结构力学几何组成分析

合集下载

结构力学(几何组成分析)详解

结构力学(几何组成分析)详解

单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
C
A
B
A C’
B
六、瞬铰 O . . O’
0 0' P
M 0 0
N1
N2
N3 Pr 0
N3
N3

Pr



A
B
C D
§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
j=8
b=12+4
W=2×8-12-4=0
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。
连接 n个铰结点的复链杆相当于(2n-3)个单链杆。
j 7 b 3 3 5 3 14
W 2 7 14 0
三、混合体系的自由度
W (3m 2 j) (2h b)
(2,3)
1
2
3
5 4
6
(1,2)
1
2
3
(2,3)4
5 6
(1,2)
1
2
3
5 4
6
(2,3)
1
2
3 (1,2)
(2,3) 5
4
6
1
2
3 (1,3)
5 4 (1,2)
6
.
(2,3)
几何瞬变体系
补3 :
.O1

.O2
ⅡⅡ

ADCF和BECG这两部分都是几何不变的,作为刚 片Ⅰ、Ⅱ,地基为刚片Ⅲ。而联结三刚片的O1、 O2、 C不共线,故为几何不变体系,且无多余联系。 返 回

结构力学 几何组成分析 几个概念

结构力学 几何组成分析  几个概念

几何组成分析的几个概念1、几何不变体系与几何可变体系几何不变体系是指受到任意荷载作用下,若不考虑材料的应变,其几何形状和位置均能保持不变的体系。

几何可变体系是指即使不考虑材料的应变,在微小的荷载作用下也会产生刚体位移,而不能保持原有的几何形状和位置。

几何可变体系分为几何常变体系和几何瞬变体系。

几何可变体系在很小的荷载作用下会产生刚体位移,经微小位移后仍能继续发生刚体运动,这样的几何可变体系称为几何常变体系。

若原为几何可变体系,经微小位移后即转化为几何不变体系,这类几何可变体系称为几何瞬变体系。

工程结构绝不能采用几何瞬变体系,而且也应避免采用接近于瞬变的体系。

2、自由度指体系在所受限制的许可条件下独立的运动方式,即能确定体系几何位置的彼此独立的几何坐标数目。

平面内一点的自由度为2,一个刚片的自由度为3。

3、约束(联系)约束是指限制体系运动的各种装置,包括外部约束(支座约束)和内部约束。

(1)外部约束一个活动铰支座、固定铰支座和固定支座分别相当于1、2、3个约束。

(2)内部约束一根单链杆相当于1个约束;连接j(j>2)个结点的复链杆,相当于2j-3个单链杆,即相当于2j-3个约束;一个单铰相当于2个约束;连接m(m>2)个刚片的复铰,可折合成(m-1)个单铰,即相当于2(m-1)个约束作用;一单刚结点相当于3个约束;连接m(m>2)个刚片的刚结点称为复刚结点,可折合成(m-1)个单刚结点,即相当于3(m-1)个约束。

约束从能否减少体系的自由度方面来考虑,可分为必要约束和多余约束。

为保持体系几何不变所必须具有的约束称为必要约束,不能使体系的自由度数目减少的约束称为多余约束。

4、瞬铰(虚铰)两个刚片间用两个不共线链杆相连,其约束作用相当于这两根链杆交点位置处的一个铰所起的约束作用,这个铰称为虚铰或瞬铰(图1a)。

在几何组成分析中,尤其要注意:两刚片间用两根相互平行的链杆相连,两平行链杆所起的约束作用相当于无穷远处的瞬铰所起的约束作用,如图1b所示。

结构力学《第二章几何组成分析》龙奴球

结构力学《第二章几何组成分析》龙奴球

第二章 结构的几何构造分析
瞬变体系(
×)
体系是由三个刚片用三个共线的铰 ABC相连,故为瞬变体系。( )
×
第二章 结构的几何构造分析
几种常用的分析途径
1、去掉二元体,将体系简单化,然 后再分析。
D A
C
B
依次去掉二元体A、B、C、D后, 剩下大地。故该体系为无多余约 束的几何不变体系。
第二章 结构的几何构造分析 2、如上部体系与基础用满足要求三个约束相联可去掉 基础,只分析上部。
第二章 结构的几何构造分析
用一链杆将一刚片与地面相联 两刚片用一链杆相联
1、2、3、4是链杆, 折线型链杆、曲线型 链杆可用直线型链杆 代替。
3 6 4

1 5
5、6不是链杆。
第二章 结构的几何构造分析
单铰:联结两个刚片的铰称为单铰
一个单铰相当于几个约束呢? 在平面内两个刚片自由 度等于6 加入一个单铰后自由度 等于4,减少了2个自由 度
A
C B
规则4 三刚片以不在一条直线 上的三铰 两两相连,组成无多余 约束的几何不变体系。
如约束不满足限制条件,将出现下列几种形式的瞬变体系
三铰共线瞬变体系
第二章 结构的几何构造分析
关于无穷远瞬铰的情况
1 C II
I A
2
B
III
图示体系,一个瞬铰C在无穷远处,铰A、 B连线与形成瞬铰的链杆1、2不平行,故三个 铰不在同一直线上,该体系几何不变且无多 余约束。
(3) 各∞点都在同一直线上,此直线称为∞线。
(4) 各有限远点都不在∞线上。
第二章 结构的几何构造分析
§2-2 几何不变体系的组成规则
基本规律:三角形规律

结构力学-体系的几何组成分析

结构力学-体系的几何组成分析
2 / 40
第二章 体系的几何组成分析
第一节 体系几何组成的定义和分析目的
1、体系几何组成的定义
在忽略变形的前提下,在某种外力作用下,若体系不 能保证其形状或位置不变,则该体系称为几何可变体系。
FP
FP
3 / 40
第二章 体系的几何组成分析 第一节 体系几何组成的定义和分析目的
1、体系几何组成的定义
第二节 自由度和约束的概念
体系自由度数 S 等于零是体系几何不变的充分条件 复杂体系的必要约束往往不易直观判定。 W > 0 表明体系存在自由度,肯定是几何可变体系。 W = 0 表明体系的约束数正好等于部件总自由度数,是
体系不变的必要条件,而非必要条件,如无多余 约束,体系是静定结构。 W < 0 表明体系的约束数多于部件总自由度数,必有多余 约束,如为几何不变体系,则体系是超静定结构。
a、研究结构正确的连接方式,确保所设计的结构能 承受荷载,维持平衡,不至于发生刚体运动。
b、了解结构各部分之间的组成关系,有助于改善和 提高结构的性能。
c、在结构计算时,可根据其几何组成情况,选择适 当的计算方法;分析其组成顺序,寻找简便的求解途 径。
7 / 40
第二章 体系的几何组成分析
第二节 自由度和约束的概念
单约束 仅连接两个刚片的约束.
单铰
1个单铰 = 2个约束 = 2个的单链杆。
虚铰——在运动中虚铰的位置不定,这 是虚铰和实铰的区别。通常我们研究的 是指定位置处的瞬时运动,因此,虚铰 和实铰所起的作用是相同的都是相对转 动中心。
10 / 40
第二章 体系的几何组成分析 第二节 自由度和约束的概念
1、体系的自由度 2、约束 所谓约束即能限制体系运动的装置。

02结构力学1-几何组成分析

02结构力学1-几何组成分析

§2-1 基本概念 W = 3m-(3g+2h+b) 四. 计算自由度
例3:计算图示体系的计算自由度 2 1 解法一
9根杆,9个刚片
有几个单铰?
3 3
3根单链杆
2 1
W=3 ×9-(2×12+3)=0
§2-1 基本概念
四. 计算自由度 例3:计算图示体系的计算自由度 铰结链杆体系:完全由两端 铰结的杆件所组成的体系
y 两个刚片一共6个自由 度 加两个单链杆之后:整 个体系有4个自由度 减少2个自由度
x
1单铰=2个单链杆
y
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置 实铰 x
两个单链杆
y
y
虚铰 x
x
§2-1 基本概念
三. 约束(联系)
既不平行又不相交于一点 的三个单链杆=一个固定支 座
三个单链杆=一个固定支座?
§2-2 静定结构的组成规则
三边在两边之和大于第三边时,能唯一地组 成一个三角形——基本出发点。
二刚片规则: 二刚片规则: 两个刚片用三根 两个刚片用一 不全平行也不交 个铰和一根不通 于同一点的链杆 过此铰的链杆相 相联,组成无多 联,组成无多余 余联系的几何不 联系的几何不变 变体系。
体系。
§2-2 静定结构的组成规则
x
1单铰=2个约束
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置 y
复铰
三个刚片一共9个自由 度 加铰之后:整个体系有 5个自由度 减少4个自由度 x
复铰 等于多少个 单铰?
1连接N个刚片的复铰 =N-1个单铰
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置

结构力学第2章平面几何组成分析

结构力学第2章平面几何组成分析

几何组成作业题
2-3, 2-5 2-7, 2-8 2-10, 2-12 2-16, 2-21 交作业时间:周 3
§2. 几何组成分析
补充作业:(不做) 2-1 (b)试计算图示体系的计算自由度
解:
或:
W 8 3 11 2 3 1 W 1 3 5 2 2 2 10 1
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片.
例4: 对图示体系作几何组成分析
解: 该体系为瞬变体系. 方法3: 将只有两个铰与其它 部分相连的刚片看成链杆. 书上例题2-1、2-3同。
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆.
计算自由度大于零一定可变; 若等于零则一定不变吗? 五. 计算自由度 六. 多余约束 必要约束 计算自由度小于零一定不变吗? 计算自由度小于零一定有多余约束
§2.1 基本概念
§2-1 基本概念 一. 几何不变体系 几何可变体系 二. 刚片 三. 自由度 四. 约束(联系) 链杆 单铰 复铰 虚铰 实铰 五. 计算自由度 六. 多余约束 必要约束
练习: 对图示体系作几何组成分析
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.
练习: 对图示体系作几何组成分析
无多余约束的几何不变体系。
三杆不平行不变 平行且等长常变 平行不等长瞬变
§1. 几何组成分析

结构力学之平面体系的几何组成分析

结构力学之平面体系的几何组成分析

二、二刚片规则: 两个刚片用既不全平行也不全交于一点的 三根链杆相联,所组成的体系是几何不变 体系,且无多余约束。
O
ΙΙ
ΙΙΙ

推论: 两个刚片由一个铰和一根轴线不通过该铰的 链杆相联,所组成的体系是几何不变体系, 且无多余约束。
ΙΙ
C
A

B
例三、
C
A

分析图示体系的几何构造:
D
解法一: 1、找刚片:
依据材料概括晚清中国交通方式的特点,并分析其成因。
提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展;
政府及各阶层人士的提倡与推动。
[串点成面· 握全局]
(二)二元体规则:
增加或去掉二元体不改变原体系的几何
组成性质。
C
A

B
例五、 分析图示体系的几何构造:
解:
A
D
E
基本铰结三角形ABC符合 三刚片规则,是无多余约
B
束的几何不变体系;依次
C
F
G
在其上增加二元体A-D-C、
C-E-D、C-F-E、E-G-F后, 体系仍为几何不变体,且 无多余约束。
一、几何构造特性:
(一)无多余联系的几何不变体系称为静定 结构。
静定结构几何组成的特点是:
任意取消一个约束,体系就变成了
几何可变体系。
(二)有多余联系的几何不变体系称为超静 定结构。
特点: 某些约束撤除以后,剩余体系仍
为几何不变体系。
二、静力特性:
(一)静定结构: 在荷载作用下,可以依据

体系的几何组成分析-结构力学

体系的几何组成分析-结构力学

结论:无多余约束的几何不变体系
(3)平面内三个刚片的连接
刚片Ⅱ B
铰A 刚片Ⅲ 链杆2
C
刚片Ⅰ
规律3 三个刚片用三个 铰两两相连,且三个铰 不在一直线上,则组成 无多余约束的几何不变 体系。
对象:刚片I、Ⅱ和Ⅲ 联系:铰A(Ⅱ和Ⅲ )、B ( I和Ⅱ)、C(I和Ⅲ ),三铰不共线 结论:无多余约束的几何不变体系
• 体温低于 35 ℃为体温过低: 危重患 者、 极度衰弱的患者失去产生足够热 量的能力 ,导致体温
• 低温治疗: 临床上由于病情需要,常 采用人工冬眠或物理降温作为治疗措 施
作业
、发热的类型有哪几种 、发热常用的处置方法有哪些
➢ 杆件与杆件之间的连接—结点
单铰结点 2个约束
链杆 1个约束
单刚结点 3个约束
2.2 自由度和约束
2.2 自由度和约束
教学目标:
掌握自由度的基本概念 掌握约束的定义与分类
教学内容:
自由度 约束
知识点
自由度
✓等于体系的独立运动方式。
✓等于体系运动时可以独立改
y
变的坐标数目。
B
y
A
x x
一个点在平面内有两个自由度。
工程结构的自由度等于零
y
y
x x
一个刚片在平面内有三个自由度。
解:三角形法则,得刚片Ⅰ 、Ⅱ 对象:刚片Ⅰ、Ⅱ 联系:铰A,链杆1,不共线 结论:几何不变,无多余约束
例5: 分析体系的几何组成。
B
C
A
ⅠⅡ
解:去二元体,得
对象:刚片Ⅰ、Ⅱ、Ⅲ 联系:铰A,B、C,不共线 结论:几何不变,无多余约束

例6: 分析体系的几何组成。

结构力学第二章结构的几何组成分析

结构力学第二章结构的几何组成分析
结构系统结构系统 结构系统 平面中的固定铰支座能消去2个自由度(2个线位移),但不能消除转动,因此对应2个约束,c =2空间中的固定铰支座能消去3个自由度, 因此对应3个约束,c =3 平面固支,c =3空间固支,c
=6 结构系统 结构系统结构系统 (c )铰链 平面两个刚片的自由度: 平面单铰相当于2个约束 x y A O A xA yα β 单铰 6 23=?=n 用单铰连接后只剩下4个自由度:β α,,,A A y x 4 =n 2 46=-=∴c 连接两个平面刚片的单铰 x y A O 复铰 m 个刚片 原m 个刚片的总自由度:连接m 个刚片的复铰 用复铰连接后自由度为2个线位移加m 个角度:m m n 33=?=m n +=2故约束数)1(2)2(3-=+-=m m m c 连接m 个刚片的复铰相当于个约束。 )1(2-m m 个铰的总自由度数: 系统中元件(刚体、杆、刚片)和铰既可以看作自由体,也可以看作约束。 1 2 3 4 5 6 m-1
2 3 f >0时,有多余约束,称为静不定(超静定)结构,f 就是静不定的次数。 如果元件安排合理,则
布置不合理
f
=0 f =1 布置合理,1
次超静定 f =0 布置合理,静定
2 由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。 2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。 1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A' x y A yA xA z A zA' O 空间一根杆有5个自由度,一个平面刚体(刚片、刚盘)或一根杆有3个自由度,n =3 x y A yAxA z AzA' O B B'

结构力学第2章平面体系的几何组成分析

结构力学第2章平面体系的几何组成分析

➢ 在任意体系上依次增加,或依 次拆除二元体,原体系的自由度 数不变。
(a)
(b)
3、基本组成规则中约束方式 的影响
利用这两个规则的要点是规则中 的三个要素:
❖ 刚片及刚片数 ❖ 约束、约束数及约束的方式 ❖ 结论
两个刚片用三个链杆相连 的情况:
❖ 当三个链杆平行并且长度相等时, 是几何可变体系
两平行链杆构成一交点在无穷远的虚铰其作用相当于无穷远处的一个实铰的作用一个铰接三角形是无多余约束的几何不变体系或是刚片或是内部几何不变体系基本三角形规则基本三角形规则可用以下12两个简单组成规则等效
结构力学第2章平面体系的几何 组成分析
第二章 平面体系的几何组成分析
§2.1 概述
本章研究平面杆系结构的基本 组成规律和合理形式。
(b)
(c)
虚铰的典型运动特征为:瞬心
从瞬时运动角度来看,刚片1与刚 片2的相对运动,相当于绕两链杆 的交点处的一个实铰的转动。
(a)
(b)
➢ 两平行链杆构成一交点在 无穷远的虚铰,其作用相当于
无穷远处的一个实铰的作用 。
§2.3 平面几何不变体系的基 本组成规律
1.基本组成规律的产生 (a)
例2-4-6(多余约束)
分析图: (a)
说明:
对于有多余约束的几何不变体系, 可以用去掉约束的方法,使体系成 为无多余约束的几何不变体系,所 去掉的约束数就是原体系所具有的
多余约束数,这种方法叫拆除约束 法。
例2-4-7
分析图:
说明:
把四周用连续杆、刚结点及固定端 构成的体系叫封闭框。一个封闭框 是有3个多余约束的几何不变体系。
❖ 当三个链杆平行但长度不全相 等时,是几何瞬变体系

结构力学第二章结构的几何组成分析

结构力学第二章结构的几何组成分析

链杆法
链杆选取
选择适当的链杆,作为分析的基本单元。
约束条件分析
分析链杆的约束条件,确定结构的几何特性。
几何组成判定
根据链杆的几何特性和约束条件,判断结构 的几何组成。
混合法
1 2
方法选择
根据结构特点,选择刚片法或链杆法进行分析。
综合分析
综合运用刚片法和链杆法,对结构进行几何组成 分析。
3
结果判定
常变体系
在荷载作用下,体系的几何形状会发生变化,且这种变化是持续的。例如,一个由三个链杆连接的刚片,在荷载 作用下会持续发生变形。
03
几何组成分析方法
刚片法
刚片选取
选择适当的刚片,作为分析的基本单 元。
自由度计算
几何不变体系判定
根据约束条件,判断结构是否为几何 不变体系。
计算各刚片的自由度,确定约束条件。
结构力学第二章结构的几何组成分析
目录 Contents
• 几何组成分析基本概念 • 几何组成分析基本规则 • 几何组成分析方法 • 几何组成与结构性能关系 • 复杂结构几何组成分析示例 • 几何组成分析在工程应用中的意义
01
几何组成分析基本概念
几何不变体系与几何可变体系
几何不变体系
在不考虑材料应变的前提下,体 系的形状和位置都不会改变。
几何可变体系
在不考虑材料应变的前提下,体 系的形状或位置可以发生改变。
自由度与约束
自由度
描述体系运动状态的独立参数,即体系可以独立改变的坐标 数目。
约束
对体系运动状态的限制条件,即减少体系自由度的因素。
刚片与链杆
刚片
在力的作用下,形状和大小保持不变 的平面或空间图形。

结构力学第二章 结构的几何构造分析

结构力学第二章 结构的几何构造分析

刚片2
例2:
刚片3 没有多余约束的几何不变体系
没有多余约束 的几何不变体系
§2-3 几何构造分析方法
2)分析已组成的体系 例1:
上部作为 刚片1 地基作为刚片2
结论:没有多余 约束的几何不 变体系。
例2:
1 2
二元体
结论:内部没有 多余约束的几何 不变体系。
§2-3 几何构造分析方法
例3:
o
虚铰
难点:
单铰、复铰、实铰、虚铰、瞬铰、无穷铰、的区别。 如何准确计算平面杆系结构的计算自由度,计算自 由度和实际自由度的关系。 如何正确分析平面杆系结构的几何属性。
§2-1 几何构造分析的几个概念
结构是由若干根杆件通过结点间的联接及与支座 联接组成的。结构是用来承受荷载的,因此必须保证 结构的几何构造是不可变的。例如:
例2:
两组 平行
4
2 3 1 5 6 一组 平行
§2-5 几何构造分析举例
例3:
3 1 Ⅱ
2
结论: 杆1、杆2、杆3不交与 一点,因此该体系是无 多余约束的不变体系。

例4:
1 Ⅰ 3 Ⅱ 2
结论: 杆1、杆2、杆3不交于 一点,该体系是无多余 约束的几何不变体系。
§2-5 几何构造分析举例
例5:



B
D
D
应注意形成虚铰 的两链杆必须连 接相同的两个刚 片
Ⅰ Ⅰ 实铰 1 2 3


Ⅱ O 虚铰
虚铰-瞬铰
O .
.
O’
A
C
B
D
无穷铰
实铰 单铰 虚铰(瞬铰) 无穷铰
§2-2 几何不变体系的组成规律

结构力学第2章体系的几何组成分析(f)

结构力学第2章体系的几何组成分析(f)

§2-3 几何不变体系的基本组成规则
三铰拱,左右两半拱视为刚片1,2,地基视为 刚片3,该体系由三个刚片用不在同一直线上 的三个单铰A、B、C两两相连,为几何不变 体系,而且没有多余联系。
§2-3 几何不变体系的基本组成规则
2.二元体规则
二元体:两根不在一直线上的链杆连接成一个新结点的构
造称为二元体。
§2-2 平面体系的计算自由度
W<0:表明体系在联系数目上还有多余,体系具有多余联系。 但体系是否几何不变要看联系布置是否得当。
体系计算自由度W≤0,是体系几何不变的必要条件,还 不是充分条件。一个体系尽管联系数目足够甚至还有多 余,不一定就是几何不变的。 为了判别体系是否几何不变,必须进一步研究体系几何 不变的充分条件,即几何不变体系的组成规则。
§2-3 几何不变体系的基本组成规则
两刚片用三根链杆相联
如图所示,刚片I和刚片II可 以绕O点转动;O点成为刚片I和 II的相对转动瞬心。
虚铰:连接两个刚片的两根连杆的作用相当于其交点 处的一个单铰,而这个铰的位置随着链杆的转 动而改变,称其为虚铰。
§2-3 几何不变体系的基本组成规则
分析图示体系: 把链杆AB、CD看作是其交点O 处的一个铰,刚片I和II相当于用 铰O和链杆EF相连,故为几何不 变体系,没有多余联系。
或:从结点10开始拆除二元体,依次拆除结点9,8, 7…,最后剩下铰结三角形123,它是几何不变的,故原体 系为几何不变体系,没有多余联系。
§2-3 几何不变体系的基本组成规则
3.两刚片规则 两个刚片用一个铰和一根不通过此铰的链杆相连,组成
的体系是几何不变的,且没有多余联系。如图。
图示体系也是按三刚 片规则组成的。将链杆看 作一个刚片,组成的体系 是几何不变的,且没有多 余联系。

结构力学 (几何组成分析)

结构力学 (几何组成分析)

机动分析示例 方法:首先算计算自由度W,若W>0,体系为几 何可变,若W≤0 , 须进行几何组成分析。但通常可略 去W的计算。
ⅠⅢⅡ
解:地基视为——刚片Ⅰ。AB梁与地基按“两 刚片规则”相联,构成了一个扩大的刚片Ⅱ。刚片Ⅱ 与梁BC按 “两刚片规则”相联,又构成一个更扩 大的刚片ⅢC。D梁与大纲片Ⅲ又是按“两刚片规则”相 联。则此体系为几何不变,且无多余约束。 返 回
单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
C
A
B
A C’
B
六、瞬铰 O . . O’
A
0 0'
P
M0 0
N3Pr0 B
N1
N2
N3
N3
P
r
C D
§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
1. 一个点与一个刚片之间的组成方式 一个点与一个刚片之间用两根链杆相连,且三铰不 在一直线上,则组成无多余约束的几何不变体系。
j 7 b 3 3 5 3 14
W 2 7 1 4 0
三、混合体系的自由度
W (3 m 2 j) (2 h b )
四、自由度与几何体系构造特点
W0 体系几何可变;
m2 j 2
W0 无多余约束时,体系几何不变;h 1 b 8
W0 体系有多余约束。W ( 3 2 2 2 ) ( 2 1 8 ) 0
分析实例 4
A
B
C
D
E
F
1,3
A
A
2,3
2,3
B 1,2 C
D
E
F

结构力学几何组成分析-例题

结构力学几何组成分析-例题

C B A
D E F
几何不变体系,AB 为一个多余约束。
按增加二元体顺序的不同,多余约束可以是AB、 BC、CD、DE、EF中的任意一个。
【例】
去掉一个多余约束。
去掉一个多余约束。
去掉一个必要约束。
#多余约束的个数是一定的,位 置不一定,但也不是任意的。
【例】
1.去掉与地基的几何 不变体系约束。 2.去掉二元体。
24
24
去掉与地基的连接, 几何不变体系, 无多余约束。 只考虑上部结构
【例】


去掉与地基的连接, 只考虑上部结构
几何不变体系, 有一个多余约束。
【例】
12


3
【例】
去掉与地基的连接, 只考虑上部结构
用三个链杆相连。几何不变 体系,且没有多余约束。
2
3
4
A
1
5
B
去掉与地基的连接, 只考虑上部结构
二元体。
几何不变体系, 没有 多余约束。
【例】
C B
去掉A、C两个二 元体。几何可变, 少二个约束。
A
【例】
D
E
AC
F
B
D E
F
■AB 、 AC 看 成 加 到 地 基上的二元体。 ■刚片DEF与地基用三 根支链杆相连。
几何不变体系, 且没有多余约束。
【例】
8
7
9
8
7
9
6
10
6
10
1
3
5
1
3
5
【例】
从基础开始增加杆件。几何不变体系,有4个多余约束 【例】
去掉与地基相连的约束, 几何不变体系, 没有多余约束。

结构力学-几何组成分析

结构力学-几何组成分析

复铰 等于多少个 单铰?
1连接n个刚片的复铰 = (n-1)个单铰
体系的计算自由度:
结 构 力 学 第 二 章
bicea
计算自由度等于刚片总自由度数 减总联系数
W = 3m-(2h+b) m---刚片数(不包括地基) h---单铰数 b---单链杆数(含支杆)
结 构 力 学 第 二 章
bicea
结 构 力 学 第 二 章
bicea
除去联系后,体系的自由度并不 改变,这类联系称为多余联系。
图中上部四根杆 和三根支座杆都是 必要的联系。 下部正方形中任意 一根杆,除去都不增 加自由度,都可看作 多余的联系。
结 构 力 学 第 二 章
bicea
例3: 计算 图示 体系 的自 由度
W=0,但 布置不当 几何可变。 上部有多 余联系, 下部缺少 联系。
找虚铰 无多几何不变
无多几何不变

O12
结 构 力 学 第 二 章
bicea
找 刚 片 O 、 找 虚 铰
23


O13
行吗?
瞬变体系
它可 变吗?
结 构 力 学 第 二 章
bicea
F
G
E
D
找刚片 无多几何不变
结 构 力 学 第 二 章
bicea
F
G E
D
如何变静定? 唯一吗?
C
结 构 力 学 第 二 章
bicea
结 构 力 学 第 二 章
bicea
可选小论文题之一 “体系组成分析的计 算机方法” 做这一小论文的 找我要参考资料
结 构 力 学 第 二 章
bicea
可选小论文题之一 “论三刚片六杆 连接体系的可变性” 或 “体系组成分析的计 算机方法”

结构力学课件 几何组成分析几个概念

结构力学课件  几何组成分析几个概念

A
O
x
一固定支座: 3个约束
三、约束(联系)
2、内部约束
y
AB
Ⅰ αβ
xC θ

y O
x
自由度由6个减至5个
一根单链杆(Simple link, 连接两个铰结点的杆件) :
n=1
y 1
23
O
x
自由度由6个减至3个
复链杆(Multiple link,连接j>2 个铰结点的杆件) :相当于2j3个单链杆,n=2j-3
三、约束(联系) 2、内部约束
y
A
Ⅰ xBθ
α

y
O
x
自由度由6个减至4个
一单铰(Simple hinge, 联结两个刚片的铰) :
n=2
y

βA
Ⅰ9个减至5个
复铰( Multiple hinge,联结两个以 上刚片的铰):联结m个刚片的复 铰可看成m-1个单铰,n=2(m-1)
一、平面杆件体系的分类 几何可变体系(Geometrically unstable system )
体系受到任意荷载作用,即使不考虑材料的应变,在很小的荷载 作用下也会引起体系的几何形状和位置的改变,这样的体系称为 几何可变体系。
情况I:几何常变体系(Constantly unstable system)
原为几何可变体系,经微小位移后 仍能继续发生刚体运动的几何可变 体系,称为几何常变体系。
一、平面杆件体系的分类 几何可变体系(Geometrically unstable system )
体系受到任意荷载作用,即使不考虑材料的应变,在很小的 荷载作用下也会引起体系的几何形状和位置的改变,这样的 体系称为几何可变体系。

结构力学体系几何组成分析03

结构力学体系几何组成分析03
§1. 几何组成分析
§1-2 无多余约束的几何不变体系的组成规则
一. 三刚片规则 二. 两刚片规则
两刚片以一铰及不通过该铰的一个链杆相联, 构成无多余约束的几何不变体系.
两刚片以不相互平行,也不相交于一点的三个 链杆相连,构成无多余约束的几何不变体系.
§1. 几何组成分析
§1-3 几何组成分析举例 例2: 对图示体系作几何组成分析
方法1: 分析基础 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆.
例5: 对图示体系作几何组成分析
解: 该体系为常变体系. 方法4: 去掉二元体.
方法1: 分析基础 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体.
解:该体系为无多余约束的几何不变体系.
方法1: 分析基础
例3: 对图示体系作几何组成分析
解: 该体系为无多余约束的几何不变体系. 方法2: 利用规则将小刚片变成大刚片.
方法1: 分析基础 方法2: 利用规则将小刚片变成大刚片.
例4:有两个铰与其它部分相连的 刚片看成链杆.
例6: 对图示体系作几何组成分析
解: 该体系为无多余约束几何不变体系. 方法5: 从基础部分(几何不变部分)依次添加.
方法1: 分析基础 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.
方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.
练习: 对图示体系作几何组成分析

结构力学几何组成分析

结构力学几何组成分析

例6、 E
3、当体系杆件
D
数较多时,将刚
片选得分散些,
用链杆相连,
A
B
而不用单铰相连。
O13 O23
O12
F D

F

C A
C B

22
(Ⅰ,Ⅱ) 例

(Ⅰ,Ⅲ)


Ⅰ Ⅱ

(Ⅰ,Ⅲ)
(Ⅱ,Ⅲ) (Ⅰ,Ⅱ)
(Ⅱ,Ⅲ)
如图示,三刚片以共线三铰相连 三刚片以三个无穷远处虚铰相连
几何瞬变体系
组成瞬变体系
S=(各部件自由度总数)-(非多余约束数) =(各部件自由度总数)-(全部约束数-多余约束数) =(各部件自由度总数)-(全部约束数)+(多余约束数)
所以:
S = WW + n
思考题2.16
由此可见:只有当体系上没有多余约束时,计算自由度才是
体系的实际自由度!
13
§2.3无多余约束几何不变体系的组成规则
5、由基础开始逐件组装
6、刚片的等效代换: (等效是指与外部连结等效)
a.可以将一个几何不变无多余约束的部分视为一个刚片。化零为整。 b.在不改变刚片与周围的连结方式的前提下,可以改变它的大小、形状及 内部组成。变化组成。 c.内部组成改变后,又可将该刚片视为一个由多个(新的)刚片(或链杆)组成 的几何不变体系,并进而各自发挥其连接或约束作用。化整为零。
m=7,n=9,r=3 W=3×m-2×n-r
=3×7-2×9-3 =0
10
本例中采用了无铰封闭框 的概念,课本中未介绍。其实 图示体系去掉全部支座后,剩 下的是一个有三个内部多余约 束的刚片。如果将封闭框在上 端截开,才能变成无内部多余 约束的刚片,可见截开处应视 为一个刚结点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
1. 一个点与一个刚片之间的组成方式 一个点与一个刚片之间用两根链杆相连,且三铰不 在一直线上,则组成无多余约束的几何不变体系。
2. 两个刚片之间的组成方式 两个刚片之间用一个铰和一根链杆相连, 且 三铰不在一直线上,则组成无多余约束的几何 不变体系. 或两个刚片之间用三根链杆相连, 且三根链杆不交于一点,则组成无多余约束的 几何不变体系。
A
D
G
B 1
I
II
EF
23
C 4
刚片I、II中各有一个多余约 束,整体为有2个多余约束的 几何不变体系。
哪个连杆是多余约束?
去掉1个固定支座和1个 铰结点后,成为无多余 约束几何不变体系,所 以体系是有5个多余约 束的不变体系。
分析实例 7
A
B
C
D
E
F
1,3
A
A
2,3
2,3
B 1,2 C
D
E
F
1,2 1,3
B
D
F
C
E
几何不变体系
几何瞬变体系
有限交点 无限交点
常变体系 瞬变体系
例 对图示体系作几何组成分析
例 对图示体系作几何组成分析
去二元体
解: 该体系为常变体系.
两个虚铰在无穷远
两个虚铰在无穷远:若组成此两 虚铰的两对链不平行则几何不变; 否则几何可变;
四杆不平行 不变
平行且等长 常变
平行不等长 瞬变
第二章 平面结构的几何构造分析
概述
平面杆件结构,是由若干根杆件构成的能支承荷载 的平面杆件体系,而任一杆件体系却不一定能作为结构。
本章内容:研究结构的组成规律和合理形式。 前提条件:不考虑结构受力后由于材料的应变而产生 的微小变形,即把组成结构的每根杆件都看作完全不变 形的刚性杆件。
研究体系几何组成的任务和目的:
例3
.1,2
.
1,3
刚片Ⅰ、Ⅱ由交于一点的 三个链杆相连,成几何瞬 变体系。
2,3
. 2,3
几何瞬变体系
1,3 1,2
分析实例 4
F
D
E
C
A
B
F
D
E
C
A
B
D
E
C
A
B
F
D
E
C
A
B
分析实例 5
1
2
3
5 4
6
1 (1,2)
2 (2,3)
3
5 4
6
1
2
3
5 4
6
1 (1,2)
2
3
(2,3)
5
4
6
分析实例 5
图示,为平面内一根链杆AB,其一端A和大地相连, 显然相对于大地来说这根链杆在平面内只有一种运动方式 ,即作绕A点转动,所以该体系只有一个自由度。 同时又可看到,用链杆AB与水平坐标的夹角作为参变量 ,即可表示该体系运动中任一时刻的位置, 表示体系位置的参变量数与体系的自由度数也是相等的。
B

4、约束概念 当对体系添加了某些装置后,限制了体系的某些
根链杆的杆轴可以平行、交叉,或延长线交于一点。 当两个刚片是由有交汇点的虚铰相连时,两个刚片绕
该交点(瞬时中心,简称瞬心)作相对转动。 从微小运动角度考虑,虚铰的作用相当于在瞬时中心
的一个实铰的作用。
O . . O’
A
B
C D
8、无穷远处虚较的关系: 1)、每个方向只有一个∞点(即该方向各平行线的交点) 2)、不同方向有不同的∞点 3)、各∞点都在同一直线上,此直线称为∞线 4)、各有限点都不在∞线上。
注意作图规范,分析简练准确 下次课 单学号交 再下次 双学号交 依次轮换 每次及时交。 但全体都要及时做,不交的不可不做。
思考:脚手架的构成
例1 1,.3
2.,3 .1,2
例2
.
刚片Ⅰ、Ⅱ、Ⅲ由较(1, 2)(2,3)(1,3)两 两相连,构成无多余约束 几何不变体系。
无多余约束的几何不变体系
几何瞬变体系
3. 三个刚片之间的组成方式 三个刚片之间用三个铰两两相连,且三个铰不 在 一直线上,则组成无多余约束的几何不变体系。
三角形规律
II
III
I
II III
I
二元体特性:在体系上加上或拆去一个二元体,不 改变体系原有的组成性质
组成几何不变体系的条件:
• 具有必要的约束数; • 约束布置方式合理
基本规律只是相互之间变相,终归为三角形稳定性
体系受到任意荷载
作用,在不考虑材料应
变的前提下,体系若能
保证几何形状、位置不
变,称为几何不变体系
2、刚片:假想的一个在平面内完全不变形的刚性物 体叫作刚片。在平面杆件体系中,一根直杆、折杆 或曲杆都可以视为刚片 ; 并且由这些构件组成的几 何不变体系也可视为刚片。
刚片中任一两点间的距离保持不变,既由刚片中 任意两点间的一条直线的位置可确定刚片中任一点 的位置。所以可由刚片中的一条直线代表刚片。
超静定结构
二、平面链杆体系的自由度 j=4
b=4+3
W=2j-b
W=2×4-4-3=1
j=8
b=12+4
W=2×8-12-4=0
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。
连接 n个铰结点的复链杆相当于(2n-3)个单链杆。
j 7 b 3 3 5 3 14
方向的运动,使体系原有的自由度数减少,就说这 些装置是加在体系上的约束。约束,是能减少体系 自由度数的装置。
连接两个物体(刚片或点)的约束叫单约束。
1)单链杆(链杆) 一根单链杆或一个可动铰(一根支座链杆)
具有1个约束。
2)单铰(下图) 一个单铰或一个固定铰支座(两个支座链杆)
具有两个约束。
3)单刚结点 一个单刚结点或一个固定支座具有3个约束。
利用组成规律可以两种方式构造一般的结构: (1)从基础出发构造
(2)从内部刚片出发构造
例1 对下列图示各体系作几何组成分析 (简单规则 的一般应用方法)。
刚片ABC与基础通 过较A、链杆B相 连,成无多余约束 的几何不变部分, 视为I。
I再与刚片II(DEF) 通过1、2、F三个 链杆相连,整个体 系是无多余约束的 几何不变体系。
G
23
4
铰接三角形ADE、AFG都是无多余约束的几何不变部分,
分别视为刚片I、II,则I与基础通过连杆1、2(构成虚铰B) 相连,II与基础通过连杆3、4(构成虚铰C)相连,I与II通 过铰A相连,如A、B、C不在同一直线,则体系为无多余联 系几何不变体系。否则为几何舜变体系。
作业:2-1(a),2-2(b)
2、复约束 连接3个(含3个)以上物体的约束叫复约束。
1)复链杆:若一个复链杆上连接了N个结点,则 该复链杆具有(2N-3)个约束,等于(2N-3)个链杆的 作用。 2)复铰:若一个复铰上连接了N个刚片,则该复 铰具有2(N-1)个约束,等于(N-1)个单铰的作用。
5、多余约束
在体系上加上或撤除某一约束并不改变原体系的 自由度数,则该约束就是多余约束。
3、自由度
体系可独立运动的方式称为该体系的自由度。 或表示体系位置的独立坐标数。
平面体系的自由度:用以确定平面体系在平面 内位置的独立坐标数。
一个点:在平面内运动完全不受限制的 一个点有2个自由度。
一个刚片:在平面内运动完全不受限制的 片有3个自由度。
一般工程结构是几何不变的,自由度为零,自由度大于 零的是几何可变体系(机械中称为机构)。
刚片AC、BC、基础, 通过A、B、C三个铰 两两相连,成无多余 联系几何不变体系。
刚片AC与基础通过铰A相连, 刚片AC、BC通过铰C相连, 刚片BC与基础通过连杆B相连, 少一个约束, 整体是几何可变体系。
• 从规律出发,由内及外,内外联合形成整体体系。
B
利用虚铰
C
铰杆代替
A
D 1
I
II
EF
W 2 7 14 0
三、混合体系的自由度
W (3m 2 j) (2h b)
四、自由度与几何体系构造特点
m2 j2
W 0 体系几何可变;
h 1 b 8
W 0 体系有多余约束。W (3 2 2 2) (2 1 8) 0
W 0 无多余约束时,体系几何不变;要看约束分布情况
1、研究结构的基本组成规则,用以判定体系是否 可作为结构以及选取结构的合理形式。
2、根据结构的几何组成,选择相应的计算方法和 计算途径。
§2-1 基本概念
1 几何不变体系、几何可变体系
体系受到某种荷载作用,在不考虑材料应变的 前提下,体系若不能保证几何形状、位置不变,称 为几何可变体系。
FP
FP
FP
6、瞬变体系 体系在特定位置时是几何可变,离
开此位置,是几何不变。 即在微小荷载作用下发生瞬间的微
小的刚体几何变形,然后成为几何不 变体系。
FP
FP
几何瞬变是几何可变的特例,不可作为结构
FP
FP
FN
FN
FN

FP
2 sin

7、虚(瞬)铰: 虚铰是由不直接相连接的两根链杆构成的。虚铰的两
三个虚铰在无穷远
三个虚铰在无穷远:体系 为可变(三点交在无穷远 的一条直线上)
彼此等长 常变
彼此不等长 瞬变
练习:试分析图示体系的几何组成
§2-3 平面体系的计算自由度 一、平面刚片体系的自由度
W=3m-2h-b
相关文档
最新文档