵∠ANC=∠MNC,∠CAM=∠CMN, CN=CN,∴△ACN≌△MCN.11.解:(1)∠A,∠B的平分线(2)BC (3)O OD 内切圆12.解:如图D76.图D7613.略14.解:已知:A,B,C三点不在同一直线上.求作:一点P,使PA=PB=PC(或经过A,B,C三点的外接圆圆心P).正确作出任意两条线段的垂直平分线,并标出交点P,如图D77.图D77 图D7815.解:(1)如图D78.(2)直线BD与⊙A相切.∵∠ABD=∠BAC,∴AC∥BD.∵∠ACB=90°,⊙A的半径等于BC,∴点A到直线BD的距离等于BC.∴直线BD与⊙A相切.16.解:(1)如图D79:图D79(2)①(6,2) (2,0) ②2 5 ③54π ④相切.理由:∵CD =2 5,CE =5,DE =5, ∴CD 2+CE 2=25=DE 2.∴∠DCE =90°,即CE ⊥CD .∴直线CE 与⊙D 相切.17.解:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS.故答案为SSS.(2)小聪的作法正确.理由:∵PM ⊥OM ,PN ⊥ON , ∴∠OMP =∠ONP =90°.图D80在Rt △OMP 和Rt △ONP 中, ∵ OP =OP ,OM =ON , ∴Rt △OMP ≌Rt △ONP (HL). ∴∠MOP =∠NOP . ∴OP 平分∠AOB . (3)如图D80,步骤:①利用刻度尺在OA ,OB 上分别截取OG =OH . ②连接GH ,利用刻度尺作出GH 的中点Q . ③作射线OQ .则OQ 为∠AOB 的平分线.。
中考数学专题练习:尺规作图(含答案)
中考数学专题练习:尺规作图(含答案)1.(·随州)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧2.(·河北) 尺规作图要求,Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.做线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线.Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ3.(·潍坊) 如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是( ) A. ∠CBD=30°B. S △BDC =34AB 2 C. 点C 是△ABD 的外心 D. sin 2A +cos 2D =14. (·湖州) 尺规作图特有魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A 、B 、C 、D 、E 、F 六个分点; ②分别以A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG.问:OG 的长是多少?大臣给出的正确答案应是( ) 3rB. (1+22)r C. (1+32)rD. 2r5. (·河南) 如图,已知▱AOBC 的顶点O(0,0),A(-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G.则点G 的坐标为( )A.(5-1,2) B. (5,2)C.(3-5,-2) D. (5-2,2)6.(·南通) 如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图.步骤1:分别以点C和点D为圆心,大于12CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为( )A. 53B.32C. 2D.437.(·南京) 如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10 cm,则DE=________cm.8.(·山西) 如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NA B内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为______.9.(·创新) 下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是__________________________________________________________________________________________________________.10.(·广东) 如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.11.(·福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A).以线段A′B′为一边,在给出的图形上用尺规作出△A′B′C′,使得:△A′B′C′∽△ABC.不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.12.(·北京) 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ∥l.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.∴直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=________,CB=________,∴PQ∥l(____________________________________)(填推理的依据).13.(·绥化) 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是斜边AB、直角边BC上的点,把△ABC沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE (不写作法和证明,保留作图痕迹).(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.参考答案【基础训练】1.D 2.D 3.D 4.D 5.A 6.D7.5 8.2 39.直径所对的圆周角是直角,等边三角形的每个内角为60°,直角三角形两锐角互余等10.解:(1)如解图所示;(2)∵菱形ABCD,∠CBD=75°,∴CD=CB,∠CBD=∠CDB=75°,∴∠C=180°-∠CBD-∠CDB=180°-75°-75°=30°,∴∠A=∠C=30°,∵EF是AB的垂直平分线,∴∠A=∠FBA=30°,∵∠ABD=∠CBD=75°,∴∠DBF=∠ABD-∠FBA=75°-30°=45°.11.解:①如解图,△A′B′C′即为所求作的三角形.②已知:△A′B′C′∽△ABC,CD和C′E分别为AB和A′B′边上的中线,求证:CDC′E=BCB′C′.证明:∵C D和C′E分别为AB和A′B′边上的中线,∴BD=12AB,B′E=12A′B′,∴BDAB=B′EA′B′=12,∴BDB′E=ABA′B′,∵△A′B′C′∽△ABC,∴∠CBA=∠C′B′A′,BCB′C′=ABA′B′,∴BDB′E=BCB′C′,∴△B′C′E∽△BCD,∴CDC′E=BCB′C′.12.解:(1)尺规作图如解图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.13.解:(1)如解图1,DE为所求作的直线.(2)如解图2,连接BP,∵四边形PEBD是菱形,∴PE=BE,设CE=x,则BE=PE=4-x,∵PE∥AB,∴△PCE∽△ACB,∴CECB=PEAB,∴x4=4-x5,∴x=169,∴CE=169,∴BE=PE=209,在Rt△PCE中,∵PE=209,CE=169,∴PC=43在Rt△PCB中,∵PC=43,BC=4,∴BP=4310,又∵S菱形PEBD =BE·PC=12DE·BP,∴12×4310DE=209×43,∴DE=4910.。
中考数学专题复习之尺规作图精选训练题
中考数学专题复习之尺规作图精选训练题一.选择题(共10小题)1.利用直角三角板,作△ABC 的高,下列作法正确的是( )A .B .C .D .2.已知线段AB ,按如下步骤作图: ①取线段AB 中点C ; ②过点C 作直线l ,使l ⊥AB ;③以点C 为圆心,AB 长为半径作弧,交l 于点D ;④作∠DAC 的平分线,交l 于点E .则tan ∠DAE 的值为( )A .12B .2√55C .√5+12D .√5−123.阅读以下作图步骤:①在OA 和OB 上分别截取OC ,OD ,使OC =OD ;②分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧在∠AOB 内交于点M ;③作射线OM ,连接CM ,DM ,如图所示. 根据以上作图,一定可以推得的结论是( )A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM4.用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS5.如图,在△ABC中,∠B=42°,∠C=48°,DI是AB的垂直平分线,连接AD.以A为圆心,任意长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,以大于1EF长为半径画弧,两圆弧交于G点,作射线AG交BC于点H,则∠DAH的度数为()2A.36°B.25°C.24°D.21°6.如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE7.如图,在Rt △ABC 中,以点A 为圆心,适当长为半径作弧,交AB 于点F ,交AC 于点E ,分别以点E ,F 为圆心,大于12EF 长为半径作弧,两弧在∠BAC 的内部交于点G ,作射线AG 交BC 于点D .若AC =3,BC =4,则CD 的长为( )A .78B .1C .32D .28.如图,在▱ABCD 中,分别以B ,D 为圆心,大于12BD 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线交BD 于点O ,交AD ,BC 于点E ,F ,下列结论不正确的是( )A .AE =CFB .DE =BFC .OE =OFD .DE =DC9.如图,Rt △ABC 中,∠C =90°,∠B =30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .10.如图所示,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =110°,则∠AMC 的度数为( )A .70°B .35°C .30°D .45°二.填空题(共10小题)11.如图,在△ABC 中,∠B =30°,∠C =50°,通过观察尺规作图的痕迹,∠DEA 的度数是 .12.如图,在△ABC 中,∠A =45°,∠B =30°,尺规作图作出BC 的垂直平分线与AB 交于点D ,则∠ACD 的度数为 .13.如图.△ABC 中,∠B =32°,∠BCA =78°,请依据尺规作图的作图痕迹,计算∠α= .14.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是 .15.如图,在平行四边形ABCD (AB <AD )中,按如下步骤作图:①以点A 为圆心,以适当长为半径画弧,分别交AB ,AD 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在∠BAD 内交于点P ;③作射线AP 交BC 于点E .若∠B =120°,则∠EAD 为 °.16.如图,在△ABC 中,∠A =90°,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;作直线MN 交AB 于点E .若线段AE =5,AC =12,则BE 长为 .17.如图,在Rt △ABC 中,∠B =90°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若BG =1,AC =4,则△ACG 的面积为 .18.如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .若∠B =24°,则∠CDA 的度数为 .19.如图,在矩形ABCD 中,连接AC ,以点A 为圆心,小于AD 的长为半径画弧,分别交AD ,AC 于点E ,F ,分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠DAC内交于点G ,作射线AG ,交DC 于点H .若AD =6,AB =8,则△AHC 的面积为 .20.如图,已知∠AOB ,以点O 为圆心,以任意长为半径画弧,与OA 、OB 分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M作MN ∥OA ,与OB 相交于点N ,∠MNB =50°,则∠AOM = .三.解答题(共5小题)21.如图,AB =AE ,BC =ED ,∠B =∠E . (1)求证:AC =AD .(2)用直尺和圆规作图:过点A 作AF ⊥CD ,垂足为F .(不写作法,保留作图痕迹)22.如图,AC 是菱形ABCD 的对角线.(1)作边AB 的垂直平分线,分别与AB ,AC 交于点E ,F (尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接FB ,若∠D =140°,求∠CBF 的度数.23.如图,点A 、B 、C 在⊙O 上且AB =AC ,AB ⊥AC ,请你利用直尺和圆规,用三种不同的方法,找到圆心O .(保留作图痕迹)24.如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在边AC上求作一点E,使AE+EP=AC.(保留作图痕迹,不写作法)25.如图,网格中每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)画出以AB为底的等腰直角△ABC(点C在小正方形的顶点上);(2)画出以AB为一边且面积为20的平行四边形ABDE,(点D、E都在小正方形的顶点上),连接CE,请直接写出线段CE的长.。
中考数学之尺规作图专题训练
中考数学之尺规作图专题训练一、选择题1.(2021秋•无为市期末)下列尺规作图的语句正确的是()A.延长射线AB到DB.以点D为圆心,任意长为半径画弧C.作直线AB=3cmD.延长线段AB至C,使AC=BC2.(2021秋•赣州期末)下列画图的画法语句正确的是()A.画直线MN=5厘米B.画射线OA=4厘米C.在射线OA上截取AB=2厘米D.延长线段AB到点C,使BC=AB3.(2022•丽水二模)如图,Rt△ABC中,∠C=90°,∠B=30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是()A.B.C.D.4.(2021秋•如东县期末)根据语句“直线a与直线b相交,点P在直线a上,直线b不经过点P.”画出的图形是()A.B.C.D.5.(2022春•莱芜区期末)如图,在纸片上有一直线l,点A在直线l上,过点A 作直线l的垂线,嘉嘉使用了量角器,过90°刻度线的直线a即为所求;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对6.(2021秋•让胡路区校级期末)在下列各题中,属于尺规作图的是()A.用直尺画一工件边缘的垂线B.用直尺和三角板画平行线C.利用三角板画45°的角D.用圆规在已知直线上截取一条线段等于已知线段7.(2021秋•威信县期末)如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是()A.SAS B.ASA C.AAS D.SSS 8.(2022•玉环市一模)如图,在△ABC中,∠A=30°,∠ABC=100°.观察图中尺规作图的痕迹,可知∠BFC的度数为()A.130°B.120°C.110°D.100°9.(2021春•铁岭月考)下列作图语句错误的个数是()①以点O为圆心作弧;②延长射线OM到点A;③延长线段AB到C,使BC=AB;④过三点A,B,C作直线.A.1个B.2个C.3个D.4个10.(2021春•龙岗区校级月考)下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;⑤作图语句:连接AD,并且平分∠BAC.其中正确的有()个.A.0B.1C.2D.3 11.(2021秋•单县校级月考)下列画图语句中,正确的是()A.画射线OP=3cm B.画出A、B两点的距离C.延长射线OA D.连接A、B两点12.(2022秋•松原期末)如图,在Rt△ABC中,∠C=90°,以点B为圆心,以适当长为半径画弧,交BA于点D,交BC于点E;分别以点D、E为圆心,以大于12DE的长为半径画弧,两弧在∠CBA内交于点F;作射线BF,交AC于点G.若CG=1,P为AB上一动点,连接GP,则GP的最小值为()A.12B.1C.2D.没有最小值13.(2022秋•泰山区期末)如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是()A.AF=BF B.∠AFD+∠FBC=90°C.DF⊥AB D.∠BAF=∠CAF14.(2022秋•绿园区校级期末)如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若BD=4.9,BC=9,则点D到AB边的距离是()A.4.1B.5.1C.3.1D.4.9 15.(2022秋•金华期末)如图,在△ABC中,作BC边上的高线,下列画法正确的是()A.B.C.D.16.(2022秋•平桥区期末)如图,在长方形ABCD中,连接AC,以A为圆心适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于12 EF的长为半径画弧,两弧在∠DAC内交于点H,画射线AH交DC于点M.若∠ACB=72°,则∠DMA的大小为()A.72°B.54°C.36°D.22°17.(2022秋•新华区校级期末)小丽同学要找到到三角形三个顶点距离相等的点,根据下列各图中圆规作图的痕迹,可用直尺成功找到此点的是()A.B.C.D.18.(2022秋•万全区期末)如图,在△ABC中,分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M、N,直线MN与AC、BC分别相交于E和D,连接AD,若AE=3cm,△ABC的周长为13cm,则△ABD的周长是()A.7cm B.10cm C.16cm D.19cm 19.(2022秋•馆陶县期末)数学课上,老师提出一个问题:经过已知角一边上的点,做一个角等于已知角.如图,用尺规过∠AOB的边OB上一点C(图①)作∠DCB=∠AOB(图②).我们可以通过以下步骤作图:①作射线CQ;②以点O为圆心,小于OC的长为半径作弧,分别交OAOB于点N,M;③以点P为圆心,MN的长为半径作弧,交上一段弧于点Q;④以点C为圆心,OM的长为半径作弧,交OB于点P.下列排序正确的是()A.①②③④B.④③①②C.③②④①D.②④③①20.(2022秋•榆树市期末)在△ABC中,∠BAC=90°,AB>AC,∠B≠30°,用无刻度的直尺和圆规在BC边上找一点D,使AD=BD,下列作法正确的是()A.B.C.D.21.(2022秋•海港区期末)用直尺能画直线的依据是()A.两点之间,线段最短B.两点确定一条直线C.两点确定一条线段D.两点之间直线最短22.(2022秋•宽城区校级期末)如图,在△ABC中,运用尺规作图的方法在BC 边上取一点P,使P A+PB=BC,下列作法正确的是()A.B.C.D.23.(2022秋•余庆县期末)在课堂上,张老师布置了一道画图题:画一个Rt△ABC,使∠B=90°,它的两条边分别等于两条已知线段.小刘和小赵同学先画出了∠MBN=90°之后,后续画图的主要过程分别如图所示.那么小刘和小赵同学作图确定三角形的依据分别是()A.SAS,HL B.HL,SAS C.SAS,AAS D.AAS,HL 24.(2022秋•南关区校级期末)已知点P是直线l外一点,数学兴趣小组的同学用了4种不同的尺规作图方法想过点P作直线l的平行线,根据尺规作图痕迹,直线PQ不一定与直线l平行的是()A.B.C.D.25.(2022秋•鞍山期末)已知△ABC,利用直尺和圆规画一个△EFD,使得△ABC≌△EFD,可以先画出∠MDN=∠ACB,接下来的画法不能满足条件的是()A.在射线DM上截取DE=CA,在射线DN上截取DF=CB,连接EFB.在射线DM上截取DE=CA,以D为圆心,AB长为半径画弧交DN于点F,连接EFC.在射线DM上截取DE=CA,画∠DEF=∠CAB,交射线DN于点FD.在射线DN上截取DF=CB,画∠DFE=∠CBA,交射线DM于点E 26.(2022秋•石家庄期末)下面是李老师编辑的一份文档,由于粗心,作法的步骤被打乱了:已知:如图,∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.作法:①以点O为圆心,OA为半径作△ABC的外接圆;②在弧ACB上取一点P,连结AP,BP,所以∠APB=∠ACB.③分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M,N两点,作直线MN;分别以点B和点C为圆心,大于12BC的长为半径作弧,两弧相交于E,F两点,作直线EF;与直线MN交于点O.正确的作图步骤应该是()A.①③②B.③②①C.③①②D.②①③27.(2022秋•蜀山区期末)如图,已知△ABC(AC<BC),用尺规在BC边上确定一点P,使P A+PC=BC.下面四种作图中,正确的是()A.以B为圆心,BA为半径画弧,交BC于点P,点P为所求B.以C为圆心,CA为半径画弧,交BC于点P,点P为所求C.作AC的垂直平分线交BC于点P,点P为所求D.作AB的垂直平分线交BC于点P,点P为所求28.(2022秋•南关区校级期末)如图,在△ABC中,∠A=30°,∠C=90°.下列尺规作图痕迹中,不能将△ABC的面积平分的是()A.B.C.D.29.(2021春•武昌区校级期中)如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的长方形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数),把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有()种不同的放置方法.A.2ab B.(2a﹣2)C.4(a﹣1)(b﹣1)D.(8a﹣8)二、填空题30.(2020秋•儋州校级月考)只能使用和这两种工具去作几何图形的方法称为尺规作图.31.(2022秋•西城区期末)如图,在四边形ABDC中,∠ABD=60°,∠D=90°,BC平分∠ABD,AB=3,BC=4.(1)画出△ABC的高CE;(2)△ABC的面积等于.32.(2022秋•东方期末)如图,四边形ABCD是平行四边形,以点B为圆心,BC的长为半径作弧交AD于点E,分别以点C、E为圆心,大于12CE的长为半径作弧,两弧交于点P,作射线BP交AD的延长线于点F,∠CBE=60°,BC=4,则EF=.33.(2022秋•金牛区期末)如图,在Rt△ABC中,∠ACB=90°,BC=2AC=4,分别以点C,B为圆心,大于12BC的长为半径作弧,两弧交于点P、Q,作直线PQ交AB、BC于点M、N,连接CM,则CM=.34.(2022秋•鼓楼区校级期末)如图,以矩形ABCD的顶点A为圆心,适当长为半径作弧,分别交AB,AC于点M,N;再分别以点M,N为圆心,大于12 MN的长为半径作弧,两弧交于点P;作射线AP,交BC于点E,连接DE,交AC于点F.若AB=1,AC=2,则DF的长为.35.(2022秋•南开区校级期末)如图,在△ABC中,分别以点B和点C为圆心,大于12BC长为半径画弧,两弧相交于点M、N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为.36.(2022秋•双流区期末)如图,菱形ABCD的对角线AC,BD相交于点O,按下列步骤作图:①分别以点C,D为圆心,大于12CD的长为半径画弧,两弧的交点分别为点E,F;②过点E,F作直线EF,交CD于点P;③连接OP.若OP=1.5,则菱形ABCD的周长为.37.(2022秋•成华区期末)如图,在△ABC中,BC=3,AC=4,∠ACB=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A,D为圆心,大于12AD的长为半径画弧,两弧交于点M,N,作直线MN,分别交AC,AB于点E,F,则线段EF的长为.38.(2022秋•襄州区期末)如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D,E.②分别以点D,E为圆心,大于12DE的长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果AB=6,BC=8.△ABG的面积为12,则△CBG的面积为.39.(2022秋•和平区校级期末)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B在格点上.(1)AB的长等于;(2)M是线段BC与网格线的交点,P是△ABC外接圆上的动点,点N在线段PB上,且满足PN=2BN,当MN取得最大值时,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).40.(2022秋•南开区校级期末)如图,由小正方形构成的10×10网格,每个小正方形的顶点叫做格点,⊙O经过A,B,C三个格点,(1)线段AB的长度为;̂(保留画图痕迹).(2)用无刻度的直尺,在⊙O上找一点D,使点D平分ABC41.(2022秋•河东区校级期末)如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以B为圆心,以任意长为半径作弧,分别交AB,BC于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧在∠ABC内交于点P;③作射线BP,交AC于点D.若S△ABD=16,AB=8,则线段CD的长为.42.(2022秋•平谷区期末)如图,在△ABC中,根据尺规作图痕迹,下列四个结论中:①AF=BF②∠AFD+∠FBC=90°③DF⊥AB④∠BAF=∠CAF所有正确结论的序号是:.43.(2022春•滨海新区期末)李强同学学完“相交线与平行线”一章后,在一本数学读物上看到一种只利用圆规和无刻度直尺作图的方法:①以∠AOB的顶点O为圆心,以适当长为半径画弧,交OA边于点M,交OB边于点N;②作一条射线CD,以点C为圆心,以OM长为半径画弧,与射线CD交于点E;③以点E为圆心,以MN长为半径画弧,与②中所画弧交于点F;④过点F作射线CP,则∠PCD=∠BOA.如图1:李强想利用这种方法过平面内一点Q作直线l的平行线a,如图2.(Ⅰ)李强同学能借助上述方法作出直线l的平行线a吗?(填“能”或“不能”).(Ⅱ)如果能,请在图2中作出直线a,保留作图痕迹,并说明能够证明这两条直线平行的理由:.44.(2022秋•通州区期末)如图,在一条直线公路l的异侧有两个村庄A、B,现在想在公路l上选一点C向两个村庄A、B铺设线路管道,使得点C到村庄A、B的距离之和最短,下面有四种画法,其中符合题意的画法是.(只填序号)45.(2021秋•湖里区期末)如图,有一条笔直的河流,两岸EF∥GH,在河岸EF的同侧有一个管理处A和物资仓库B,管理人员每天需要从管理处A出发,先到物资仓库B领取物资,接着到达河岸EF上的C点,乘坐停放在C点的快艇,把物资送到对岸GH的对接点D,然后调头返回河岸EF上的C点,再返回管理房A.请你设计一条线路,使得管理员每天经过的路程最短.若用作图的方式来确定点C和点D,则确定点C和点D的步骤是:.46.(2022春•南岸区期中)如图,有一所小学与中学分别位于一条封闭式街道的两旁,现准备合作修建一座过街天桥,方便两所学校的交流.已知小学离较近街道的一边距离为200米,中学离较近街道的一边距离为300米,小学与中学的水平距离为500米,街道宽度为700米(街道两边平行).请问天桥建在何处才能使由小学到中学的路线最短(天桥必须与街道垂直)?请在图中画出修建的位置,并计算出最短路线的距离为米.47.(2022春•徐汇区校级期中)如图,欲将一块四边形的耕地中间一条折路MPN 改直,但不影响道路两边的耕地面积,请在图中画出这条直线(保留作图痕迹).(写结论)三、解答题48.(2022秋•代县期末)如图,△ABC是等边三角形,BD是中线,延长BC至点E,使CE=CD.(1)求证:DB=DE;(2)尺规作图:过点D作DF垂直于BE,垂足为F;(保留作图留痕迹,不写作法)(3)若CF=3,求△ABC的周长.49.(2022秋•越秀区校级期末)如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D.(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)设CD=3,求AC.50.(2022秋•大渡口区校级期末)如图,已知Rt△ABC,∠A=90°.(1)请用直尺和圆规,作△ABC中BC边上的垂直平分线EF,交AC于点D,交BC于点E;(要求:不写作法,保留作图痕迹)(2)连接BD,若AC=10,AB=6,求△ABD的面积.51.(2022秋•东湖区期末)画图,说理题如图,已知四个点A、B、C、D;(1)画射线AD;(2)连接BC;(3)画∠ACD;(4)画出一点P,使P到点A、B、C、D的距离之和最小;并说明理由.52.(2022秋•莱州市期末)如图,△ABC中,∠C=90°.(1)求作一点E,使△AEB是以AB为底的等腰三角形,且使点E在边BC 上.(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图形中,若∠CAE=∠EAB,求∠B的度数.53.(2022秋•番禺区校级期末)如图,直角梯形ABCD中,∠A=∠B=90°,AB=12,CD=AD+BC.(1)尺规作出以AB为直径的圆⊙O(保留作图痕迹,不写作法);(2)判断CD与⊙O的位置关系,并说明理由.54.(2022秋•宽城区校级期末)图①、图②均为4×4的正方形网格,每个小正方形的顶点称为格点,边长均为1.在图①、图②中按下列要求各画一个三角形.要求:(1)三角形的三个顶点都在格点上.(2)与△ABC全等,且不与△ABC完全重合.。
中考数学总复习《尺规作图》专项测试卷带答案
中考数学总复习《尺规作图》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是( )A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;(2)指出小丽作法中存在的问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是( )AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点(k>0,x>0)的图象经过C(4,n),D两A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=kx点.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.参考答案A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是(B)A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是(B)A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)【解析】(1)图形如图所示:(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.【解析】(2)∵DE垂直平分线段AB,∴EB=EA∴∠EBA=∠A=45°,∴∠BEA=90°AB=4∵BD=DA,∴DE=DB=DA=12∴BE=√2BD=4√2.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;【解析】(1)根据小明的作法知,CF=AE∵四边形ABCD是平行四边形∴AD∥BC,又∵CF=AE∴四边形AFCE是平行四边形∴AF∥CE;(2)指出小丽作法中存在的问题.【解析】(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是(B)AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).【解析】(1)如图(1)中,线段AD即为所求;(2)如图(1)中,点E即为所求;(3)如图(2)中,点C,射线AF,点G即为所求;(4)如图(2)中,线段MN即为所求.7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)【解析】(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N 和点M连接AM和CN如图所示,点G即为所求作的点.(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.答案:15【解析】(2)∵点G是△ABC的重心∴AG=2MG∵△ABG的面积等于5 cm2∴△BMG的面积等于2.5 cm2∴△ABM的面积等于7.5 cm2.又∵AM是△ABC的中线∴△ABC的面积等于15 cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=k(k>0,x>0)的图象经过C(4,n),D两x点.(1)求反比例函数的解析式;【解析】(1)过点D作DT⊥OA于点T.∵A(0,2),B(1,0)∴OA=2,OB=1∵AB⊥AD,DT⊥OT∴∠DTA=∠DAB=∠AOB=90°∵∠DAT+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAT=∠ABO ∵AD=AB∴△DTA≌△AOB(AAS)∴AT=OB=1,DT=AO=2∴OT=OA+AT=3∴D(2,3)∵反比例函数y=kx (k>0,x>0)的图象经过D点,∴3=k2,∴k=6∴反比例函数解析式为y=6x;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)【解析】(2)如图,直线MN即为所求;(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.【解析】(3)∵C(4,n)在y=6x的图象上∴n=32∴C(4,32)∵BM=CM,B(1,0)∴M(4+12,32+02)即M(52,34).第11页共11页。
初三尺规作图练习题
初三尺规作图练习题尺规作图是初中数学中的基础内容,通过使用尺子和圆规来进行几何图形的绘制和构造。
这是一项重要的技能,它能够培养学生的空间想象力、观察力和创造力。
以下是几个初三尺规作图练习题,帮助学生巩固和提高这一技能。
练习一:画等边三角形1. 用尺子和圆规画一个等边三角形。
2. 以线段AB为边,以A为圆心,画一个以线段AB为半径的圆弧。
3. 以线段BA为边,以B为圆心,画一个以线段BA为半径的圆弧。
4. 这两个圆弧相交于点C。
5. 连接AC和BC,得到一个等边三角形。
练习二:画正四边形1. 画一个边长为5cm的正四边形。
2. 以点A为圆心,以5cm为半径,画一个圆弧。
3. 以点B为圆心,以5cm为半径,画一个圆弧。
4. 这两个圆弧相交于点C。
5. 连接AC和BC,得到一个正四边形。
练习三:画正六边形1. 画一个边长为4cm的正六边形。
2. 以点A为圆心,以4cm为半径,画一个圆弧。
3. 连接圆弧上的点与圆心A,得到一条线段。
4. 以线段AB为边,以点B为圆心,以4cm为半径,画一个圆弧。
5. 连接圆弧上的点与线段AB的端点,得到一条线段。
6. 以线段AC为边,以点C为圆心,以4cm为半径,画一个圆弧。
7. 连接圆弧上的点与线段AC的端点,得到一个正六边形。
练习四:画平行线1. 画一条任意长度的线段AB。
2. 以点A为圆心,以任意半径,画一个圆弧。
3. 以点B为圆心,以相同的半径,画一个圆弧。
4. 这两个圆弧相交于点C和D。
5. 连接CD,得到一条平行于线段AB的线段。
以上是初三尺规作图练习题,通过这些练习,可以提高学生的尺规作图能力,加深对几何图形的理解,培养学生的观察和推理能力。
这些技能对于初中数学以及将来的学习和职业发展都具有重要意义。
希望同学们能够认真练习,掌握这一基本技能。
中考数学尺规作图专项练习_20200617115930 - 副本(2)
中考数学尺规作图专项练习一.解答题(共30小题)1.尺规作图:已知点D为△ABC的边AB的中点,用尺规在△ABC的边上找一点E,使S:S△ABC=1:4.(保留作图痕迹,不写作法)△ADE2.尺规作图:如图,AC为⊙O的直径.求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹).3.如图,已知△ABC,点D在AB边上,且∠ACD=90°,请用尺规作图法在BC边上求作一点P,使得∠APC=∠ADC.(保留作图痕迹,不写作法)4.如图,在△ABC中,D为AB的中点,请用尺规作图法,在边AC上求作一点E,使DE =BC(保留作图痕迹,不写作法).5.如图,已知在△ABC中,∠A=90°,请用尺规作⊙P,使得圆心P在AC边上,且⊙P 与AB,BC两边都相切(保留作图痕迹,不写作法).6.尺规作图:如图△ABC中,CD⊥AB于D,在AC上求作一点P,使S△CDP=S△CBD(保留作图痕迹,不写作法).7.已知矩形ABCD,请用直尺和圆规在BC上方作一个以BC为斜边的Rt△BPC其中∠PBC =30°.(保留作图痕迹,不写作法)8.已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,用尺规作图作出直线DE∥AB.(不写作法,保留作图痕迹)9.已知如图,△ABC中,AB=AC,用尺规在BC边上求作一点P,使△BP A∽△BAC(保留作图痕迹,不写作法).10.如图,在四边形ABCD中,AB=AD.在BC上求作一点P使△ABP≌△ADP.(要求:用尺规作图,不写作法,保留作图痕迹)11.赵凯想利用一块三角形纸片ABC裁剪一个菱形ADEF,要求一个顶点为A,顶点D在三角形的AC边上,点E在三角形的BC边上,点F在三角形的AB边上,请你利用尺规作图把这个菱形作出来.(不写作法,保留作图痕迹)12.在△ABC中,∠ABC=80°,∠ACB=60°,利用尺规作图在AC边上求作一点D,使得△ABC∽△BDC.(不写作法,保留作图痕迹)13.如图,在△ABC内部有一点D,利用尺规过点D作一条直线,使其平行于BC.(保留作图痕迹,不写作法)14.尺规作图:如图,已知△ABC,D为BC上一点,求作⊙O,使得⊙O同时与AB,BC 相切,且与BC相切于D点.(不写作法,保留作图痕迹)15.如图,已知△ABC,请用尺规作出它的内切圆(不写做法,保留作图痕迹).16.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)17.已知点P是△ABC边AC上的一点,请你在AC边上求作点Q,使得=(要求:尺规作图,保留作图痕迹,不写作法)18.如图,已知点P为△ABC边BC上一点.请用直尺和圆规作一条直线EF,使得A关于EF的对称点为P.(保留作图痕迹,不写作法)19.如图,已知△ABC,点D是AB上一点,连接CD,请用尺规在边AC上求作点P,使得△PBC的面积与△DBC的面积相等(保留作图痕迹,不写作法).20.图,四边形ABCD是矩形,在矩形ABCD内部求作一点P,使得△ADP是以AD为斜边的等腰直角三角形.(不写作法,保留作图痕迹)21.如图,请用尺规作图在△ABC中边上找到点D,使得BD+AD=AC(不写作法,保留作图痕迹).22.请利用尺规作图在△ABC的AB、AC边上分别找点M、点N,连接MN,使得S△AMN =S△ABC(保留作图痕迹,不写作法).23.如图,已知矩形ABCD,分别在边AD,BC上找一点E和F,使四边形DEBF是菱形.24.如图,在等腰Rt△ABC中,∠ACB=90°,CD是AB边上的中线.请利用尺规过点A 作一条射线AE,使其交BC于点E,交CD于点F,且CE=CF.(保留作图痕迹,不写作法)25.如图,∠ACB=∠CDB=90°,在线段CD上求作一点P,使△APC∽△CDB.(不写作法,保留作图痕迹)26.如图,已知△ABC,作⊙O,使它过点A、B、C(保留作图痕迹,不写作法)27.如图,已知四边形ABCD中,AD<BC,AD∥BC,∠B为直角,将这个四边形折叠使得点A与点C重合,请用尺规作图法找出折痕所在的直线.(保留作图痕迹,不写作法)28.如图,△ABC中,点D,E分别在边AB,AC上,求作线段DE,使DE∥BC,且DE=DB(保留作图痕迹,不写作法)29.如图,已知△ABC,用尺规作出BC边上的高AD(保留作图痕迹,不写作法).30.已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.。
中考数学总复习之尺规作图专项训练题
中考数学总复习之尺规作图专项训练题1.如图是由小正方形组成的6×6的网格,△ABC 的三个顶点A 、B 、C 均在格点上,请按要求在给定的网格中,仅用无刻度的直尺,分别按下列要求作图,保留作图痕迹,不写画法.(1)在图1中的AB 上画出△ABC 的高线;(2)在图2中的AC 上找出一点E ,画线段BE ,使△ABE 与△CBE 面积比为3:7两部分;(3)在图3中的BC 上找一点F ,画∠BAF ,使得∠C =2∠BAF .2.如图,正方形ABCD 的对角线AC 和BD 交于点O ,点E 是BD 上的一点,BE =BC .(1)用直尺和圆规完成以下基本操作:过点B 作∠EBC 的角平分线交OC 和EC 分别于点F 和点G (保留作图痕迹,不写作法):(2)求证:OF +OC =BC .证明:在正方形ABCD 中,OB =OC ,∠BOC =∠DOC =90°∵BE =BC ,BG 平分∠EBC∴∴∠BGC =90°又∵∠OFB =∠GFC∴90°﹣∠OFB =90°﹣∠GFC∴在△OBF 和△OCE 中,{OB =OC∠OBF =∠OCE (ㅤㅤ)∴△OBF ≌△OCE∴∴OF+OC=OE+OB=BE=BC3.在如图所示的小正方形网格中,每个小正方形的顶点叫做格点,A,B,C都是格点.请仅用无刻度的直尺完成下列作图,作图过程用虚线表示,作图结果用实线表示.(1)在图1中,在AB上找点D,使AD=AC且点D恰好在格点上,作出点D,再作CE⊥AD于点E;(2)在图2中,先作△ABC的角平分线AF交(1)中的CE于点F,再过点F作FH⊥AC于点H.4.如图,在△ABC中,AB=AC,以AB为直径的OO与BC交于点D,连接AD.(1)尺规作图:作劣弧AD的中点E.(不写作法,保留作图痕迹)(2)若⊙O与AC相切,求(1)中作图得到的∠ABE的度数.5.如图,已知⊙O是△ABC的外接圆,∠A=45°,请仅用无刻度的直尺,按下列要求画图(保留画图痕迹).(1)在图1的⊙O上作点D,使△BCD为等腰直角三角形;(2)在图2的⊙O上作点M,N,使四边形BCMN为正方形.6.(2023•鼓楼区校级模拟)已知:如图,P A是⊙O的切线,A为切点.(1)过点P作⊙O的另一条切线PB,且B为切点.(尺规作图,保留作图痕迹,不写作法);(2)在(1)的情况下,连接AB,⊙O的半径为2,AP=5,求AB的长.7.(2023•松原一模)图①、图②均是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点.△ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中,分别按下列要求画图,保留作图痕迹.(1)在图①中画△ABC的中位线DE,使点D、E分别在边AB、BC上;(2)在图②中画△ABC的高线BF.8.(2023•金华模拟)在5×5的方格中,A、B、F均在格点上,请用无刻度直尺按要求画图.(1)在线段AB上找一点C,使得AC=3BC;(2)作△ABD,使得S△ABD=S△ABF(D为格点);(3)作GE⊥AB,且GE=AB(E、G为格点).9.(2023•平潭县模拟)如图,已知钝角△ABC中,CA=CB.(1)请在图中用无刻度的直尺和圆规作图:作∠ACB的平分线CD交AB于点D;作△ABC的外接圆⊙O;(不写作法,保留作图痕迹)(2)在(1)中,若AB=2√3,∠ACB=120°,求出此时⊙O的半径长度.(如需画草图,请使用备用图)10.如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A ,C 均落在格点上,点B 在网格线上.(Ⅰ)线段AC 的长等于 ;(Ⅱ)以AB 为直径的半圆的圆心为O ,在线段AB 上有一点P ,满足AP =AC .请用无刻度的直尺,在如图所示的网格中,画出点P .11.(2023•天门一模)尺规作图:按下列要求作出图形,不写作法,保留作图痕迹.(1)图1是矩形ABCD ,E ,F 分别是AD 和AB 的中点,以EF 为边画一个菱形;(2)图2是正方形ABCD ,E 是BD 上一点(BE >DE ),以AE 为边画一个菱形.12.如图,在由4×4的小正方形组成的网格中,每个小正方形的边长都是1,小正方形的顶点叫格点.(1)在图1中,以A 为顶点,作一个三边长分别为2,√5和√13的格点三角形.(2)在图2中,以A 为顶点,作一个面积为52的等腰直角三角形.13.如图,矩形ABCD内接于⊙O.请用直尺(不带刻度)按要求作图,不要求写作法,但要保留作图痕迹.(1)在图1中,作出圆心O;(2)在如图2中,点E是AD边的中点,连接BD,作出∠DBC的角平分线.14.我国纸伞的制作工艺十分巧妙.如图,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,且AE=AF,DE=DF,从而保证伞圈D能沿着伞柄滑动.(1)证明:△AED≌△AFD.(2)若伞圈D滑动到D1,用直尺和圆规作出两条伞骨AB、AC的位置.(3)若AE=DE=24cm时,当△ADF由正三角形变成直角三角形的过程中,伞圈D滑动的距离是多少?15.如图,已知甲工厂靠近公路a,乙工厂靠近公路b,为了发展经济,甲、乙两工厂准备合建一个仓库,经协商,仓库必须满足以下两个要求:①到两工厂的距离相等;②在∠MON内,且到两条公路的距离相等.你能帮忙确定仓库的位置吗?(保留作图痕迹,不写作法)。
中考数学专项训练—尺规作图
中考数学尺规作图题型专项训练1.〔2015•模拟〕请把下面的直角进展三等分.〔要求用尺规作图,不写作法,但要保存作图痕迹.〕2.〔2015•模拟〕〔1〕如图,∠AOB=40°,P为OB上的一点,在∠AOB,求作一个以OP为底边,底角为20°的等腰三角形OCP〔尺规作图,保存作图痕迹,不必写出作法〕.〔2〕假设OP=8,求OC的长〔用三角函数表示〕.3.〔2015•吴兴区一模〕小明家楼下有一圆形花坛,花坛的边缘有A、B、C三棵树,请你用直尺和圆规画出这个圆形的花坛.4.〔2015•黄岛区校级模拟〕:线段a,h求作:等腰△ABC,使底边BC=a,且BC边上的中线等于h.5.〔2015•黄岛区校级模拟〕:线段a,求作:等腰△ABC,使AC=BC,AB=a,且AB边上的高CD=1.5a.6.〔2015•模拟〕小云出黑板报时遇到了一个难题,在版面设计过程中需要将一个半圆面三等分,请帮她设计一个合理的等分方案,要求尺规作图,保存作图痕迹.7.〔2015•黄岛区校级模拟〕用圆规、直尺作图,不写作法,但要保存作图痕迹.如图,“幸福〞小区为了方便住在A区、B区、和C区的居民〔A区、B区、和C区之间均有小路连接〕,要在小区设立物业管理处P.如果想使这个物业管理处P到A区、B区、和C区的距离相等,应将它建在什么位置?请在图中作出点P.8.〔2015•黄岛区校级模拟〕用圆规、直尺作图,不写作法,但要保存作图痕迹.在一块三角形废料上,要裁下一个圆形的材料,并且要尽可能的充分利用好原三角形废料,请画出这个圆形.9.〔2014秋•西城区校级期中〕作图题:〔不写作法,请保存作图痕迹〕〔1〕:∠a,求作:∠AOB,使得∠AOB=∠a;〔2〕:如图,在直线MN上求作一点P,使点P到∠AOB两边的距离相等.〔不写出作法,保存作图痕迹〕10.〔2015春•济阳县期中〕∠BAD,C是AD边上一点,按要求画图,并保存作图痕迹〔1〕用尺规作图法在AD的右侧以C为顶点作∠DCP=∠DAB;〔2〕在射线CP上取一点E,使CE=AB,连接BE,AE;〔3〕画出△ABE的边BE上的高AF和AB边上的高EG.11.〔2014•贵港〕如图,在△ABC中,AB=BC,点点D在AB的延长线上.〔1〕利用尺规按以下要求作图,并在图中标明相应的字母〔保存作图痕迹,不写作法〕.①作∠CBD的平分线BM;②作边BC上的中线AE,并延长AE交BM于点F.〔2〕由〔1〕得:BF与边AC的位置关系是.12.〔2014•〕:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.13.〔2014•县校级模拟〕如图,△ABC的两边长为m、n,夹角为α,求作所有可能满足以下条件的三角形EFG:含有一个角为α;有两条边长分别为m、n,且与△ABC不全等.〔要求:尺规作图,不写画法,保存作图痕迹.在图中标注m、n、α、E、F、G〕14.〔2014•滕州市校级模拟〕如图,∠MON,只用直尺〔没有刻度〕和圆规求作:〔保存作图痕迹,不要求写作法〕〔1〕∠MON的对称轴;〔2〕如点A、B分别是射线OM、ON上的点,连接AB,求作△AOB中OB边的高线.15.〔2014•上城区二模〕如图,△ABC中,∠ACB=90°.〔1〕利用尺规作图,作一个点P,使得点P到∠ACB两边的距离相等,且PA=PB;〔2〕试判断△ABP的形状,并说明理由.16.〔2014•模拟〕〔1〕∠α和线段x,y〔如图〕.用直尺和圆规作出△ABC,使∠A=∠α,AB=x,BC=y〔要求画出图形,并保存作图痕迹,不必写出作法〕〔2〕两边与其中一边的对角,你能作出满足这样条件的三角吗?有几种可能?17.〔2014•市北区二模〕:如图,线段a.求作:等腰直角△ABC,使其斜边AB=a.18.〔2014•模拟〕如图,用尺规将三等分一个任意角是不可能的,但对于一些特殊角那么可以利用作等边三角形的方法三等分,请用直尺和圆规把平角CDE和∠AOB=45°这两个角三等分〔尺规作图,要求保存作图痕迹,不必写出作法〕.19.〔2014•模拟〕线段m 〔如下图〕,请仅用无刻度的直尺和圆规分别按要求完成画图〔请你保存作图痕迹,不要求写作法〕.〔1〕求作△ABC,使AB=BC=CA=m;〔2〕在〔1〕中的根底上画一条直线,将该三角形分成面积相等的两局部.20.〔2014•清河区二模〕:如图,直线AB、BC相交于点B,点D是直线BC上一点.求作:点P,使BP平分∠ABC,且点P到B、D两点的距离相等.〔不写作法,保存作图痕迹〕21.〔2014•合川区校级模拟〕听说中考要考尺规作图,一天,教师在黑板上画了两条线段〔如图〕,要求“以a为底、b为底边上的高,用尺规作一个等腰三角形,并写出和求作〞.初三的小明早已生疏尺规作图了,请聪明的你帮帮他.:求作:22.〔2014•模拟〕:线段a和∠a求作:△ABC,使AB=AC,BC=a,∠BAC=∠a.23.〔2014•黄岛区模拟〕:如图,线段a,求作:△ABC,使AB=AC,BC=a,且BC边上的高AD=2a.24.〔2014•甘州区校级模拟〕如图,某村有一块三角形的空地〔即△ABC〕,其中A点处靠近水源,现村长准备将它分给甲、乙两农户耕种,分配方案规定,按每户人口数量来平均分配,且甲、乙两农户所分土地都要靠近水源〔即A点〕,甲农户有1人,乙农户有3人,请你把它分出来.〔要求:尺规作图,保存作图痕迹,不写作法,不要求证明〕25.〔2014•云阳县校级模拟〕明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路a、b〔如图〕,明想把超市M建在到两居民区的距离相等、且到两条公路距离也相等的位置上,请在答题卷的原图上利用尺规作图作出超市M的位置.〔要求:不写、求作、做法和结论,保存作图痕迹〕26.〔2014•香洲区校级四模〕公路同侧有A、B两个村庄,相距千米,A村到公路最短距离是1千米;B村到公路最短距离是2千米;公交公司准备在公路上的某个位置设置站台,如果要求站台到两个村庄的距离之和最短,请尺规作图找出站台应该设置在何处,并直接写出这个最短距离.27.〔2014•石城县校级模拟〕如图:一个残破的圆钢轮,为了再铸做一个同样大小的圆轮,请用圆规、直尺作出它的圆心〔不用写作法,保存作图痕迹〕.28.〔2014•市南区校级二模〕如图,四边形区域是音乐广场的一局部,现在要在这一区域建一个喷泉,要求喷泉到两条道路OA,OB的距离相等,且到入口A、C的距离相等请确定喷泉的位置P.29.〔2015•模拟〕△ABC,利用直尺和圆规,根据以下要求作图〔保存作图痕迹,不要求写作法〕.〔1〕作∠ABC的平分线BD交AC于点D;〔2〕作线段BD的垂直平分线交AB于点E,交BC于点F.30.〔2014•〕如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A、D两点作⊙O〔用尺规作图,不写作法,保存作图痕迹,并把作图痕迹用黑色签字笔加黑〕31.〔2015·枣庄一摸〕如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆,请仅用无刻度的直尺按要求画图.〔1〕在图1中,画出△ABC的三条高的交点;〔2〕在图2中,画出△ABC 中AB 边上的高.〔不必写出作图过程,但必须保存作图痕迹〕图1 图232.(2015·)如图,在图中求作⊙P,使⊙P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保存作图痕迹,并把作图痕迹用黑色签字笔加黑)33.(10分)(2015·)用圆规、直尺作图,不写作法,但要保存作图痕迹.:线段c ,直线l 与l 外一点A.求作:Rt △ABC ,使直角边为AC(AC⊥l,垂足为C),斜边AB =c.34.如图,∠ABC 和直线L ,求作⊙O ,使⊙O 与BA 、BC 都相切,且圆心O 在L 上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考前作图题专项训练班级 姓名 座号 一、几种基本的尺规作图1、画一条线段等于已知线段 (和、差、倍、半) 如图所示,已知线段a 、线段b 、线段c试用尺规作图作 (1)AB =a+b . (2)MN =c-b2、画一个角等于已知角 (和、差、倍、半)如图所示,∠AOB 为已知角,试用尺规作图作(1)∠CDE=∠AOB , (2)∠MP N=2∠AOB3、画已知线段的垂直平分线如图所示,已知线段AB ,画出它的垂直平分线.4、画角平分线利用直尺和圆规把一个角二等分.已知:如图,∠AOB 求作:射线OC ,使∠A OC=∠BOC5、作已知直线垂线(1)过直线上一点作一条直线与已知直线垂直;(2)过直线上一点作一条直线与已知直线垂直oBAoBA二|综合训练:1、尺规作图,已知线段,a 画一个底边长度为a , 底边上的高也为a 的等腰三角形。
2.尺规作图:请你作出一个以线段a 和线段b 为对角线 的菱形.ABCD3、如图,已知∠AOB 及M、N 两点,求作:点P,使点P 到∠AOB 的两边距离相等, 且到M 、N 的两点也距离相等。
4、三条直线表示三条相互交叉的公路, 现在要建一个货物中转站P ,要求它到三 条公路的距离相等,请作出它的位置。
5、如图有一破残的轮片现要制作一个与原轮片同样大小 的圆形零件,请你根据所学的有关知识确定这个圆形零件的半径。
abaO6、如图,已知∠ABC和直线L,求作⊙O,使⊙O与BA、BC都相切,且圆心O在L上。
三、选择填空题训练:感受尺规作图的语文文字表达、数学语言、具体几何图形三者之间的转化1、如图,分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,两弧相交于B,D 两点,连接BD,AB,BC,CD,DA,以下结论:①BD垂直平分AC;②AC平分∠BAD;③AC=BD;④四边形ABCD是中心对称图形.其中正确的有()A.①②③ B.①③④ C.①②④ D. ②③④2. 用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是【】A.SSSB.ASA C.AAS D.角平分线上的点到角两边距离相等3.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,弧FG是【】A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧4. 如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A,B为圆心,以大于12AB长为半径作弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为【】(A)m+2n=1 (B)m-2n=1 (C)2n-m=1(D)n-2m=15、如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E 作射线OE,连接CD.则下列说法错误的是( )A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称6、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )A.1 B. 2 C. 3 D. 4使PQ⊥l于点Q.”分别作出了下列四个图形,其中作法错误的是()Pl8、如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )3 B. 5C. 6 D. 7A.9、在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )A. 1 B. 2 C . 3 D. 410、如图,在△ABC 中,∠C=900,∠C AB=500,按以下步骤作图:①以点A 为圆心,小于A C的长为半径,画弧,分别交A B ,AC于点E、F ;②分别以点E,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G;③作射线AG,交BC 边与点D ,则∠AD C的度数为11、如图,在△ABC 中,A D平分∠BAC,按如下步骤作图: 第一步,分别以点A 、D 为圆心,以大于AD 的长为半径在AD 两侧作弧,交于两点M 、N;第二步,连接MN 分别交AB、AC于点E 、F ;第三步,连接DE 、DF.若BD=6,AF=4,C D=3,则BE 的长是四、尺规作图在解答题中的考查 12、如图,△ABC 中,AB=A C=4,cosC=.(1)动手操作:利用尺规作以AC 为直径的⊙O ,并标出⊙O与AB 的交点D,与BC 的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中, ①求证:=;②求点D 到BC 的距离.13.如图,在四边形ABCD中,E是AD上一点,延长CE到点F,使.ﻩ(1)求证:(2) 用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图痕迹,不写作法)。
对尺规作图的要求:了解作图的道理,保留作图痕迹,不要求写作法.网格中作图专项训练1、如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系以后,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3).(1)将Rt△ABC沿X轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出“作图是推理和计算的直观表现”“所作的图清楚、干净”Rt △A 1B1C 1的图形,并写出点A 1的坐标。
(2)将原来的Rt △ABC 绕着点B 顺时针 旋转90°得到R t△A 2B 2C 2,试在图上画出 R t△A2B 2C 2的图形。
2、已知:如图△ABC 三个顶点的坐标分别为A (0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC 向上平移6个单位得到的△A 1B 1C1; (2)以点C 为位似中心,在网格中画出△A 2B 2C 2, 使△A2B 2C 2与△ABC 位似,且△A 2B 2C 2与△ABC 的 位似比为2:1,并直接写出点A2的坐标.3、已知图1和图2中的每个小正方形的边长都是1个单位.(1)将图1中的格点△AB C,先向右平移3个单位,再向上平移2个单位,得到△A1B 1C1,请你在图1中画出△A1B 1C 1.(2)在图2中画出一个与格点△DEF 相似但相似比不等于1的格点三角形.“网格”型试题因具有直观性、可操作性、开放性、趣味性浓.不同于常规尺规作图问题,因网格中包含有平行、垂直、正方形(菱形)、长度等条件,所以网格中作图时,特别在限制作图工具时,应充分利用这些条件.“网格”型试题具有内容的包容性、知识的综合性,紧扣课标要求,将会成为中考命题的基点、热点、亮点.4、在4×4的正方形网格中,每个小方形的边长都是1。
线段A B和CD 分别是(图1-1)中1×3的两个矩形的对角线, 显然AB ∥C D。
请你用类似的方法画出过点E且垂直 于AB 的直线,并证明。
图2F D EA BC 图1F ECA5、仅用无刻度的直尺过点C 作出圆切线(保留痕迹,并简要写出过程).6、在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A.12ﻩB.22C.32 ﻩD .337.(2010 湖南株洲)如图所示的正方形网格中,网格线的交点称为格点. 已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形....., 则点C 的个数是( )A .6ﻩB.7C .8ﻩD.98.(2010四川乐山)如图,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(-2,4),则该圆弧所在圆的 圆心坐标是( )A. (-1,2)B. (1,-1)C. (-1,1)D. (2,1)9.(2010新疆乌鲁木齐)如图2,在平面直角坐标系中,点A 、B 、C 的坐标分别为(1,4),(5,4),(1,-2),则ABC ∆外接圆的 圆心坐标是( )ﻩA.(2,3)B.(3,2) C .(1,3)D .(3,1)10.(2010湖北宜昌)如图,在方格纸上△DEF 是由△ABC 绕定点P 顺时针旋转得到的。
如果用(2,1)表示方格纸上A点的位置,(1,2)表示B 点的位置,那么点P 的位置为( )。
A. (5,2) B. (2,5) C. (2,1) D. (1,2)B A第7题图11、如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最__________条.12.(2010 福建泉州南安)如图,大正方形网格是由25个边长为1的小正方形组成, 把图中阴影部分剪下来,用剪下来的阴影部分拼成一个正方形, 那么新正方形的边长是 .只用无刻度的直尺作图无刻度直尺作图:作图工具简单,便于阅卷;作图形式尽量简洁,便于操作.仅用无刻度的直尺作图,舍弃了圆规,因此,作图时要根据已有几何图形的性质、定理解题.对几何作图的考查目标定位在以作图(操作)的形式考查图形与几何中的数学本质,尤其是对一些基本图形性质、推理、几何直观、图形变换的考查.看似简单作图题,其实考查学生对几何图形的基本知识和基本技能的掌握程度. 1、(2017三明质检)如图,在平行四边形ABC D中,E ,F 分别在边AD ,BC 上,且A E=CF ,连接EF .请你只用无刻度的直尺画出线段EF 的中点O ,并说明这样画的理由.(第19题)FEBDCA2、请用直尺和圆规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上,面积相同的图形视为同一种(保留作图痕迹).(第11题)"尺规作图题"的命题趋势:从2016年福建省中考看:漳州卷第19题要求考生补全图形;泉州卷第26题对四边形ABCD作折叠处理;厦门卷第22题要求考生画出旋转后的三角形;福州卷第16题要求考生比较两段弧对应的半径大小;均以课标尺规作图中相应技能要求为依据.从2017年福建省各地市的质检卷看:补全图形;尺规作图、基本作图;无刻度作图等创新作图题;其他题型.作图题复习建议:1、明理注重基础知识和基础技能的复习:教师发挥示范引导作用;尺规作图与推理的统一;2、取法专题复习,丰富题型,训练思维,发展能力.“尺规作图”是一种过程,“慢”是与生俱来的秉性.唯有慢才能让操作过程步步留痕;唯有慢,才能让猜想验证踏踏实实;也只有慢才能让学生真正积淀活动经验……“尺规作图”是一个过程,需要时间的支持和空间的承载.。