超高效液相色谱(UPLC)的应用

合集下载

色谱分析(中国药科大学)超高效液相色谱(UPLC)

色谱分析(中国药科大学)超高效液相色谱(UPLC)

超高效液相色谱(UPLC)超高效液相色谱技术(ultra performance liquid chcromatography,简称UPLC)是一种综合了小颗粒填料、非常低系统体积(死体积)及快速检测手段等全新的检测技术。

在全面提升HPLC的速度、灵敏度及分离度的同时,保留其原有的实用性及原理。

基于小颗粒技术的UPLC,并非普通HPLC系统改进而成。

它不但需要耐压、稳定的小颗粒填料(可达1.7µm),而且需要耐压的色谱系统(>15,000psi)、最低交叉污染的快速进样器、快速检测器及优化的系统体积等诸多方面的保障,以充分发挥小颗粒技术优势。

这就需要对系统所有硬件和软件的进行全面创新。

世界第一个商品化UPLC产品是Waters ACQUITY UPLC TM超高效液相色谱系统,它于2004年3月投入市场。

图1:填料技术的沿革1.小颗粒填料改善分离的理论与科学基础液相色谱30年的发展史是颗粒技术的发展史。

颗粒大小的改变直接影响到柱效,从而对分离结果产生直接影响。

由上图可知:随着颗粒度的不断降低,色谱分离度不断提高。

事实上,上述规律的理论基础是著名的Van Deemeter方程。

Van Deemeter方程是色谱科学家预测颗粒度变化而引起的色谱变化的根本依据。

Van Deemeter曲线(见图2)预测最佳柱效与相应的流动相流速。

由Van Deemeter方程得知:随着颗粒度减小,相应的理论塔板高度(HETP)也下降,得到的柱效会更高。

还应该注意到1.7 µm颗粒的HETP最小值区域扩大了(见图2),这表明可以在比大颗粒更宽的流量范围内得到最高的柱效,结果可以不损失高分离度的同时来适当提高流动相的流速(分析速度)。

小颗粒填料为色谱分离带来如此的高柱效和速度优势,使得利用小颗粒技术成为色谱科学家梦寐以求的目标。

然而HPLC系统的设计,一直难于发挥出最小颗粒的优点。

小颗粒技术的运用,不但要求仪器在超出目前限度(6000 psi/ 400 bar)的压力下工作,同时要求仪器系统的死体积要更小,以便不影响梯度性能,而且还要检测器能高速检测出峰宽只有几秒的色谱峰。

waters_uplc_超高液相色谱仪使用方法_概述及解释说明

waters_uplc_超高液相色谱仪使用方法_概述及解释说明

waters uplc 超高液相色谱仪使用方法概述及解释说明1. 引言1.1 概述本文旨在介绍和解释Waters UPLC超高液相色谱仪的使用方法。

超高液相色谱技术作为一种快速、高效、灵敏的分析方法,已广泛应用于生命科学、环境监测、药物研发等领域。

而Waters UPLC超高液相色谱仪则作为当前市场上领先的仪器之一,拥有先进的特点和优势。

1.2 文章结构本文将按照如下结构来进行介绍和说明:首先,在第2部分中,我们将对Waters UPLC超高液相色谱仪进行详细的介绍,包括其工作原理、构成和组件以及特点和优势。

然后,在第3部分中,我们将概述超高液相色谱分析方法的基本步骤,并重点讨论样品准备工作、色谱柱和流动相选择与优化以及仪器参数设置与调节等方面的内容。

接着,在第4部分中,我们将详细解释使用Waters UPLC超高液相色谱仪的具体步骤和操作说明,包括开机与准备工作、样品处理与注射操作以及方法运行与数据分析等方面。

最后,在第5部分中,我们将总结使用过程中的经验和解决技巧,并展望超高液相色谱在分析领域中的发展方向和应用前景。

1.3 目的本文旨在帮助读者全面了解Waters UPLC超高液相色谱仪的使用方法,包括仪器介绍、分析方法概述以及具体操作步骤。

通过阅读本文,读者将能够熟练运用该仪器进行高效、准确的样品分析,并对超高液相色谱技术在各个领域中的应用前景有更深入的了解。

同时,我们也希望通过分享使用经验和问题解决技巧,能够为相关科研人员提供一些实用的参考和指导。

2. Waters UPLC超高液相色谱仪介绍2.1 原理Waters UPLC(Ultra Performance Liquid Chromatography)超高液相色谱仪是一种高效的色谱分析技术。

其原理基于传统液相色谱,通过使用减小粒径和增强填充剂的方式,实现更高的分离效率和分辨率。

UPLC仪器利用高压泵将样品溶液加速通过色谱柱,在极短的时间内完成分离、富集和检测。

高效液相色谱法测定大豆中游离氨基酸含量

高效液相色谱法测定大豆中游离氨基酸含量

高效液相色谱法测定大豆中游离氨基酸含量一、本文概述本文旨在探讨高效液相色谱法(HPLC)在大豆中游离氨基酸含量测定中的应用。

作为一种重要的植物蛋白来源,大豆中的氨基酸组成对于其营养价值及食品工业应用具有重要意义。

游离氨基酸作为大豆蛋白质水解的产物,其含量直接反映了大豆的蛋白质质量和营养价值。

因此,准确测定大豆中游离氨基酸的含量对于评估大豆品质及开发高附加值产品至关重要。

高效液相色谱法作为一种高效、准确的分离分析技术,在氨基酸分析领域具有广泛应用。

本文将详细介绍高效液相色谱法的基本原理、样品处理方法、色谱条件优化以及结果计算与分析等方面的内容,并通过实验验证该方法的可行性和准确性。

本文还将讨论高效液相色谱法在大豆游离氨基酸含量测定中的优势及局限性,以期为相关领域的研究和实践提供有益的参考。

二、实验材料与方法(1)大豆样品:选择新鲜、无病虫害、无杂质的大豆作为实验材料,经过清洗、烘干、破碎后备用。

(2)试剂:实验所需试剂包括高效液相色谱仪用流动相(如乙腈、甲醇等)、衍生化试剂(如OPA、FMOC等)、标准品氨基酸等,均为分析纯或更高纯度。

(3)仪器:高效液相色谱仪(配备紫外检测器或荧光检测器)、离心机、涡旋混合器、水浴锅、移液枪等。

(1)样品处理:称取适量大豆样品,加入适量的水或缓冲液,进行匀浆处理。

然后,将匀浆液进行离心,取上清液作为游离氨基酸提取液。

(2)衍生化处理:取一定体积的游离氨基酸提取液,加入适量的衍生化试剂,进行衍生化反应。

衍生化反应的目的是将氨基酸转化为易于检测的衍生物,提高检测灵敏度和准确性。

(3)高效液相色谱分析:将衍生化后的样品进行高效液相色谱分析。

选择合适的流动相和色谱柱,设置合适的检测波长或激发/发射波长,记录色谱图和峰面积。

(4)数据处理:根据标准品氨基酸的色谱图和峰面积,绘制标准曲线。

然后,根据样品的色谱图和峰面积,结合标准曲线,计算样品中游离氨基酸的含量。

本实验采用高效液相色谱法测定大豆中游离氨基酸的含量,通过样品处理、衍生化处理、高效液相色谱分析和数据处理等步骤,实现对大豆中游离氨基酸的快速、准确测定。

色谱分析(中国药科大学)超高效液相色谱(UPLC)

色谱分析(中国药科大学)超高效液相色谱(UPLC)

超高效液相色谱(UPLC)超高效液相色谱技术(ultra performance liquid chcromatography,简称UPLC)是一种综合了小颗粒填料、非常低系统体积(死体积)及快速检测手段等全新的检测技术。

在全面提升HPLC的速度、灵敏度及分离度的同时,保留其原有的实用性及原理。

基于小颗粒技术的UPLC,并非普通HPLC系统改进而成。

它不但需要耐压、稳定的小颗粒填料(可达1.7µm),而且需要耐压的色谱系统(>15,000psi)、最低交叉污染的快速进样器、快速检测器及优化的系统体积等诸多方面的保障,以充分发挥小颗粒技术优势。

这就需要对系统所有硬件和软件的进行全面创新。

世界第一个商品化UPLC产品是Waters ACQUITY UPLC TM超高效液相色谱系统,它于2004年3月投入市场。

图1:填料技术的沿革1.小颗粒填料改善分离的理论与科学基础液相色谱30年的发展史是颗粒技术的发展史。

颗粒大小的改变直接影响到柱效,从而对分离结果产生直接影响。

由上图可知:随着颗粒度的不断降低,色谱分离度不断提高。

事实上,上述规律的理论基础是著名的Van Deemeter方程。

Van Deemeter方程是色谱科学家预测颗粒度变化而引起的色谱变化的根本依据。

Van Deemeter曲线(见图2)预测最佳柱效与相应的流动相流速。

由Van Deemeter方程得知:随着颗粒度减小,相应的理论塔板高度(HETP)也下降,得到的柱效会更高。

还应该注意到1.7 µm颗粒的HETP最小值区域扩大了(见图2),这表明可以在比大颗粒更宽的流量范围内得到最高的柱效,结果可以不损失高分离度的同时来适当提高流动相的流速(分析速度)。

小颗粒填料为色谱分离带来如此的高柱效和速度优势,使得利用小颗粒技术成为色谱科学家梦寐以求的目标。

然而HPLC系统的设计,一直难于发挥出最小颗粒的优点。

小颗粒技术的运用,不但要求仪器在超出目前限度(6000 psi/ 400 bar)的压力下工作,同时要求仪器系统的死体积要更小,以便不影响梯度性能,而且还要检测器能高速检测出峰宽只有几秒的色谱峰。

超高效液相色谱法在中药分析领域中的应用现状及展望

超高效液相色谱法在中药分析领域中的应用现状及展望

超高效液相色谱法在中药分析领域中的应用现状及展望一、本文概述随着科技的不断进步和人们对中药认识的深入,中药分析领域正面临着前所未有的发展机遇。

超高效液相色谱法(UPLC)作为一种先进的色谱分析技术,以其高分辨率、高灵敏度、高分离效能和快速分析等特点,在中药分析领域中的应用日益广泛。

本文旨在综述超高效液相色谱法在中药分析领域的应用现状,探讨其发展前景,为中药的现代化和国际化提供技术支持。

本文将首先介绍超高效液相色谱法的基本原理和优势,阐述其在中药成分分析、质量控制、药物代谢等方面的应用案例。

然后,我们将重点分析超高效液相色谱法在中药分析领域中的优势和挑战,包括其对于复杂中药体系的处理能力、对于痕量成分的检测能力以及在实际应用中可能遇到的问题。

我们将展望超高效液相色谱法在中药分析领域的未来发展,包括技术创新、方法优化、多技术联用等方面,以期推动中药分析技术的不断进步和发展。

二、超高效液相色谱法在中药分析领域的应用现状超高效液相色谱法(UPLC)作为一种先进的色谱分析技术,近年来在中药分析领域得到了广泛应用。

其高效的分离能力和高灵敏度,使得UPLC成为中药复杂成分分析的有力工具。

在中药指纹图谱的构建中,UPLC发挥了关键作用。

通过优化色谱条件和选择适当的检测器,UPLC能够实现对中药中多种成分的快速、准确分离和检测。

这不仅有助于中药质量控制,还可以为中药的药效物质基础研究和质量控制提供科学依据。

UPLC在中药有效成分的分析中也表现出色。

通过精确测量中药中有效成分的保留时间和峰面积,可以实现对中药中有效成分的定量分析。

这为中药的质量评价、药效研究以及新药开发提供了有力支持。

同时,UPLC在中药代谢产物的分析中也有着重要应用。

通过分析中药在体内的代谢产物,可以深入了解中药的药效机制和药代动力学过程。

这对于中药的临床应用和新药研发具有重要意义。

然而,尽管UPLC在中药分析领域的应用取得了显著进展,但仍面临一些挑战。

UPLC(超高效液相色谱)简介

UPLC(超高效液相色谱)简介

UPLC(超高效液相色谱)简介超越HPLC随着科学技术的进步,对液相色谱技术的要求也不断提高,单从技术角度的改进已经不行。

这就需要同时从科学与技术的角度出发,或者说从理论高度对液相色谱重新认识。

因此,UPLC(超高效液相色谱)概念得以提出,将HPLC的极限作为自己的起点。

在1996年,Waters公司推出Alliance HPLC时的主要目标是提高液相色谱的"精度"。

当时多数公司都认为HPLC技术已经发展到极致了、而同时用户对性能没有更高的需求,因此HPLC的目标应该是降低成本、走向更低的价格以获得更广泛的应用。

针对这样的观念,Waters公司提出:HPLC的技术没有到达极限,用户对HPLC有更高的要求,HPLC精度的提高对更好、更可靠的结果有极大的益处,对法规的遵从也是一个极大的促进。

站在当今世界科技前沿的液相色谱用户现在又有了新的需求。

首先是改进生产力的需求,因为大量的样品需要在很短的时间内完成,例如代谢组学分析;其次是在生化样品及天然产物样品的分析中,样品的复杂性对分离能力提出了更高的要求;第三是在与MS及MS/MS等检测技术联用时,对连接的质量提出了更高的要求。

简而言之,我们需要"更快地得到更好的结果"。

今天我们发现,随着科学技术的进步,对液相色谱技术的要求也不断提高,单从技术角度的改进已经不行。

这就需要同时从科学与技术的角度出发,或者说从理论高度对液相色谱重新认识。

因此UPLC(超高效液相色谱)概念的提出也就十分自然。

简而言之,UPLC是用HPLC的极限作为自己的起点。

理论基础早在1956年,J.J van Deemter就发表了他著名的理论:van Deemter曲线及其方程式。

最早这个理论是用在气相色谱上的,但是后来出现的液相色谱上也能应用这个理论。

Waters公司引入UPLC的概念就是由研究这个著名的方程式开始。

首先探讨一下这个著名的方程式。

超高效液相色谱-串联质谱在中西医药品检测与分析中的应用

超高效液相色谱-串联质谱在中西医药品检测与分析中的应用

2020年12月邓博等.超高效液相色谱-串联质谱在中西医药品检测与分析中的应用49超高效液相色谱-串联质谱在中西医药品检测与分析中的应用邓博,邓护军,杨飞,门靖西安万隆制药股份有限公司,西安710119摘要超高效液相色谱-串联质谱(UPLC-M S/MS)是一种高效、迅速、稳定性和精密度高的综合性分析技术,其应用前景十分广阔。

本文着重介绍了近年来UPLC- MS/MS在人体化学药品、动物体内化学药品、以及中医药分析与检测三方面的最新应用研究,并展望了其发展前景,以期为医药产品检测与分析、临床药物应用提供参考。

关键词液相色谱串联质谱中西医检测分析应用超高效液相色谱-串联质谱(UPL C - M S/ M S)检测分析技术具有高效分离度和超高灵敏度 的优势,可显著提高数据分析与检测的可靠性与 耐用性,增强目标化合物的分析效率与准确度,是 分析检测领域内的一种综合性的分析手段[3_4]。

近年来,UPLC - M S/M S分析技术在医药[5-6]、化 工[7]、生物工程[84、保健食品[1°]、特种材料"1]等众多领域应用广泛,尤其是化工与医药产品的 检测与残留分析凭借U P L C- M S/M S获得了大幅 度的提升与改进。

本文将重点综述U P L C- M S/M S在中西医药 品检测与分析中的应用研究现状,从人体化学药 品、动物体内化学药品、以及中医药分析与检测三 方面归纳U P L C -M S/M S最新应用研究进展。

1 UPLC-M S/M S应用于人体化学药品的检测1.1 UPLC- M S/M S检测抗菌药物泊沙康唑是一种三唑类广谱抗真菌药物,具 有高效、广谱、低毒等特点[U]。

检测该药物在人 体血浆中的浓度对监测药物吸收、指导临床用药 安全尤为重要[1243]。

金鸿宾等[14]建立了一种特 异性强、灵敏度高的U P L C - M S/M S法测定血浆 中泊沙康唑浓度方法。

超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57种全-多氟化合物

超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57种全-多氟化合物

超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57种全-多氟化合物超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57种全/多氟化合物概要:全/多氟化合物(PFASs)是一类广泛存在于环境及生物体中的污染物,由于其高毒性、高生物蓄积性和长半衰期,对生态环境和人类健康造成潜在风险。

因此,对于这些化合物的快速、准确测定方法的发展至关重要。

本研究旨在开发一种超高效液相色谱-串联质谱(UPLC-MS/MS)方法,以同时测定水、沉积物和生物样品中57种全/多氟化合物。

引言:全/多氟化合物是一类人工合成的有机污染物,由于其独特的物化特性,被广泛应用于防潮、阻燃、润滑等领域。

然而,由于全/多氟化合物的持久性、生物蓄积性和毒性,它们已成为全球环境污染的重要问题。

目前已经发现的全/多氟化合物超过3,000种,其中包括全氟烷基磺酸盐(PFASs)、全氟烷基胺盐(PFASAs)等。

这些化合物具有高度稳定性和生物传播性,即使在环境中存在很低的浓度,也可能对生态环境和人类健康产生潜在风险。

现有的全/多氟化合物分析方法主要包括气相色谱-质谱法(GC-MS)和液相色谱-质谱法(LC-MS)。

然而,由于PFASs的高亲水性和复杂的基质干扰,传统的液相色谱-质谱方法在样品净化和分离上存在一定的局限性。

因此,开发一种高效准确的测定方法具有重要意义。

方法:本研究选取了57种典型的全/多氟化合物作为目标分析物,包括全氟烷基磺酸盐、全氟烷基胺盐等。

样品净化采用固相萃取(SPE)方法,利用氟化硅固相胶囊柱对样品进行预处理。

色谱分析采用UPLC-MS/MS系统,为了提高色谱分离效果,选择C18色谱柱。

质谱采用电喷雾离子源(ESI)和正离子模式。

结果与讨论:经过方法优化,我们成功开发了一种UPLC-MS/MS方法,可以同时测定水、沉积物和生物样品中的57种全/多氟化合物。

该方法具有高灵敏度、高选择性和较低的方法检出限。

在水样中,该方法的平均回收率在70%-110%之间,相对标准偏差低于15%。

UPLC超高效液相色谱入门指南沃特世

UPLC超高效液相色谱入门指南沃特世
操作指南
首先,导入采集到的色谱数据;其次,进行基线校正以消除背景干扰;接着,进行峰识 别与积分以确定各色谱峰的保留时间和峰面积;最后,根据标准曲线进行定量分析,得
到各组分的浓度信息。
结果解读与报告生成
结果解读
根据处理后的色谱数据和定量分析结果, 可以解读出样品中各组分的含量和相关信 息。需注意检查数据的合理性和准确性。
妥善处理。
核实实验室是否遵守环保法规 和相关标准,如废水、废气、 噪声等排放是否符合环保要求。
个人防护措施和应急处理能力培训
对实验人员进行个人防护知识培训,包括如何正确佩戴和使用个人防护装备,如防护服、护目镜、手 套等。
提供应急处理能力培训,包括如何应对实验过程中可能出现的突发情况,如化学品泄漏、火灾等。
避免污染和交叉污染措施
使用高质量的试剂和溶剂, 减少杂质和污染物的引入。
对于不同性质的样品,要 采用不同的进样器和色谱 柱,避免交叉污染的发生。
ABCD
定期清洗进样器、色谱柱 和检测器等部件,避免残 留物对后续分析的影响。
在更换样品或溶剂时,要 彻底清洗相关部件,确保 无残留物对后续分析造成 干扰。
生物分析
要点二
食品分析
UPLC可用于生物样品(如血液、尿液等)中生物标志物的检 测和分析。
UPLC可用于食品添加剂、营养成分等的检测和分析。
沃特世UPLC技术特点
高品质色谱柱
先进的仪器设计
沃特世提供多种类型的高品质色谱柱,满足 不同分离需求,确保分析结果的准确性和可 靠性。
沃特世UPLC仪器设计先进,操作简便,具有 高度的稳定性和可靠性,确保长时间运行的 稳定性和准确性。
分离系统
即色谱柱,是实现样品中各组分分离的关 键部分。

高效液相色谱在药物分析中的应用研究进展

高效液相色谱在药物分析中的应用研究进展

高效液相色谱在药物分析中的应用研究进展一、概述高效液相色谱(HPLC)是一种广泛应用于药物分析的重要技术,具有快速、高效、灵敏度高和分辨率高等特点。

自20世纪70年代以来,随着色谱理论和仪器技术的不断发展,HPLC已成为药物分析领域中不可或缺的工具。

其利用不同物质在固定相和流动相之间的分配差异,通过高压泵将流动相推动通过装有固定相的色谱柱,实现样品中各组分的分离。

随后,通过检测器对分离后的组分进行检测,从而实现对药物成分的定性和定量分析。

近年来,随着药物分析需求的不断提高,HPLC在药物分析中的应用研究也取得了显著的进展。

在药物质量控制方面,HPLC可用于药物有效成分的含量测定、杂质含量的检测以及药物制剂中各组分的分离分析等。

HPLC还可应用于药物代谢产物的分析,为药物研发提供重要的参考信息。

在药品检验中,HPLC的应用不仅提高了检验的准确性和效率,还有助于实现药品检验的自动化和智能化。

同时,随着HPLC技术的不断发展,其在药物分析中的应用也将不断拓展和完善。

本文旨在综述HPLC在药物分析中的应用研究进展,为相关领域的研究和实践提供参考和借鉴。

1. 高效液相色谱技术简介高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种重要的色谱分析技术,广泛应用于化学、医学、工业、农学、商检和法检等多个学科领域。

作为色谱法的一个重要分支,HPLC以液体为流动相,通过高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱。

在柱内,各成分因与固定相发生作用的大小、强弱不同,而在固定相中滞留时间不同,从而先后从固定相中流出,进入检测器进行检测,实现对试样的分析。

HPLC具有“四高一广”的特点,即高压、高速、高效、高灵敏度和应用范围广。

高压是因为流动相为液体,流经色谱柱时受到的阻力较大,需要高压泵来推动流动相通过色谱柱。

超高效液相色谱的发展及在分析领域的应用探讨

超高效液相色谱的发展及在分析领域的应用探讨

超高效液相色谱的发展及在分析领域的应用探讨超高效液相色谱(Ultra Performance Liquid Chromatography,UPLC)是液相色谱技术的一种高效分离方法,近年来在分析领域得到了广泛的应用。

本文将探讨超高效液相色谱的发展历程以及在分析领域的应用情况。

1. 超高效液相色谱的发展历程UPLC的关键技术是使用高压系统和细颗粒柱,其中最主要的是采用2μm的小颗粒柱和15000psi(1000bar)的高压系统,与HPLC相比提高了分离速度和分析效率。

UPLC还使用了更小的进样量和更短的柱温度梯度以匹配高分辨率的检测器,从而实现更高的分析效率。

这一发展轨迹使得UPLC成为分析领域的重要工具之一。

超高效液相色谱在分析领域的应用非常广泛,涵盖了食品安全、环境监测、生物药物分析、药物代谢动力学等多个方面。

(1)食品安全领域食品中的农药残留、重金属、有害物质等对人体健康造成严重威胁。

超高效液相色谱能够快速、高效地检测食品中的这些有害物质,保障食品安全。

超高效液相色谱结合质谱可以高效快速地检测水果、蔬菜中的农药残留量,帮助监管部门及时采取措施。

(2)环境监测领域环境中的大气、水、土壤等样品中存在着各种有机物和无机物的污染物。

超高效液相色谱结合质谱等分析方法能够对这些污染物进行快速准确的检测和分析,为环境监测提供了技术支持。

(3)生物药物分析领域超高效液相色谱在生物药物分析领域也有着重要的应用。

UPLC可以用于蛋白质药物的质量控制和杂质检测,也可以应用于生物样品的代谢物分析,对生物药物研发和生产提供了技术保障。

(4)药物代谢动力学领域药物代谢动力学研究需要对体内外样品中的药物和代谢产物进行分析和监测。

UPLC因其高分辨率、高灵敏度和高分析速度,成为这一领域的首选技术手段。

超高效液相色谱相比于传统的高效液相色谱有着明显的优势,主要表现在以下几个方面:(1)更高的分辨率和分析速度:UPLC的分辨率和分析速度明显优于HPLC,可以更快地完成分析。

超高效液相色谱(UPLC)在药物分析领域中的应用

超高效液相色谱(UPLC)在药物分析领域中的应用
UPLC的理 论 基 础 为 范德 米 特 (Van Deemeter) 方程 。HETP=AdP+B/v+cdP2v式 中 :HETP为 理
论 塔板 高度 ;A为 涡 流 扩散 系数 ;dP为 填 料 粒 径 ;B 为 分子径 向扩散 系数 ;C为 传 质 因子 ; 为 流 动相 线 速度 。由该 方程 可得 出结论 :颗粒度 越小柱 效越 高 ; 每个 颗粒 度尺寸 有 自己 的最佳 柱 效 的流 速 ;更 小 的 颗粒 度使最 高柱 效 点 向更 高 流速 (线 速 度 )方 向移 动 ,而且有 更宽 的线 速 度 范 围 。所 以降低 颗 粒 度 不 但 提高柱效 ,同时也提 高速度 。
rations were achieved thanks to ACQUITY BEH columns packed with 1.7 Ixm particles.This present paper reviewed
recent applications of UPLC in pharm aceutical analysis. Key words:UPLC ;pharmaceutical analysis;application
chromatography(UPLC)in pharmaceutical analysis
CHEN Jia,W ANG Gang—li,YAO Ling—wen,LIN Rui—chao
(National Institute for the Control of Pharmaceutical and Biological Products,Beijing 100050,China)
到很 大提 高 。本 文 对 超 高效 液相 色 谱 近 年 在 药 物 分 析 中 的 应 用 进行 了综 述 。

高效液相色谱质谱联用技术在药物分析中的应用

高效液相色谱质谱联用技术在药物分析中的应用

2、高效液相色谱质谱联用技术 在药物分析中的应用
(1)药品质量检测:高效液相色谱质谱联用技术可用于对新药、仿制药以及 中药的质量进行全面检测,包括对药物中各种成分的定性定量分析、立体构型 测定等。此外,该技术还可用于筛选和优化药物候选物,提高药物研发效率。
(2)药品浓度测量:在临床药物治疗中,准确的药物浓度对于治疗效果至关 重要。高效液相色谱质谱联用技术可实现对患者血清、尿液等生物样本中药物 浓度的精确测定,为临床医生提供准确的药物治疗方案依据。
3、药物代谢研究
液相色谱质谱联用技术可以用于药物代谢的研究。通过对药物在体内的代谢过 程进行监测,可以了解药物在体内的吸收、分布、代谢和排泄情况,有助于药 物的优化设计和新药研发。
四、结论
液相色谱质谱联用技术在药物分析中具有广泛的应用前景。它不仅可以用于药 物成分的分析、质量控制和代谢研究,还可以为新药研发提供有力的技术支持。 随着技术的不断发展和完善,液相色谱质谱联用技术在药物分析中的应用将会 越来越广泛。
(2)上机分离:将处理后的样品通过输液泵注入色谱柱,利用高压液体流将 样品分离成不同组分;
(3)检测:将分离后的组分进入质谱仪,通过离子化、质量分析和检测器进 行检测。关键技术:高效液相色谱质谱联用技术的关键技术包括色谱分离和质 谱检测。
(1)色谱分离:通过选择合适的色谱柱填料和流动相组成,优化色谱分离条 件,提高目标物与杂质的分离效果;
4、药物代谢产物鉴定:UPLC-MS还可以用于药物代谢产物的鉴定。通过分析 药物在生物体内的代谢产物,可以了解药物的代谢途径和机制,为药物的设计 和优化提供参考。
五、总结
超高效液相色谱质谱联用技术是一种强大的分析工具,它在药物分析领域的应 用已经越来越广泛。随着科技的不断进步,我们有理由相信,这种技术将在未 来的药物分析中发挥更大的作用,为药物研发、质量控制以及临床应用提供更 多的支持。

超高效液相色谱(UPLC)在药物代谢动力学中的应用

超高效液相色谱(UPLC)在药物代谢动力学中的应用
wi d c e s o a a y i t e a d s l e t c n u t h e r a e f n l ss i n o v n o s mp i n。 a we l a a p ia i n o UPI m t o s l s p l t f c o i C n
2 UP C 的 理 论 基 础 L
等 条件 ,对 色谱 技术 提 出 了更 为苛刻 的要求 。 针对 上 述 出现 的新 情 况 新 要 求 ,美 国 W aes tr
I siu e o o d a d Dr gCo to ,Be ig 1 0 7 ) n t tsf rF o n u n r l t in 0 1 6 j ABS RAC T T: 0b e t e ici To n r d c f u d to a d e eo me t t e r a d p l a in n v i to u e o n a in n d v l p n , h o y n a p i t i c o
敏度 和分离 度 ,造 就 了液相 色谱 性 能上 的飞跃 和进
步 ,并 形 成 分 离 科 学 的一 个 新 兴 领 域 。 问世 几 年
例 如代 谢组 学分 析 、天 然产 物 和生 化样 品 等复 杂样 品的分 析等 ,由于其 组 分种 类 多 、含量 差别 大 、已 知 信息 少等 特点 ,对 色 谱 的分 离能 力提 出 了更 高 的
要求 ;色质 联用 技术 要求 真 空 系统 和 “ 口”技 术 接
来 ,UP I C与质 谱 ( )等 设 备 的联 用 技 术 发 展 MS
很快 ,已在 多 个 领 域 ( 中 药 复 杂 组 分 分 析 l ] 如 4 、
代谢 组 学L 、农 药残 留物 L 等 )得 到成 功应 用 。 。 ]

超高效液相色谱法检测食品黄曲霉毒素

超高效液相色谱法检测食品黄曲霉毒素

超高效液相色谱法检测食品黄曲霉毒素发表时间:2012-11-05T16:24:47.420Z 来源:《中外健康文摘》2012年第24期供稿作者:全德甫王晖孙华杰[导读] 黄曲霉毒素(Aflatoxin)是常见霉菌黄曲霉(AspergiUusflavus)和寄生曲(A.parasiticus)中产毒菌株的代谢产物。

全德甫王晖孙华杰(深圳市宝安区观澜预防保健所广东深圳 518110)【中图分类号】R445【文献标识码】A【文章编号】1672-5085(2012)24-0021-03 黄曲霉毒素(Aflatoxin)是常见霉菌黄曲霉(AspergiUusflavus)和寄生曲(A.parasiticus)中产毒菌株的代谢产物。

主要毒素AFB1、AFB2、AFG1、AFG2,其中AFB1是毒性和危害最大的一种,AFB2和AFG2是AFB1和AFG1的双羟基衍生物[1]。

黄曲霉毒素是目前所知致癌性最强的化合物,广泛存在于花生、花生油、大米、玉米、糕点等粮油食品和动物饲料中,严重影响人们的健康,甚至威胁着人们的生命安全[2]。

对黄曲霉毒素的检测方法主要有薄层色谱法(TLC)、高效液相色谱法(HPLC)、酶联免疫吸附测定法(ELISA)、二维薄层色谱法等。

近年来,由于超高压液相色谱技术的引进,色谱分析效率、分析时间、灵敏度得到了比较大的提高。

本文建立用超高效液相色谱法(UPLC)同时测定食品中AFB1、AFB2、AFG1、AFG2分析时间短、灵敏度高,特异性强,结果满意。

1 材料和方法1.1仪器和试剂超高效液相色谱系统:WATERS ACQUITY UPLC型超高效液相色谱仪;色谱柱:WATERS ACQUITY UPLC BEH C18(直径1.7μm,宽×长为2.1mm×50mm);Mycosep?228黄曲霉毒素多功能净化柱(美国Romer Labs);LV型自动蒸发浓缩仪;烘干箱;电动振荡器;漩涡混合器;电子天平。

药物检验分析中应用超高效液相色谱法的研究

药物检验分析中应用超高效液相色谱法的研究

张朋翠 1 李述溪 21.青岛黄海制药有限责任公司山东青岛2660002.浙江普利药业有限公司浙江杭州310000摘要:本文主要目的就是对超高效液相色谱法(UPLC,Ultra Performance Liquid Chromatography)在药物检验中的应用效果进行分析。

采用的方法就是,选择利福平、吡嗪酰胺与异烟肼样品,以高效液相色谱法(HPLC,High Performance Liquid Chromatography)方法为对照组,以UPLC为研究组,对比相应检验的方法。

发现,相比于HPLC方法的分析时间,UPLC方法的分析时间更短,而检验结果的差异具有统计学意义。

最终确定,借助UPLC方法能够充分提高检验效率。

关键词:药物检验;UPLC;研究分析前言:UPLC主要是基于HPLC发展而来的技术。

检测效率非常突出,并增加了色谱峰容量、灵敏度以及分析通量等优势,同时在液相实验中得到广泛应用。

基于社会快速发展以及民众生活水平提升过程中,民众在药物、食品质量等方面要求不断提升,相关分离解析技术得到快速更新与发展。

UPLC能够快速检测样品中各种组分,便捷地处理样品,进行自动化检测,具有广泛应用范围,可以快速分离,为药品监测以及食品质量安全等方面提供良好检测方法[1]。

1方法与资料1.1资料样品选择常州制药公司生产的利福平、成都锦华公司生产的吡嗪酰胺、沈阳红旗公司生产的异烟肼,结合相关检验方法设计研究组与对照组,同时比较两组资料,P>0.05差异没有统计学意义。

1.2方法对照组选择HPLC方法开展检测工作,具体操作如下:选择10g利福平、10g吡嗪酰胺、10g异烟肼,将样品磨成粉末,将适量粉末装入500ml量瓶中,在溶解、稀释以及过滤等操作之后,在200—400mm紫外波长条件进行扫描(在210mm波长进行测定,选择Waters Sunfire C18色谱柱,规格为:5um,250×4.6mm;以乙腈-0.075mol/L磷酸二氢钾溶液(5:5)为流动相,取样品溶液(20ul),注入HPLC中,并记录色谱图[2]。

UPLC色谱柱技术介绍

UPLC色谱柱技术介绍

UPLC色谱柱技术介绍UPLC(Ultra Performance Liquid Chromatography)是高效液相色谱技术的一种改进版本,它采用更小的颗粒尺寸和更高的流速,以提高分离效率和样品分析速度。

UPLC色谱柱是UPLC系统中的核心组成部分,起着关键的作用。

本文将介绍UPLC色谱柱的技术原理、分类,以及在各个领域的应用。

一、UPLC色谱柱的技术原理UPLC色谱柱的技术原理与传统的液相色谱柱类似,都是利用样品分子在固定相上的相互作用,使其在流动相中发生分离。

但是UPLC色谱柱使用更小的超高压液相色谱柱,颗粒尺寸通常在1.7-2.5微米之间,而传统的液相色谱柱颗粒尺寸通常在5-10微米之间。

此外,UPLC系统使用更高的流速,通常在0.2-1.0mL/min,而传统的液相色谱系统流速通常在1-2mL/min。

二、UPLC色谱柱的分类根据不同的色谱柱填充材料,UPLC色谱柱可分为以下几种类型。

1.反相色谱柱(RP)反相色谱柱使用疏水性纯化填料,如C18,C8或C4等,常用于生物、药物等复杂样品的分离。

其原理是通过样品分子与填料上的疏水性相互作用,实现分离。

2.正相色谱柱(NP)正相色谱柱使用亲水性纯化填料,如二氧化硅或硅胶等,常用于分析极性化合物,如氨基酸、酸碱中草药等。

3.离子交换色谱柱(IEC)离子交换色谱柱根据样品中的带电物质与填充材料的离子交换作用分离物质。

这种色谱柱常用于对有机酸、无机阳离子和阴离子的分析。

4.大孔色谱柱(SEC)大孔色谱柱用于分离较大的生物分子,如蛋白质、多肽等。

大孔色谱柱具有较大的孔径和相应的填充材料,以便样品分子可以在孔道中快速穿透。

三、UPLC色谱柱的应用1.制药领域在药物开发和质量控制中,UPLC色谱柱能够快速高效地分离和分析药物成分。

同时,UPLC系统还可与质谱联用,实现对复杂样品的同时定性和定量分析。

2.食品安全领域3.环境监测领域4.生物医学研究领域总结:。

超高效液相色谱测中药的原理

超高效液相色谱测中药的原理

超高效液相色谱测中药的原理
超高效液相色谱(UPLC)是一种高效、高分辨率的液相色谱技术,它能够在短时间内分离出极其复杂的样品混合物。

在中药分析中,UPLC被广泛应用于有效成分的分离和定量测定。

UPLC的原理是利用高压脉冲来推动样品溶液通过狭窄的柱子,这个柱子通常由亲水性或疏水性材料制成。

样品分子在柱子中的分离是根据它们在柱子中的亲水性或疏水性差异,以及它们与固定相互作用的方式来实现的。

这种分离过程是快速的,因为柱子的狭窄通道使得溶液在其中流动的速度更快。

在中药分析中,UPLC通常与质谱联用,以便对样品中的化合物进行鉴定和定量。

这种联用技术被称为UPLC-MS。

UPLC-MS在中药分析中的应用越来越广泛,因为它能够快速准确地分析出中药中的有效成分,并且具有较高的选择性和灵敏度。

总的来说,UPLC是一种高效的分离技术,可以应用于中药的成分分析。

通过与质谱联用,可以得到更为准确的分析结果。

- 1 -。

超高效液相色谱(ACQUITY UPLC)应用于环境水中多环芳烃(PAHs)和爆炸物分析

超高效液相色谱(ACQUITY UPLC)应用于环境水中多环芳烃(PAHs)和爆炸物分析

得可以在同样 的 8 h周期 内分 析超过 5 O个以上的样 品 .更高的灵敏度和优异的色谱峰形可 以进行更 准确 的定量. 图1 为使用 A Q IY U L C U T P C色谱柱 2 1 0 m,17 I . ×10m . m颗粒 B H C。 x E 。 分析 多环芳烃 .水: 乙腈 流动相梯度 范围
维普资讯




2 6卷
甲醇流速 0 5n mi~.使用紫外检测器在 24n . d・ n 5 m波 长检 测.5x 样品进样 ,lmg・ 混合标准溶液 f l O l
05 .0
15 .0
2.0 5
35 .0 t tm ,i
维普资讯
第2 6卷 第 6期
2 7正 00





Vo .2 1 6,No .6 No e b r 2 o v m e 0 7
1 月 1
ENVI RONMENTAL CHEMI TRY S
W at r es
TH E SCl NCE 0F WHAT E S P0SSl E BL
超 高效 液相 色谱 ( QUI Y UP C) 用 于环 境 水 中 AC T L 应
多 环 芳 烃 ( AHs 和 爆 炸 物 分 析 P )
M a k E. Be v n t r n e ui
( 沃特世公 司,米尔福德 ,马 萨诸塞州 ,美 国)
多 环芳 烃 ( A s 和 爆 炸 物 残 留是 广 泛 存 在 于 环 境 中 的 污 染 物 .前 者 是 很 多 工 业 过 程 的 副 产 物 ,后 者 则 在 军 事 活 PH)
1 ,2 苊 ,3 1甲基 萘 ,4 - .萘 . . - .2 甲基 一 ,5 芴 ,6 萘 . .苊 ,7 菲 ,8 蒽 ,9 十 氟 联 苯 , l. 荧 蒽 ,1 . 芘 . . . . O 1

色谱分析(中国药科大学) 超高效液相色谱(UPLC)

色谱分析(中国药科大学) 超高效液相色谱(UPLC)

色谱分析(中国药科大学)超高效液相色谱(UPLC)超高效液相色谱(UPLC)超高效液相色谱技术(ultra performance liquid chcromatography,简称UPLC)是一种综合了小颗粒填料、非常低系统体积(死体积)及快速检测手段等全新的检测技术。

在全面提升HPLC的速度、灵敏度及分离度的同时,保留其原有的实用性及原理。

基于小颗粒技术的UPLC,并非普通HPLC系统改进而成。

它不但需要耐压、稳定的小颗粒填料(可达 1.7µm),而且需要耐压的色谱系统(>15,000psi)、最低交叉污染的快速进样器、快速检测器及优化的系统体积等诸多方面的保障,以充分发挥小颗粒技术优势。

这就需要对系统所有硬件和软件的进行全面创新。

世界第一个商品化UPLC产品是Waters ACQUITY UPLC TM超高效液相色谱系统,它于2004年3月投入市场。

图1:填料技术的沿革1.小颗粒填料改善分离的理论与科学基础液相色谱30年的发展史是颗粒技术的发展史。

颗粒大小的改变直接影响到柱效,从而对分离结果产生直接影响。

由上图可知:随着颗粒度的不断降低,色谱分离度不断提高。

事实上,上述规律的理论基础是著名的Van Deemeter方程。

Van Deemeter方程是色谱科学家预测颗粒度变化而引起的色谱变化的根本依据。

Van Deemeter曲线(见图2)预测最佳柱效与相应的流动相流速。

由Van Deemeter 方程得知:随着颗粒度减小,相应的理论塔板高度(HETP)也下降,得到的柱效会更高。

还应该注意到1.7 µm颗粒的HETP最小值区域扩大了(见图2),这2表明可以在比大颗粒更宽的流量范围内得到最高的柱效,结果可以不损失高分离度的同时来适当提高流动相的流速(分析速度)。

小颗粒填料为色谱分离带来如此的高柱效和速度优势,使得利用小颗粒技术成为色谱科学家梦寐以求的目标。

然而HPLC系统的设计,一直难于发挥出最小颗粒的优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超高效液相色谱(UPLC)的应用
超高效液相色谱是分离科学中的一个全新类别, UPLC借助于HPLC的理论及原理,涵盖了小颗粒填料、非常低系统体积及快速检测手段等全新技术,增加了分析的通量、灵敏度及色谱峰容量。

超高效液相色谱(UPLC)是一个新兴的领域,作为世界第一个商品化UPLC产品的Waters ACQUITY UPLCTM 超高效液相色谱系统也是刚刚出现,因此目前已发表的文献资料还很缺乏。

与传统的HPLC相比,UPLC的速度、灵敏度及分离度分别是HPLC的9倍、3倍及1.7倍。

因此其在蛋白质、多肽、代谢组学分析及其它一些生化领域里将会得到广泛应用。

另外,在天然产物的分析方面,使用UPLC与质谱检测器连接,会对天然产物分析,特别是中药研究领域的发展是一个极大的促进。

在提到“蛋白组学”或“代谢组学”时,与没有“组”的差别从分析的角度说就是样品量极大,需要在短时间分析成千上万的样品。

UPLC不损失分离度的高速度优点在这里就能充分体现。

多数生化样品及天然产物都十分复杂,图1是多肽指纹图的HPLC与UPLC两个色谱图(紫外检测)比较。

在同样条件下,UPLC能分离的色谱峰比HPLC多出一倍还多。

图2是代谢产物分析的色谱图。

在同样条件下,UPLC的分辨率能够认出更多的色谱峰(质谱检测器- LCT)。

相关文档
最新文档