2019-2020八年级数学上学期期末试卷及答案
合肥市瑶海区2019-2020学年八年级上期末数学试卷含答案解析
合肥市瑶海区2019-2020学年八年级上期末数学试卷含答案解析~学年度八年级上学期期末数学试卷一、选择题(本题共10小题,每小题4分,满分40分,每小题只有一个选项符合题意)1.点P(﹣4,3)在哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.下列函数中,y随x的增大而减小的函数是()A.B.y=6﹣2x C.D.y=﹣6+2x4.下图中表示y是x函数的图象是()A.B.C.D.5.下列图形中,不是轴对称图形的是()A.①⑤B.②⑤C.④⑤D.①②6.一次函数y=kx+k的图象可能是()A.B.C.D.7.将一副三角板按图中方式叠放,则∠AOB等于()A.90° B.105°C.120°D.135°8.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处9.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACD B.AF垂直平分EGC.直线BG,CE的交点在AF上D.△DEG是等边三角形10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.4二、填空题(共4小题,每小题5分,满分20分)11.点P(5,﹣3)关于x轴对称的点P′的坐标为.12.已知一次函数y=kx+5的图象经过点(﹣1,2),则k=.13.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.14.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.三、解答题(共2小题,满分16分)15.如图,在平面网格中每个小正方形边长为1.(1)线段CD是线段AB经过怎样的平移后得到的;(2)线段AC是线段BD经过怎样的平移后得到的.16.已知正比例函数y=k1x的图象与一次函数y=k2x﹣9的图象交于点P(3,﹣6).(1)求k1,k2的值;(2)如果一次函数y=k2x﹣9与x轴交于点A,求A点坐标.四、(共2小题,满分16分)17.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.18.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.五、(共2小题,满分20分)19.已知:如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.20.为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b 折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.(1)观察图象可知:a=;b=;m=;(2)求出y1,y2与x之间的函数关系式.六、解答题(共1小题,满分12分)21.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.七、(共1小题,满分12分)22.如图,在△ABD和△ACE中,有四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE,请你从其中三个等式作为题设,设另一个作为结论,写出一个真命题,并给出证明.(要求写出已知、求证及证明过程)八、(共1小题,满分14分)23.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.~学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,满分40分,每小题只有一个选项符合题意)1.点P(﹣4,3)在哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:点P(﹣4,3)在第二象限,故选:B.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】三角形三边关系.【专题】探究型.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.【点评】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.3.下列函数中,y随x的增大而减小的函数是()A.B.y=6﹣2x C.D.y=﹣6+2x【考点】一次函数的性质.【分析】根据一次函数的性质对各选项进行逐一分析即可.【解答】解:A、∵k=>0,∴y随x的增大而增大,故本选项错误;B、∵k=﹣2<0,∴y随x的增大而减小,故本选项正确;C、∵k=>0,∴y随x的增大而增大,故本选项错误;D、∵k=2>0,∴y随x的增大而增大,故本选项错误.故选B.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k>0时,y 随x的增大而增大;当k<0时,y随x的增大而减小是解答此题的关键.4.下图中表示y是x函数的图象是()A.B.C.D.【考点】函数的图象.【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【解答】解:根据函数的定义,表示y是x函数的图象是C.故选C.【点评】理解函数的定义,是解决本题的关键.5.下列图形中,不是轴对称图形的是()A.①⑤B.②⑤C.④⑤D.①②【考点】轴对称图形.【专题】图表型.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此作答.【解答】解:①不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.符合题意;②有一条对称轴,是轴对称图形,不符合题意;③有三条对称轴,是轴对称图形,不符合题意;④有一条对称轴,是轴对称图形,不符合题意;⑤不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.符合题意.故轴对称图形有:①⑤.故选A.【点评】本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.6.一次函数y=kx+k的图象可能是()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故B正确.故选B.【点评】本题考查的是一次函数的图象,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限是解答此题的关键.7.将一副三角板按图中方式叠放,则∠AOB等于()A.90° B.105°C.120°D.135°【考点】三角形的外角性质.【分析】根据三角形内角与外角的性质可得∠3=∠1+∠2=45°+30°=75°,再根据邻补角的性质可得∠AOB的度数.【解答】解:根据三角板可得∠1=45°,∠2=30°,则∠3=∠1+∠2=45°+30°=75°,故∠AOB=180°﹣75°=105°,故选:B.【点评】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.8.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处【考点】规律型:图形的变化类.【分析】根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,÷6=335…2,行走了335圈又两米,即落到C点.【解答】解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵÷6=335…2,即正好行走了335圈又两米,回到第三个点,∴行走m停下,则这个微型机器人停在C点.故选:C.【点评】本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出为6的倍数余数是几.9.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACD B.AF垂直平分EGC.直线BG,CE的交点在AF上D.△DEG是等边三角形【考点】轴对称的性质.【分析】认真观察图形,根据轴对称图形的性质得选项A、B、C都是正确的,没有理由能够证明△DEG是等边三角形.【解答】解:A、因为此图形是轴对称图形,正确;B、对称轴垂直平分对应点连线,正确;C、由三角形全等可知,BG=CE,且直线BG,CE的交点在AF上,正确;D、题目中没有60°条件,不能判断是等边三角形,错误.故选D.【点评】本题考查了轴对称的性质;解决此题要注意,不要受图形误导,要找准各选项正误的具体原因是正确解答本题的关键.10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质.【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形AEC全等,由全等三角形的对应边相等得到BD=CE,本选项正确;②由三角形ABD与三角形AEC全等,得到一对角相等,由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°,本选项正确;③再利用等腰直角三角形的性质及等量代换得到BD垂直于CE,本选项正确;④利用周角减去两个直角可得答案.【解答】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°﹣90°﹣90°=180°,故此选项正确,故选:D.【点评】此题考查了全等三角形的判定与性质,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.二、填空题(共4小题,每小题5分,满分20分)11.点P(5,﹣3)关于x轴对称的点P′的坐标为(5,3).【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:平面直角坐标系中任意一点P′(x,y),关于x轴的对称点的坐标是(x,﹣y).【解答】解:根据轴对称的性质,得点P′(5,﹣3)关于x轴对称的点的坐标为(5,3).【点评】本题比较容易,考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.12.已知一次函数y=kx+5的图象经过点(﹣1,2),则k=3.【考点】一次函数图象上点的坐标特征.【分析】直接把点(﹣1,2)代入一次函数y=kx+5,求出k的值即可.【解答】解:∵一次函数y=kx+5的图象经过点(﹣1,2),∴2=﹣k+5,解得k=3.故答案为:3.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为120°或20°.【考点】等腰三角形的性质.【分析】设两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.【解答】解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得,x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180°,解得,x=20°,从而得到顶角为20°,底角为80°;所以该三角形的顶角为120°或20°.故答案为:120°或20°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.已知中若有比出现,往往根据比值设出各部分,利用部分和列式求解.14.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【考点】作图—复杂作图.【分析】能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个【解答】解:如图,可以作出这样的三角形4个.【点评】本题考查了学生利用基本作图来做三角形的能力.三、解答题(共2小题,满分16分)15.如图,在平面网格中每个小正方形边长为1.(1)线段CD是线段AB经过怎样的平移后得到的;(2)线段AC是线段BD经过怎样的平移后得到的.【考点】坐标与图形变化-平移.【专题】网格型.【分析】(1)根据图形,找到AC点的关系,A点如何变化可得C点;将C点相应变化即可.(2)根据图形,找到AC点的关系,C点如何变化可得A点;将D点相应变化即可.【解答】解:(1)将线段AB向右(或下)平移3个小格(或4个小格),再向下(或右)平移4个小格(或3个小格),得线段CD.(2)将线段BD向右平移(或向下平移1个小格)3个小格,再向下平移(可左平移3个小格)1个小格,得到线段AC.【点评】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.已知正比例函数y=k1x的图象与一次函数y=k2x﹣9的图象交于点P(3,﹣6).(1)求k1,k2的值;(2)如果一次函数y=k2x﹣9与x轴交于点A,求A点坐标.【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】(1)只要把P点坐标代入两关系式即可;(2)设y=0即可求出A点坐标.【解答】解:(1)∵点P(3,﹣6)在y=k1x上∴﹣6=3k1∴k1=﹣2∵点P(3,﹣6)在y=k2x﹣9上∴﹣6=3k2﹣9∴k2=1;(2)∵k2=1,∴y=x﹣9∵一次函数y=x﹣9与x轴交于点A又∵当y=0时,x=9∴A(9,0).【点评】本题要注意利用一次函数的特点,列出方程,求出未知数的值,函数与x轴相交时y=0.四、(共2小题,满分16分)17.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的性质得出∠AOP=∠COP,∠BOP=∠DOP,从而推出∠AOB=∠COD,再利用SAS判定其全等从而得到AB=CD.【解答】证明:∵OP是∠AOC和∠BOD的平分线,∴∠AOP=∠COP,∠BOP=∠DOP.∴∠AOB=∠COD.在△AOB和△COD中,.∴△AOB≌△COD.∴AB=CD.【点评】本题考查三角形全等的判定方法,以及全等三角形的性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.本题比较简单,读已知时就能想到要用全等来证明线段相等.18.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.【考点】全等三角形的性质.【分析】由△ABC≌△ADE,可得∠DAE=∠BAC=(∠EAB﹣∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B,因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形内角和定理可得∠DGB=∠DFB﹣∠D,即可得∠DGB的度数.【解答】解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.【点评】本题主要考查三角形全等的性质,找到相应等量关系的角是解题的关键,做题时要结合图形进行思考.五、(共2小题,满分20分)19.已知:如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.【考点】角平分线的性质.【专题】计算题;证明题.【分析】(1)根据已知条件结合角平分线性质定理的逆定理即可证明;(2)根据直角三角形的两个锐角互余求解.【解答】(1)证明:∵DC⊥BC,DE⊥AB,DE=DC,∴点D在∠ABC的平分线上,∴BD平分∠ABC.(2)解:∵∠C=90°,∠A=36°,∴∠ABC=54°,∵BD平分∠ABC,∴∠DBC=∠ABD=27°.【点评】此题主要考查了角平分线性质的运用和直角三角形性质的运用.题目比较简单,属于基础题.20.为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b 折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.(1)观察图象可知:a=6;b=8;m=10;(2)求出y1,y2与x之间的函数关系式.【考点】一次函数的应用.【分析】1)根据函数图象,用购票款数除以定价的款数,计算即可求出a的值;用第11人到20人的购票款数除以定价的款数,计算即可求出b的值,由图可求m的值;(2)利用待定系数法求正比例函数解析式求出y1,分0≤x≤10与x>10,利用待定系数法求一次函数解析式求出y2与x的函数关系式即可;【解答】解:(1)∵=0.6,∴非节假日打6折,a=6,∵=0.8,∴节假日打8折,b=8,由图可知,10人以上开始打折,所以,m=10;(2)设y1=k1x,∵函数图象经过点(0,0)和(10,300),∴10k1=300,∴k1=30,∴y1=30x;0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,500),∴10k1=500,∴k1=50,∴y1=50x,x>10时,设y2=kx+b,∵函数图象经过点(10,500)和,∴,∴,∴y2=40x+100;∴y2=.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键六、解答题(共1小题,满分12分)21.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)先求出∠EAC=∠BAF,然后利用“边角边”证明△ABF和△AEC全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得∠AEC=∠ABF,设AB、CE相交于点D,根据∠AEC+∠ADE=90°可得∠ABF+∠ADM=90°,再根据三角形内角和定理推出∠BMD=90°,从而得证.【解答】证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.【点评】本题考查了全等三角形的判定与性质,根据条件找出两组对应边的夹角∠EAC=∠BAF是证明的关键,也是解答本题的难点.七、(共1小题,满分12分)22.如图,在△ABD和△ACE中,有四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE,请你从其中三个等式作为题设,设另一个作为结论,写出一个真命题,并给出证明.(要求写出已知、求证及证明过程)【考点】全等三角形的判定与性质;命题与定理.【分析】此题无论选择什么作为题设,什么作为结论,它有一个相同点﹣﹣都是通过证明△ABD≌△ACE,然后利用全等三角形的性质解决问题.【解答】解:解法一:如果AB=AC,AD=AE,BD=CE,那么∠1=∠2.已知:在△ABD和△ACE中,AB=AC,AD=AE,BD=CE,求证:∠1=∠2.证明:在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠CAE,∴∠1=∠2.解法二:如果AB=AC,AD=AE,∠1=∠2,那么BD=CE.已知:在△ABD和△ACE中,AB=AC,AD=AE,∠1=∠2,求证:BD=CE.证明:∵∠1=∠2,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE.【点评】此题考查全等三角形的判定和性质,熟练掌握判定方法是关键,全等三角形的判定方法有SSS、SAS、ASA、AAS、HL等.选择条件时要避开SSA与AAA.这两种不能作为三角形全等的判定方法加以应用.八、(共1小题,满分14分)23.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】(1)求证AB=AC,就是求证∠B=∠C,可通过构建全等三角形来求.过点O分别作OE⊥AB于E,OF⊥AC于F,那么可以用斜边直角边定理(HL)证明Rt△OEB≌Rt△OFC来实现;(2)思路和辅助线同(1)证得Rt△OEB≌Rt△OFC后,可得出∠OBE=∠OCF,等腰△ABC中,∠ABC=∠ACB,因此∠OBC=∠OCB,那么OB=OC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC.【解答】(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)解:不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB=AC,否则AB≠AC.(如示例图)【点评】本题的关键是通过辅助线来构建全等三角形.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
宁波市镇海区2019-2020学年八年级上期末数学试卷(含答案)
浙江省宁波市八年级(上)期末测试数学试卷一、仔细选一选(本题有12个小题,每小题4分,共48分) 1.下列四组线段中,能组成三角形的是( )A .2cm ,3cm ,4cmB .3cm ,4cm ,7cmC .4cm ,6cm ,2cmD .7cm ,10cm ,2cm 2.下列图案是轴对称图形的是( )A .B .C .D .3.下列各式计算正确的是( ) A .B .C .D .4.若x >y ,则下列式子中错误的是( )A .x ﹣3>y ﹣3B .>C .x+3>y+3D .﹣3x >﹣3y5.在平面直角坐标系中,已知点A (2,3),则点A 关于x 轴的对称点的坐标为( ) A .(3,2) B .(2,﹣3) C .(﹣2,3) D .(﹣2,﹣3)6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+n 图象上的两点,则a 与b 的大小关系是( ) A .a ≤bB .a <bC .a ≥bD .a >b8.直角三角形的两条边长分别是5和12,则斜边上的中线长是( ) A .6B .6.5C .6或 6.5D .6或 2.59.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( )A.x<﹣1 B.x<3 C.x>﹣1 D.x>310.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣11.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有()A.①②③B.①②③⑤C.②③④D.③④⑤12.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A.B.C.D.二、认真填一填(本题有6个小题,每小题4分,共24分)13.若代数式有意义,则a的取值范围为.14.命题“等腰三角形的两个底角相等”的逆命题是.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB的距离为 .16.如图,在边长为2的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为 .17.阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若n ﹣≤x <n+,则《x 》=n .例如:《0.67》=1,《2.49》=2,….给出下列关于《x 》的问题:①《》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m+2x 》=m+《2x 》;④若《2x﹣1》=5,则实数x 的取值范围是≤x <;⑤满足《x 》=x 的非负实数x 有三个.其中正确结论的个数是 个.18.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S 2016= .三、解答题(本题有8个小题,共78分,解答需写出必要的文字说明、验算步骤或证明过程)19.计算或化简:(1)(2﹣3)2+(2+)(2﹣)(2)﹣+(﹣2)0+.20.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.21.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.如图,△ABC中,AB=AC,AD⊥BC垂足为点D,CE⊥AB垂足为点E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.23.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.24.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;(2)A,B的“5和点”有几个,请分别求出坐标;(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.25.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇.请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?26.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.浙江省宁波市八年级(上)期末数学试卷参考答案与试题解析一、仔细选一选(本题有12个小题,每小题4分,共48分)1.下列四组线段中,能组成三角形的是()A.2cm,3cm,4cm B.3cm,4cm,7cm C.4cm,6cm,2cm D.7cm,10cm,2cm【考点】三角形三边关系.【分析】根据三角形的三边关系定理:如果a、b、c是三角形的三边,且同时满足a+b>c,b+c >a,a+c>b,则以a、b、c为边能组成三角形,根据判断即可.【解答】解:A、∵3+2>4,∴2,3,4能组成三角形,故本选项正确;C、∵4+3=7,∴3,4,7不能组成三角形,故本选项错误;D、∵2+4=6,∴2,4,6不能组成三角形,故本选项错误;B、∵7+2<10,∴1,2,3不能组成三角形,故本选项错误;故选A.2.下列图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:D图形是轴对称图形,故选:D.3.下列各式计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式的加减运算对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、原式=6,所以A选项的计算错误;B、5与5不能合并,所以B选项的计算错误;C、原式=8=8,所以C选项的计算正确;D、原式=2,所以D选项的计算错误.故选C.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.5.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A(2,3),∴点A关于x轴的对称点的坐标为:(2,﹣3).故选:B.6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+n图象上的两点,则a与b的大小关系是()A.a≤b B.a<b C.a≥b D.a>b【考点】一次函数图象上点的坐标特征.【分析】把点M和点N的坐标代入一次函数的解析式,求出a、b的值,比较即可.【解答】解:∵点M(1,a)和点N(2,b)是一次函数y=﹣2x+n图象上的两点,∴a=﹣2+n,b=﹣4+n,∴a﹣b=(﹣2+n)﹣(﹣4+n)=2>0,∴a>b,故选:D.8.直角三角形的两条边长分别是5和12,则斜边上的中线长是()A.6 B.6.5 C.6或6.5 D.6或2.5【考点】勾股定理;直角三角形斜边上的中线.【分析】分①12是直角边时,利用勾股定理列式求出斜边,根据直角三角形斜边上的中线等于斜边的一半解答,②12是斜边,根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:①12是直角边时,斜边==13,第三边上的中线长=×13=6.5,②12是斜边时,第三边上的中线长=12=6,故选:C .9.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( )A .x <﹣1B .x <3C .x >﹣1D .x >3【考点】一次函数与一元一次不等式.【分析】观察函数图象,写出直线l 1在直线l 2上方所对应的自变量的范围即可. 【解答】解:不等式k 2x >k 1x+b 的解集为x <﹣1. 故选A .10.关于x 的不等式组有四个整数解,则a 的取值范围是( )A .﹣<a ≤﹣ B .﹣≤a <﹣ C .﹣≤a ≤﹣ D .﹣<a <﹣【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值范围即可.【解答】解:由(1)得x >8; 由(2)得x <2﹣4a ; 其解集为8<x <2﹣4a ,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a <﹣.故选B.11.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有()A.①②③B.①②③⑤C.②③④D.③④⑤【考点】全等三角形的判定与性质;等边三角形的性质.【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;③同②得:△ACP≌△BCQ,即可得出结论;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【解答】解:①∵△ABC和△CDE为等边三角形,∴AC=BC,CD=CE,∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,①正确;②∠DCP=180°﹣2×60°=60°=∠ECQ,在△CDP和△CEQ中,,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,②正确;③同②得:△ACP≌△BCQ,∴AP=BQ,③正确;④∵DE>QE,且DP=QE,∴DE>DP,故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵△DCE是等边三角形,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴⑤正确;故选:B.12.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A.B.C.D.【考点】等边三角形的性质.【分析】过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.【解答】解:过P作PF∥BC交AC于F.如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选:A.二、认真填一填(本题有6个小题,每小题4分,共24分)13.若代数式有意义,则a的取值范围为a≥2016 .【考点】二次根式有意义的条件.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得a﹣2016≥0,解得a≥2016,故答案为:a≥2016.14.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB 的距离为 4 .【考点】角平分线的性质.【分析】直接根据角平分线的性质可得出结论.【解答】解:∵Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,∴点D到AB的距离为4.故答案为:4.16.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.【考点】轴对称﹣最短路线问题;等边三角形的性质.【分析】作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,故E 即为所求的点.【解答】解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD⊥BC,∴AD=,BD=CD=1,BB′=2AD=2,作B′G⊥BC的延长线于G,∴B′G=AD=,在Rt△B′BG中,BG===3,∴DG=BG﹣BD=3﹣1=2,在Rt △B′DG 中,B′D===.故BE+ED 的最小值为.故答案为:.17.阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若n ﹣≤x <n+,则《x 》=n .例如:《0.67》=1,《2.49》=2,….给出下列关于《x 》的问题:①《》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m+2x 》=m+《2x 》;④若《2x﹣1》=5,则实数x 的取值范围是≤x <;⑤满足《x 》=x 的非负实数x 有三个.其中正确结论的个数是 2 个.【考点】一元一次不等式组的应用.【分析】根据题意可以判断题目中各个结论是否正确,从而可以解答本题. 【解答】解:由题意可得, 《》=1,故①错误;当x=1.4时,《2x 》=《2×1.8》=3,2《x 》=2《1.4》=2,则《2x 》≠2《x 》,故②错误; 当m 为非负整数时,《m+2x 》=m+《2x 》,故③正确;若《2x ﹣1》=5,则4.5≤2x ﹣1<5.5,解得≤x <,故④正确;满足《x 》=x 的非负实数x 的值是x=0,故⑤错误; 由上可得,题目中正确的结论有2个, 故答案为:2.18.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S 2016=.【考点】一次函数图象上点的坐标特征.【分析】根据图象上点的坐标性质得出点B 1、B 2、B 3、…、B n 、B n+1各点坐标,进而利用相似三角形的判定与性质得出S 1、S 2、S 3、…、S n ,进而得出答案.【解答】解:∵A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,∴B 1的横坐标为:1,纵坐标为:2, ∴B 1(1,2),同理可得:B 2的横坐标为:2,纵坐标为:4, 则B 2(2,4), B 3(3,6)… ∵A 1B 1∥A 2B 2,∴△A 1B 1P 1∽△A 2B 2P 1,∴=,∴△A 1B 1C 1与△A 2B 2C 2对应高的比为1:2,∴A 1B 1边上的高为:,∴S △A1B1P1=××2=,同理可得出:S △A2B2P2=,S △A3B3P3=,∴S n =,==,∴S2016故答案为:.三、解答题(本题有8个小题,共78分,解答需写出必要的文字说明、验算步骤或证明过程)19.计算或化简:(1)(2﹣3)2+(2+)(2﹣)(2)﹣+(﹣2)0+.【考点】二次根式的混合运算;零指数幂.【分析】(1)利用完全平方公式和平方差公式计算;(2)先把各二次根式化简为最简二次根式,再利用二次根式的性质和零指数幂的意义化简,然后合并即可.【解答】解:(1)原式=12﹣12+18+4﹣3=31﹣12;(2)原式=2﹣+1+﹣1=.20.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【考点】解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.【解答】解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.21.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).【考点】作图—应用与设计作图;三角形三边关系.【分析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形.(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB,且取AB=4;②以点A为圆心,3为半径画弧;以点B为圆心,2为半径画弧,两弧交于点C;③连接AC、BC.则△ABC即为满足条件的三角形.【解答】解:(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)由(1)可知,只有(2,3,4),即a=2,b=3,c=4时满足a<b<c.如答图的△ABC即为满足条件的三角形.22.如图,△ABC中,AB=AC,AD⊥BC垂足为点D,CE⊥AB垂足为点E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.【考点】全等三角形的判定与性质.【分析】(1)根据等腰三角形三线合一的性质和已知条件易证△AEF≌△CEB;(2)由(1)可知AF=BC,BC=2CD,所以AF=2CD,问题得证.【解答】解:(1)证明:∵AD⊥BC,∴∠B+∠BAD=90°.∵CE⊥AB,∴∠B+∠BCE=90°.∴∠EAF=∠ECB,在△AEF和△CEB中,,∴△AEF≌△CEB;(2)∵△AEF≌△CEB.∴AF=BC.∵AB=AC,AD⊥BC.∴CD=BD,BC=2CD∴AF=2CD.23.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.【考点】一次函数的应用.【分析】(1)根据已知信息和若经营者的购买资金不少于576万元且不多于600万元,列出不等式组,求解得出进车方案.(2)根据已知列出利润函数式,求最值,选择方案.(3)根据已知通过计算分析得出答案.【解答】解:(1)设A型汽车购进x辆,则B型汽车购进(16﹣x)辆.根据题意得:,解得:6≤x≤8.∵x为整数,∴x取6、7、8.∴有三种购进方案:根据题意得:W=(32﹣30)x+(45﹣42)(16﹣x)W=﹣x+48.∵k=﹣1<0,∴w随x的增大而减小,=﹣6+48=42(万元)∴当x=6时,w有最大值,W最大∴当购进A型车6辆,B型车10辆时,可获得最大利润,最大利润是42万元.(3)设电动汽车行驶的里程为a万公里.当32+0.65a=45时,解得:a=20<30.∴选购太阳能汽车比较合算.24.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;(2)A,B的“5和点”有几个,请分别求出坐标;(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.【考点】勾股定理;坐标与图形性质.【分析】(1)先由A、B两点的坐标求出AB=4,再根据等边三角形的定义得到AC=BC=AB=4,然后根据“m和点”的定义即可求出m=8;(2)设点C为点A,B的“5和点”.根据“m和点”的定义可知点C在坐标轴上,再分两种情况进行讨论:①如果点C在x轴上,设C点坐标为(x,0),根据AC+BC=5列出方程|x+2|+|x ﹣2|=5,解方程求出x的值,即可得到C点坐标;②如果点C在y轴上,设C点坐标为(0,y),根据AC+BC=5列出方程+=5,解方程求出y的值,即可得到C点坐标;(3)由AB=4,可知点A,B的“m和点”的个数情况分三种情况进行讨论:①当m<4时,根据两点之间线段最短可知A,B的“m和点”没有;②当m=4时,x轴上﹣2与2之间的任意一个数所对应的点都是A,B的“m和点”,所以有无数个;③当m>4时,A,B的“m和点”x轴上有2个,y轴上也有2个,一共有4个.【解答】解:(1)∵A(﹣2,0),B(2,0),∴AB=2﹣(﹣2)=4.∵△ABC为等边三角形,∴AC=BC=AB=4,∴AC+BC=4+4=8,即m=8;(2)设点C为点A,B的“5和点”.分两种情况:①如果点C在x轴上,设C点坐标为(x,0).∵AC+BC=5,∴|x+2|+|x﹣2|=5,当x≤﹣2时,﹣(x+2)﹣(x﹣2)=5,解得x=﹣2.5,所以C点坐标为(﹣2.5,0);当﹣2<x≤2时,(x+2)﹣(x﹣2)=5,x无解;当x>2时,(x+2)+(x﹣2)=5,解得x=2.5,所以C点坐标为(2.5,0);②如果点C在y轴上,设C点坐标为(0,y).∵AC+BC=5,∴+=5,∴=2.5,两边平方,得4+y2=6.25,解得y=±1.5.经经验,y=±1.5都是原方程的根,所以C点坐标为(0,1.5),(0,﹣1.5);综上所述,A,B的“5和点”有4个,坐标为(﹣2.5,0),(2.5,0),(0,1.5),(0,﹣1.5);(3)∵AB=4,∴点A,B的“m和点”的个数情况分三种情况:①当m<4时,A,B的“m和点”没有;②当m=4时,A ,B 的“m 和点”有无数个; ③当m >4时,A ,B 的“m 和点”有4个.25.方成同学看到一则材料:甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地.设乙行驶的时间为t (h ),甲乙两人之间的距离为y (km ),y 与t 的函数关系如图1所示. 方成思考后发现了如图1的部分正确信息:乙先出发1h ;甲出发0.5小时与乙相遇. 请你帮助方成同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式; (2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程S 甲,S 乙与时间t 的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一公路匀速前往M 地,若丙经过h 与乙相遇,问丙出发后多少时间与甲相遇?【考点】一次函数的应用.【分析】(1)利用待定系数法求函数解析式,即可解答;(2)先求出甲、乙的速度、所以OA 的函数解析式为:y=20t (0≤t ≤1),所以点A 的纵坐标为20,根据当20<y <30时,得到20<40t ﹣60<30,或20<﹣20t+80<30,解不等式组即可;(3)得到S 甲=60t ﹣60(),S 乙=20t (0≤t ≤4),画出函数图象即可;(4)确定丙距M 地的路程S 丙与时间t 的函数表达式为:S 丙=﹣40t+80(0≤t ≤2),根据S 丙=﹣40t+80与S 甲=60t ﹣60的图象交点的横坐标为,所以丙出发h 与甲相遇. 【解答】解:(1)直线BC 的函数解析式为y=kt+b ,把(1.5,0),()代入得:解得:,∴直线BC 的解析式为:y=40t ﹣60; 设直线CD 的函数解析式为y 1=k 1t+b 1,把(),(4,0)代入得:,解得:,∴直线CD 的函数解析式为:y=﹣20t+80.(2)设甲的速度为akm/h ,乙的速度为bkm/h ,根据题意得;,解得:,∴甲的速度为60km/h ,乙的速度为20km/h ,∴OA 的函数解析式为:y=20t (0≤t ≤1),所以点A 的纵坐标为20, 当20<y <30时,即20<40t ﹣60<30,或20<﹣20t+80<30,解得:或.(3)根据题意得:S 甲=60t ﹣60()S 乙=20t (0≤t ≤4), 所画图象如图2所示:(4)当t=时,,丙距M 地的路程S 丙与时间t 的函数表达式为:S 丙=﹣40t+80(0≤t ≤2), 如图3,S 丙=﹣40t+80与S 甲=60t ﹣60的图象交点的横坐标为,所以丙出发h 与甲相遇.26.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)把P (m ,3)的坐标代入直线l 1上的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线l 2的解析式得出C 的坐标,①根据题意得出AQ=9﹣t ,然后根据S=AQ•|y P |即可求得△APQ 的面积S 与t 的函数关系式;②通过解不等式﹣t+<3,即可求得t >7时,△APQ 的面积小于3;③分三种情况:当PQ=PA 时,则(t ﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2,当AQ=PA 时,则(t ﹣7﹣2)2=(2+1)2+(0﹣3)2,当PQ=AQ 时,则(t ﹣7+1)2+(0﹣3)2=(t ﹣7﹣2)2,即可求得.【解答】解;(1)∵点P (m ,3)为直线l 1上一点, ∴3=﹣m+2,解得m=﹣1, ∴点P 的坐标为(﹣1,3),把点P 的坐标代入y 2=x+b 得,3=×(﹣1)+b , 解得b=;(2)∵b=,∴直线l 2的解析式为y=x+, ∴C 点的坐标为(﹣7,0),①由直线l 1:y 1=﹣x+2可知A (2,0), ∴当Q 在A 、C 之间时,AQ=2+7﹣t=9﹣t ,∴S=AQ•|y P |=×(9﹣t )×3=﹣t ;当Q 在A 的右边时,AQ=t ﹣9,|=×(t﹣9)×3=t﹣;∴S=AQ•|yP即△APQ的面积S与t的函数关系式为S=﹣t+或S=t﹣;②∵S<3,∴﹣t+<3或t﹣<3解得7<t<9或9<t<11.③存在;设Q(t﹣7,0),当PQ=PA时,则(t﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2∴(t﹣6)2=32,解得t=3或t=9(舍去),当AQ=PA时,则(t﹣7﹣2)2=(2+1)2+(0﹣3)2∴(t﹣9)2=18,解得t=9+3或t=9﹣3;当PQ=AQ时,则(t﹣7+1)2+(0﹣3)2=(t﹣7﹣2)2,∴(t﹣6)2+9=(t﹣9)2,解得t=6.故当t的值为3或9+3或9﹣3或6时,△APQ为等腰三角形.。
湖北省襄阳市襄城区襄阳阳光学校2019-2020学年八年级上学期数学期末考试试卷及参考答案
24. 一辆汽车开往距离出发地180千米的目的地,按原计划的速度匀速行驶60千米后,再以原来速度的1.5倍匀速行驶 ,结果比原计划提前40分钟到达目的地,求原计划的行驶速度.
25. 如图,△ABD、△ACE都是等边三角形.求证:BE=DC.
26. 如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高.AD和EF有什么关系?请说明理由.
27. 如图,△ABC为等腰三角形,AC=BC,△BDC和△ACE分别为等边三角形,AE与BD相交于点F,连接CF并延长 ,交AB于点G,求证:G为AB的中点.
参考答案 1. 2. 3.
4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
14.
15. 16.
17. 18.
19. 20.
21.
22.
23. 24.
25. 26. 27.
6. 工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动 角尺,使角尺两边相同的刻度分别与M,N重合.则过角尺顶点C的射线OC便是∠AOB的平分线。这样做的依据是_______ _.
7. 如图,要测量池塘两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线 DE,使A、C、E三点在一条直线上,这时测得________的长就等于AB的长,这样做的依据是________.
试判断AE与CE有怎样的数量关系?并证明你的结论.
18. 如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA,PE⊥OB,垂足分别为D,E.F是OC上另一点,连接 DF,EF.求证:DF=EF.
19. 如图,牧马人从A地出发,先到草地边某一处牧马,再到河边饮马,然后回到B处,请画出最短路径.
2019-2020学年福建省宁德市八年级(上)期末数学试卷(解析版)
2019-2020学年福建省宁德市中学八年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)下列四个图案中,是轴对称图形的是()A.B.C.D.2.(3分)等腰三角形的一个内角是50°,则另外两个角的度数分别是()A.65°65°B.50°80°C.65°65°或50°80°D.50°50°3.(3分)下列式子中,从左到右的变形是因式分解的是()A.(x﹣1)(x﹣2)=x2﹣3x+2B.x2﹣3x+2=(x﹣1)(x﹣2)C.x2+4x+4=x(x﹣4)+4D.x2+y2=(x+y)(x﹣y)4.(3分)具备下列条件的两个三角形,可以证明它们全等的是()A.一边和这一边上的高对应相等B.两边和第三边上的中线对应相等C.两边和其中一边的对角对应相等D.直角三角形的斜边对应相等5.(3分)如果:x2﹣8xy+16y2=0,且x=5,则(2x﹣3y)2=()A.B.C.D.6.(3分)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.47.(3分)对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是()A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角8.(3分)如图,在平面直角坐标系中,点A(﹣2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A.(﹣2,0)B.(4,0)C.(2,0)D.(0,0)9.(3分)下列各组条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F10.(3分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm11.(3分)若有三点A、B、C不在同一条直线上,点P满足PA=PB=PC,则平面内这样的点P有()A.1个B.2个C.1个或2个D.无法确定12.(3分)如图,在△ABC中,∠A=30°,将△ABC绕着B点逆时针旋转40°,到△BDE的位置,则∠a的度数是()A.40°B.30°C.20°D.10°二、填空题(每小题4分,共6分)13.(4分)分解因式:6xy2﹣9x2y﹣y3=.14.(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=7cm,则点D到AB的距离为cm.15.(4分)若|x﹣3|+|y+2|=0,则x+y的值为.16.(4分)如图,等边△ABC的边长为3cm,D,E分别是边AB,AC上的点,将△ADE 沿直线DE折叠,使点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为cm.三、解答题(共98分)17.(12分)先化简,再求值.(1)(2x﹣y)2﹣(x﹣2y)(x+2y)+2y(2x﹣y)(其中x=2,y=﹣1)(2)(其中a=﹣1,b=2)(3)已知a2+b2+c2﹣2(a+b+c)+3=0,试求a3+b3+c3﹣3abc的值.18.(8分)计算或解方程:(1)(2)19.(12分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.20.(8分)在△ABC中,AB=BC,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF.求证:BE=BF21.(8分)如图,在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC =130°,求∠BAC的度数.22.(8分)从A、B两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各可调出水14万吨,从A水库到甲地50千米,到乙地30千米;从B水库到甲地60千米,到乙地50千米,设计一个调运方案使水的调运总量(单位:万吨・千米)尽可能大.23.(12分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?24.(8分)已知:如图,在△ABC中,AB=AC,延长AB到点D,使BD=AB,取AB的中点E,连结CD和CE.求证:CD=2CE.25.(10分)如图,在△ABC中,BC=AC,∠ACB=90°,D是AC上一点,AE⊥BD交BD的延长线于点E,且AE=BD,求证:BD是∠ABC的角平分线.26.(12分)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:.2019-2020学年福建省宁德市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)下列四个图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选:C.【点评】本题考查了轴对称图形,掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)等腰三角形的一个内角是50°,则另外两个角的度数分别是()A.65°65°B.50°80°C.65°65°或50°80°D.50°50°【分析】根据等腰三角形的性质推出∠B=∠C,分为两种情况:①当底角∠B=50°时,②当顶角∠A=50°时,根据∠B=∠C和三角形的内角和定理求出即可.【解答】解:∵AB=AC,∴∠B=∠C,①当底角∠B=50°时,则∠C=50°,∠A=180°﹣∠B﹣∠C=80°;②当顶角∠A=50°时,∵∠B+∠C+∠A=180°,∠B=∠C,∴∠B=∠C=×(180°﹣∠A)=65°;即其余两角的度数是50°,80°或65°,65°,故选:C.【点评】本题考查了等腰三角形的性质和三角形的内角和定理,注意此题有两种情况:①当底角∠B=50°时,②当顶角∠A=50°时.3.(3分)下列式子中,从左到右的变形是因式分解的是()A.(x﹣1)(x﹣2)=x2﹣3x+2B.x2﹣3x+2=(x﹣1)(x﹣2)C.x2+4x+4=x(x﹣4)+4D.x2+y2=(x+y)(x﹣y)【分析】因式分解就是要将一个多项式分解为几个整式积的形式.【解答】解:根据因式分解的概念,A,C答案错误;根据平方差公式:(x+y)(x﹣y)=x2﹣y2所以D错误;B答案正确.故选:B.【点评】注意对因式分解概念的理解.4.(3分)具备下列条件的两个三角形,可以证明它们全等的是()A.一边和这一边上的高对应相等B.两边和第三边上的中线对应相等C.两边和其中一边的对角对应相等D.直角三角形的斜边对应相等【分析】利用三角形的高可能在三角形内部或外部和三角形全等的判定方法对A进行判断;利用“SSS”可对B进行判断;利用“SAS”可对C进行判断;根据直角三角形的判定方法对D进行判断.【解答】解:A、一边和这一边上的高对应相等的两个三角形不一定全等,所以A选项错误;B、两边和第三边上的中线对应相等的两三角形全等,所以B选项正确;C、两边和其中一边的对角对应相等的两个三角形不一定全等,所以C选项错误;D、直角三角形的斜边对应相等的两个直角三角形不一定全等,所以D选项错误.故选:B.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法.也考查了等腰三角形的判定与性质.5.(3分)如果:x2﹣8xy+16y2=0,且x=5,则(2x﹣3y)2=()A.B.C.D.【分析】此题应先对x2﹣8xy+16y2=0变形得(x﹣4y)2=0,则可求出y的值,再把x、y代入(2x﹣3y)2即可得到结果.【解答】解:∵x2﹣8xy+16y2=0,∴(x﹣4y)2=0,x=4y,又x=5,∴y=,∴(2x﹣3y)2=(10﹣)2=.故选:B.【点评】本题考查了因式分解的应用,关键在于利用完全平方公式分解因式求出y的值.6.(3分)如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.4【分析】由垂线段最短可知当PQ⊥OM时PQ最小,当PQ⊥OM时,则由角平分线的性质可知PA=PQ,可求得PQ=2.【解答】解:∵垂线段最短,∴当PQ⊥OM时,PQ有最小值,又∵OP平分∠MON,PA⊥ON,∴PQ=PA=2,故选:B.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.7.(3分)对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是()A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角【分析】熟记反证法的步骤,然后进行判断即可.【解答】解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;D、由于无法说明两角具体的大小关系,故D错误.故选:C.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.8.(3分)如图,在平面直角坐标系中,点A(﹣2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A.(﹣2,0)B.(4,0)C.(2,0)D.(0,0)【分析】作A关于x轴的对称点C,连接AC交x轴于D,连接BC交交x轴于P,连接AP,此时点P到点A和点B的距离之和最小,求出C(的坐标,设直线CB的解析式是y=kx+b,把C、B的坐标代入求出解析式是y=x﹣2,把y=0代入求出x即可.【解答】解:作A关于x轴的对称点C,连接AC交x轴于D,连接BC交交x轴于P,连接AP,则此时AP+PB最小,即此时点P到点A和点B的距离之和最小,∵A(﹣2,4),∴C(﹣2,﹣4),设直线CB的解析式是y=kx+b,把C、B的坐标代入得:,解得:k=1,b=﹣2,∴y=x﹣2,把y=0代入得:0=x﹣2,x=2,即P的坐标是(2,0),故选:C.【点评】本题考查了轴对称﹣最短路线问题,一次函数的解析式,坐标与图形性质等知识点,关键是能画出P的位置,题目比较典型,是一道比较好的题目.9.(3分)下列各组条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.【解答】解:A、满足SSA,不能判定全等;B、AC=EF不是对应边,不能判定全等;C、符合SSS,能判定全等;D、满足AAA,不能判定全等.故选:C.【点评】本题考查了全等三角形的判定方法,在应用判定方法做题时找准对应关系,对选项逐一验证,而AAA,SSA不能作为全等的判定方法.10.(3分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm【分析】由△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,根据线段垂直平分线的性质,即可求得AD=BD,AB=2AE,又由△ADC的周长为9cm,即可求得AC+BC的值,继而求得△ABC的周长.【解答】解:∵△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,∴BD=AD,AB=2AE=6cm,∵△ADC的周长为9cm,∴AC+AD+CD=AC+BD+CD=AC+BC=9cm,∴△ABC的周长为:AB+AC+BC=15cm.故选:C.【点评】此题考查了线段垂直平分线的性质,三角形的周长等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.11.(3分)若有三点A、B、C不在同一条直线上,点P满足PA=PB=PC,则平面内这样的点P有()A.1个B.2个C.1个或2个D.无法确定【分析】平面内不在同一条直线的三个点就组成一个三角形.到AB距离相等的点在AB 的垂直平分线上,到BC距离相等的点在BC的垂直平分线上,到AC距离相等的点在AC 的垂直平分线上,而三角形三边的垂直平分线交于一点.【解答】解:到AB距离相等的点在AB的垂直平分线上,到BC距离相等的点在BC的垂直平分线上,到AC距离相等的点在AC的垂直平分线上,而三角形三边的垂直平分线交于一点.故选:A.【点评】本题考查了线段的垂直平分线的性质,熟练掌握线段垂直平分线的性质定理是解题的关键.12.(3分)如图,在△ABC中,∠A=30°,将△ABC绕着B点逆时针旋转40°,到△BDE的位置,则∠a的度数是()A.40°B.30°C.20°D.10°【分析】根据旋转的性质得到∠DBA=40°,∠D=∠A=30°,利用三角形内角和定理即可得到结论.【解答】解:如图,设AC,BD相交于O,∵将△ABC绕着点B逆时针旋转40°,到△BDE的位置,∴∠DBA=40°,∠D=∠A=30°,∵∠AOB+∠A+∠ABD=∠COD+∠D+∠α=180°,而∠AOB=∠COD,∴∠α=∠ABD=40°.故选:A.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.二、填空题(每小题4分,共6分)13.(4分)分解因式:6xy2﹣9x2y﹣y3=﹣y(3x﹣y)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2,故答案为:﹣y(3x﹣y)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=7cm,则点D到AB的距离为3cm.【分析】根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D 到AB的距离=点D到AC的距离=CD=3.【解答】解:∵BC=10,BD=7,∴CD=3.由角平分线的性质,得点D到AB的距离等于CD=3.故答案为:3.【点评】本题主要考查平分线的性质,由已知能够注意到D到AB的距离即为CD长是解决的关键.15.(4分)若|x﹣3|+|y+2|=0,则x+y的值为1.【分析】根据非负数的性质,可求出x、y的值,然后将x,y再代入计算.【解答】解:∵|x﹣3|+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴x+y的值为:3﹣2=1,故答案为:1.【点评】此题主要考查了绝对值的性质,根据题意得出x,y的值是解决问题的关键.16.(4分)如图,等边△ABC的边长为3cm,D,E分别是边AB,AC上的点,将△ADE 沿直线DE折叠,使点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为9cm.【分析】由题意得AE=AE′,AD=AD′,故阴影部分的周长可以转化为三角形ABC 的周长.【解答】解:将△ADE沿直线DE折叠,点A落在点A′处,∴AD=A′D,AE=A′E.则阴影部分图形的周长等于BC+BD+CE+A′D+A′E,=BC+BD+CE+AD+AE,=BC+AB+AC,=9.故答案为:9.【点评】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.三、解答题(共98分)17.(12分)先化简,再求值.(1)(2x﹣y)2﹣(x﹣2y)(x+2y)+2y(2x﹣y)(其中x=2,y=﹣1)(2)(其中a=﹣1,b=2)(3)已知a2+b2+c2﹣2(a+b+c)+3=0,试求a3+b3+c3﹣3abc的值.【分析】(1)(2)首先化简,然后把x=2,y=﹣1代入化简后的算式,求出算式的值是多少即可.(3)首先应用完全平方公式,求出a、b、c的值各是多少;然后把求出的a、b、c的值代入a3+b3+c3﹣3abc,求出算式的值是多少即可.【解答】解:(1)当x=2,y=﹣1时,(2x﹣y)2﹣(x﹣2y)(x+2y)+2y(2x﹣y)=4x2﹣4xy+y2﹣x2+4y2+4xy﹣2y2=3x2+3y2=3×22+3×(﹣1)2=12+3=15(2)(=(2a+b)(16a2﹣b2)∵当a=﹣1,b=2时,∴原式=0;(3)a2+b2+c2﹣2(a+b+c)+3=0,∴a2+b2+c2﹣2a﹣2b﹣2c+3=0,∴(a﹣1)2+(b﹣1)2+(c﹣1)2=0,∴a=b=c=1,∴a3+b3+c3﹣3abc=0.【点评】此题主要考查了因式分解的应用,以及整式的混合运算﹣化简求值问题,要熟练掌握.18.(8分)计算或解方程:(1)(2)【分析】(1)原式利用零指数幂法则,平方根、立方根定义计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=3+2+4﹣1﹣2=5+1;(2)去分母得:x2+2x﹣x2+4=8,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(12分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可;(2)先求出三角形各边的长,得出这是一个直角三角形,再根据面积公式计算;(3)利用轴对称图形的性质可得.【解答】解:(1)如图(2)根据勾股定理得AC==,BC=,AB=,再根据勾股定理可知此三角形为直角三角形,=;则s△ABC(3)根据轴对称图形的性质得:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).【点评】做轴对称图形的关键是找出各点的对应点,然后顺次连接.20.(8分)在△ABC中,AB=BC,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF.求证:BE=BF【分析】根据HL证明Rt△CBF≌Rt△ABE即可.【解答】证明:∵∠ABC=90°,∴△CBF,△ABE都是直角三角形,∵BC=BA,CF=AE,∴Rt△CBF≌Rt△ABE(HL),∴BE=BF.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型.21.(8分)如图,在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC =130°,求∠BAC的度数.【分析】根据等腰三角形三线合一的性质可得AE⊥BC,再求出∠CDE,然后根据直角三角形两锐角互余求出∠DCE,根据角平分线的定义求出∠ACB,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.【解答】解:∵AB=AC,AE平分∠BAC,∴AE⊥BC(等腰三角形三线合一),∵∠ADC=130°,∴∠CDE=50°,∴∠DCE=90°﹣∠CDE=40°,又∵CD平分∠ACB,∴∠ACB=2∠DCE=80°.又∵AB=AC,∴∠B=∠ACB=80°,∴∠BAC=180°﹣(∠B+∠ACB)=20.【点评】本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,角平分线的定义,是基础题,准确识图并熟记性质是解题的关键.22.(8分)从A、B两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各可调出水14万吨,从A水库到甲地50千米,到乙地30千米;从B水库到甲地60千米,到乙地50千米,设计一个调运方案使水的调运总量(单位:万吨・千米)尽可能大.【分析】本题用到的关系是:调运量=调运吨数×调运的路程.本题可根据该关系求出总共的调运量.【解答】解:设A水库向甲地调水为x万吨,水的调运总量为y万吨,则A水库向乙地调水为(14﹣x)万吨;则y=50x+30(14﹣x)+60(15﹣x)+50(x﹣1)=10x+1270(1≤x≤14),∵y=10x+1270中,k=10>0,∴y随x的增大而增大,当x取14时,y值最大,即y=10×14+1270=1410,当x=14时,14﹣x=0,15﹣x=1,x﹣1=13,答:从A水库到甲地调运14万吨,从A水库到到乙地调运0万吨;从B水库向甲地调运1万吨,从B水库向乙地调运13万吨,水的调运总量最大.【点评】此题主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.23.(12分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.【点评】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.24.(8分)已知:如图,在△ABC中,AB=AC,延长AB到点D,使BD=AB,取AB的中点E,连结CD和CE.求证:CD=2CE.【分析】先由AB=AC,BD=AB及E是AB中点计算出,又∠A=∠A,根据两边对应成比例且夹角相等的两三角形相似得出△AEC∽△ACD,由相似三角形对应边成比例得出,即CD=2CE.【解答】证明:∵E是AB中点,可设:AE=BE=x,∵AB=AC,BD=AB,则有AC=2x,AD=4x,∴,又∵∠A=∠A,∴△AEC∽△ACD,∴,∴CD=2CE.【点评】本题考查了相似三角形的判定与性质,难度适中,根据条件计算出,是解题的关键.25.(10分)如图,在△ABC中,BC=AC,∠ACB=90°,D是AC上一点,AE⊥BD交BD的延长线于点E,且AE=BD,求证:BD是∠ABC的角平分线.【分析】延长AE、BC交于点F.根据同角的余角相等,得∠DBC=∠FAC;在△BCD 和△ACF中,根据ASA证明全等,得AF=BD,从而AE=EF,根据线段垂直平分线的性质,得AB=BF,再根据等腰三角形的三线合一即可证明.【解答】证明:延长AE、BC交于点F.∵AE⊥BE,∴∠BEF=90°,又∠ACF=∠ACB=90°,∴∠DBC+∠AFC=∠FAC+∠AFC=90°,∴∠DBC=∠FAC,在△ACF和△BCD中,∴△ACF≌△BCD(ASA),∴AF=BD.又AE=BD,∴AE=AF=EF,即点E是AF的中点.∵BE⊥AF∴DE是AF的垂直平分线∴AB=BF,根据等腰三角形三线合一的性质可知:BD是∠ABC的角平分线.【点评】此题综合运用了全等三角形的判定以及性质、线段垂直平分线的性质以及等腰三角形的性质.26.(12分)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:8.【分析】(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC 的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案.【解答】解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线,∵BC=6,BC边上的高为4,∴DE=3,DD′=4,∴D′E===5,∴△PDE周长的最小值为:DE+D′E=3+5=8,故答案为:8.【点评】此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE周长的最小值,求出DP+PE的最小值即可是解题关键.。
2019-2020学年四川省遂宁市大英县八年级(上)期末数学试卷(解析版)
2019-2020学年四川省遂宁市大英县八年级第一学期期末数学试卷一、选择题(本题20个小题,每小题3分,共60分。
每小题给出的四个选项中,只有一个是正确的。
1.实数4的算术平方根是()A.﹣2B.2C.±2D.±42.下列式子中,正确的是()A.=﹣3B.﹣=﹣0.6C.=﹣13D.=±63.下列实数﹣,,,0.1414,,,0.2002000200002中,无理数的个数是()A.2个B.3个C.4个D.5个4.估算+2的值是在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间5.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3B.2,3,4C.4,5,6D.1,,6.下列运算结果正确的是()A.x2+x3=x5B.x3•x2=x6C.(﹣2x2y)2=﹣4x4y2D.x6÷x=x57.若3x=18,3y=6,则3x﹣y=()A.6B.3C.9D.128.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组9.护士为了描述某病人某一天的体温变化情况,以下最合适的统计图是()A.扇形统计图B.条形统计图C.折线统计图D.直方图10.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°11.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)12.如图,△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE 的周长等于18cm,则AC长等于()A.6cm B.8cm C.10cm D.12cm13.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6B.7C.8D.914.如图,将一根长为22cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为hcm,则h的取值范围是()A.9cm≤h≤10cm B.10cm≤h≤11cmC.12cm≤h≤13cm D.8cm≤h≤9cm15.如图为一个棱长为1的正方体的展开图,A、B、C是展开后小正方形的顶点,则∠ABC 的度数为()A.30°B.45°C.50°D.60°16.如图,在等边三角形ABC中,M,N分别在BC,AC上移动,且BM=CN,则∠BAM+∠ABN的度数是()A.60°B.55°C.45°D.不能确定17.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为()A.14cm B.15cm C.24cm D.25cm18.园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是()A.24米2B.36米2C.48米2D.72米219.已知a,b,c为△ABC的三边长,且a4﹣b4+b2c2﹣a2c2=0,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形20.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,…若∠A=70°,则∠A n﹣1A nB n﹣1的度数为()A.B.C.D.二、填空题(每小题4分,共28分)21.若x2=16,则x=.22.把命题“在直角三角形中,两条直角边的平方和等于斜边的平方.”改写成“如果…,那么…”的形式是;它的逆命题是:.23.()2018×(﹣1.25)2019=.24.若y=++3,则y x的平方根为.25.若x2+2(a+4)x+36是完全平方式,则a=.26.a﹣=2,则a2=.27.如图,有一张直角三角形的纸片,两直角边AB=4cm,BC=8cm,现将△ABC折叠,使点C与点A重合,得到折痕DE,则BE的长为cm.三、计算题(每小题5分,共15分)28.计算+﹣|﹣2|29..30.化简求值:,其中x=﹣3,.四、分解因式:(每小题8分,共8分)31.分解因式:(1)a3b﹣2a2b+ab;(2)x2﹣4xy+4y2﹣1.五、解答题(30题6分)32.某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?六、证明(每小题5分,共10分)33.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.34.如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:EB=FC.六、实践与探究(33题6分,34题7分,35题10分,共23分)35.如图,河边有A,B两个村庄,A村距河边10m,B村距河边30m,两村平行于河边方向的水平距离为30m,现要在河边建一抽水站E,需铺设管道抽水到A村和B村.(1)要使铺设管道的长度最短,请作图找出水站E的位置(不写作法)(2)若铺设管道每米需要500元,则最低费用为多少?36.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=;a2﹣4ab﹣5b2=;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值.37.已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,∠ADE=∠AED=45°,连接CF.(1)发现问题如图①,当点D在边BC上时.①请写出BD和CE之间的数量关系为,位置关系为;②求证:CE+CD=BC(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD之间存在的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,不证明.(3)拓展延伸如图③,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.参考答案一、选择题(本题20个小题,每小题3分,共60分。
2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)
2019-2020学年度上学期期末考试试卷八年级 数学本试卷满分100分,考试时间100分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.下列各数是无理数的是( ) A.2 B.38 C.722D.0π 2.点P 的坐标是(-3,4),则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.下列各组数中,能作为直角三角形边长的是( ) A.4,5,6 B.12,16,20 C.5,10,13 D.8,40,414.下列命题是真命题的有( ) ①等边三角形的三个内角都相等; ②如果3325xx -=-,那么x=4; ③两个锐角之和一定是钝角; ④如果x 2>0,那么x>0;A.1个B.2个C.3个D.4个 5.有一组数据:2,5,5,6,7,这组数据的平均数为( ) A.3 B.4 C.5 D.66一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为( )A.⎩⎨⎧++=+=-910101x y y x y xB.⎩⎨⎧++=+=-910101y x x y y xC.⎩⎨⎧++=+=-910101x y y x x yD.⎩⎨⎧++=+=-910101y x x y x y7.如图在△ABC 中,D 是AB 上一点,E 是AC 上一点,BE,CD 相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE 的度数为( )。
A.680B.580C.520D.4808. 两条直线y=kx+b 与y=bx+k(k,b 为常数,且k b≠0)在同一坐标系中的图像可能是( )。
二、填空题(本大题共8小题,每小题3分,共24分) 9绝对值最小的实数是 。
10.若一个正数的两个平方根是x-5和x+1,则x= 。
2019-2020学年山东省济宁市金乡县八年级(上)期末数学试卷含答案
2019-2020学年山东省济宁市金乡县八年级(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.(3分)分式有意义的条件是()A.x≠1B.x=1C.x≠0D.x=02.(3分)第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.3.(3分)石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体,石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001科学记数法表示是()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×1064.(3分)式子+有意义的条件是()A.x≥0B.x≤0C.x≠﹣2D.x≤0且x≠﹣2 5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为()A.=B.=C.=D.=6.(3分)一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是()A.13B.17C.22D.17或227.(3分)下列运算正确的是()A.(x2)4=x6B.(﹣2x)2÷x=4xC.(x+y)2=x2+y2D.+=18.(3分)如图,△ABC中,点D,E分别在边AB,AC上,将∠A沿着DE所在直线折叠,A与A′重合,若∠1+∠2=140°,则∠A的度数是()A.70°B.75°C.80°D.85°9.(3分)如图,AD是△ABC的高线,BD=CD,点E是AD上一点,BE=BC,将△ABE 沿BE所在直线折叠,点A落在点A′位置上,连接AA',BA′,EA′与AC相交于点H,BA′与AC相交于点F.小夏依据上述条件,写出下列四个结论:①∠EBC=60°;②∠BFC=60°;③∠EA′A=60°;④∠A′HA=60°以上结论中,正确的是()A.①B.③④C.①②③D.①②④10.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…请你猜想(a+b)9的展开式中所有系数的和是()A.2018B.512C.128D.64二、填空题:本大题共5小题,每小题3分,共15分11.(3分)因式分解:x2﹣3x=.12.(3分)求点P(x,y)关于x轴对称的点的坐标时,一位学生看成了求关于y轴对称的点的坐标,求得结果是(2,3),那么正确的结果应该是.13.(3分)若关于x的二次三项式x2+kx+64是一个完全平方式,则k=.14.(3分)(a+6)2+=0,则2b2﹣4b﹣a的值是.15.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,Q点从B向D运动,每分钟走2m,P点从B向A运动,P,Q两点同时出发,P点每分钟走m时△CAP与△PQB全等.三、解答题:本大题共7题,满分55分.解答应写出文字说明、证明过程或推演过程16.(8分)(1)(x+y)2﹣(2y﹣x)(2y+x);(2)(x+2﹣)÷.17.(4分)解分式方程:﹣=.18.(7分)如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B的距离相等,到两条高速公路m和n的距离也必须相等.发射塔修建在什么位置?在图上标出它的位置.要求:(1)尺规作图,保留作图痕迹,不写作法;(2)写出作图的理由.19.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?20.(8分)如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC 交AB于点F,D是BC边上的中点,连结AD.(1)若∠BAD=55°,求∠C的度数;(2)猜想FB与FE的数量关系,并证明你的猜想.21.(9分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展应用】(2)利用(1)中的等式计算:已知a2+b2=10,a+b=6,求ab的值;②已知(2021﹣a)(a﹣2019)=2020,求(2021﹣a)2+(a﹣2019)2的值.22.(11分)将等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE =DF,∠EDF=90°)按图1摆放,点D在BC边的中点上,点A在DE上.(1)填空:AB与EF的位置关系是;(2)△DEF绕点D按顺时针方向转动至图2所示位置时,DF,DE分别交AB,AC于点P,Q,求证:∠BPD+∠DQC=180°;(3)如图2,在△DEF绕点D按顺时针方向转动过程中,始终点P不到达A点,△ABC 的面积记为S1,四边形APDQ的面积记为S2,那么S1与S2之间是否存在不变的数量关系?若存在,请写出它们之间的数量关系并证明;若不存在,请说明理由.2019-2020学年山东省济宁市金乡县八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.(3分)分式有意义的条件是()A.x≠1B.x=1C.x≠0D.x=0【解答】解:分式有意义的条件是:x≠0.故选:C.2.(3分)第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.3.(3分)石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体,石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001科学记数法表示是()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×106【解答】解:0.000001=1×10﹣6,故选:A.4.(3分)式子+有意义的条件是()A.x≥0B.x≤0C.x≠﹣2D.x≤0且x≠﹣2【解答】解:根据题意得﹣x≥0且x+2≠0,解得x≤0且x≠﹣2.故选:D.5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为()A.=B.=C.=D.=【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.6.(3分)一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是()A.13B.17C.22D.17或22【解答】解:①若4为腰长,9为底边长,由于4+4<9,则三角形不存在;②9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:C.7.(3分)下列运算正确的是()A.(x2)4=x6B.(﹣2x)2÷x=4xC.(x+y)2=x2+y2D.+=1【解答】解:A.(x2)4=x8,此选项计算错误;B.(﹣2x)2÷x=4x,此选项计算正确;C.(x+y)2=x2+2xy+y2,此选项计算错误;D.+==﹣1,此选项计算错误;故选:B.8.(3分)如图,△ABC中,点D,E分别在边AB,AC上,将∠A沿着DE所在直线折叠,A与A′重合,若∠1+∠2=140°,则∠A的度数是()A.70°B.75°C.80°D.85°【解答】解:连接AA',如图所示:∵∠1是△AA'E的外角,∴∠1=∠EAA'+∠EA'A,同理可得,∠2=∠DAA'+∠DA'A,由折叠可得,∠EAD=∠EA'D,∴∠1+∠2=∠EAA'+∠EA'A+∠DAA'+∠DA'A=2∠EAD=140°,∴∠EAD=70°;故选:A.9.(3分)如图,AD是△ABC的高线,BD=CD,点E是AD上一点,BE=BC,将△ABE 沿BE所在直线折叠,点A落在点A′位置上,连接AA',BA′,EA′与AC相交于点H,BA′与AC相交于点F.小夏依据上述条件,写出下列四个结论:①∠EBC=60°;②∠BFC=60°;③∠EA′A=60°;④∠A′HA=60°以上结论中,正确的是()A.①B.③④C.①②③D.①②④【解答】解:连接EC,∵BD=CD,AD⊥BC,∴AD垂直平分BC,∴BE=EC,且BE=BC,∴BE=EC=BC,∴△BEC是等边三角形,且ED⊥BC,∴∠EBC=∠BEC=∠BCE=60°,∠BED=∠CED=30°,故①符合题意,∴∠AEB=150°,∵将△ABE沿BE所在直线折叠,点A落在点A′位置上,∴∠AEB=∠BEA'=150°,AE=A'E,∠BAD=∠BA'E,∴∠AEA'=60°,∴△AEA'是等边三角形,∴∠EA'A=60°,故③符合题意,∵AB=AC,BE=EC,AE=AE,∴△ABE≌△ACE(SSS)∴∠BAD=∠DAC=∠BA'E,∵∠AEA'=∠EOA'+∠EA'O=60°,∴∠EOA'+∠CAD=∠BFC=60°,故②符合题意,∵∠A'HA=∠AF A'+∠BA'E>60°,∴故④不符合题意,故选:C.10.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…请你猜想(a+b)9的展开式中所有系数的和是()A.2018B.512C.128D.64【解答】解:展开式共有n+1项,系数和为2n.∴(a+b)9的展开式中所有系数的和是:29=512故选:B.二、填空题:本大题共5小题,每小题3分,共15分11.(3分)因式分解:x2﹣3x=x(x﹣3).【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)12.(3分)求点P(x,y)关于x轴对称的点的坐标时,一位学生看成了求关于y轴对称的点的坐标,求得结果是(2,3),那么正确的结果应该是(﹣2,﹣3).【解答】解:∵点P(x,y)关于y轴对称的点的坐标为:(2,3),∴点P(﹣2,3),∴点P(x,y)关于x轴对称的点的坐标为:(﹣2,﹣3).故答案为:(﹣2,﹣3).13.(3分)若关于x的二次三项式x2+kx+64是一个完全平方式,则k=±16.【解答】解:∵x2+kx+64是一个完全平方式,∴k=±(8×2),解得k=±16.故答案为:±1614.(3分)(a+6)2+=0,则2b2﹣4b﹣a的值是0.【解答】解:由题意得,a+6=0,b2﹣2b+3=0,解得a=﹣6,b2﹣2b=﹣3,所以,2b2﹣4b﹣a=2(b2﹣2b)﹣a=2×(﹣3)﹣(﹣6)=﹣6+6=0.故答案为:0.15.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,Q点从B向D运动,每分钟走2m,P点从B向A运动,P,Q两点同时出发,P点每分钟走1或3m 时△CAP与△PQB全等.【解答】解:设P点每分钟走xm.①若BP=AC=4,此时AP=BQ=8,△CAP≌△PBQ,∴t==4,∴x==1.②若BP=AP=6,AC=BQ=4,△ACP≌△BQP,∴t==2,∴x==3,故答案为1或3.三、解答题:本大题共7题,满分55分.解答应写出文字说明、证明过程或推演过程16.(8分)(1)(x+y)2﹣(2y﹣x)(2y+x);(2)(x+2﹣)÷.【解答】解:(1)原式=x2+2xy+y2﹣4y2+x2=2x2+2xy﹣3y2;(2)原式=•=•=3x(x+3)=3x2+9x.17.(4分)解分式方程:﹣=.【解答】解:去分母得:9x﹣3﹣2=﹣5,解得:x=0,经检验x=0是分式方程的解.18.(7分)如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B的距离相等,到两条高速公路m和n的距离也必须相等.发射塔修建在什么位置?在图上标出它的位置.要求:(1)尺规作图,保留作图痕迹,不写作法;(2)写出作图的理由.【解答】解:(1)如图所示:点P即为发射塔修建的位置.(2)作线段AB的垂直平分线,因为线段垂直平分线上的点到线段的两个端点距离相等所以P A=PB,因为角平分线上的点到角的两边距离相等,所以点P到两条公路m和n的距离相等,所以发射塔修建在点P的位置.19.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?【解答】解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.20.(8分)如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC 交AB于点F,D是BC边上的中点,连结AD.(1)若∠BAD=55°,求∠C的度数;(2)猜想FB与FE的数量关系,并证明你的猜想.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∵∠BAD=55°,∴∠C=∠ABC=90°﹣55°=35°.(2)FB=FE,证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.21.(9分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展应用】(2)利用(1)中的等式计算:已知a2+b2=10,a+b=6,求ab的值;②已知(2021﹣a)(a﹣2019)=2020,求(2021﹣a)2+(a﹣2019)2的值.【解答】解:(1)由题意得:x2+y2=(x+y)2﹣2xy(2)①由题意得:ab=把a2+b2=10,a+b=6代入上式得,ab==13答:ab的值是13.②由题意得:(2021﹣a)2+(a﹣2019)2=(2021﹣a+a﹣2019)2﹣2(2021﹣a)(a﹣2019)=22﹣2×2020=﹣403622.(11分)将等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE =DF,∠EDF=90°)按图1摆放,点D在BC边的中点上,点A在DE上.(1)填空:AB与EF的位置关系是平行;(2)△DEF绕点D按顺时针方向转动至图2所示位置时,DF,DE分别交AB,AC于点P,Q,求证:∠BPD+∠DQC=180°;(3)如图2,在△DEF绕点D按顺时针方向转动过程中,始终点P不到达A点,△ABC 的面积记为S1,四边形APDQ的面积记为S2,那么S1与S2之间是否存在不变的数量关系?若存在,请写出它们之间的数量关系并证明;若不存在,请说明理由.【解答】解:(1)AB与EF的位置关系是平行,∵AB=AC,∠BAC=90°,DE=DF,∠EDF=90°,∴∠F=∠ABD=90°,∴AB∥EF;故答案为:平行;(2)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠EDF=90°,∴∠BDP+∠CDQ=90°,∴∠BPD+∠DQC=360°﹣∠B﹣∠C﹣∠BDP﹣∠CDQ=180°;(3)S1=2S2,理由:连接AD,∵AB=AC,AD⊥BC,∴BD=CD=AD=BC,∠B=∠CAD=45°,∵∠BDP+∠ADP=∠ADP+∠ADQ=90°,∴∠BDP=∠ADQ,∴△BDP≌△ADQ(ASA),∵S△ABD=S2,∵S△ADB=S1,∴S1=2S2.。
2019—2020人教版八年级数学上册期期末质量检查数学试卷及答案
2019—2019—2020人教版八年级数学上册期期末质量检查数学试卷及答案数 学 试 题(满分:150分;考试时间:120分钟)温馨提示:请在答题卡上相应题目的答题区域内作答;否则不得分。
一、选择题(每题4分;共24分):在答题卡上相应题目的答题区域内作答. 1.9的算术平方根是( )A .3±B .3C .3-D .3 2.下列运算正确的是( )A .523a a a =+B .632a a a =⋅ C .65332)(b a b a = D .632)(a a =3.下列图形中不是..中心对称图形的是( )A .B .C .D .4.如图;AOC ∆≌BOD ∆;∠C 与∠D 是对应角;AC 与BD 是对应边;AC=8㎝; AD=10㎝;OD=OC=2㎝;那么OB 的长是( )A .8㎝B .10㎝C .2㎝D .无法确定5.矩形具有而一般平行四边形不一定具有的性质是( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等6.如图;OAB ∆绕点O 逆时针旋转80得到OCD ∆;若∠A=110;∠D=∙40;则∠AOD 的度数是( )A . 30B . 40C . 50D .60二、填空题(每题3分;共36分)在答题卡上相应题目的答题区域内作答. 7。
(填“>”;“<”或 “=”号)8.一个正方体木块的体积是64㎝3;则它的棱长是 ㎝。
ODA CBADC9.若3=mx;2=n x ;则=+n m x 。
10.若=-++32y x 0;则=xy 。
11.在菱形ABCD 中;AC=4cm ;BD=3cm ;则菱形的面积是 ㎝2。
12.一个边长为a 的正方形广场;扩建后的正方形广场的边长比原来大10米;则扩建后的广场面积增大了 米2.13.如图;一次强风中;一棵大树在离地面3米高处折断;树的顶端落在离树杆底部4米远处;那么这棵树折断之前的高度是 米.AEDCAB14.如图;ABC Rt ∆中;∠B=90;AB=3㎝;AC=5㎝;将ABC ∆折叠;使点C与点A重合;折痕为DE ;则CE = ㎝.15.如图;在□ABCD 中;已知AD=8㎝;AB=6㎝;DE 平分∠ADC ;交BC 边于点E ;则BE=㎝。
洛阳市2019-2020学年八年级上期末数学试卷含答案解析.doc
洛阳市 2019-2020 学年八年级上期末数学试卷含答案解析一、选择题(共8 小题,每小题 3 分,满分24 分)1.计算( a2)3的结果是 ( )A . a 5B. a6C. a8D. 3a22.把 x 3﹣ 2x2y+xy2分解因式,结果正确的是( )A . x(x+y )( x﹣ y) B. x( x 2﹣ 2xy+y2)C. x( x+y)2D. x( x﹣ y)23.解分式方程+ =3 时,去分母后变形为 ( )A . 2+( x+2) =3( x﹣ 1)B. 2﹣ x+2=3 ( x﹣ 1) C. 2﹣( x+2) =3(1﹣ x)D. 2﹣( x+2 )=3( x﹣ 1)4.如图,△ ABC 和△DEF 中, AC=DE ,∠ B= ∠ DEF ,添加下列哪一个条件无法证明△ABC ≌△ DEF( )A . AC ∥DF B.∠ A= ∠ D C. AB=DE D.∠ ACB= ∠ F5.如图,在△ ABC 中,∠ A=50 °,∠ ABC=70 °, BD 平分∠ ABC ,则∠ BDC 的度数是 ( )A . 85°B . 80°C. 75°D. 70°6.如图,小敏做了一个角平分仪ABCD ,其中 AB=AD , BC=DC .将仪器上的点 A 与∠PRQ 的顶点 R 重合,调整AB 和 AD ,使它们分别落在角的两边上,过点 A ,C 画一条射线 AE , AE 就是∠ PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ ADC ,这样就有∠ QAE= ∠ PAE.则说明这两个三角形全等的依据是( )A . SAS B. ASA C. AAS D. SSSxy x﹣2y的值为 ( )7.若 3 =4 ,9 =7,则 3A .B.C.﹣ 3 D .8.如图,在方格纸中,以 AB 为一边作 △ABP ,使之与 △ ABC 全等,从 P 1, P 2,P 3, P 4 四个点中找出符合条件的点 P ,则点 P 有( )A . 1 个B . 2 个C . 3 个D . 4 个二、填空题(共 7 小题,每小题 3 分,满分 21 分) 9.计算:+ =__________ .10.若 ab=2,a ﹣ b=﹣1,则代数式a 2b ﹣ ab 2的值等于 __________ .11.如图,点 D 在 △ ABC 边 BC 的延长线上, CE 平分∠ ACD ,∠ A=80 °,∠ B=40 °,则 ∠ACE 的大小是 __________度.12.已知一个等腰三角形的一边长 4,一边长 5,则这个三角形的周长为 __________ .13.如图: △ ABC 中, DE 是 AC 的垂直平分线, AE=3cm , △ ABD 的周长为 13cm ,则 △ABC 的周长为 __________.14.如图,∠ AOE= ∠ BOE=15 °,EF ∥OB ,EC ⊥ OB ,若 EC=2 ,则 EF=__________ .15.将一张宽为 6cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是 __________cm 2.三、解答题(共8 小题,满分75 分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图 1),根据图形的面积,写出它能说明的乘法公式 __________ ;(2)请同学们观察用硬纸片拼成的图形(如图 2),根据图形的面积关系,写出一个代数恒等式.2 017.先化简,再求值:( x+y )( x﹣ y) +( x﹣ y) +2xy ,其中 x= ( 3﹣π). y=2.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.19.如图, AD , AE 分别是△ ABC 的高和角平分线.(1)已知∠ B=40 °,∠ C=60°,求∠ DAE 的度数;(2)设∠ B= α,∠ C=β(α<β).请直接写出用α、β表示∠ DAE的关系式__________.20.如图,点 B 、D 、C、 F 在一条直线上,且BC=FD ,AB=EF .(1)请你只添加一个条件(不再加辅助线),使△ ABC≌△ EFD,你添加的条件是__________;(2)添加了条件后,证明△ABC≌△ EFD.21.如图,在等边△ABC 中,点 D ,E 分别在边 BC, AC 上,且 DE∥ AB ,过点 E 作EF⊥ DE,交 BC 的延长线于点 F,(1)求∠ F 的度数;(2)若 CD=3,求 DF 的长.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km ,运行时间减少了 8h,已知甲市到乙市的普快列车里程为1220km .高铁平均时速是普快平均时速的 2.5 倍.(1 )求高铁列车的平均时速;(2 )某日王先生要从甲市去距离大约780km 的丙市参加14: 00 召开的会议,如果他买到当日 9: 20 从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要 1 小时.试问在高铁列车准点到达的情况下,它能否在开会之前20 分钟赶到会议地点?23.如图,等腰 Rt△ABC 中,∠ ABC=90 °, AB=BC ,点 A 、 B 分别在坐标轴上.(1 )如图①,若点 C 的横坐标为 5,直接写出点 B 的坐标 __________ ;(提示:过 C 作CD⊥ y 轴于点 D,利用全等三角形求出OB 即可)(2 )如图②,若点 A 的坐标为(﹣6, 0),点 B 在 y 轴的正半轴上运动时,分别以OB、 AB 为边在第一、第二象限作等腰Rt△ OBF,等腰 Rt△ ABE ,连接 EF 交 y 轴于点P,当点 B 在 y 轴的正半轴上移动时,PB 的长度是否发生改变?若不变,求出PB 的值.若变化,求 PB 的取值范围.-学年八年级(上)期末数学试卷一、选择题(共 8 小题,每小题 3 分,满分 24 分)231.计算( a ) 的结果是 ( )【考点】 幂的乘方与积的乘方.【分析】 根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.236故选: B .【点评】 本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.把 x 3﹣ 2x 2y+xy 2分解因式,结果正确的是 ()2 222C . x ( x+y ) A . x (x+y )( x ﹣ y ) B . x ( x ﹣ 2xy+y )D . x ( x ﹣ y ) 【考点】 提公因式法与公式法的综合运用. 【分析】 此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有 3 项,可采用完全平方公式继续分解.【解答】 解: x 3﹣ 2x 2 y+xy 2,22=x ( x ﹣ 2xy+y ),故选 D .【点评】 本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.3.解分式方程+ =3 时,去分母后变形为 ( )A . 2+( x+2) =3( x ﹣ 1)B . 2﹣ x+2=3 ( x ﹣ 1)C . 2﹣( x+2) =3(1﹣ x )D . 2﹣( x+2 )=3( x ﹣ 1)【考点】 解分式方程.【分析】 本题考查对一个分式确定最简公分母,去分母得能力.观察式子 x ﹣ 1 和 1﹣ x 互 为相反数,可得 1﹣x= ﹣( x ﹣ 1),所以可得最简公分母为 x ﹣ 1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母. 【解答】 解:方程两边都乘以 x ﹣ 1, 得: 2﹣( x+2) =3 ( x ﹣ 1). 故选 D .【点评】 考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘, 这正是本题考查点所在.切忌避免出现去分母后: 2﹣( x+2) =3 形式的出现. 4.如图, △ ABC 和 △DEF 中, AC=DE ,∠ B= ∠ DEF ,添加下列哪一个条件无法证明 △ABC ≌△ DEF( )A . AC ∥DF B.∠ A= ∠ D C. AB=DE D.∠ ACB= ∠ F 【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出结论.【解答】解:∵ AC=DF ,∠ B= ∠DEF ,∴添加 AC ∥DF,得出∠ ACB= ∠ F,即可证明△ ABC ≌△ DEF,故 A 、 D 都正确;当添加∠ A= ∠ D 时,根据 AAS ,也可证明△ ABC ≌△ DEF ,故 B 正确;但添加 AB=DE 时,没有 SSA 定理,不能证明△ ABC ≌△ DEF,故 C 不正确;故选: C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS, SAS,ASA , AAS ,还有直角三角形全等的HL 定理.5.如图,在△ ABC 中,∠ A=50 °,∠ ABC=70 °, BD 平分∠ ABC ,则∠ BDC 的度数是 ( )A. 85°B . 80°C. 75°D. 70°【考点】三角形内角和定理.【分析】先根据∠ A=50 °,∠ ABC=70 °得出∠ C 的度数,再由 BD 平分∠ ABC 求出∠ ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ ABC=70 °, BD 平分∠ ABC ,∴∠ ABD=70 °× =35°,∴∠ BDC=50 °+35 °=85 °,故选: A .【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如图,小敏做了一个角平分仪ABCD ,其中 AB=AD , BC=DC .将仪器上的点 A 与∠PRQ 的顶点 R 重合,调整AB 和 AD ,使它们分别落在角的两边上,过点 A ,C 画一条射线 AE , AE 就是∠ PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ ADC ,这样就有∠ QAE= ∠ PAE.则说明这两个三角形全等的依据是( )A . SAS B. ASA C. AAS D. SSS【考点】全等三角形的应用.【分析】在△ ADC 和△ ABC 中,由于 AC 为公共边, AB=AD , BC=DC ,利用 SSS定理可判定△ ADC ≌△ ABC ,进而得到∠ DAC= ∠BAC ,即∠ QAE= ∠ PAE.【解答】解:在△ ADC 和△ ABC 中,,∴△ ADC ≌△ ABC ( SSS ), ∴∠ DAC= ∠ BAC , 即∠ QAE= ∠ PAE . 故选: D .【点评】 本题考查了全等三角形的应用;这种设计,用 SSS 判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.x y x ﹣2y的值为 ()7.若 3 =4 ,9 =7,则 3A .B .C .﹣ 3D .【考点】 同底数幂的除法;幂的乘方与积的乘方.【分析】 由 3 x yx ﹣2yx 2y x 2 y,代入即可求得答案.=4 , 9 =7 与3=3÷3 =3 ÷( 3 )【解答】 解:∵3x =4, 9y =7,∴3 x ﹣ 2yx 2yx2 y.=3 ÷3 =3 ÷( 3 ) =4÷7=故选 A .3x ﹣2y 变【点评】 此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将形为 3x ÷( 32) y是解此题的关键.8.如图,在方格纸中,以 AB 为一边作 △ABP ,使之与 △ ABC 全等,从 P 1, P 2,P 3, P 4 四个点中找出符合条件的点 P ,则点 P 有( )A . 1 个B . 2 个C . 3 个D . 4 个 【考点】 全等三角形的判定.【分析】 根据全等三角形的判定得出点P 的位置即可.【解答】 解:要使 △ABP 与 △ ABC 全等,点 P 到 AB 的距离应该等于点 C 到 AB 的距离,即 3 个单位长度,故点 P 的位置可以是 P 1, P 3, P 4 三个,故选 C【点评】 此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点 P 的位置.二、填空题(共 7 小题,每小题 3 分,满分 21 分)9.计算:+ =2 .【考点】 分式的加减法. 【专题】 计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式 == =2,故答案为: 2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.2 210.若 ab=2,a﹣ b=﹣1,则代数式 a b﹣ ab 的值等于﹣ 2.【专题】因式分解.【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ ab=2,a﹣ b= ﹣ 1,∴a 2b﹣ ab2=ab(a﹣ b) =2×(﹣ 1) =﹣ 2.故答案为:﹣ 2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.如图,点 D 在△ ABC 边 BC 的延长线上, CE 平分∠ ACD ,∠ A=80 °,∠ B=40 °,则∠ACE 的大小是60 度.【考点】三角形的外角性质.【分析】由∠ A=80 °,∠ B=40 °,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ ACD= ∠ B+∠ A ,然后利用角平分线的定义计算即可.【解答】解:∵∠ ACD= ∠ B+∠ A ,而∠ A=80 °,∠ B=40 °,∴∠ ACD=80 °+40 °=120 °.∵CE 平分∠ ACD ,∴∠ ACE=60 °,故答案为60【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为13 或 14.【考点】等腰三角形的性质;三角形三边关系.【分析】分 4 是腰长和底边两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形解答.【解答】解:①若4 是腰长,则三角形的三边分别为4、 4、 5,能组成三角形,周长 =4+4+5=13 ,②若 4 是底边,则三角形的三边分别为4、5、 5,能组成三角形,周长 =4+5+5=14 ,综上所述,这个三角形周长为13 或 14.故答案为: 13 或 14 .【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.13.如图:△ ABC 中, DE 是 AC 的垂直平分线,AE=3cm ,△ ABD 的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD , AC=2AE ,结合周长,进行线段的等量代换可得答案.【解答】解:∵ DE 是 AC 的垂直平分线,∴AD=CD , AC=2AE=6cm ,又∵△ ABD 的周长 =AB+BD+AD=13cm,∴A B+BD+CD=13cm ,即 AB+BC=13cm ,∴△ ABC 的周长 =AB+BC+AC=13+6=19cm .故答案为 19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.14.如图,∠ AOE= ∠ BOE=15 °,EF∥OB ,EC⊥ OB,若 EC=2 ,则 EF=4 .【考点】含 30 度角的直角三角形;角平分线的性质.【分析】作 EG⊥ OA 于 F,根据角平分线的性质得到EG 的长度,再根据平行线的性质得到∠ OEF=∠ COE=15 °,然后利用三角形的外角和内角的关系求出∠ EFG=30 °,利用 30°角所对的直角边是斜边的一半解题.【解答】解:作 EG⊥ OA 于 G,如图所示:∵EF ∥OB,∠ AOE= ∠ BOE=15 °∴∠ OEF=∠ COE=15 °, EG=CE=2 ,∵∠ AOE=15 °,∴∠ EFG=15 °+15°=30 °,∴∴EF=2EG=4 .故答案为: 4.【点评】本题考查了角平分线的性质、平行线的性质、含 30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠ EFG=30 °是解决问题的关键.15.将一张宽为 6cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是 18cm 2.【考点】 翻折变换(折叠问题).【分析】 当 AC ⊥ AB 时,重叠三角形面积最小,此时 △ABC 是等腰直角三角形,利用三角形面积公式即可求解.【解答】 解:如图,当 AC ⊥ AB 时,三角形面积最小, ∵∠ BAC=90 °∠ ACB=45 ° ∴ A B=AC=4cm ,∴S △ABC = ×6×6=18cm 2. 故答案是: 18.【点评】 本题考查了折叠的性质,发现当 AC ⊥ AB 时,重叠三角形的面积最小是解决问题的关键.三、解答题(共 8 小题,满分 75 分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.( 1)首先请同学们观察用硬纸片拼成的图形(如图 1),根据图形的面积,写出它能说明的乘法公式( a+b ) 2=a 2+2ab+b 2;( 2)请同学们观察用硬纸片拼成的图形(如图 2),根据图形的面积关系,写出一个代数恒等式.【考点】 完全平方公式的几何背景.a+b ,大正方形的面积就为( a+b ) 2,2 【分析】 (1)图中可以得出,大正方形的边长为个矩形的边长相同,且长为 a ,宽为 b ,则 2 个矩形的面积为 2ab ,空白的是两个正方形,较大的正方形的边长为a ,面积等于 a 2,小的正方形边长为b ,面积等于 b 2,大正方形面 积减去 2 个阴影矩形的面积就等于空白部分的面积.(2)图中可以得出,大正方形的边长为a+b ,大正方形的面积就为( a+b ) 2,4 个矩形的 边长相同,且长为 a ,宽为 b ,则 4 个矩形的面积为 4ab ,中间空心的正方形的边长为a ﹣b ,面积等于( a ﹣ b )2,大正方形面积减去 4 个阴影矩形的面积就等于中间空白部分的面 积. 【解答】 解:( 1)∵阴影部分都是全等的矩形,且长为 a ,宽为 b ,∴ 2 个矩形的面积为 2ab ,∵大正方形的边长为 a+b ,∴大正方形面积为( a+b ) 2,∴空白正方形的面积为a 2 和b 2,∴( a+b ) 2=a 2 +2ab+b 2.222.故答案为( a+b ) =a +2ab+b (2)∵四周阴影部分都是全等的矩形,且长为 a ,宽为 b , ∴四个矩形的面积为 4ab , ∵大正方形的边长为 a+b ,∴大正方形面积为( a+b ) 2,∴中间小正方形的面积为( a+b )2﹣ 4ab ,∵中间小正方形的面积也可表示为:(a ﹣ b ) 2,∴( a ﹣ b )2=( a+b ) 2﹣4ab . 【点评】 本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关 键.17.先化简,再求值:( x+y )( x ﹣ y ) +( x ﹣ y ) 2+2xy ,其中 x= ( 3﹣ π) 0. y=2. 【考点】 整式的混合运算 —化简求值;零指数幂. 【专题】 计算题;整式.【分析】 原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x 与 y 的值代入计算即可求出值.【解答】 解:原式 =x 2﹣ y 2+x 2﹣ 2xy+y 2+2xy=2x 2,当 x= ( 3﹣π) 0=1 时,原式 =2. 【点评】 此题考查了整式的混合运算﹣化简求值,以及零指数幂,熟练掌握运算法则是解本题的关键.18.先化简: ÷( ﹣ ),再从﹣ 2< x < 3 的范围内选取一个你最喜欢的值代入,求值.【考点】 分式的化简求值. 【专题】 计算题.【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把 x 的值代入计算即可求出值.【解答】 解:原式 =÷ = ? = ,当 x=2 时,原式 =4 .【点评】 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 19.如图, AD , AE 分别是 △ ABC 的高和角平分线.( 1)已知∠ B=40 °,∠ C=60°,求∠ DAE 的度数;( 2)设∠ B= α,∠ C=β( α< β).请直接写出用 α、 β表示∠ DAE 的关系式 ( β﹣ α).【考点】三角形内角和定理.【分析】(1)根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAE ,根据直角三角形两锐角互余求出∠BAD ,然后求解即可.(2)同( 1)即可得出结果.【解答】解:( 1)∵∠ B=40 °,∠ C=60°,∴∠ BAC=180 °﹣∠ B﹣∠ C=180°﹣ 40°﹣ 60°=80 °,∵AE 是角平分线,∴∠ BAE=∠ BAC=×80°=40°,∵AD 是高,∴∠ BAD=90 °﹣∠ B=90 °﹣ 40°=50 °,∴∠ DAE= ∠ BAD ﹣∠ BAE=50 °﹣ 40°=10°;(2)∵∠ B= α,∠ C=β(α<β),∴∠ BAC=180 °﹣(α+β),∵AE 是角平分线,∴∠ BAE=∠ BAC=90°﹣(α+β),∵AD 是高,∴∠ BAD=90 °﹣∠ B=90 °﹣α,∴∠ DAE= ∠ BAD ﹣∠ BAE=90 °﹣α﹣ [90°﹣(α+β)]=(β﹣α);故答案为:(β﹣α).【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.20.如图,点 B 、D 、C、 F 在一条直线上,且BC=FD ,AB=EF .(1)请你只添加一个条件(不再加辅助线),使△ ABC≌△ EFD,你添加的条件是∠B= ∠ F 或 AB ∥ EF 或 AC=ED ;(2)添加了条件后,证明△ABC≌△ EFD.【考点】全等三角形的判定.【专题】证明题;开放型.【分析】(1)本题要判定△ABC ≌△ EFD ,已知 BC=DF , AB=EF ,具备了两组边对应相等,故添加∠ B= ∠ F 或 AB ∥EF 或 AC=ED 后可分别根据 SAS、 AAS 、 SSS 来判定其全等;(2)因为 AB=EF ,∠ B=∠ F,BC=FD ,可根据 SAS 判定△ ABC ≌△ EFD .【解答】解:( 1)∠ B= ∠F 或 AB ∥ EF 或 AC=ED ;(2)证明:当∠ B=∠ F 时在△ ABC 和△ EFD 中∴△ ABC ≌△ EFD ( SAS).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图,在等边△ABC 中,点 D ,E 分别在边 BC, AC 上,且 DE∥ AB ,过点 E 作EF⊥ DE,交 BC 的延长线于点 F,(1)求∠ F 的度数;(2)若 CD=3,求 DF 的长.【考点】等边三角形的判定与性质.【分析】(1)根据平行线的性质可得∠ EDC= ∠B=60 °,根据三角形内角和定理即可求解;(2)易证△ EDC 是等边三角形,再根据直角三角形的性质即可求解.【解答】解:( 1)∵△ ABC 是等边三角形,∴∠ B=60 °,∵DE ∥ AB ,∴∠ EDC= ∠B=60 °,∵EF ⊥DE,∴∠ DEF=90 °,∴∠ F=90°﹣∠ EDC=30 °;(2)∵∠ ACB=60 °,∠ EDC=60 °,∴△ EDC 是等边三角形.∴ED=DC=3 ,∵∠ DEF=90 °,∠ F=30 °,∴DF=2DE=6 .【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30 度的锐角所对的直角边等于斜边的一半.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km ,运行时间减少了 8h,已知甲市到乙市的普快列车里程为 1220km .高铁平均时速是普快平均时速的 2.5 倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km 的丙市参加 14: 00 召开的会议,如果他买到当日 9: 20 从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要 1 小时.试问在高铁列车准点到达的情况下,它能否在开会之前20 分钟赶到会议地点?【考点】分式方程的应用.【分析】(1)设普快的平均时速为x 千米 / 小时,高铁列车的平均时速为 2.5x 千米 /小时,根据题意可得,高铁走(1220﹣ 90)千米比普快走1220 千米时间减少了8 小时,据此列方程求解;(2)求出王先生所用的时间,然后进行判断.【解答】解:( 1)设普快的平均时速为x 千米 /小时,高铁列车的平均时速为 2.5x 千米 /小时,由题意得,﹣=8 ,解得: x=96,经检验, x=96 是原分式方程的解,且符合题意,则2.5x=240 ,答:高铁列车的平均时速为240 千米 /小时;(2) 780÷240=3.25 ,则坐车共需要 3.25+1=4.25 (小时),从 9: 20 到下午 1: 40,共计 4小时>4.25小时,故王先生能在开会之前到达.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图,等腰Rt△ABC 中,∠ ABC=90 °, AB=BC ,点 A 、 B 分别在坐标轴上.(1)如图①,若点 C 的横坐标为5,直接写出点 B 的坐标( 0, 2);(提示:过 C 作CD⊥ y 轴于点 D,利用全等三角形求出OB 即可)(2)如图②,若点 A 的坐标为(﹣6, 0),点 B 在 y 轴的正半轴上运动时,分别以OB、 AB 为边在第一、第二象限作等腰Rt△ OBF,等腰 Rt△ ABE ,连接 EF 交 y 轴于点P,当点 B 在 y 轴的正半轴上移动时,PB 的长度是否发生改变?若不变,求出PB 的值.若变化,求PB 的取值范围.【考点】全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.【分析】(1)作 CD ⊥BO ,易证△ABO ≌△ BCD ,根据全等三角形对应边相等的性质即可解题;(2)作 EG⊥y 轴,易证△ BAO ≌△ EBG 和△EGP≌△ FBP,可得 BG=AO 和 PB=PG ,即可求得 PB=AO ,即可解题.【解答】解:( 1)如图 1,作 CD⊥ BO 于 D,∵∠ CBD+ ∠ ABO=90 °,∠ ABO+ ∠ BAO=90 °,∴∠ CBD= ∠ BAO ,在△ ABO 和△ BCD 中,,∴△ ABO ≌△ BCD ( AAS ),∴C D=BO=2 ,∴B 点坐标( O, 2);故答案为:( 0, 2);(2)如图 3,作 EG⊥ y 轴于 G,∵∠ BAO+ ∠ OBA=90 °,∠ OBA+ ∠ EBG=90 °,∴∠ BAO= ∠ EBG,在△ BAO 和△ EBG 中,,∴△ BAO ≌△ EBG ( AAS ),∴BG=AO , EG=OB ,∵O B=BF ,∴BF=EG ,在△ EGP 和△ FBP 中,,∴△ EGP≌△ FBP( AAS ),∴PB=PG ,∴PB= BG= AO=3 .【点评】本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.。
2019-2020学年北师大版八年级数学第一学期期末测试题(含答案)
2019-2020学年八年级数学第一学期期末测试卷一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.22.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,94.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.86.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.7.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣29.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=.12.命题“若a2>b2,则a>b”的逆命题是,该逆命题是(填“真”或“假”)命题.13.计算:(3+)()=.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货吨.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.18.解方程组:19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C (﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是分,九(2)班复赛成绩的众数是分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(),∴∠CDQ=∠β().∴∠β=(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为km/h,放学回家的速度为km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,将△AOC沿AC折叠得到△ABC,请解答下列问题:(1)点C的坐标为;(2)求线段OM的长;(3)求点B的坐标.2019-2020学年八年级数学第一学期期末测试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.2【分析】根据无理数、有理数的定义逐一对每个选择支进行判断.【解答】解:是分数,属于有理数,故选项A正确;﹣,2π,2是无理数.故选:A.【点评】此题主要考查了无理数的定义,注意:带根号的开不尽方的数是无理数,无限不循环小数为无理数,含π的数是无理数.如2π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,3)故选:C.【点评】本题主要考查了点的坐标,解题时注意:位于第二象限的点的横坐标为负,纵坐标为正.3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,9【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.【点评】此题主要考查了勾股数的定义,熟记勾股数的定义是解题的关键.4.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°【分析】利用三角形的外角的性质即可解决问题;【解答】解:在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°﹣80°=65°,故选:C.【点评】本题考查三角形的外角,解题的关键是熟练掌握基本知识,属于中考常考题型.5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.6.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.【分析】先根据一次函数的系数判断出函数图象所经过的象限,由此即可得出结论.【解答】解:在y=﹣2x﹣1中,∵﹣2<0,﹣1<0,∴此函数的图象经过二、三、四象限,故选:D.【点评】本题考查的是一次函数的图象,熟知当k<0,b>0时,一次函数y=kx+b的图象在一、二、四象限是解答此题的关键.7.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等),正确;C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补),正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),错误;故选:D.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣2【分析】根据平方根、算术平方根的定义逐一判别可得.【解答】解:A.1的平方根是±1,此选项错误;B.﹣8的立方根是﹣2,此选项正确;C.=2,此选项错误;D.=2,此选项错误;故选:B.【点评】本题主要考查平方根与立方根,解题的关键是掌握平方根和算术平方根及立方根的定义.9.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟【分析】根据统筹方法,烧开水时可洗菜和准备面条及佐料,这样可以节省时间,所以小明所用时间最少为(1)、(4)、(5)步时间之和.【解答】解:第一步,洗锅盛水花2分钟;第二步,用锅把水烧开7分钟,同时洗菜3分钟,准备面条及佐料2分钟,总计7分钟;第三步,用烧开的水煮面条和菜要3分钟.总计共用2+7+3=12分钟.故选:C.【点评】解决问题的关键是读懂题意,采用统筹方法是生活中常用的有效节省时间的方法,本题将数学知识与生活相结合,是一道好题.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.【分析】设进2个球的有x人,进3个球的有y人,根据20人共进49个球,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设进2个球的有x人,进3个球的有y人,根据题意得:,即.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=2.【分析】根据二次根式的分母有理化和二次根式的性质分别计算可得.【解答】解:==,|﹣|==2,故答案为:,2.【点评】本题主要考查二次根式的分母有理化,解题的关键是掌握二次根式的有理化方法和二次根式的性质.12.命题“若a2>b2,则a>b”的逆命题是如a>b,则a2>b2,,该逆命题是(填“真”或“假”)假命题.【分析】先写出命题的逆命题,然后在判断逆命题的真假.【解答】解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,假设a=1,b=﹣2,此时a>b,但a2<b2,即此命题为假命题.故答案为:如a>b,则a2>b2,假.【点评】此题考查了命题与定理的知识,写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.计算:(3+)()=+1.【分析】利用多项式乘法展开,然后合并即可.【解答】解:原式=3﹣6+7﹣2=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货4吨.【分析】设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,由“2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨”,即可得出关于x,y的二元一次方程组,将方程组的两方程相加再除以3,即可求出结论.【解答】解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,根据题意得:,(①+②)÷3,得:x+y=4.故答案为:4.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是()2012.【分析】先求出直线y =kx +b 的解析式,求出直线与x 轴、y 轴的交点坐标,求出直线与x 轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x 轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到A 3的坐标,进而得出各点的坐标的规律.【解答】解:∵A 1(1,1),A 2(,)在直线y =kx +b 上,∴,解得,∴直线解析式为y =x +;设直线与x 轴、y 轴的交点坐标分别为N 、M ,当x =0时,y =,当y =0时, x +=0,解得x =﹣4,∴点M 、N 的坐标分别为M (0,),N (﹣4,0),∴tan ∠MNO ===,作A 1C 1⊥x 轴与点C 1,A 2C 2⊥x 轴与点C 2,A 3C 3⊥x 轴与点C 3,∵A 1(1,1),A 2(,),∴OB 2=OB 1+B 1B 2=2×1+2×=2+3=5,tan ∠MNO ===,∵△B 2A 3B 3是等腰直角三角形,∴A 3C 3=B 2C 3,∴A 3C 3==()2,同理可求,第四个等腰直角三角形A 4C 4==()3,依此类推,点A n 的纵坐标是()n ﹣1.∴A2013=()2012故答案为:,()2012.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.【分析】先利用二次根式的除法法则和完全平方公式运算,然后把各二次根式化简为最简二次根式后合并即可.【解答】解:原式=8﹣4+1﹣(﹣)=9﹣4﹣2+=9﹣5.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:3x﹣2x+3=8,解得:x=5,把x=5代入①得y=7,则原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.【分析】(1)利用勾股定理求解可得;(2)分别作出点B与点C关于x轴的对称图形,再与点A首尾顺次连接即可得.【解答】解:(1)AC==,故答案为:;(2)所画图形如下所示,其中△DEF即为所求,【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点及勾股定理.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.【分析】设我市去年外来旅游的有x万人,外出旅游的有y万人,根据去年同期外来旅游比外出旅游的人数多20万人及今年外来与外出旅游的人数与去年人数之间的关系,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设我市去年外来旅游的有x万人,外出旅游的有y万人,根据题意得:,解得:.答:我市去年外来旅游的有100万人,外出旅游的有80万人,【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?【分析】(1)利用众数、中位数的定义分别计算即可;(2)利用平均数和方差的公式计算即可;(3)利用方差的意义进行判断.【解答】解:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;故答案为:85,100;(2)九(2)班的选手的得分分别为70,100,100,75,80,所以九(2)班成绩的平均数=(70+100+100+75+80)=85,九(2)班的方差S22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160;(3)平均数一样的情况下,九(1)班方差小,所以九(1)班的成绩比较稳定.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了统计图.22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.【分析】(1)根据题意可以写出推理过程,从而可以解答本题;(2)根据三角形外角的性质和三角形的内角和即可得到结论..【解答】解:(1)证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换);故答案为:已知,两直线平行,同位角相等,∠α+∠C,(2)证明:∵∠CFN是△ACF的一个外角(三角形外角的定义),∴∠CFN=∠β+∠C(三角形的一个外角等于和它不相邻的两个内角的和),∵PQ∥MN(已知),∴∠CFN=∠α(两直线平行,同位角相等)∴∠α=∠β+∠C(等量代换).∵∠C=45°(已知),∴∠α=∠β+45°(等量代换).【点评】本题考查了三角形外角的性质,平行线的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为5km/h,放学回家的速度为3km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?【分析】(1)根据题意和图象中的数据可以求得小亮上学的速度和放学回家的速度;(2)根据图象中的数据和题意可以求得线段BC所表示的y与x之间的函数关系;(3)由题意可知,小明从家到超市和从超市到家的时间之和是总的时间减去两次经过超市的时间间隔,从而可以解答本题.【解答】解:(1)由题意可得,小明上学的速度为:3÷0.6=5km/h,放学回家的速度为:3÷(9.6﹣0.6﹣8)=3km/h,故答案为:5,3;(2)设线段BC所表示的y与x之间的函数关系式为y=kx+b,将B(8.6,3)、C(9.6,0)代入y=kx+b,得,得,∴线段BC所表示的y与x之间的函数关系式为y=﹣3x+28.8(8.6≤x≤9.6);(3)设超市离家skm,=9.6﹣8.48,解得:s=2.1.答:超市离家2.1km.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.【分析】(1)在Rt△ABC中,利用互余得到∠BAC=62°,再根据折叠的性质得∠CAE=∠CAB =31°,然后根据互余可计算出∠AEC=59°;(2)①在Rt△ABC中,利用勾股定理即可得到BC的长;②设DE=x,则EB=BC﹣CE=8﹣x,依据勾股定理可得,Rt△BDE中DE2+BD2=BE2,再解方程即可得到DE的长.【解答】解:(1)在Rt△ABC中,∠ABC=90°,∠B=28°,∴∠BAC=90°﹣28°=62°,∵△ACE沿着AE折叠以后C点正好落在点D处,∴∠CAE=∠CAB=×62°=31°,Rt△ACE中,∠ACE=90°∴∠AEC=90°﹣31°=59°.(2)①在Rt△ABC中,AC=6,AB=10,∴BC===8.②∵△ACE沿着AE折叠以后C点正好落在点D处,∴AD=AC=6,CE=DE,∴BD=AB﹣AD=4,设DE=x,则EB=BC﹣CE=8﹣x,∵Rt△BDE中,DE2+BD2=BE2,∴x2+42=(8﹣x)2,解得x=3.即DE的长为3.【点评】本题考查了折叠问题,折叠是一种对称变换,它属于轴对称,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,将△AOC 沿AC 折叠得到△ABC ,请解答下列问题:(1)点C 的坐标为 (5,0) ;(2)求线段OM 的长;(3)求点B 的坐标.【分析】(1)利用勾股定理求出OA 的长即可解决问题;(2)求出直线AC 的解析式,利用待定系数法即可解决问题;(3)只要证明AB =AC =5,AB ∥x 轴,即可解决问题;【解答】解:(1)∵A (﹣3,4),∴OA ==5,∴OA =OC =5,∴C (5,0),故答案为(5,0);(2)设直线AC 的解析式y =kx +b ,函数图象过点A 、C ,得,解得,∴直线AC 的解析式y =﹣x +,当x =0时,y =,即M (0,),∴OM =.(3)∵△AOC沿着AC折叠得到△ABC,∴OA=BA,OC=BC,且∠ACO=∠ACB,又∵OA=OC,∴AB=AC=OC,∴∠BAC=∠ACB,∴∠ACO=∠BAC,∴AB∥x轴,由(1)知,C(5,0),∴OC=5.∵AB=AC=OC,∴AB=5.∵A坐标为(﹣3,4),AB∥x轴,∴B坐标为(2,4).【点评】本题属于三角形综合题,考查了翻折变换,等腰三角形的性质,一次函数的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
四川省凉山州2019-2020学年八年级(上)期末数学试卷(解析版)
2019-2020学年四川省凉山州八年级(上)期末数学试卷一.选择题(共10小题,满分30分)1.下列各图中,正确画出AC边上的高的是()A.B.C.D.2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cm C.13cm,12cm,20cm D.5cm,5cm,11cm3.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm4.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72°B.45°C.36°D.30°5.一个多边形的每个内角都是108°,那么这个多边形是()A.五边形B.六边形C.七边形D.八边形6.下列四个图案中,是轴对称图形的是()A.B.C.D.7.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状不可以是()A.正三角形B.正四边形C.正五边形D.正六边形8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是A.3B.4C.6D.59.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可10.已知:点A(m﹣1,3)与点B(2,n﹣1)关于x轴对称,则(m+n)2019的值为()A.0B.1C.﹣1D.32019二.填空题(共8小题,满分24分)11.如图,在△ABC中,AD是中线,则△ABD的面积△ACD的面积(填“>”“<”“=”).12.已知多边形每个内角都等于144°,则这个多边形是边形.13.在平面直角坐标系中,点(﹣1,2)关于y轴对称的点的坐标是.14.等腰三角形一边长为8,另一边长为5,则此三角形的周长为.15.等腰三角形的一个角是110°,则它的底角是.16.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=.17.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有条对角线.18.如图∠BOP=∠AOP=15°,PC∥OB,PD⊥PB于D,PC=2,则PD的长度为.三.解答题(共7小题,满分46分)19.如图,已知AC∥BD.(1)作∠BAC的平分线,交BD于点M(尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明∠BAM=∠AMB.20.如图△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE.21.如图,在平面直角坐标系中有一个△ABC,点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);(2)若网格上的每个小正方形的边长为1,则△ABC的面积是.22.如图,已知点B、F、C、E在一条直线上,BF=EC,AB∥ED,AB=DE.求证:∠A=∠D.23.如图,已知AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD,求证:△OAB是等腰三角形.24.已知:如图△ABC中,AB=AC,AD和BE是高,它们交于点H,且AE=BE,求证:AH=2BD.25.如图,∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C和D,证明:PC=PD.参考答案与试题解析一.选择题(共10小题)1.下列各图中,正确画出AC边上的高的是()A.B.C.D.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.3.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm【分析】题目给出等腰三角形有两条边长为8cm和4cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为4cm时,4+4=8,不能构成三角形,因此这种情况不成立.当腰为8cm时,8<8+4,能构成三角形;此时等腰三角形的周长为8+8+4=20cm.故选:D.4.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72°B.45°C.36°D.30°【分析】设∠A=x,则∠B=∠C=2x,再由三角形内角和定理求出x的值即可.【解答】解:设∠A=x,则∠B=∠C=2x,∵∠A+∠B+∠C=180°,∴x+2x+2x=180°,解得x=36°.故选:C.5.一个多边形的每个内角都是108°,那么这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【解答】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.6.下列四个图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选:C.7.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状不可以是()A.正三角形B.正四边形C.正五边形D.正六边形【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.【解答】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.5【分析】作DH⊥AC于H,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得×2×AC+×2×4=7,于是可求出AC的值.【解答】解:作DH⊥AC于H,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,∴DH=DE=2,∵S△ABC=S△ADC+S△ABD,∴×2×AC+×2×4=7,∴AC=3.故选:A.9.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可【分析】②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.【解答】解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选:D.10.已知:点A(m﹣1,3)与点B(2,n﹣1)关于x轴对称,则(m+n)2019的值为()A.0B.1C.﹣1D.32019【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,进而可得答案.【解答】解:∵点A(m﹣1,3)与点B(2,n﹣1)关于x轴对称,∴m﹣1=2,n﹣1=﹣3,∴m=3,n=﹣2,∵(m+n)2019=1,故选:B.二.填空题(共8小题)11.如图,在△ABC中,AD是中线,则△ABD的面积=△ACD的面积(填“>”“<”“=”).【分析】三角形的中线将三角形分成面积相等的两部分,据此判断即可.【解答】解:∵△ABC中,AD是中线,∴△ABD的面积=△ACD的面积,故答案为:=12.已知多边形每个内角都等于144°,则这个多边形是十边形.【分析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【解答】解:180°﹣144°=36°,360°÷36°=10,∴这个多边形的边数是10.故答案为:十.13.在平面直角坐标系中,点(﹣1,2)关于y轴对称的点的坐标是(1,2).【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:由点(﹣1,2)关于y轴对称的点的坐标是(1,2).故答案为:(1,2).14.等腰三角形一边长为8,另一边长为5,则此三角形的周长为18或21.【分析】本题应分为两种情况8为底或5为底,还要注意是否符合三角形三边关系.【解答】解:当8为腰,5为底时;8﹣5<8<8+5,能构成三角形,此时周长=8+8+5=21;当8为底,5为腰时;8﹣5<5<8+5,能构成三角形,此时周长=5+5+8=18;故答案为18或21.15.等腰三角形的一个角是110°,则它的底角是35°.【分析】题中没有指明已知的角是顶角还是底角,故应该分情况进行分析,从而求解.【解答】解:①当这个角是顶角时,底角=(180°﹣110°)÷2=35°;②当这个角是底角时,另一个底角为110°,因为110°+110°=240°,不符合三角形内角和定理,所以舍去.故答案为:35°.16.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=240°.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.17.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有6条对角线.【分析】首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数.【解答】解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9﹣3=6,故答案为:6.18.如图∠BOP=∠AOP=15°,PC∥OB,PD⊥PB于D,PC=2,则PD的长度为1.【分析】作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB =30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【解答】解:作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∠AOB=30°;∵PC∥OB(已知),∴∠ACP=∠AOB=30°(两直线平行,同位角相等),∴在Rt△PCE中,PE=PC=×2=1(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=1,故答案是:1.三.解答题(共7小题)19.如图,已知AC∥BD.(1)作∠BAC的平分线,交BD于点M(尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明∠BAM=∠AMB.【分析】(1)根据角平分线的作法可以解答本题;(2)根据角平分线的性质和平行线的性质可以解答本题.【解答】解:(1)如右图所示;(2)∵AM平分∠BAC,∴∠CAM=∠BAM,∵AC∥BD,∴∠CAM=∠AMB,∴∠BAM=∠AMB.20.如图△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD.求证:DB=DE.【分析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.【解答】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).21.如图,在平面直角坐标系中有一个△ABC,点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);(2)若网格上的每个小正方形的边长为1,则△ABC的面积是9.【分析】(1)根据关于y轴对称的点的坐标特点画出△A1B1C1即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可.【解答】解:(1)如图所示;(2)S△ABC=4×5﹣×2×4﹣×3×3﹣×1×5=20﹣4﹣﹣=9.故答案为:9.22.如图,已知点B、F、C、E在一条直线上,BF=EC,AB∥ED,AB=DE.求证:∠A=∠D.【分析】由BF=EC,可得BC=EF,由已知AB∥ED,可得∠B=∠E,易证△ABC≌△DEF,即可得出∠A=∠D.【解答】证明:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,∵AB∥ED,∴∠B=∠E,∵AB=DE,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.23.如图,已知AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD,求证:△OAB是等腰三角形.【分析】利用HL定理得出△ABD≌△BAC即可得出∠DBA=∠CAB,再利用等腰三角形的判定得出即可.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.24.已知:如图△ABC中,AB=AC,AD和BE是高,它们交于点H,且AE=BE,求证:AH=2BD.【分析】由△ABC是等腰三角形,AD是底边上的高,可知BC=2BD,要证明AH=2BD,需证明AH =BC,可通过证明△AHE≌△BCE来实现.【解答】证明:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD是底边上的高,∴BC=2BD,又∵BE是高,∴∠AEH=∠ADC=90°,则∠DAC+∠AHE=∠DAC+∠C=90°,∴∠AHE=∠C,在△AHE和△BCE中,∴△AHE≌△BCE(AAS),∴AH=BC,又BC=2BD,∴AH=2BD.25.如图,∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C和D,证明:PC=PD.【分析】过点P点作PE⊥OA于E,PF⊥OB于F,根据垂直的定义得到∠PEC=∠PFD=90°,由OM是∠AOB的平分线,根据角平分线的性质得到PE=PF,利用四边形内角和定理可得到∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,则∠PCE=∠PDF,然后根据“AAS”可判断△PCE≌△PDF,根据全等的性质即可得到PC=PD.【解答】证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,∴∠PEC=∠PFD=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,∴∠PCE=∠PDF,在△PCE和△PDF中,∴△PCE≌△PDF(AAS),∴PC=PD.。
2019-2020学年广东省中山市八年级(上)期末数学试卷含答案
2019-2020学年广东省中山市八年级(上)期末数学试卷一、选择题(本大题10题,每小题3分,共30分)1.(3分)下列四个手机APP 图标中,是轴对称图形的是( )A .B .C .D .2.(3分)已知某细菌直径长的0.0000152米,那么该细菌的直径长用科学记数法可表示为( ) A .1.52×10﹣5米 B .﹣1.52×105米 C .152×105米D .1.52×10﹣4米3.(3分)下列等式成立的是( ) A .x 2+x 3=x 5 B .(a ﹣b )2=a 2﹣b 2C .(x 2)3=x 6D .(﹣1)0=﹣14.(3分)点A (2,﹣1)关于y 轴对称的点的坐标是( ) A .(2,1) B .(﹣2,﹣1) C .(﹣1,2)D .(﹣2,1)5.(3分)若分式,则( ) A .x ≠0B .x =2C .x =0D .x =0或x =26.(3分)下列因式分解正确的是( ) A .x 2+y 2 =(x +y )2B .x 4﹣y 4 =(x 2+y 2)(x 2﹣y 2)C .﹣3a +12=﹣3(a ﹣4)D .a 2+7a ﹣8=a (a +7)﹣87.(3分)一边长为3,另一边长为6的等腰三角形的周长是( ) A .12 B .15 C .12或15D .98.(3分)已知,则的值为( )A .6B .﹣6C .D .﹣ 9.(3分)如图,AD 是△ABC 的角平分线,DE ⊥AB ,AB =6cm ,DE =4cm ,S △ABC =30cm 2,则AC 的长为( )A .10cmB .9cmC .4.5cmD .3cm10.(3分)如图,Rt △ACB 中,∠ACB =90°,∠A =60°,CD 、CE 分别是△ABC 的高和中线,下列说法错误的是( )A .AD =AB B .S △CEB =S △ACEC .AC 、BC 的垂直平分线都经过ED .图中只有一个等腰三角形二、填空题(本大题7题,每小题4分,共28分) 11.(4分)(﹣2a 2)3÷a 2= .12.(4分)如图,在△ABC 中,D 是BC 延长线上一点,∠A =68°,∠B =65°,则∠ACD = .13.(4分)如图,BC =EF ,AC ∥DF ,请你添加一个适当的条件,使得△ABC ≌△DEF , .(只需填一个答案即可)14.(4分)方程的解x = .15.(4分)已知ab=﹣3,a+b=5,则10+a2b+ab2= .16.(4分)关于x的分式方程的解为正数,则m的取值范围是 .17.(4分)如图,∠AOB=30°,点P是∠AOB内任意一点,且OP=7,点E和点F分别是射线OA和射线OB上的动点,则△PEF周长的最小值是 .三、解答题(一)(本大题3题,每小题6分,共18分)18.(6分)计算:(2x﹣1)2﹣x(4x﹣1)19.(6分)先化简,再求值:,其中a=﹣1.20.(6分)如图,已知△ABC中,∠BAC=23°,∠BCA=125°.(1)尺规作图:作AC的垂直平分线,交BC的延长线于点D;(不写作法,保留作图痕迹)(2)连接AD,求∠BAD的度数.四、解答题(二)(本大题3题,每小题8分,共24分)21.(8分)如图,已知△ABC≌△DEF,BG、EH分别是△ABC和△DEF的中线,求证:BG=EH.22.(8分)如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.23.(8分)某商家用1000元购进一批多肉盆栽,很快售完,接着又用了1600元购进第二批多肉盆栽,且数量是第一批的1.2倍,已知第一批盆栽的单价比第二批的单价少3元,问这两批多肉盆栽的单价各是多少元?五、解答题(三)(本大题2题,每小题10分,共20分)24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,D为BC边的中点,BE⊥AB交AD的延长线于点E,CF平分∠ACB交AD于点F,连接CE.求证:(1)点D是EF的中点;(2)△CEF是等腰三角形.25.(10分)已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB =9,求BG的长.2019-2020学年广东省中山市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10题,每小题3分,共30分)1.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:某细菌直径长的0.0000152米,那么该细菌的直径长用科学记数法可表示为1.52×10﹣5米.故选:A.3.【分析】根据幂的乘方与积的乘方,完全平方公式的应用,以及零指数幂的运算方法,逐项判断即可.【解答】解:∵x2+x3≠x5,∴选项A不符合题意;∵(a﹣b)2=a2﹣2ab+b2,∴选项B不符合题意;∵(x2)3=x6,∴选项C符合题意;∵(﹣1)0=1,∴选项D不符合题意.故选:C.4.【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:A(2,﹣1)关于y轴对称的点的坐标是(﹣2,﹣1),故选:B.5.【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:分式,则x=0.故选:C.6.【分析】根据十字相乘法,提公因式法,以及公式法在因式分解中的应用,逐项判断即可.【解答】解:∵x2+y2 ≠(x+y)2,∴选项A不符合题意;∵x4﹣y4 =(x2+y2)(x+y)(x﹣y),∴选项B不符合题意;∵﹣3a+12=﹣3(a﹣4),∴选项C符合题意;∵a2+7a﹣8=(a+8)(a﹣1),∴选项D不符合题意.故选:C.7.【分析】因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6∴不能构成三角形,故舍去.∴这个等腰三角形的周长为15.故选:B.8.【分析】根据已知条件可得=6,进而可得m﹣n=﹣6mn,然后再代入可得答案.【解答】解:∵,∴=6,n﹣m=6mn,∴m﹣n=﹣6mn,∴==﹣,故选:D.9.【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4,∵AB=6,∴S△ABC=×6×4+AC×4=30,解得AC=9;故选:B.10.【分析】根据等腰三角形的判定和性质和直角三角形的性质即可得到结论.【解答】解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE=S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.二、填空题(本大题7题,每小题4分,共28分)11.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【解答】解:原式=﹣8a6÷a2=﹣8a4.故答案为:﹣8a4.12.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和计算.【解答】解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=68°+65°=133°,故答案为:133°.13.【分析】根据全等三角形的判定方法解决问题即可.【解答】解:∵AC∥DF,∴∠ACB=∠F,∵BC=EF,∴添加AC=DF或∠A=∠D或∠B=∠DEF即可证明△ABC≌△DEF,故答案为AC=DF或∠A=∠D或∠B=∠DEF.14.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x﹣x2+4=3x+6,解得:x=﹣,经检验x=﹣是分式方程的解,故答案为:﹣15.【分析】直接提取公因式ab,将原式变形进而求出答案.【解答】解:∵ab=﹣3,a+b=5,∴10+a2b+ab2=10+ab(b+a)=10﹣3×5=﹣5.故答案为:﹣5.16.【分析】方程两边同乘以x﹣1,化为整数方程,求得x,再列不等式得出m的取值范围.【解答】解:方程两边同乘以x﹣1,得,m﹣3=x﹣1,解得x=m﹣2,∵分式方程的解为正数,∴x=m﹣2>0且x﹣1≠0,即m﹣2>0且m﹣2﹣1≠0,∴m>2且m≠3,故答案为m>2且m≠3.17.【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点F、E在CD上时,△PEF的周长最小.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点E、F,连接OP、OC、OD、PE、PF.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PE=CE,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PF=DF,OP=OD,∠DOB=∠POB,∴OC=OD=OP=5cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=7cm.∴△PEF的周长的最小值=PE+EF+PF=CE+EF+DF≥CD=7.故答案为7.18.【分析】根据完全平方公式和单项式乘以多项式的法则计算即可.【解答】解:(2x﹣1)2﹣x(4x﹣1)=4x2﹣4x+1﹣4x2+x=﹣3x+1.19.【分析】首先计算括号里面分式的减法,然后再计算括号外的除法,化简后,再把a的值代入即可.【解答】解:原式=(﹣),=,=•,=﹣,当a=﹣1时,原式=﹣2.20.【分析】(1)直接利用线段垂直平分线的作法得出AC的垂直平分线,进而得出答案;(2)利用线段垂直平分线的性质得出AD=DC,进而得出∠ACD=∠CAD=55°,即可得出答案.【解答】解:(1)如图所示:D点即为所求;(2)∵∠BCA=125°,∴∠ACD=55°,∵ED垂直平分线AC,∴DC=AD,∴∠ACD=∠CAD=55°,∵∠BAC=23°,∴∠BAD=23°+55°=78°.21.【分析】根据全等三角形的性质得到BC=EF,AC=DF,∠C=∠F,证明△BCG≌△EFH,根据全等三角形的性质证明结论.【解答】证明:∵△ABC≌△DEF,∴BC=EF,AC=DF,∠C=∠F,∵BG、EH分别是△ABC和△DEF的中线,∴CG=AC,FH=DF,∴CG=FH,在△BCG和△EFH中,,∴△BCG≌△EFH(SAS)∴BG=EH.22.【分析】(1)要证明BD平分∠ABC,只要证明∠DBC=∠ABE即可,根据题目中的条件和三角形外角和内角的关系,可以证明∠DBC=∠ABE,从而可以证明结论成立;(2)根据(1)中的结论和题意,利用三角形内角和可以求得∠C的度数.【解答】(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∴∠EAB=∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.23.【分析】首先设第一批单价为x元,则第二批单价为(x+3)元,根据题意可得等量关系:进一批的数量×1.2=第二批的数量,根据等量关系列出方程,再解即可.【解答】解:设第一批单价为x元,则第二批单价为(x+3)元,由题意得:×1.2=,解得:x=9,经检验:x=9是分式方程的解,x+3=9+3=12,答:第一批单价为9元,则第二批单价为12元.五、解答题(三)(本大题2题,每小题10分,共20分)24.【分析】(1)根据ASA证明△CDF≌△BDE,即可得出DF=DE;(2)由(1)中的全等得:CF=BE,判定△ACF≌△CBE,得到∠CAF=∠BCE,根据三角形外角的性质和等腰三角形的判定可得结论.【解答】证明:(1)∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵EB⊥AB,∴∠ABE=90°,∴∠CBE=45°,∵CF平分∠ACB,∴∠DCF=45°=∠CBE,在△CDF和△BDE中,∵,∴△CDF≌△BDE(ASA),∴DF=DE,∴点D是EF的中点;(2)由(1)知△CDF≌△BDE,∴CF=BE,在△ACF和△CBE中,∵,∴△ACF≌△CBE(SAS),∴∠CAF=∠BCE,∵∠CFE=∠CAF+∠ACF,∠ECF=∠BCF+∠BCE,∠ACF=∠BCF,∴∠CFE=∠ECF,∴EC=EF,∴△CEF是等腰三角形.25.【分析】(1)利用平行线的性质得出∠ADE=60°,再利用翻折变换的性质得出∠ADE =∠EDF=60°,进而得出∠BDF=60°,即可得出结论;(2)由折叠的性质得出∠ADE=∠FDE=60°,∠A=∠DFE,得出∠ADC=120°,由等腰三角形的性质得出∠FEC=∠FCE,设∠FEC=∠FCE=x,由三角形的外角性质得出∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,由三角形内角和定理得出方程,解方程即可;(3)同(1)得出△BDG是等边三角形,∠ADE=∠B=60°,得出BG=BD,由折叠的性质得出AD=FD,由直角三角形的性质得出FD=2BD,得出AD=2BD,由已知得出2BD+BD=9,求出BD=3,即可得出BG=BD=3.【解答】(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∴∠BDF=60°,∴∠DFB=60°=∠B=∠BDF,∴△BDF是等边三角形;(2)解:∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∠A=∠DFE,∴∠ADC=120°,∵CF=EF,∴∠FEC=∠FCE,设∠FEC=∠FCE=x,则∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,∠A+∠ACD+∠ADC=180°,即2x+x+120°=180°,解得:x=20°,∴∠A=2x=40°;(3)解:同(1)得:∠BDF=60°,△BDG是等边三角形,∠ADE=∠B=60°,∴BG=BD,由折叠的性质得:AD=FD,∵BF⊥AB,∴∠BFD=90°﹣60°=30°,∴FD=2BD,∴AD=2BD,∵AD+BD=AB,∴2BD+BD=9,∴BD=3,∴BG=BD=3.。
2019-2020学年人教新版四川省遂宁市安居区八年级第一学期期末数学试卷 含解析
2019-2020学年八年级第一学期期末数学试卷一、选择题1.4的平方根是()A.16B.2C.±2D.2.下列各数:3.1415926,﹣,,π,4.217,,2.1010010001…(相邻两个1之间依次增加1个0)中,无理数有()A.4个B.3个C.2个D.1个3.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+14.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内上应填写()A.3xy B.﹣3xy C.﹣1D.15.下列各式:①(x﹣2y)(2y+x);②(x﹣2y)(﹣x﹣2y);③(﹣x﹣2y)(x+2y);④(x﹣2y)(﹣x+2y).其中能用平方差公式计算的是()A.①②B.①③C.②③D.②④6.若(2x﹣y)2+M=4x2+y2,则整式M为()A.﹣4xy B.2xy C.﹣2xy D.4xy7.若4x2+kxy+9y2是一个完全平方式,则k的值是()A.12B.72C.±36D.±128.下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3﹣x=x(x+1)(x﹣1)9.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC11.如图,用直尺和圆规作一个角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS12.如图,在Rt△ABC中,∠ACB=90°,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC=()A.25cm B.45cm C.50cm D.55cm13.下列几组数中,为勾股数的是()A.4,5,6B.12,16,18C.7,24,25D.0.8,1.5,1.714.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米B.4.0米C.3.9米D.3.8米15.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是()A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°二、填空题16.已知x2=64,则=.17.若2x=3,4y=5,则2x﹣2y+1的值为.18.把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那…”的形式是.19.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.20.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是.21.小亮是位足球爱好者,某次在练习罚点球时,他在10分钟之内罚球20次,共罚进15次,则小亮点球罚进的频数是,频率是.22.若直角三角形的两边长分别为3和4,则第三条边的长的平方为.23.若代数式x2+6x+8可化为(x+h)2+k的形式,则h=,k=.24.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为.25.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为秒时,△ABP和△DCE全等.三、解答题(26、27每题5分,28题共10分,29、30、31题每题8分,32题9分,33题12分)26.计算:.27.计算:(x+3)(x﹣4)﹣x(x+2)﹣528.因式分解:(1)﹣2x2﹣8y2+8xy;(2)(p+q)2﹣(p﹣q)229.先化简,再求值:[(x﹣2y)2﹣(x+y)(x﹣y)+5xy]÷y,其中x=﹣2,y=1.30.如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8m,当他把绳子下端拉开4m后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?31.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.32.“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.33.问题情境:如图①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);(1)特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN 的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;(2)归纳证明:如图③,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求△ACF与△BDE的面积之和是多少?参考答案一、单选题(每题3分,共45分)1.4的平方根是()A.16B.2C.±2D.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解:∵(±2)2=4,∴4的平方根是±2,故选:C.2.下列各数:3.1415926,﹣,,π,4.217,,2.1010010001…(相邻两个1之间依次增加1个0)中,无理数有()A.4个B.3个C.2个D.1个【分析】根据无理数的定义逐个判断即可.解:无理数有π,,2.1010010001…(相邻两个1之间依次增加1个0),共3个,故选:B.3.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.4.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内上应填写()A.3xy B.﹣3xy C.﹣1D.1【分析】先把等式左边的式子根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加,所得结果与等式右边的式子相对照即可得出结论.解:∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选:A.5.下列各式:①(x﹣2y)(2y+x);②(x﹣2y)(﹣x﹣2y);③(﹣x﹣2y)(x+2y);④(x﹣2y)(﹣x+2y).其中能用平方差公式计算的是()A.①②B.①③C.②③D.②④【分析】将4个算式进行变形,看哪个算式符合(a+b)(a﹣b)的形式,由此即可得出结论.解:①(x﹣2y)(2y+x)=(x﹣2y)(x+2y)=x2﹣4y2;②(x﹣2y)(﹣x﹣2y)=﹣(x﹣2y)(x+2y)=4y2﹣x2;③(﹣x﹣2y)(x+2y)=﹣(x+2y)(x+2y)=﹣(x+2y)2;④(x﹣2y)(﹣x+2y)=﹣(x﹣2y)(x﹣2y)=﹣(x﹣2y)2;∴能用平方差公式计算的是①②.故选:A.6.若(2x﹣y)2+M=4x2+y2,则整式M为()A.﹣4xy B.2xy C.﹣2xy D.4xy【分析】根据完全平方公式,即可解答.解:因为(2x﹣y)2+M=4x2+y2,(2x﹣y)2+4xy=4x2+y2,所以M=4xy,故选:D.7.若4x2+kxy+9y2是一个完全平方式,则k的值是()A.12B.72C.±36D.±12【分析】本题考查完全平方公式的灵活应用,这里首末两项是2x和3y的平方,那么中间项为加上或减去2x和3y的乘积的2倍.解:∵4x2+kxy+9y2是完全平方式,∴kxy=±2×2x•3y,解得k=±12.故选:D.8.下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3﹣x=x(x+1)(x﹣1)【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确;故选:D.9.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.解:A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,例如:﹣1的倒数也是﹣1,故是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,例如:1的平方也是1,故是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,例如:1的算术平方根也是1,故是假命题;故选:A.10.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选:B.11.如图,用直尺和圆规作一个角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;在△OCD与△O′C′D′,O′C′=OC,O′D′=OD,C′D′=CD,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:D.12.如图,在Rt△ABC中,∠ACB=90°,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC=()A.25cm B.45cm C.50cm D.55cm【分析】由垂直平分线的性质可求得AD=BD,则△ACD的周长可化为AC+CD+BD,即AC+BC,可求得答案.解:∵DE为AB的垂直平分线,∴AD=BD,∴AC+CD+AD=AC+CD+BD=AC+BC=50,故选:C.13.下列几组数中,为勾股数的是()A.4,5,6B.12,16,18C.7,24,25D.0.8,1.5,1.7【分析】根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数解答即可.解:A、42+52≠62,不是勾股数;B、122+162≠182,不是勾股数;C、72+242=252,是勾股数;D、0.82+1.52=1.72,但不是正整数,不是勾股数.故选:C.14.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米B.4.0米C.3.9米D.3.8米【分析】根据题意欲通过如图的隧道,只要比较距隧道中线1.2米处的高度比车高即可,根据勾股定理得出CD的长,进而得出CH的长,即可得出答案.解:∵车宽2.4米,∴欲通过如图的隧道,只要比较距隧道中线1.2米处的高度与车高.在Rt△OCD中,由勾股定理可得:CD===1.6(m),CH=CD+DH=1.6+2.5=4.1米,∴卡车的外形高必须低于4.1米.故选:A.15.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是()A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的底角度数.解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的底角度数是()n﹣1×75°.故选:C.二、填空题(每题4分,满分40分,将答案填在答题纸上)16.已知x2=64,则=±2.【分析】先根据平方根的定义求出x,再根据立方根的定义解答.解:∵(±8)2=64,∴x=±8,当x=8时,==2,当x=﹣8时,==﹣2,所以,=±2.故答案为:±2.17.若2x=3,4y=5,则2x﹣2y+1的值为.【分析】直接利用同底数幂的乘除运算法则将原式变形进而计算即可.解:∵2x=3,4y=22y=5,∴2x﹣2y+1=2x÷22y×2=3÷5×2=.故答案为:.18.把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那…”的形式是“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”.【分析】根据“如果”后面接的部分是题设,“那么”后面解的部分是结论解答.解:把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那…”的形式,是“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”,故答案为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”.19.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为63°或27°.【分析】分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它的底角的度数.解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.20.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是∠A、∠B、∠C的角平分线的交点处.【分析】根据角平分线上的点到角的两边的距离相等解答即可.解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在∠A、∠B、∠C的角平分线的交点处.故答案为:∠A、∠B、∠C的角平分线的交点处.21.小亮是位足球爱好者,某次在练习罚点球时,他在10分钟之内罚球20次,共罚进15次,则小亮点球罚进的频数是15,频率是0.75.【分析】根据频数的定义,知小亮点球罚进的频数,即小亮点球罚进的次数;根据频率=频数÷总数,进行计算.解:根据题意,得小亮点球罚进的频数即罚进的次数即15;其频率是=0.75.22.若直角三角形的两边长分别为3和4,则第三条边的长的平方为7或25.【分析】分两种情况:①当3和4为两条直角边长时;②当4为斜边长时;由勾股定理求出第三边长的平方即可.解:分两种情况:①当3和4为两条直角边长时,由勾股定理得:第三边长的平方=斜边长的平方=32+42=25;②当4为斜边长时,第三边长的平方=42﹣32=7;综上所述:第三边长的平方是7或25.故答案为:7或25.23.若代数式x2+6x+8可化为(x+h)2+k的形式,则h=3,k=﹣1.【分析】二次项系数为1,则常数项是一次项系数的一半的平方即可求解.解:x2+6x+8=x2+6x+9﹣1=(x+3)2﹣1,则h=3,k=﹣1.故答案为:3,﹣1.24.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm.【分析】根据题意抽象出直角三角形,利用勾股定理求得彩色丝带的长即可.解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.25.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为1或7秒时,△ABP和△DCE全等.【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16﹣2t=2即可求得.解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.三、解答题(26、27每题5分,28题共10分,29、30、31题每题8分,32题9分,33题12分)26.计算:.【分析】根据实数运算的法则化简计算即可.解:原式=﹣2+2﹣﹣3﹣1=﹣﹣427.计算:(x+3)(x﹣4)﹣x(x+2)﹣5【分析】先根据整式的乘法法则算乘法,再合并同类项即可.解:(x+3)(x﹣4)﹣x(x+2)﹣5=x2﹣4x+3x﹣12﹣x2﹣2x﹣5=﹣3x﹣17.28.因式分解:(1)﹣2x2﹣8y2+8xy;(2)(p+q)2﹣(p﹣q)2【分析】(1)先提取公因数﹣2,再利用完全平方公式进行分解即可;(2)先利用平方差公式进行分解,再对括号内的式子进行合并即可.解:(1)﹣2x2﹣8y2+8xy(2)(p+q)2﹣(p﹣q)229.先化简,再求值:[(x﹣2y)2﹣(x+y)(x﹣y)+5xy]÷y,其中x=﹣2,y=1.【分析】原式中括号中利用完全平方公式,平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.解:[(x﹣2y)2﹣(x+y)(x﹣y)+5xy]÷y=[x2+4y2﹣4xy﹣x2+y2+5xy]÷y=5y+x,当x=﹣2,y=1时,原式=5﹣2=3.30.如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8m,当他把绳子下端拉开4m后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?【分析】设旗杆高为x m,那么绳长为(x+0.8)m,由勾股定理得x2+42=(x+0.8)2,解方程即可;解:设旗杆高为x m,那么绳长为(x+0.8)m,由勾股定理得x2+42=(x+0.8)2,解得x=9.6.答:旗杆的高度为9.6 m.31.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.解:(1)作出∠B的平分线BD;作出AB的中点E.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).32.“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了400名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.【分析】(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.解:(1)本次调查的总人数为80÷20%=400人,故答案为:400;(2)B类别人数为400﹣(80+60+20)=240,补全条形图如下:C类所对应扇形的圆心角的度数为360°×=54°;(3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×=100人.33.问题情境:如图①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);(1)特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN 的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;(2)归纳证明:如图③,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求△ACF与△BDE的面积之和是多少?【分析】(1)根据图②,求出∠BDA=∠AFC=90°,∠ABD=∠CAF,根据AAS证两三角形全等即可;(2)根据图③,运用三角形外角性质求出∠ABE=∠CAF,∠BAE=∠FCA,根据ASA证两三角形全等即可;(3)根据图④,由CD=2BD,△ABC的面积为18,可求出△ABD的面积为6,根据△ABE≌△CAF,得出△ACF与△BDE的面积之和等于△ABD的面积,据此即可得出答案.【解答】(1)证明:如图②,∵CF⊥AE,BD⊥AE,∠MAN=90°,∴∠BDA=∠AFC=90°,∴∠ABD+∠BAD=90°,∠ABD+∠CAF=90°,∴∠ABD=∠CAF,在△ABD和△CAF中,,∴△ABD≌△CAF(AAS);(2)证明:如图③,∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,,∴△ABE≌△CAF(ASA);(3)如图④,∵△ABC的面积为18,CD=2BD,∴△ABD的面积=×18=6,由(2)可得△ABE≌△CAF,即△ACF的面积=△ABE的面积,∴△ACF与△BDE的面积之和等于△ABE与△BDE的面积之和,即△ACF与△BDE的面积之和等于△ABD的面积6.。
2019-2020学年人教新版青海省西宁市八年级第一学期期末数学试卷 含解析
2019-2020学年八年级第一学期期末数学试卷一、选择题1.下列英文字母中,是轴对称图形的是()A.B.C.D.2.若分式有意义,则x的取值范围是()A.x>2B.x≠2C.x≠0D.x≠﹣23.下列运算正确的是()A.a3•a4=a12B.(﹣a4)3=a12C.(2y2)3=6y6D.a12÷a2=a10 4.分式,,的最简公分母是()A.24ab B.24a2b2c C.12abc D.12a2b2c5.用一批完全相同的正多边形能镶嵌成一个平面图案的是()A.正五边形B.正六边形C.正七边形D.正八边形6.如图,PA⊥OM,PB⊥ON,垂足分别为A,B,PA=PB.则△OAP≌△OBP的依据不可能是()A.SSS B.SAS C.AAS D.HL7.如图所示,将△ABC沿DE所在直线折叠,使点C与点B重合,下列说法,其中正确的是()①AD是BC边上的中线;②AD平分∠BAC;③DE⊥BC;④△BEC是等腰三角形.A.①②B.②③C.①③④D.②③④8.当n为自然数时,(n+1)2﹣(n﹣3)2一定能()A.被5整除B.被6整除C.被7整除D.被8整除二、耐心填一填,一锤定音!(共8小题,每题2分,共16分.)9.(2×10﹣6)×(3.2×103)=.10.已知三角形的三边长分别为3、a、5,那么a的取值范围是.11.一个多边形的内角和是1800°,这个多边形是边形.12.计算:50﹣(﹣2)﹣2=.13.计算:•=.14.两个正方形的边长和为20cm,它们的面积的差为40cm2,则这两个正方形的边长差为.15.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为70,AB=16,BC=12,则DE的长为.16.在平面直角坐标系中,已知点A,B的坐标分别是(2,0),(4,2),若在x轴下方有一点P,使以O,A,P为顶点的三角形与△OAB全等,则满足条件的P点的坐标是.三、认真算一算,又快又准!(每小题6分,共24分)17.因式分解:4+12(x﹣y)+9(x﹣y)2.18.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)19.解方程:+=020.先化简÷(﹣x﹣2),然后请你选择一个合适的数作为x的值代入求值.四、细心想一想,马到成功!(共3小题,每小题8分,共24分.)21.如图,△ABC≌△DBC,连接AD,延长CB交AD于点E.(1)若∠CAB=35°,∠ACD=76°,求∠CBD的度数;(2)求证:△ABE≌△DBE.22.如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,DC=3,求BD的长.23.某商店以固定进价一次性购进一种商品,元月份按一定售价销售,销售额为2400元;为扩大销量,减少库存,2月份在元月份售价的基础上打9折销售,结果销售量增加30件,销售额增加840元.求元月份这种商品的售价是多少元?五、用心做一做,智慧超群!(本题12分)24.如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一条直线上,连接BE.(1)求证:AD=BE;(2)若∠CAE=15°,AD=5,求AB的长.参考答案一、精心选一选,慧眼识金!(共8个小题,每小题3分,共24分.)1.下列英文字母中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念::如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.若分式有意义,则x的取值范围是()A.x>2B.x≠2C.x≠0D.x≠﹣2【分析】分式有意义时,分母x﹣2≠0,由此求得x的取值范围.解:依题意得:x﹣2≠0,解得x≠2.故选:B.3.下列运算正确的是()A.a3•a4=a12B.(﹣a4)3=a12C.(2y2)3=6y6D.a12÷a2=a10【分析】分别根据同底数幂的乘法法则,幂的乘方与积的乘方运算法则以及同底数幂的除法法则逐一判断即可.解:A.a3•a4=a7,故本选项不合题意;B.(﹣a4)3=﹣a12,故本选项不合题意;C.(2y2)3=8y6,故本选项不合题意;D.a12÷a2=a10,正确,故本选项符合题意.故选:D.4.分式,,的最简公分母是()A.24ab B.24a2b2c C.12abc D.12a2b2c【分析】根据取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母可得答案.解:分式,,的最简公分母是12a2b2c,故选:D.5.用一批完全相同的正多边形能镶嵌成一个平面图案的是()A.正五边形B.正六边形C.正七边形D.正八边形【分析】根据密铺的条件可知3个正六边形能密铺解:根据密铺的条件可知3个正六边形能密铺,故选:B.6.如图,PA⊥OM,PB⊥ON,垂足分别为A,B,PA=PB.则△OAP≌△OBP的依据不可能是()A.SSS B.SAS C.AAS D.HL【分析】先根据角平分线的性质定理的逆定理得到∠POA=∠POB,然后根据三角形全等的判定方法对各选项进行判断.解:∵PA⊥OM,PB⊥ON,∴∠OAP=∠OBP=90°,而PA=PB,∴OP平分∠AOB,即∠POA=∠POB,∴可根据:“SAS”或“AAS”或“AAS”判断△OAP≌△OBP.故选:A.7.如图所示,将△ABC沿DE所在直线折叠,使点C与点B重合,下列说法,其中正确的是()①AD是BC边上的中线;②AD平分∠BAC;③DE⊥BC;④△BEC是等腰三角形.A.①②B.②③C.①③④D.②③④【分析】由折叠的性质知,叠前后图形的形状和大小不变,对应边和对应角相等.解:由折叠的性质可知,①AD是BC边上的中线;③DE⊥BC;④△BEC是等腰三角形;无法得到②AD平分∠BAC.故选:C.8.当n为自然数时,(n+1)2﹣(n﹣3)2一定能()A.被5整除B.被6整除C.被7整除D.被8整除【分析】将所求式子用完全平方公式展开可得原式=8(n﹣1),即可进行求解.解:(n+1)2﹣(n﹣3)2=n2+2n+1﹣n2+6n﹣9=8n﹣8=8(n﹣1),∴能被8整除,故选:D.二、耐心填一填,一锤定音!(共8小题,每题2分,共16分.)9.(2×10﹣6)×(3.2×103)= 6.4×10﹣3.【分析】根据交换律,把2和3.2相乘,底数为10的两个数相乘.解:(2×10﹣6)×(3.2×103)=(2×3.2)×(10﹣6×103)=6.4×10﹣3.故答案为6.4×10﹣3.10.已知三角形的三边长分别为3、a、5,那么a的取值范围是2<a<8.【分析】根据三角形的三边关系列出不等式即可求出a的取值范围.解:∵三角形的三边长分别为3、a、5,∴5﹣3<a<5+3,即2<a<8.故答案为:2<a<811.一个多边形的内角和是1800°,这个多边形是12边形.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.12.计算:50﹣(﹣2)﹣2=.【分析】首先计算零次幂和负整数指数幂,再算减法即可.解:原式=1﹣=,故答案为:.13.计算:•=.【分析】根据分式的运算法则即可求出答案.解:原式=,故答案为:.14.两个正方形的边长和为20cm,它们的面积的差为40cm2,则这两个正方形的边长差为2cm.【分析】根据两个正方形的边长的和为20cm,假设其中一个边长为x,表示出另一边为20﹣x,进而利用正方形面积求出.解:∵两个正方形的边长的和为20cm,∴假设其中一边长为x,另一边为20﹣x,且x>20﹣x,∵它们的面积的差为40cm2,∴x2﹣(20﹣x)2=40,(x+20﹣x)(x﹣20+x)=40,∴20(2x﹣20)=40,∴2x﹣20=2,∴x=11,∴另一边边长为9cm.则这两个正方形的边长的差为:11﹣9=2(cm).故答案为:2cm.15.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为70,AB=16,BC=12,则DE的长为5.【分析】作DF⊥BC于F,根据角平分线的性质得到DF=DE,根据三角形面积公式计算即可.解:作DF⊥BC于F,∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,∴DF=DE,∴×AB×DE+×BC×DF=70,∴DF=DE=5.故答案为:5.16.在平面直角坐标系中,已知点A,B的坐标分别是(2,0),(4,2),若在x轴下方有一点P,使以O,A,P为顶点的三角形与△OAB全等,则满足条件的P点的坐标是(0,﹣2)或(4,﹣2)..【分析】直接利用平面直角坐标系得出符合题意的答案.解:如图所示:在x轴下方有一点P,使以O,A,P为顶点的三角形与△OAB全等,则满足条件的P点的坐标是:(0,﹣2)或(4,﹣2).故答案为:(0,﹣2)或(4,﹣2).三、认真算一算,又快又准!(每小题6分,共24分)17.因式分解:4+12(x﹣y)+9(x﹣y)2.【分析】原式利用完全平方公式分解即可.解:原式=[3(x﹣y)+2]2=(3x﹣3y+2)2.18.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)【分析】根据去括号法则以及平方差公式化简计算即可.解:原式=6x﹣3﹣(16﹣9x2)=6x﹣3﹣16+9x2=9x2+6x﹣19.19.解方程:+=0【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:方程两边乘(x+3)(x﹣3),得5﹣x﹣3=0,解得:x=2,检验:当x=2时,(x+3)(x﹣3)=﹣5≠0,所以原分式方程的解为x=2.20.先化简÷(﹣x﹣2),然后请你选择一个合适的数作为x的值代入求值.【分析】直接将括号里面通分运算进而利用分式的乘除运算法则计算得出答案.解:原式=÷(﹣)=÷=•=,当x=4时,原式==.四、细心想一想,马到成功!(共3小题,每小题8分,共24分.)21.如图,△ABC≌△DBC,连接AD,延长CB交AD于点E.(1)若∠CAB=35°,∠ACD=76°,求∠CBD的度数;(2)求证:△ABE≌△DBE.【分析】(1)直接利用全等三角形的性质得出∠ACB=∠DCB=38°,进而得出答案;(2)利用全等三角形的判定方法分析得出答案.【解答】(1)解:∵△ABC≌△DBC,∠CAB=35°,∴∠CAB=∠CDB=35°,∠ACB=∠DCB(全等三角形的对应角相等),∵∠ACD=76°,∴∠ACB=∠DCB=38°,∴∠CBD=180°﹣35°﹣38°=107°(三角形的内角和是180°).(2)证明:∵△ABC≌△DBC,∴AC=DC,AB=DB(全等三角形的对应边相等),∴△ACD是等腰三角形,又∵∠ACB=∠DCB,∴CE是AD边上的中线(三线合一),即AE=DE,在△ABE与△DBE中,,∴△ABE≌△DBE(SSS).22.如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,DC=3,求BD的长.【分析】根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,∠BAC=120°,求出∠DAC=∠C,推出AD=CD,根据含30度角的直角三角形性质求出BD﹣2AD,即可得出答案.解:∵在△ABC中,AB=AC,∠C=30°,∴∠B=∠C=30°,∠BAC=180°﹣30°﹣30°=120°,∵AB⊥AD,∴∠BAD=90°,∴∠DAC=120°﹣90°=30°∴∠DAC=∠C=30°,∴CD=AD=3,Rt△ABD中,∵∠BAD=90°,∠B=30°,∴BD=2AD=6.23.某商店以固定进价一次性购进一种商品,元月份按一定售价销售,销售额为2400元;为扩大销量,减少库存,2月份在元月份售价的基础上打9折销售,结果销售量增加30件,销售额增加840元.求元月份这种商品的售价是多少元?【分析】设该商店元月份这种商品的售价为x元,则2月份这种商品的售价为0.9x元,根据数量=总价÷单价结合2月份比元月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;解:设元月份这种商品的售价是x元,则2月份的售价是0.9x元.根据题意得:﹣=30方程两边乘x得:3600﹣2400=30x,解得:x=40,检验:当x=40时,x≠0,∴原分式方程的解是x=40答:元月份这种商品的售价是40元.五、用心做一做,智慧超群!(本题12分)24.如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E 在同一条直线上,连接BE.(1)求证:AD=BE;(2)若∠CAE=15°,AD=5,求AB的长.【分析】(1)证明△ACD≌△BCE,可得AD=BE;(2)由(1)知∠ADC=∠BEC,可求出∠EAB=∠CAB﹣∠CAE=30°,根据直角三角形的性质可得结论.【解答】(1)证明:∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∵∠ACD+∠DCB=∠BCE+∠DCB=90°,∴∠ACD=∠BCE(同角的余角相等),在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE(全等三角形的对应边相等).(2)解:∵△ACD≌△BCE,∴∠ADC=∠BEC(全等三角形的对应角相等),∵∠ADC=∠DCE+∠DEC,∠BEC=∠DEB+∠DEC,∴∠DCE=∠DEB=90°,∵△ACB为等腰直角三角形,∠ACB=90°,∴∠CAB=∠CBA=45°,∵∠CAE=15°,∴∠EAB=∠CAB﹣∠CAE=45°﹣15°=30°,在Rt△ABE中,∠EAB=30°,∵AD=BE=5,∴AB=2BE=10(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边是斜边的一半).。
八年级数学上册 2019-2020学年八年级(上)期末名校校考试卷及答案
八年级数学上册2019-2020学年八年级(上)期末名校校考试卷及答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.243.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.56.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.68.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=4010.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是.12.如图中的5个数据的标准差是.13.若无意义,且分式的值等于零,那么=.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是.17.如果,那么.18.已知关于的分式的解是非负数,则k的取值范围是.19.若,则K=.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了米.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4922.解方程:.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是三角形.(2)若OB=5,OC=3,求OA的长.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.参考答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【考点】R5:中心对称图形.【专题】1:常规题型.【分析】直接利用中心对称图形的性质得出答案.【解答】解:A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.24【考点】K3:三角形的面积;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】由▱ABCD的对角线相交于点O,可得OA=OC,OB=OD,然后根据三角形中线的性质,求得S△COD=S△AOD=S△AOB=3,继而求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△BOC=S△COD=3,同理:S△COD=S△AOD=S△AOB=3,∴S▱ABCD=4S△COD=12.故选:B.3.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°【考点】L3:多边形内角与外角.【专题】55:几何图形.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;故选:D.4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数【考点】W A:统计量的选择.【专题】1:常规题型.【分析】11人成绩的中位数是第6名的成绩,要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.5【考点】W1:算术平均数;W4:中位数;W5:众数;W7:方差.【专题】1:常规题型;542:统计的应用.【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【解答】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1﹣3)2+(6﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2]=2.8,错误;故选:D.6.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x【考点】44:整式的加减;54:因式分解﹣运用公式法.【专题】1:常规题型.【分析】分①4x2是平方项,②4x2是乘积二倍项,③1是乘积二倍项,然后根据完全平方公式的结构解答.【解答】解:A、4x2+1+2x,无法运用完全平方公式分解因式,故此选项符合题意;B、4x2+1﹣4x=(2x﹣1)2,能运用完全平方公式分解因式,故此选项不符合题意;C、4x4+4x2+1=(2x2+1)2,能运用完全平方公式分解因式,故此选项不符合题意;D、4x2+1+4x=(2x+1)2,能运用完全平方公式分解因式,故此选项不符合题意;故选:A.7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.6【考点】Q3:坐标与图形变化﹣平移.【专题】558:平移、旋转与对称;69:应用意识.【分析】由题意可知平移后横坐标加1,纵坐标减5,由此求出a,b即可解决问题.【解答】解:由题意可知平移后横坐标加1,纵坐标减5,∴a=﹣1,b=1,∴a﹣b=﹣1﹣1=﹣2,故选:C.8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE 【考点】JB:平行线的判定与性质;R2:旋转的性质.【专题】1:常规题型.【分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE =BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选:C.9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=40【考点】B6:由实际问题抽象出分式方程.【专题】1:常规题型.【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【解答】解:小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是﹣=40,故选:C.10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3【考点】KJ:等腰三角形的判定与性质;KX:三角形中位线定理.【专题】17:推理填空题.【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是30%.【考点】W2:加权平均数.【专题】542:统计的应用;61:数感.【分析】根据权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如平日成绩占20%,期中成绩占30%,期末成绩占50%等.【解答】解:根据加权平均数的定义可知:期中成绩的权为30%.故答案为30%.12.如图中的5个数据的标准差是0.【考点】W8:标准差.【专题】543:概率及其应用;65:数据分析观念.【分析】由图知5个数据均为3,从而得出这组数据没有波动,即可得出答案.【解答】解:由图知这5个数据均为3,∴这组数据的标准差为0,故答案为:0.13.若无意义,且分式的值等于零,那么=2.【考点】62:分式有意义的条件;63:分式的值为零的条件.【专题】513:分式;66:运算能力.【分析】直接利用分式的值为零的条件“分子为0且分母不为0”分析得出答案.【解答】解:∵无意义∴a+2=0,a=﹣2∵分式的值等于零,∴|b|﹣1=0,b﹣1≠0,∴b=﹣1,∴==2,故答案为2.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=72°.【考点】L5:平行四边形的性质.【分析】根据已知比例设∠A=2x,∠B=3x,再由两直线平行,同旁内角线补,可求角的度数.【解答】解:依题意设∠A=2x,∠B=3x,由平行四边形的性质,得∠A+∠B=180°,∴2x+3x=180°,解得x=36°,∴∠A=2x=72°,又∵∠A=∠C,∴∠C=72°.故答案为72°.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=3.【考点】KX:三角形中位线定理.【专题】557:梯形;67:推理能力.【分析】连接CF并延长交AB于G,证明△FDC≌△FBG,根据全等三角形的性质得到BG=DC=6,CF=FG,求出AG,根据三角形中位线定理计算,得到答案.【解答】解:连接CF并延长交AB于G,∵AB∥CD,∴∠FDC=∠FBG,在△FDC和△FBG中,,∴△FDC≌△FBG(ASA)∴BG=DC=6,CF=FG,∴AG=AB﹣BG=12﹣6=6,∵CE=EA,CF=FG,∴EF=AG=3,故答案为:3.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是平行四边形.【考点】LN:中点四边形.【专题】555:多边形与平行四边形;67:推理能力.【分析】首先根据题意画出图形,再连接AC,根据三角形的中位线得到HG∥AC,HG =AC,EF∥AC,EF=AC,可以推出EF=GH,EF∥GH,根据平行四边形的判定:一组对边平行且相等的四边形是平行四边形求出即可.【解答】解:这个图形一定是平行四边形,理由是:根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=AC,EF∥AC,EF=AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故答案为:平行四边形.17.如果,那么.【考点】RA:几何变换的类型.【专题】13:作图题;558:平移、旋转与对称;69:应用意识.【分析】观察图象的变化,根据旋转变换的性质轴对称的性质即可解决问题.【解答】解:由题意性质180,可得图形:18.已知关于的分式的解是非负数,则k的取值范围是k≤3且k≠1.【考点】B2:分式方程的解.【专题】522:分式方程及应用;66:运算能力.【分析】求出分式方程的解,根据解是非负数求出k的取值范围.【解答】解:去分母得:1+2(x﹣2)=x﹣k,解得:x=3﹣k,由题意得:3﹣k≥0,且3﹣k≠2,解得:k≤3且k≠1,∴k的取值范围是k≤3且k≠1,故答案为:k≤3且k≠1.19.若,则K=1.【考点】6B:分式的加减法.【专题】17:推理填空题;513:分式;66:运算能力.【分析】根据分式的加减和恒等关系即可求解.【解答】解:原式变形,得=∴3K=3,4K=4,解得K=1.故答案为1.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了180米.【考点】L3:多边形内角与外角.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了15×12=180(米).故答案为:180.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+49【考点】55:提公因式法与公式法的综合运用.【专题】512:整式;66:运算能力.【分析】(1)先提公因式,然后根据平方差公式分解即可;(2)根据完全平方公式和平方差公式分解即可.【解答】解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.22.解方程:.【考点】B3:解分式方程.【专题】11:计算题;16:压轴题.【分析】观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边都同乘以(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,化简,得x+2=3,解得:x=1.检验:把x=1代入(x﹣1)(x+2)=0.∴x=1不是原方程的解,原分式方程无解.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.【考点】6D:分式的化简求值;W6:极差.【专题】1:常规题型.【分析】先算括号内的减法,再把除法变成乘法,最后算乘法,再代入求出即可.【解答】解:原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】16:压轴题.【分析】首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.【解答】解:结论:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(,﹣1).【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】13:作图题;558:平移、旋转与对称.【分析】(1)分别作出点A、B关于点C的对称点,再顺次连接可得;(2)由点A的对称点A2的位置得出平移方向和距离,据此作出另外两个点的对称点,顺次连接可得;(3)连接A1A2、B1B2,交点即为所求.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,点P即为对称中心,其坐标为(,﹣1),故答案为:(,﹣1).26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?【考点】W2:加权平均数;W4:中位数;W5:众数;W7:方差.【专题】542:统计的应用;66:运算能力.【分析】(1)根据加权平均数、中位数、众数、方差的定义即可求解;(2)根据方差的结果进行判断即可.【解答】解:(1)7×20%+8×10%+4×10%+5×20%+6×(1﹣20%﹣10%﹣10%﹣20%)=6(千克);(4+5)÷2=4.5(千克);×[5×(6﹣4)2+2(6﹣5)2+2×(9﹣6)2+(12﹣6)2]=7.6(千克).故答案为6、4.5、7.6.(2)因为两家的平均周收入相同,周收入中位数和众数“哈罗单车”都大于“哈罗助力车”,而方差“哈罗单车”小于“哈罗助力车”,比较稳定.答:“哈罗单车”比较抢手.27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.【考点】B7:分式方程的应用.【专题】34:方程思想;522:分式方程及应用;69:应用意识.【分析】设这种篮球的标价为x元,根据数量=总价÷单价结合在B超市购买的数量比在A超市购买的数量多5个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种篮球的标价为x元,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:这种篮球的标价为50元.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是等边三角形.(2)若OB=5,OC=3,求OA的长.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;KQ:勾股定理;R2:旋转的性质.【专题】553:图形的全等;554:等腰三角形与直角三角形;558:平移、旋转与对称;67:推理能力.【分析】(1)由旋转的性质可得CO=CD,AD=BO,∠ACB=∠DCO=60°,可证△COD是等边三角形;(2)由等边三角形的性质可得OD=OC=3,∠CDO=60°,可得∠ADO=90°,由勾股定理可求OA的长.【解答】解:(1)∵将△BOC绕点C顺时针旋转后,得△ADC,∴△BOC≌△ADC,∴CO=CD,AD=BO=5,∠ACB=∠DCO=60°,∠BOC=∠ADC=150°,∴△COD是等边三角形,故答案为:等边;(2)∵△COD是等边三角形,∴OD=OC=3,∠CDO=60°,∴∠ADO=ADC﹣∠ODC=90°,∴AO2=AD2+OD2=9+25=34,∴AO=.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.【考点】KJ:等腰三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DF A.∴∠DAF=∠DF A.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.。
2019-2020学年河北省唐山市滦州市八年级上学期期末数学试卷 (解析版)
2019-2020学年河北省唐山市滦州市八年级上学期期末数学试卷一、选择题(共10小题).1.﹣8的立方根是()A.2B.﹣2C.±2D.2.下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.3.化简的结果是()A.B.C.D.2(x+1)4.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F 5.把分式方程转化为一元一次方程时,方程两边需同乘()A.x B.2x C.x+4D.x(x+4)6.下列二次根式的运算正确的是()A.=﹣5B.C.D.7.已知如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若∠MON=60°,OP=4,则PQ的最小值是()A.2B.3C.4D.不能确定8.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合,将圆沿数轴滚动1周,点A到达点A′的位置,则点A′表示的数是()A.π﹣1B.﹣π﹣1C.﹣π﹣1或π﹣1D.﹣π﹣1或π﹢1 9.如图,一根竹竿AB,斜靠在竖直的墙上,P是AB中点,A′B′表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中OP()A.下滑时,OP增大B.上升时,OP减小C.无论怎样滑动,OP不变D.只要滑动,OP就变化10.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.二、填空题(共10小题).11.﹣的相反数是.12.若分式有意义,则x的取值范围为.13.如图,为了测量池塘两端点A,B间的距离,小亮先在平地上取一个可以直接到达点A 和点B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE.现测得DE=30米,则AB两点间的距离为米.14.有一个数值转换器,原理如图:当输入x为81时,输出的y的值是.15.如图,在△ABC中,AC的垂直平分线交BC于点D,且AB=BD,若∠B=40°,则∠C=.16.若最简二次根式与能合并,则x=.17.如图所示,∠ABC=∠BAD=90°,AC=13,BC=5,AD=16,则BD的长为.18.若是正整数,则满足条件的n的最小正整数值为.19.已知等腰三角形一腰上的中线将这个等腰三角形的周长分为9cm和15cm两部分,则这个等腰三角形的腰长为cm.20.已知:如图,∠AOB=45°,点P为∠AOB内部的点,点P关于OB,OA的对称点P1,P2的连线交OA,OB于M,N两点,连接PM,PN,若OP=2,则△PMN的周长=.三、解答题(共6小题).21.计算:22.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是EC、DB的中点.求证:MN⊥BD.23.列方程解应用题:某校八年级(一)班和(二)班的同学,在双休日参加修整花卉的实践活动.已知(一)班比(二)班每小时多修整2盆花,(一)班修整66盆花所用的时间与(二)班修整60盆花所用时间相等.(一)班和(二)班的同学每小时各修整多少盆花?24.已知,如图,△ABC和△BDE都是等边三角形,且点D在AC上.(1)求证:AE∥BC;(2)直接写出AE,AD和AB之间的关系;25.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.例如:因为=a,,所以与,+1与﹣1互为有理化因式.(1)2﹣1的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:,用上述方法对进行分母有理化.(3)利用所需知识判断:若a=,b=2﹣,则a,b的关系是.(4)直接写结果:=.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=°,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上参考答案一、选择题(共10小题).1.﹣8的立方根是()A.2B.﹣2C.±2D.【分析】利用立方根的定义即可求解.解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故选:B.2.下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选:D.3.化简的结果是()A.B.C.D.2(x+1)【分析】将分式分母因式分解,再将除法转化为乘法进行计算.解:原式=×(x﹣1)=,故选:C.4.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F 【分析】根据全等三角形的判定定理,即可得出答.解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.5.把分式方程转化为一元一次方程时,方程两边需同乘()A.x B.2x C.x+4D.x(x+4)【分析】根据各分母寻找公分母x(x+4),方程两边乘最简公分母,可以把分式方程转化为整式方程.解:由两个分母(x+4)和x可得最简公分母为x(x+4),所以方程两边应同时乘x(x+4).故选:D.6.下列二次根式的运算正确的是()A.=﹣5B.C.D.【分析】根据二次根式的性质对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的乘法法则对D进行判断.解:A、原式=5,所以A选项错误;B、原式==,所以B选项正确;C、原式=4,所以C选项错误;D、原式=10×3=30,所以D选项错误.故选:B.7.已知如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若∠MON=60°,OP=4,则PQ的最小值是()A.2B.3C.4D.不能确定【分析】作PQ′⊥OM于Q′,根据角平分线的定义得到∠POQ′=30°,根据直角三角形的性质求出PQ′,根据垂线段最短解答.解:作PQ′⊥OM于Q′,∵∠MON=60°,OP平分∠MON,∴∠POQ′=30°,∴PQ′=OP=2,由垂线段最短可知,PQ的最小值是2,故选:A.8.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合,将圆沿数轴滚动1周,点A到达点A′的位置,则点A′表示的数是()A.π﹣1B.﹣π﹣1C.﹣π﹣1或π﹣1D.﹣π﹣1或π﹢1【分析】先求出圆的周长,再根据数轴的特点进行解答即可.解:∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A′表示的数是﹣π﹣1;当圆向右滚动时点A′表示的数是π﹣1.故选:C.9.如图,一根竹竿AB,斜靠在竖直的墙上,P是AB中点,A′B′表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中OP()A.下滑时,OP增大B.上升时,OP减小C.无论怎样滑动,OP不变D.只要滑动,OP就变化【分析】根据直角三角形斜边上的中线等于斜边的一半可得OP=AB.解:∵AO⊥BO,点P是AB的中点,∴OP=AB,∴在滑动的过程中OP的长度不变.故选:C.10.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.【分析】根据等腰三角形性质得出∠BAE=∠BEA,∠CAD=∠CDA,根据三角形内角和定理得出α=180°﹣2∠BAE①,β=180°﹣2∠CAD②,①+②得出α+β=360°﹣2(∠BAE+∠CAD),求出2∠DAE=α+β,即可求出∠DAE=(α+β).解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)]=360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.二、填空题(共10小题).11.﹣的相反数是.【分析】根据相反数的定义进行填空即可.解:∵﹣的相反数是,故答案为.12.若分式有意义,则x的取值范围为x≥﹣1且x≠2.【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,就可以求解.解:由题意得:x+1≥0,且x﹣2≠0,解得:x≥﹣1且x≠2,故答案为x≥﹣1且x≠2.13.如图,为了测量池塘两端点A,B间的距离,小亮先在平地上取一个可以直接到达点A 和点B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE.现测得DE=30米,则AB两点间的距离为30米.【分析】根据全等三角形的判定与性质得出AB的值.解:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE=30米,故答案为:30.14.有一个数值转换器,原理如图:当输入x为81时,输出的y的值是.【分析】将x的值代入数值转化器计算即可得到结果.解:将x=81代入得:=,将x=9代入得:=3,再将x=3代入得则输出y的值为.故答案为:.15.如图,在△ABC中,AC的垂直平分线交BC于点D,且AB=BD,若∠B=40°,则∠C=35°.【分析】首先根据等腰三角形的性质和∠B的度数求得∠ADB的度数,然后利用三角形的外角的性质求得答案即可.解:∵AB=BD,若∠B=40°,∴∠BAD=∠BDA=70°,∵AC的垂直平分线交BC于点D,∴AD=CD,∴∠DAC=∠C,∴∠C=∠ADB=70°=35°,故答案为:35°16.若最简二次根式与能合并,则x=4.【分析】根据题意可得与是同类二次根式,并且被开方数相同,进而可得方程,再解即可.解:由题意得:2x﹣1=x+3,解得:x=4,故答案为:4.17.如图所示,∠ABC=∠BAD=90°,AC=13,BC=5,AD=16,则BD的长为20.【分析】根据题意和勾股定理,可以先求的AB的长,再根据勾股定理,即可得到BD 的长.解:∵∠ABC=90°,AC=13,BC=5,∴AB==12,又∵∠BAD=90°,AD=16,∴BD==20,故答案为:20.18.若是正整数,则满足条件的n的最小正整数值为6.【分析】首先化简,然后再根据是正整数确定n的值.解:==3,∵是正整数,∴n的最小正整数值为6,故答案为:6.19.已知等腰三角形一腰上的中线将这个等腰三角形的周长分为9cm和15cm两部分,则这个等腰三角形的腰长为10cm.【分析】已知给出的9cm和15cm两部分,没有明确哪一部分含有底边,要分类讨论,设三角形的腰为x,分两种情况讨论:x+x=9或x+x=15.解:设三角形的腰为x,如图:△ABC是等腰三角形,AB=AC,BD是AC边上的中线,则有AB+AD=9或AB+AD=15,分下面两种情况解.(1)x+x=9,∴x=6,∵三角形的周长为9+15=24cm,∴三边长分别为6,6,12∵6+6=12,不符合三角形的三边关系∴舍去;(2)x+x=15∴x=10∵三角形的周长为24cm∴三边长分别为10,10,4.综上可知:这个等腰三角形的腰长为10cm.故答案为:10.20.已知:如图,∠AOB=45°,点P为∠AOB内部的点,点P关于OB,OA的对称点P1,P2的连线交OA,OB于M,N两点,连接PM,PN,若OP=2,则△PMN的周长=.【分析】根据题意和轴对称的性质,利用勾股定理可以得到P1P2的长,从而可以得到△PMN的周长.解:连接OP1,OP2,由题意可得,OP1=OP,OP2=OP,∠P1OB=∠POB,∠POA=∠P2OA,∵∠AOB=45°,OP=2,∴∠P1OP2=90°,OP1=OP2=2,∴P1P2=2,∵PN=P1N,PM=P2M,∴PM+PN+MN=P2M+P1N+MN=P1P2=2,即△PMN的周长=2,故答案为:2.三、解答题:本大题共6个小题,50分.解答应写出文字说明、证明过程或演算步骤. 21.计算:【分析】先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.解:原式=(6+﹣4)÷=÷=.22.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是EC、DB的中点.求证:MN⊥BD.【分析】根据直角三角形斜边上的中线等于斜边的一半可得DM=EC,BM=EC,从而得到DM=BM,再根据等腰三角形三线合一的性质证明.【解答】证明:∵BC⊥a,DE⊥b,点M是EC的中点,∴DM=EC,BM=EC,∴DM=BM,∵点N是BD的中点,∴MN⊥BD.23.列方程解应用题:某校八年级(一)班和(二)班的同学,在双休日参加修整花卉的实践活动.已知(一)班比(二)班每小时多修整2盆花,(一)班修整66盆花所用的时间与(二)班修整60盆花所用时间相等.(一)班和(二)班的同学每小时各修整多少盆花?【分析】设(一)班同学每小时修整x盆花,则(二)班同学每小时修整(x﹣2)盆花,根据工作时间=工作总量÷工作效率结合(一)班修整66盆花所用的时间与(二)班修整60盆花所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设(一)班同学每小时修整x盆花,则(二)班同学每小时修整(x﹣2)盆花,依题意,得:=,解得:x=22,经检验,x=22是原方程的解,且符合题意,∴x﹣2=20.答:(一)班同学每小时修整22盆花,(二)班同学每小时修整20盆花.24.已知,如图,△ABC和△BDE都是等边三角形,且点D在AC上.(1)求证:AE∥BC;(2)直接写出AE,AD和AB之间的关系;【分析】(1)由“SAS”可证∴△DBC≌△EBA,可得∴∠C=∠EAB=∠ABC,可得结论;(2)由全等三角形的性质可求解.【解答】证明:(1)∵△ABC和△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠DBE=∠C=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,∴∠DBC=∠EBA,∴△DBC≌△EBA(SAS),∴∠C=∠EAB=∠ABC,∴EA∥BC(2)∵△DBC≌△EBA,∴AE=CD,∵AD+CD=AC=AB,∴AE+AD=AB.25.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.例如:因为=a,,所以与,+1与﹣1互为有理化因式.(1)2﹣1的有理化因式是2+1;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:,用上述方法对进行分母有理化.(3)利用所需知识判断:若a=,b=2﹣,则a,b的关系是互为相反数.(4)直接写结果:=2019.【分析】(1)根据题目中的例子,可以得到2﹣1的有理化因式;(2)根据题目中的例子,可以对进行分母有理化;(3)根据分母有理化的方法,可以化简a,然后即可得到a和b的关系;(4)根据题意,利用分母有理数的的方法,可以求得所求式子的值.解:(1)2﹣1的有理化因式是2+1,故答案为:2+1;(2)==(2﹣)(2﹣)=7﹣4;(3)∵a==﹣(2﹣),b=2﹣,∴a=﹣b,即a和b互为相反数,故答案为:互为相反数;(4)=(﹣1++…+)×(+1)=(﹣1)×(+1)=2020﹣1=2019.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=60°,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得出结论.解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.。
人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案
13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P
M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111
天津市部分区2019-2020八年级上学期期末数学试卷及答案解析
天津市部分区2019-2020⼋年级上学期期末数学试卷及答案解析天津市部分区2019-2020⼋年级上学期期末数学试卷⼀、选择题(本⼤题共12⼩题,共36.0分)1. 下⾯四个图形中,属于轴对称图形的是( )A. B. C. D.2. 在△ABC 中,AB =5,AC =8,则BC 长可能是( )A. 3B. 8C. 13D. 143. 医学研究发现⼀种新病毒的直径约为0.000043毫⽶,则这个数⽤科学记数法表⽰为( )A. 0.43×10?4B. 0.43×104C. 4.3×10?4D. 4.3×10?5 4. 计算(23)2013×(?32)2014的结果是( )A. 23B. ?23C. 32D. ?32 5. 在式⼦3y x ,a π,3x+1,x+13,b 2b 中,分式有( )A. 1个B. 2个C. 3个D. 4个6. 如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A =80°,∠B =40°,则∠ACE 的⼤⼩是( )A. 30°B. 40°C. 50°D. 60°7. ⼀个多边形的内⾓和是外⾓和的2倍,这个多边形的边数为( )B. 6C. 7D. 88. 下列计算正确的是( )A. a 2?a 3=a 6B. (?2ab)2=4a 2b 2C. (a 2)3=a 5D. 3a 3b 2÷a 2b 2=3ab9. 如图,点E 、F 在AC 上,AD =BC ,AD//BC ,则添加下列哪⼀个条件后,仍⽆法判定△ADF≌△CBE 的是( )A. DF=BEB. ∠D=∠BC. AE=CFD.DF//BE10.如图,△ABC的⾯积为24,AD是BC边的中线,E为AD的中点,则△DCE的⾯积为()A. 5B. 6C. 7D. 811.如图,在长⽅形纸⽚ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对⾓线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. 3√3B. 6C. 4D. 512.⼩明要到距家2000⽶的学校上学,⼀天⼩明出发8分钟后,他的爸爸从家出发,在距离学校200⽶的地⽅追上他,已知爸爸⽐⼩明的速度快80⽶/分,求⼩明的速度,若设⼩明的速度是x⽶/分,则根据题意所列⽅程正确的是()A. 1800x?80?1800x=8 B. 1800=8+1800x?80C. 1800x+80?1800x=8 D. 1800x=8+1800x+80⼆、填空题(本⼤题共6⼩题,共18.0分)13.在平⾯直⾓坐标系中,点A(1,?3)关于x轴的对称点的坐标为________.14.若分式x?12x+3有意义,则x的取值范围是______ .15.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D和点E,若CE=2,则AB的长为______16.(1)若m+n=10,mn=24,则m2+n2=____________.(2)若a?b=13,a2?b2=39,则(a+b)2=____________.17.如图,点D、E分别在等边△ABC的边BC、AC上,且AE=CD,AD与BE相交于点F,则∠BFD的度数为______ .18.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,△PMN 的周长最⼩值为______.三、解答题(本⼤题共7⼩题,共46.0分)19.(1)分解因式:x3?x(2)分解因式:(x?2)2?2x+420.化简:(1)(4a?b)?(?2b)2(2)(x+2y?3)(x?2y+3)21.如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.22.计算:m2?6m+9m2?4?m?2 3?m23.解分式⽅程:2x2?4?x2?x=1.24.某⼯⼚现在平均每天⽐原计划多⽣产50台机器,现在⽣产600台机器所需时间与原计划⽣产450机器所需时间相同,求该⼯⼚原来平均每天⽣产多少台机器?25.等腰Rt△ABC中,AC=AB,∠BAC=90°,点D、E是AC上两点且AD=CE,AF⊥BD于点G,交BC于点F,连接EF,求证:∠1=∠2-------- 答案与解析 --------1.答案:C解析:解:A、不属于轴对称图形,故此选项错误;B、不属于轴对称图形,故此选项错误;C、属于轴对称图形,故此选项正确;D、不属于轴对称图形,故此选项错误;故选:C.根据轴对称图形的概念进⾏判断即可.本题考查的是轴对称图形的概念:如果⼀个图形沿⼀条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.答案:B解析:本题考查了三⾓形三边的关系:三⾓形任意两边之和⼤于第三边;三⾓形的两边差⼩于第三边.根据三⾓形三边的关系得到3解:∵AB=5,AC=8,∴3故选:B.3.答案:D解析:本题考查⽤科学记数法表⽰较⼩的数,根据科学计数法的表⽰法则求解即可.解:0.000043=4.3×10?5,故选D.4.答案:C解析:解:原式=[23×(?32)]2013×(?32)=32.故选C.根据幂的乘⽅和积的乘⽅的运算法则求解.本题考查了幂的乘⽅和积的乘⽅,解答本题的关键是掌握幂的乘⽅和积的乘⽅的运算法则.5.答案:C解析:本题主要考查分式的定义,注意π不是字母,是常数,所以aπ、x+13不是分式,是整式.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:3yx ,3x+1,b2b是分式.故选C.6.答案:D解析:本题考查了三⾓形的外⾓性质及⾓平分线的定义,由三⾓形的外⾓性质可得∠ACD的度数,再根据⾓平分线性质即可求得∠ACE的⼤⼩.解:∵点D在△ABC边BC的延长线上,∠A=80°,∠B=40°,∴∠ACD=120°∵CE平分∠ACD,∴∠ACE=12∠ACD=60°,故答案选D.7.答案:B解析:解:设这个多边形是n边形,根据题意,得(n?2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:B.多边形的外⾓和是360°,则内⾓和是2×360=720°.设这个多边形是n边形,内⾓和是(n?2)?180°,这样就得到⼀个关于n的⽅程组,从⽽求出边数n的值.本题考查了多边形的内⾓与外⾓,熟记内⾓和公式和外⾓和定理并列出⽅程是解题的关键.根据多边形的内⾓和定理,求边数的问题就可以转化为解⽅程的问题来解决.8.答案:B解析:解:A、a2?a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.根据同底数幂的乘法、积的乘⽅、幂的乘⽅、整式的除法,即可解答.本题考查了同底数幂的乘法、积的乘⽅、幂的乘⽅、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘⽅、幂的乘⽅、整式的除法的法则.9.答案:A解析:本题主要考查全等三⾓形的判定,掌握全等三⾓形的判定⽅法是解题的关键,即SSS、SAS、ASA、AAS和HL.由AD//BC可得∠A=∠C,再结合AD=BC,可再添加⼀组⾓相等,可添加AF=CE,可得出答案.解:∵AD//BC,∴∠A=∠C,且AD=BC,∴当DF=BE时,满⾜SSA,⽆法判定△ADF≌△CBE;当∠D=∠B时,满⾜ASA,可判定△ADF≌△CBE;当AE=CF时,可得AF=CE,满⾜SAS,可判定△ADF≌△CBE;当DF//BE时,可得∠AFD=∠BEC,满⾜AAS,可判定△ADF≌△CBE;故选A.10.答案:B解析:解:∵AD是BC边的中线,∴BD=CD,∵△ABC的⾯积为24,×S△ABC=12,∴S△ABD=S△ACD=12⼜∵E是AD中点,×S△ABD=6,∴S△ACE=S△DCE=12故选:B.×S△ABC=12,再由E是AD中点知S△ACE=S△DCE=由AD是BC边的中线知S△ABD=S△ACD=121×S△ABD=6.2本题考查了三⾓形的⾯积,主要利⽤了三⾓形的中线把三⾓形分成两个⾯积相等的三⾓形,原理为等底等⾼的三⾓形的⾯积相等.11.答案:B解析:本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三⾓形三线合⼀的性质得到AF=CF,于是得到结论.解:∵将△ABE沿直线AE折叠,点B 恰好落在对⾓线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴三⾓形ACE为等腰三⾓形,∴AF=CF,∴AC=2AB=6,故选B.12.答案:D解析:本题考查了由实际问题抽象出分式⽅程,分析题意后找到合适的等量关系是解决问题的关键.设⼩明的速度为x⽶/分,则爸爸的速度是(80+x)⽶/分,依据等量关系“⼩明⾛1800⽶的时间=爸爸⾛1800⽶的时间+8分钟”列出⽅程即可.解:设⼩明的速度为x⽶/分,则爸爸的速度是(80+x)⽶/分,依题意得:1800x =8+1800x+80.故选D.13.答案:(1,3)解析:解:点A(1,?3)关于x轴的对称点的坐标为:(1,3).故答案为:(1,3).直接利⽤关于x轴对称点的性质得出答案.此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14.答案:x≠?32解析:【分析】本题考查了分式有意义的条件,分式有意义,则分母不等于零.根据分母不为零,得到关于x的不等式,即可求出x的取值范围.【解答】解:∵分式x?12x+3有意义,∴2x+3≠0.解得:x≠?32.故答案为:x≠?32.15.答案:4√3解析:解:∵在Rt△ABC中,∠C=90°,∠ABC=60°,∴∠A=30°,∵DE是线段AB的垂直平分线,∴EA=EB,ED⊥AB,∴∠A=∠EBA=30°,∴∠EBC=∠ABC?∠EBA=30°,⼜∵BC⊥AC,ED⊥AB,∴DE=CE=2.在直⾓三⾓形ADE中,DE=2,∠A=30°,∴AE=2DE=4,∴AD=√AE2?DE2=2√3,∴AB=2AD=4√3.故答案为:4√3.由ED是线段AB的垂直平分线,根据线段垂直平分线定理得到EA=EB,根据等边对等⾓可得∠A和∠ABE相等,由∠A的度数求出∠ABE的度数,得出∠EBC=∠EBA=30°,再由⾓平分线上的点到⾓的两边的距离相等得出DE=CE=2.由30°⾓所对的直⾓边等于斜边的⼀半,可得AE=2ED=4,由勾股定理求出AD,那么AB=2AD.此题考查了线段垂直平分线的性质,⾓平分线的性质,含30°⾓的直⾓三⾓形的性质,勾股定理,解题的关键是熟练掌握含30°⾓的直⾓三⾓形的性质,即在直⾓三⾓形中,30°⾓所对的直⾓边等于斜边的⼀半.16.答案:(1)52;(2)9.解析:本题考查了完全平⽅公式和平⽅差公式的应⽤,解题的关键是对公式正确的理解.(1)利⽤完全平⽅公式把条件整体代⼊整理即可求解.(2)利⽤平⽅差公式展开,求得a+b的值,再代⼊数据计算即可.解:(1)∵m+n=10,mn=24,∴m2+n2=(m+n)2?2mn=100?48=52;(2):∵a2?b2=(a+b)(a?b)=13×(a+b)=39,∴a+b=3,∴(a+b)2=32=9.故本题答案为52;9.17.答案:60°解析:解::∵△ABC是等边三⾓形,∴∠BAE=∠C=60°,AB=AC,在△ABE和△CAD中,{AB=CA∠BAE=∠C AE=CD,∴△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BFD=∠ABE+∠BAF=∠CAD+∠BAF=60°,故答案为60°证明△ABE≌△CAD,推出∠ABE=∠CAD,由∠BFD=∠ABE+∠BAF=∠CAD+∠BAF=60°,即可解决问题.本题考查全等三⾓形的判定和性质、等边三⾓形的性质等知识,解题的关键是正确寻找全等三⾓形解决问题,属于中考常考题型.18.答案:6解析:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三⾓形,∴CD=OC=OD=6.∴△PMN的周长的最⼩值=PM+MN+PN=CM+MN+DN=CD=6,故答案为:6作点P关于OA的对称点C,关于OB的对称点D,当点M、N在CD上时,△PMN的周长最⼩,证明△COD是等边三⾓形,即可解答.此题主要考查轴对称--最短路线问题,等边三⾓形的判定与性质,关键是做出对称点.19.答案:解:(1)原式=x(x2?1)=x(x+1)(x?1);(2)原式=(x?2)2?2(x?2)=(x?2)(x?4).解析:(1)⾸先提取公因式x,再利⽤平⽅差公式分解因式即可;(2)直接提取公因式(x?2)进⽽分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确找出公因式是解题关键.20.答案:解:(1)原式=(4a?b)?4b2=16ab2?4b3;(2)原式=[x+(2y?3)][x?(2y?3)]=x2?(2y?3)2=x2?4y2+12y?9.解析:(1)先算乘⽅,再根据多项式乘以单项式法则算乘法即可;(2)先变形,再根据平⽅差公式进⾏计算,最后根据完全平⽅公式求出即可.本题考查了整式的混合运算,能正确根据整式的运算法则进⾏化简是解此题的关键.21.答案:证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,{∠ACB=∠CED BC=DE∠ABC=∠CDE,∴△ABC≌△CDE(ASA),∴AB=CD.解析:证明△ABC≌△CDE(ASA),可得出结论.本题考查了全等三⾓形的判定和性质;熟练掌握三⾓形全等的判定定理是解题的关键.22.答案:解:原式=(m?3)2(m+2)(m?2)×m?2(m3)=?m?3m+2.解析:先把分⼦、分母因式分解,再按分式乘法法则运算即可.本题考查了分式的乘法,理解和熟练运⽤分式的乘法法则是关键.注意分式运算的结果需化为整式或最简分式.23.答案:解:⽅程两边同乘(x2?4),得2+x(x+2)=x2?4,整理得2+x2+2x=x2?4,2x=?6,x=?3,检验:当x=?3时,x2?4=5≠0,∴原⽅程的解为x=?3.解析:分式⽅程去分母转化为整式⽅程,求出整式⽅程的解得到x的值,经检验即可得到分式⽅程的解.此题考查了解分式⽅程,解分式⽅程注意要检验.24.答案:解:设该⼯⼚原来平均每天⽣产x台机器,则现在平均每天⽣产(x+50)台机器.根据题意得:600x+50=450x,解得:x=150.经检验知,x=150是原⽅程的根.答:该⼯⼚原来平均每天⽣产150台机器.解析:设原计划平均每天⽣产x台机器,则现在平均每天⽣产(x+50)台机器,根据⼯作时间=⼯作总量÷⼯作效率结合现在⽣产600台机器所需要时间与原计划⽣产450台机器所需时间相同,即可得出关于x的分式⽅程,解之经检验后即可得出结论.本题考查了分式⽅程的应⽤,找准等量关系,正确列出分式⽅程是解题的关键.25.答案:证明:过点C作CH⊥AC,交AF的延长线于点H,⼜∵∠BAC=90°,∴∠HCA=∠DAB=90°,∵∠BAC=90°,AG⊥BD,∴∠DAG+∠1=90°,∠ABD+∠1=90°,∴∠ABD=∠CAH,⼜∵AB=CA,∠HCA=∠DAB,∴△ABD≌△CAH,∴AD=CH,∠1=∠H,⼜∵AD=CE,∴CH=CE,∵∠ACB=45°,∠ACH=90°,∴∠BCH=∠ACB=45°,⼜∵FC=FC,CH=CE,∴△ECF≌△HCF,∴∠2=∠H,⼜∵∠1=∠H,∴∠1=∠2.解析:本题主要考查的是等腰三⾓形的性质,全等三⾓形的判定及性质的有关知识,作辅助线构建全等三⾓形和直⾓三⾓形,证明△ABD≌△CAH,得AD=CH,∠1=∠H;得出CE=CH,所以继续证明△ECF≌△HCF,得∠2=∠H,从⽽得出结论.。
山东省临沂市蒙阴县2019-2020学年八年级上学期期末数学试题(解析版)
2019—2020学年度上学期期末考试试题八年级数学一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.若一个三角形的两边长分别是4、9,则这个三角形的第三边的长可能是()A. 3B. 5C. 8D. 13C【分析】根据三角形任意两边之和大于第三边,两边只差小于第三边,解答即可.【详解】∵4+9=13>第三边,9-4=5<第三边,∴第三边长的范围是:5<第三边<13.故答案是C.【点睛】本题考查三角形边长之间的关系,熟练掌握三边之间的关系是解决本题的关键.2.下列图形中不是轴对称图形的是()A. B. C. D.C【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.解答即可.【详解】在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,由此判断A、B、D均符合轴对称图形的定义.选项C不符合轴对称图形的定义.故答案是C.【点睛】本题考查轴对称图形的定义,熟练掌握并理解轴对称图形的定义是解决本题的关键.3.在平面直角坐标系中,若点P(-3,a)与点Q(b,-4)关于x轴对称,则a+b的值为()A. 7B. 1C. -7D. -1B【分析】根据关于x 轴对称的对应点的坐标特征,即横坐标相同,纵坐标相反,解决即可. 【详解】∵点P (-3,a )与点Q (b,-4)关于x 轴对称, ∴b=-3,a=4 ∴a+b=4-3=1 故答案是B【点睛】本题考查了关于x 轴对称的对应点的坐标关系特征,熟练掌握坐标特征是解决本题的关键. 4.把分式22(0,0)xx y x y ≠≠+中的分子分母K 中的x 、y 都同时扩大为原来的2倍,那么分式的值将是原分式值的( ) A. 2倍 B. 4倍C. 一半D. 不变C 【分析】根据整数指数幂及分式化简的步骤,将x ,y 分别扩大2倍进行计算化简即可.【详解】()()()()22222222 ==4+2+2x x x x y x y x +2y 故答案是C.【点睛】本题考查了整数指数幂及分式的化简,熟练掌握分式的化简是解决本题的关键. 5.下列等式从左到右的变形,属于因式分解的是( ) A. a (x -y )=ax -ay B. x 2+2x +1=x (x +2)+1C. (x +1)(x +3)=x 2+4x +3D. x 3-x =x (x +1)(x -1)D 【分析】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式,又叫做因式分解,解答即可.【详解】根据因式分解的定义:把一个多项式化成几个整式乘积的形式,叫做分解因式,又叫做因式分解,由此判断A 、B 、C 仍是多项式的和或差,只有D 选项符合因式分解的定义.【点睛】本题考查因式分解的定义,熟练理解因式分解的定义是解决本题的关键. 6.对于非零实数a b 、,规定11a b b a⊕=-,若()22x 11⊕-=,则x 的值为A. 56B.54C.32D. 16-A试题分析:∵11a b b a ⊕=-,∴()1122x 12x 12⊕-=--. 又∵()22x 11⊕-=,∴1112x 12-=-. 解这个分式方程并检验,得5x 6=.故选A .7. 下列运算错误的是A. ()()22a b 1b a -=- B. a b1a b --=-+ C. 0.5a b 5a 10b0.2a 0.3b 2a 3b++=--D.a b b aa b b a--=++ D试题分析:根据分式的运算法则逐一计算作出判断:A .()()()()2222a b a b 1b a a b --==--,计算正确;B .a b a b1a b a b--+=-=-++,计算正确; C .()()100.5a b 0.5a b 5a 10b0.2a 0.3b 100.2a 0.3b 2a 3b+++==---,计算正确; D .()b a a b b aa b b a b a----==-+++,计算错误. 故选D .8.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是( )A. 90oB. 110oC. 125oD. 135oC【分析】根据等要三角形的性质,依题意可得等腰三角形的顶角的度数为110°,有根据三角形的一个外角等于和它不相邻的内角的和可求得最大角的度数.【详解】根据等腰三角形的性质:等边对等角,以及三角形内角和是180°,︒-︒⨯=︒ .解得等腰三角形的顶角是180352110根据三角形的一个外角等于和它不相邻的内角的和,求得四边形的第四个角是90°+35°=125°.比较四边形的四个内角,最大角的度数是125°.故答案是125°.故选C 【点睛】本题考查了等腰三角形的性质、三角形的内角和定理和三角形外角的性质,求出等腰三角形的顶角的度数是解决本题的关键.9. 如图,AC、BD相交于点O,OA=OB,OC=OD,则图中全等三角形的对数是().A. 1对B. 2对C. 3对D. 4对C试题分析:已知OA=OB,∠DOA=∠COB,OC=OD,即可得△OAD≌△OBC,所以∠ADB=∠BCA,AD=BC,再由OA=OB,OC=OD,易得AC=-BD,又因AB=BA,利用SSS即可判定△ABD≌△BAC,同理可证△ACD≌△BDC,故答案选C.考点:全等三角形的判定及性质.10.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A. BD=CEB. AD=AEC. DA=DED. BE=CDC【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.11. 小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是A.1440144010x100x-=-B.1440144010x x100=++C. 1440144010x x100=+-D.1440144010x100x-=+B【详解】小朱与爸爸都走了1500米-60米=1440米,小朱速度为x米/ 分,则爸爸速度为(x+100)米/ 分,小朱走1440米用时1440x分钟,爸爸走1440米用时1440x100+分钟,根据小朱多用时10分钟,可列方程为:1440144010x x100=++.故选B.12.如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,C所在直线为y轴,BC所在直线为x 轴建立平面直角坐标系,在坐标轴上取一点M使△MAB 为等腰三角形,符合条件的M 点有()A. 6个B. 7个C. 8个D. 9个C 【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可. 【详解】解:如图,①以A 为圆心,AB 为半径画圆,交直线AC 有二点M 1,M 2,交BC 有一点M 3,(此时AB =AM ); ②以B 为圆心,BA 为半径画圆,交直线BC 有二点M 5,M 4,交AC 有一点M 6(此时BM =BA ). ③AB 的垂直平分线交AC 一点M 7(MA =MB ),交直线BC 于点M 8; ∴符合条件的点有8个. 故选:C .【点睛】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.二.填空题:你能填得又对又快吗?(把答案填在答题卡上,每小题3分,共21分)13.因式分解:322x x x -+ =______________________.2x x-(1)【分析】先提公因式x,再利用完全平方公式,即可解答.【详解】x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为x(x﹣1)2.【点睛】本题考查了提公因式法和公式法进行因式分解,解决本题的关键是熟记提公因式法和公式法.14.如图,若∆ABC≌∆DEF,BE=18,BF=5,则FC 的长度是_____.8【分析】因为△ABC≌△DEF,所以BC=EF,即BF=CE,又BE=18,BF=5,所以CE=5,CF=BE-CE-BF=18-5-5=8.【详解】解:∵△ABC≌△DEF,∴BC=EF,∵BF=BC-FC,CE=FE-FC,∴BF=CE,∵BF=5,∴CE=5,∴CF=BE-CE-BF=18-5-5=8.故答案为8.【点睛】本题考查了全等三角形的性质:全等三角形的对应边相等的应用.解题的关键是掌握全等三角形的性质.k=,15.我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k.若2则该等腰三角形的顶角为______________度.90【分析】根据等腰三角形的性质得出∠B =∠C ,根据“特征值”的定义得到∠A =2∠B ,根据三角形内角和定理和已知得出4∠B =180°,求解即可得出结论. 【详解】∵△ABC 中,AB =AC ,∴∠B =∠C .∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =2,∴∠A :∠B =2,即∠A =2∠B .∵∠A +∠B +∠C =180°,∴4∠B =180°,∴∠B =45°,∴∠A =2∠B =90°.故答案为90.【点睛】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出4∠B =180°是解答此题的关键.16.化简:2x 4x 22x+=--_____.x 2+试题分析:先转化为同分母(x ﹣2)的分式相加减,然后约分即可得解:()()222x 2x 2x 4x 4x 4x 2x 22x x 22x x 2x 2+--+=-===+------. 17.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为 .551x 2x 6-= 如果设骑自行车的速度为x 千米/时,那么乘汽车的速度为2x 千米/时,根据“他骑自行车前往体育馆比乘汽车多用10分钟”,得到等量关系为:骑自行车所用的时间﹣乘汽车所用的时间=16,据此列出方程即可. 解:设骑自行车的速度为x 千米/时,那么乘汽车的速度为2x 千米/时,由题意,得5x ﹣52x =16. 故答案为5x ﹣52x =16.18.如图,已知点C 是∠AOB 平分线上一点,点E ,F 分别在边OA ,OB 上,如果要得到OE=OF ,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为____①∠OCE=∠OCF ;②∠OEC=∠OFC ;③EC=FC ;④EF ⊥OC .①②④【详解】若添加①,可利用ASA 证得△OEC ≌△OFC ,那么OE=OF ; 若添加②,可利用AAS 证得△OEC ≌△OFC ,那么OE =OF ;若添加③,所得条件为两边及其中一边的对角对应相等,不一定能证得两三角形全等,故错误; 若添加④,由三角形内角和,可证∠OEF=∠OFE ,可证OE=OF 故答案①②④.19.请你计算:()()11x x -+,()()211x x x -++,…,猜想()()211n x x xx -+++⋅⋅⋅+的结果是________.11n x +- (n 为正整数)【分析】根据整式乘法,分别将整式进行化简,以此寻找结果与式子之间存在的规律和关系.【详解】分别将前两个式子进行化简,推算出第三个式子,以此找出结果与式子之间存在的关系:()()221111x x x x x x -+=+--=-,()()222331111x x x x x x x x x -++=++---=-, ()()24341111x x x x x x -+++=-=⋯-⋯+,由此猜想:()()21111nn x x x xx+-+++⋅⋅⋅+=-故答案是11n x +- (n 为正整数)【点睛】本题考查了整式乘法,正确利用多项式乘多项式将整式进行化简计算是解决本题的关键.三.解答题:一定要细心,你能行!(共63分)20.因式分解 (1)39m m -(2)()()()2x y x y x y --+-(1)(3)(3)m m m +-;(2)2()y x y --. 【分析】根据提公因式法和公式法分别将两式进行因式分解即能解决问题. 【详解】解:(1)39m m - =2(9)m m - =(3)(3)m m m +-(2)()()()2x y x y x y --+- =[]()()()x y x y x y ---+ =2()y x y --【点睛】本题考查了因式分解的常见方法,熟练掌握提公因式法和公式法是解决本题的关键. 21.解方程与化简 (1)解方程:21133x xx x =-++; (2)当2x =时,求2291(1)693x x x x -⋅+-++的值.(1)34x =-;(2)4.3x x +-,-6. 【分析】(1)根据等式和分式的基本性质将分式方程转化为整式方程,然后根据整式方程的解答步骤进行解方程即可.(2)根据分式基本性质,先将分式进行化简,然后将x=2代入求值即可. 【详解】(1) 解:方程两边乘最简公分母3(1)x +,得323(1)x x x =-+, 解得34x =-. 检验:当34x =-时,33(1)3(1)04x +=-+≠. ∴34x =-是原分式方程的解. (2)解:原式=2(3)(3)44.(3)33x x x x x x x +-++⋅=-+- 当2x =时,原式=24 6.23+=-- 【点睛】本题考查了分式方程的解法和分式的化简求值,解决本题的关键是(1)找到最简公分母将分式方程转化为整式方程进行求解,(2)熟练掌握因式分解的方法将分式化成最简分式.22.如图,在ABC ∆中,AD 平分BAC ∠,90C ∠=︒,DE AB ⊥于点E ,点F 在AC 上,BD DF =. (1)求证:CF EB =.(2)若12AB =,8AF =,求CF 的长.(1)见解析;(2)2CF =.【分析】(1)根据HL 定理判定Rt Rt CDF EDB ∆∆≌,从而得出CF EB =;(2)根据HL 定理判定Rt Rt ACD AED ∆∆≌,得出AC=AE,设CF x =,则12AE x =-,812x x +=-,解出x 的值即可解决问题.【详解】(1)证明:AD Q 平分BAC ∠,90C ∠=︒,DE AB ⊥于E ,DE DC ∴=.在Rt CDF ∆与Rt EDB ∆中,Q DF DB DC DE =⎧⎨=⎩, Rt CDF ∴∆≌Rt (HL)EDB ∆,CF EB ∴=.(2)解:设CF x =,则12AE x =-,AD Q 平分BAC ∠,DE AB ⊥,CD DE ∴=.在ACD ∆与AED ∆中,Q AD AD CD DE =⎧⎨=⎩, ACD ∴∆≌(HL)AED ∆,AC AE ∴=,即812x x +=-,解得2x =,即2CF =.【点睛】本题主要考查了直角三角形的判定定理HL ,熟练掌握HL 定理,找出相等关系量是解决本题的关键. 23.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.我市某汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元? 今年1—5月份每辆车的销售价格是4万元.【分析】设今年1—5月份每辆车的销售价格是x 万元,根据销售量相同列出方程,求解并检验即可.【详解】解:设今年1—5月份每辆车的销售价格是x 万元,依题意得 5000(120%)50001x x -=+. 解得4x =.经检验,4x =是原方程的解,并且符合题意.答: 今年1—5月份每辆车的销售价格是4万元.【点睛】本题考查分式方程的应用,理解题意并找到合适的等量关系是解题关键.24.如图,直角坐标系中,△ABC 的三个顶点的坐标分别为(2,1),(﹣1,3),(﹣3,2).(1)在图中作出△ABC 关于x 轴对称的△A ′B ′C ′,并写出点A ′的坐标为 ,点B 的坐标为 ,点C ′的坐标为 ;(2)求△ABC 的面积;(3)若点P (a ,a ﹣2)与点Q 关于y 轴对称,若PQ =8,求点P 的坐标.(1)见解析,A ′(2,﹣1),B ′(﹣1,﹣3),C ′(﹣3,﹣2);(2)3.5;(3)点P 的坐标为(4,2)或(﹣4,﹣6).【分析】(1)根据关于x 轴对称的点的坐标特征,横坐标相反,纵坐标相同即可求得对应点的坐标.(2)根据割补法将求△ABC 的面积问题转化为求其它图形的面积和或面积差问题.(3)根据关于y 轴对称的点的坐标特征,横坐标相反,纵坐标相同将Q 点的坐标用a 表示出来,然后列出线段PQ 的长的关系式,求解即可.【详解】解: (1)如图,△A′B′C′为所作; A′(2,﹣1),B′(﹣1,﹣3),C′(﹣3,﹣2); (2)ABC ADB BEC CFA ADEF S S S S S =---V V V V 矩形=111 25231215 222⨯-⨯⨯-⨯⨯-⨯⨯=3.5(3)∵点P(a,a﹣2)与点Q关于y轴对称,∴Q(﹣a,a﹣2),∵PQ=8,∴|a﹣(﹣a)|=8,解得a=4或a=﹣4,∴点P的坐标为(4,2)或(﹣4,﹣6).【点睛】本题考查关于x轴y轴成轴对称的对应点坐标间的关系,熟练掌握对应点坐标的关系是解决本题的关键.25.如图:已知在△ABC中,∠ACB=90°,AC=BC=1,点D是AB上任意一点,AE⊥AB,且AE=BD,DE 与AC相交于点F.(1)试判断△CDE的形状,并说明理由.(2)是否存在点D,使AE=AF?如果存在,求出此时AD的长,如果不存在,请说明理由.(1)△CDE是等腰直角三角形,见解析;(2)存在AD=1.【分析】(1)根据等腰直角三角形的性质求∠B=∠BAC=45°,再求出∠CAE=45°,从而得到∠B=∠CAE,再利用“边角边”证明△ACE和△BCD全等,根据全等三角形对应边相等可得CD=CE,全等三角形对应角相等可得∠ACE=∠BCD,再求出∠DCE=90°,从而得解;(2)根据等腰三角形两底角相等求出∠AEF=∠AFE=67.5°,再根据直角三角形两锐角互余求出∠ADE=22.5",然后求出∠ADC=67.5",利用三角形的内角和定理求出∠ACD=67.5°,从而得到∠ACD=∠ADC,根据等角对等边即可得到AD=AC.【详解】解:(1)△CDE是等腰直角三角形.理由如下:∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵AE⊥AB,∴∠CAE=90°-45°=45°,∴∠B=∠CAE,在△ACE和△BCD中,AE BDB CAE AC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≌△BCD(SAS),∴CD=CE,∠ACE=∠BCD,∵∠ACD+∠BCD=∠ACB=90°,∴∠DCE=∠ACD+∠ACE=90°,∴△CDE是等腰直角三角形;(2)存在AD=1..理由如下:∵AE=AF,∠CAE=45°,∴∠AEF=∠AFE=12(180°-45°)=67.5°,.∴∠ADE=90°-67.5°=22.5°,∵△CDE是等腰直角三角形,∴∠CDE=45°,∴∠ADC=22.5°+45°=67.5°,在△ACD中,∠ACD=180°-45°-67.5°=67.5°,∴∠ACD=∠ADC,∴AD=AC=1.【点睛】本题考查等腰三角形的性质,直角三角形两锐角关系,熟练掌握相关性质是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学试题
温馨提示:
1.本试卷共6页,满分为120分。
考试时间90分钟。
2.答卷前务必将自己的学校、班级、姓名、座位号填写在本试卷相应位置上。
一、选择题(每小题3分,共30分)
1.要使分式有意义,x 的取值范围满足( )
A .x ≠0
B .x=0
C .x >0
D .x <0
2.下列大学的校徽图案是轴对称图形的是( )
A .清华大学
B .北京大学
C .中国人民大学
D .浙江大学
3. 下列计算正确的是( )
A .()2222x x = B.632x x x =⋅ C.235x x x =÷
D .()53
2--=x x 4. 下列四个图形中,线段BE 是△ABC 的高的是( )
5. 下列等式从左到右的变形,属于因式分解的是( )
A .()ay ax y x a -=-
B .()12122++=++x x x x
C .()()34312++=++x x x x
D .()()113-+=-x x x x x
6. 如图,△ABC ≌ΔADE ,∠B =80°,∠C =30°,∠DAC =35°,
则∠EAC 的度数为( )
A .40°
B .35°
C .30°
D .25°
A. B. C. D.
7.已知点P (1,a )与Q (b ,2)关于x 轴对称,则b a -的值为( )
A.1-
B. 1
C.3-
D. 3 8. 如果把分式 中的x 、y 都扩大2倍,则分式的值是( )
A.不变
B.扩大2倍
C. 扩大4倍
D.缩小到原来的
9.如图,△ABC 中,AB=AC ,∠C=72°,AB 的垂直平分线DE
交AC 于D ,交AB 于E ,则∠BDC 的度数为( )
A .36°
B .60°
C .72°
D .82°
10. 如图,在△ABC 中,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,
PS ⊥AC 于S ,则三个结论:①AS=AR ;②QP ∥AR ;
③△BPR ≌△QPS 中正确的是( )
A.①②③
B.①② 第9题图 第10题图 y
x xy +。