带电粒子在磁场或复合场中的运动
带电粒子在复合场中的运动问题
【正确解答】 粒子在磁场中的运动为匀速圆周运动,在电场中的运动为匀变速 直线运动.画出粒子运动的过程草图10-19.根据这张图可知粒子在 磁场中运动半个周期后第一次通过x轴进入电场,做匀减速运动至速 度为零,再反方向做匀加速直线运动,以原来的速度大小反方向进入 磁场.这就是第二次进入磁场,接着粒子在磁场中做圆周运动,半个 周期后第三次通过x轴.
2,带电粒子在复合场中的运动情况: ,带电粒子在复合场中的运动情况: 1)直线运动: )直线运动: 常见的情况有: 常见的情况有: 洛伦兹力为零( 平行), ①洛伦兹力为零(即V与B平行),重力与电场力平 与 平行),重力与电场力平 衡时,做匀速直线运动; 衡时,做匀速直线运动;合外力恒定时做匀变速直 线运动. 线运动. ②洛伦兹力与V垂直,且与重力和电场力的合力 洛伦兹力与 垂直, 垂直 或其中的一个力)平衡,做匀速直线运动. (或其中的一个力)平衡,做匀速直线运动. 2)圆周运动: )圆周运动: 当带电粒子所受到合外力充当向心力时, 当带电粒子所受到合外力充当向心力时,带电粒子 做匀速圆周运动. 做匀速圆周运动.此时一般情况下是重力恰好与电 场力平衡,洛伦兹力充当向心力. 场力平衡,洛伦兹力充当向心力. 3)一般的曲线运动: )一般的曲线运动: 当带电粒子所受的合力在大小,方向均不断变化时, 当带电粒子所受的合力在大小,方向均不断变化时, 则粒子将做非匀变速曲线运动. 则粒子将做非匀变速曲线运动.
解:不妨假设设小球带正电(带负电时电场力和洛伦兹力 都将反向,结论相同).刚释放时小球受重力,电场力, 弹力,摩擦力作用,向下加速;开始运动后又受到洛伦兹 力作用,弹力,摩擦力开始减小;当洛伦兹力等于电场力 时加速度最大为g.随着v的增大,洛伦兹力大于电场力, 弹力方向变为向右,且不断增大,摩擦力随着增大,加速 度减小,当摩擦力和重力大小相等时,小球速度达到最大.
高三物理带电粒子在复合场中的运动知识点总结-带电粒子在电场中的运动知识点
高三物理带电粒子在复合场中的运动知识点总结|带电粒子在电场中的运动知识点一、带点粒子在复合场中的运动本质是力学问题1、带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。
2、分析带电粒子在复合场中的受力时,要注意各力的特点。
如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。
而带电粒子在磁场中只有运动(且速度不与磁场平行)时才会受到洛仑兹力,力的大小随速度大小而变,方向始终与速度垂直,故洛仑兹力对运动电荷不做功.二、带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)1、带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.2、带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。
当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动; 当带电微粒的速度垂直于磁场时,一定做匀速运动。
3、与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。
必要时加以讨论。
三、带电粒子在重力场、匀强电场、匀强磁场的复合场中的运动的基本模型有:1、匀速直线运动。
自由的带点粒子在复合场中作的直线运动通常都是匀速直线运动,除非粒子沿磁场方向飞入不受洛仑兹力作用。
因为重力、电场力均为恒力,若两者的合力不能与洛仑兹力平衡,则带点粒子速度的大小和方向将会改变,不能维持直线运动了。
2、匀速圆周运动。
自由的带电粒子在复合场中作匀速圆周运动时,必定满足电场力和重力平衡,则当粒子速度方向与磁场方向垂直时,洛仑兹力提供向心力,使带电粒子作匀速圆周运动。
3、较复杂的曲线运动。
在复合场中,若带电粒子所受合外力不断变化且与粒子速度不在一直线上时,带电粒子作非匀变速曲线运动。
新高考物理考试易错题易错点21带点粒子在磁场、组合场和叠加场中的运动附答案
易错点21 带点粒子在磁场、组合场和叠加场中的运动易错总结一、带电粒子在匀强磁场中的运动1.若v∥B,带电粒子以速度v做匀速直线运动,其所受洛伦兹力F=0.2.若v⊥B,此时初速度方向、洛伦兹力的方向均与磁场方向垂直,粒子在垂直于磁场方向的平面内运动.(1)洛伦兹力与粒子的运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小.(2)带电粒子在垂直于磁场的平面内做匀速圆周运动,洛伦兹力提供向心力.二、复合场1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.2.三种场的比较1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.解题方法一、带电粒子在匀强磁场中的圆周运动1.圆心的确定圆心位置的确定通常有以下两种基本方法:(1)已知入射方向和出射方向时,可以过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P为入射点,M为出射点).(2)已知入射方向和出射点的位置时,可以过入射点作入射方向的垂线,连线入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P为入射点,M为出射点).2.半径的确定半径的计算一般利用几何知识解直角三角形.做题时一定要作好辅助线,由圆的半径和其他几何边构成直角三角形.由直角三角形的边角关系或勾股定理求解.3.粒子在匀强磁场中运动时间的确定(1)粒子在匀强磁场中运动一周的时间为T,当粒子运动轨迹的圆弧所对应的圆心角为α时,其运动时间t=α360°T(或t=α2πT).确定圆心角时,利用好几个角的关系,即圆心角=偏向角=2倍弦切角.(2)当v一定时,粒子在匀强磁场中运动的时间t=lv,l为带电粒子通过的弧长.二、带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要正确进行受力分析,确定带电粒子的运动状态.(1)仅在电场中运动①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动.(2)仅在磁场中运动①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键.特别提醒从一个场射出的末速度是进入另一个场的初速度,因此两场界面处的速度(大小和方向)是联系两运动的桥梁,求解速度是重中之重.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.3.处理带电粒子在叠加场中的运动的基本思路(1)弄清叠加场的组成.(2)进行受力分析,确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)画出粒子运动轨迹,灵活选择不同的运动规律.○1当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.○2当带电粒子在叠加场中做匀速圆周运动时,一定是电场力和重力平衡,洛伦兹力提供向心力,应用平衡条件和牛顿运动定律分别列方程求解.○3当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.【易错跟踪训练】易错类型1:对物理概念理解不透彻1.(2020·全国高三课时练习)用洛伦兹力演示仪可以观察电子在磁场中的运动径迹.图(甲)是洛伦兹力演示仪的实物图,图(乙)是结构示意图.励磁线圈通电后可以产生垂直纸面的匀强磁场,励磁线圈中的电流越大,产生的磁场越强.图(乙)中电子经电子枪中的加速电场加速后水平向左垂直磁感线方向射入磁场.下列关于实验现象和分析正确的是()A.仅增大励磁线圈中的电流,电子束径迹的半径变小B.仅升高电子枪加速电场的电压,电子束径迹的半径变小C.仅升高电子枪加速电场的电压,电子做圆周运动的周期将变小D.要使电子形成如图(乙)中的运动径迹,励磁线圈应通以逆时针方向的电流【答案】A【详解】AB.电子在加速电场中加速,由动能定理有:eU=12mv02;电子在匀强磁场中做匀速圆周运动,洛伦兹力充当向心力,有:e B v0=m2vr,解得:012mv mUreB B e==电压不变,B不变,增加加速电压,电子束形成圆周的半径增大.保持加速电压不变,增加励磁电流,B增大,电子束形成圆周的半径减小,故A正确,B错误;C.电子在磁场中运动的周期:2rTvπ=,与电子的速度无关,与加速电场的大小无关.故C错误;D.若励磁线圈通以逆时针方向的电流,由安培定则知,产生的磁场向外,根据左手定则判断知,电子进入磁场时所受的洛伦兹力向下,电子的运动轨迹不可能是图中所示,同理,可得励磁线圈通以顺时针方向的电流,则能形成结构示意图中的电子运动径迹.故D错误。
带电粒子在复合场中的运动-高中物理专题(含解析)
带电粒子在复合场中的运动目标:1. 掌握带电粒子在电场、磁场中运动的特点2. 理解复合场、组合场对带电粒子受力的分析。
重难点:重点: 带电粒子在电场、磁场中运动的特点;带电粒子在复合场中受力分析 难点: 带电粒子在复合场中运动受力与运动结合。
知识:知识点1 带电粒子在复合场中的运动 1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现. 2.带电粒子在复合场中的运动形式(1)静止或匀速直线运动:当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 易错判断(1)带电粒子在复合场中不可能处于静止状态.(×) (2)带电粒子在复合场中可能做匀速圆周运动.(√) (3)带电粒子在复合场中一定能做匀变速直线运动.(×) 知识点2 带电粒子在复合场中的运动实例 1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,qU =12mv 2.粒子在磁场中做匀速圆周运动,有qvB =m v 2r .由以上两式可得r =1B2mUq , m =qr 2B 22U , q m =2UB 2r 2.2.回旋加速器(1)构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场回旋,由qvB =mv 2r ,得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关.3.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器(如图所示).(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E/B. 4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,图中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =qU/L =qvB 得两极板间能达到的最大电势差U =BLv . 易错判断(1)电荷在速度选择器中做匀速直线运动的速度与电荷的电性有关.(×) (2)不同比荷的粒子在质谱仪磁场中做匀速圆周运动的半径不同.(√)(3)粒子在回旋加速器中做圆周运动的半径、周期都随粒子速度的增大而增大.(×)题型分类:题型一 带电粒子在组合场中的运动题型分析:1.带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零 做初速度为零的匀加速直线运动 保持静止 初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点 受恒力作用,做匀变速运动洛伦兹力不做功,动能不变2.“电偏转”和“磁偏转”的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力 运动规律匀速圆周运动r =mv 0Bq ,T =2πmBq类平抛运动v x =v 0,v y =Eqm t x =v 0t ,y =Eq2m t 2运动时间 t =θ2πT =θmBqt =Lv 0,具有等时性动能不变变化3.常见模型(1)从电场进入磁场(2)从磁场进入电场考向1 先电场后磁场【例1】.(2018·哈尔滨模拟)如图所示,将某正粒子放射源置于原点O ,其向各个方向射出的粒子速度大小均为v 0,质量均为m 、电荷量均为q ;在0≤y ≤d 的一、二象限范围内分布着一个匀强电场,方向与y 轴正向相同,在d <y ≤2d 的一、二象限范围内分布着一个匀强磁场,方向垂直于xOy 平面向里.粒子第一次离开电场上边缘y =d 时,能够到达的位置x 轴坐标范围为-1.5d ≤x ≤1.5d, 而且最终恰好没有粒子从y =2d 的边界离开磁场.已知sin 37°=0.6,cos 37°=0.8,不计粒子重力以及粒子间的相互作用,求: (1)电场强度E ; (2)磁感应强度B ;(3)粒子在磁场中运动的最长时间.(只考虑粒子第一次在磁场中的运动时间) [解析](1)沿x 轴正方向发射的粒子有:由类平抛运动基本规律得1.5d =v 0t, d =12at 2a =qE m ,联立可得:E =8mv 209qd .(2)沿x 轴正方向发射的粒子射入磁场时有:d =v y 2t,联立可得:v y =43v 0,电场中:加速直线运动⇓磁场中:匀速圆周运动 电场中:类平抛运动⇓磁场中:匀速圆周运动磁场中:匀速圆周运动 ⇓v 与E 同向或反向 电场中:匀变速直线运动磁场中:匀速圆周运动⇓v 与E 垂直 电场中:类平抛运动v =v 2x+v 2y=53v 0 方向与水平成53°,斜向右上方,据题意知该粒子轨迹恰与上边缘相切,则其余粒子均达不到y =2d 边界,由几何关系可知:d =R +35R根据牛顿第二定律得:Bqv =m v 2R 联立可得:B =8mv 03qd .(3)粒子运动的最长时间对应最大的圆心角,经过(1.5d ,d)恰与上边界相切的粒子轨迹对应的圆心角最大,由几何关系可知圆心角为:θ=254°粒子运动周期为:T =2πR v =3πd4v 0则时间为:t =θ360°T =127πd240v 0.考向2 先磁场后电场 【例2】.(2018·潍坊模拟)在如图所示的坐标系中,第一和第二象限(包括y 轴的正半轴)内存在磁感应强度大小为B 、方向垂直xOy 平面向里的匀强磁场;第三和第四象限内存在平行于y 轴正方向、大小未知的匀强电场.p 点为y 轴正半轴上的一点,坐标为(0,l );n 点为y 轴负半轴上的一点,坐标未知.现有一带正电的粒子由p 点沿y 轴正方向以一定的速度射入匀强磁场,该粒子经磁场偏转后以与x 轴正半轴成45°角的方向进入匀强电场,在电场中运动一段时间后,该粒子恰好垂直于y 轴经过n 点.粒子的重力忽略不计.求: (1)粒子在p 点的速度大小;(2)第三和第四象限内的电场强度的大小;(3)带电粒子从由p 点进入磁场到第三次通过x 轴的总时间.[解析] 粒子在复合场中的运动轨迹如图所示(1)由几何关系可知rsin 45°=l 解得r =2l 又因为qv 0B =m v 20r ,可解得v 0=2Bql m .(2)粒子进入电场在第三象限内的运动可视为平抛运动的逆过程,设粒子射入电场坐标为(-x 1,0),从粒子射入电场到粒子经过n 点的时间为t 2,由几何关系知x 1=(2+1)l ,在n 点有v 2=22v 1=22v 0由类平抛运动规律有(2+1)l =22v 0t 2;22v 0=at 2=Eqm t 2 联立以上方程解得t 2=2+1m qB ,E =2-1qlB 2m. (3)粒子在磁场中的运动周期为T =2πmqB粒子第一次在磁场中运动的时间为t 1=58T =5πm4qB 粒子在电场中运动的时间为2t 2=22+1mqB粒子第二次在磁场中运动的时间为t 3=34T =3πm2qB故粒子从开始到第三次通过x 轴所用时间为t =t 1+2t 2+t 3=(11π4+22+2)mqB .[反思总结] 规律运用及思路①带电粒子经过电场区域时利用动能定理或类平抛的知识分析; ②带电粒子经过磁场区域时利用圆周运动规律结合几何关系来处理; ③注意带电粒子从一种场进入另一种场时的衔接速度.【巩固】如图所示,在第Ⅱ象限内有水平向右的匀强电场,电场强度为E ,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以垂直于x 轴的初速度v 0从x 轴上的P 点进入匀强电场中,并且恰好与y 轴的正方向成45°角进入磁场,又恰好垂直于x 轴进入第Ⅳ象限的磁场.已知OP 之间的距离为d ,则带电粒子在磁场中第二次经过x 轴时,在电场和磁场中运动的总时间为( ) A.7πd 2v 0B.dv 0(2+5π) C.d v 0⎝ ⎛⎭⎪⎫2+3π2D.d v 0⎝ ⎛⎭⎪⎫2+7π2D [带电粒子的运动轨迹如图所示.由题意知,带电粒子到达y 轴时的速度v =2v 0,这一过程的时间t 1=d v 02=2dv 0.又由题意知,带电粒子在磁场中的偏转轨道半径r =22d.故知带电粒子在第Ⅰ象限中的运动时间为:t 2=38×2πr v =32πd 2v =3πd2v 0带电粒子在第Ⅳ象限中运动的时间为:t 3=12×2πr v =22πd v =2πd v 0故t 总=d v 0⎝ ⎛⎭⎪⎫2+7π2.故D 正确.] 题型二 带电粒子在叠加场中的运动考向1 电场、磁场叠加【例3】(多选)(2018·临川模拟)向下的匀强电场和水平方向的匀强磁场正交的区域里, 一带电粒子从a 点由静止开始沿曲线abc 运动到c 点时速度变为零, b 点是运动中能够到达的最高点, 如图所示,若不计重力,下列说法中正确的是( ) A .粒子肯定带负电, 磁场方向垂直于纸面向里 B .a 、c 点处于同一水平线上 C .粒子通过b 点时速率最大D. 粒子达到c 点后将沿原路径返回到a 点ABC [粒子开始受到电场力作用而向上运动,受到向右的洛伦兹力作用,则知电场力方向向上,故粒子带负电;根据左手定则判断磁场方向垂直于纸面向里,故A 正确.将粒子在c 点的状态与a 点进行比较,c 点的速率为零,动能为零,根据能量守恒可知,粒子在c 与a 两点的电势能相等,电势相等,则a 、c 两点应在同一条水平线上;由于在a 、c 两点粒子的状态(速度为零,电势能相等)相同,粒子将在c 点右侧重现前面的曲线运动,因此,粒子是不可能沿原曲线返回a 点的,故B 正确,D 错误.根据动能定理得,粒子从a 运动到b 点的过程电场力做功最大,则b 点速度最大,故C 正确.考向2 电场、磁场、重力场的叠加【例4】(2017·全国Ⅰ卷)如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里.三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c .已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列选项正确的是( ) A .m a >m b >m c B .m b >m a >m c C .m c >m a >m b D .m c >m b >m aB [设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即 m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则m b g =qE +qvB ②c 在纸面内向左做匀速直线运动,三力平衡,则m c g +qvB =qE ③ 比较①②③式得:m b >m a >m c ,选项B 正确.]考向3 复合场中的动量、能量综合问题【例5】(2018·南昌模拟)如图所示,带负电的金属小球A 质量为m A =0.2 kg ,电量为q =0.1 C ,小球B 是绝缘体不带电,质量为m B =2 kg ,静止在水平放置的绝缘桌子边缘,桌面离地面的高h =0.05 m ,桌子置于电、磁场同时存在的空间中,匀强磁场的磁感应强度B =2.5 T ,方向沿水平方向且垂直纸面向里,匀强电场电场强度E =10 N/C ,方向沿水平方向向左且与磁场方向垂直,小球A 与桌面间的动摩擦因数为μ=0.4,A 以某一速度沿桌面做匀速直线运动,并与B 球发生正碰,设碰撞时间极短,B 碰后落地的水平位移为0.03 m ,g 取10 m/s 2,求: (1)碰前A 球的速度? (2)碰后A 球的速度?(3)若碰后电场方向反向(桌面足够长),小球A 在碰撞结束后,到刚离开桌面运动的整个过程中,合力对A 球所做的功.[答案](1)2 m/s (2)1 m/s ,方向与原速度方向相反 (3)6.3 J 【例5-2】 (1)上题中,A 与B 的碰撞是弹性碰撞吗?为什么?(2)在第(3)问中,根据现有知识和条件,能否求出电场力对A 球做的功?提示:A 、B 碰前,只有A 有动能E kA =12m A v 2A1=12×0.2×22 J =0.4 JA 、B 碰后,E kA ′=12m A v 2A2=12×0.2×12 J =0.1 JE kB =12m B v 2B =12×2×0.32=0.09 J 因E kA >E kA ′+E kB故A 、B 间的碰撞不是弹性碰撞.提示:不能.因无法求出A 球的位移.【巩固1】(多选)(2017·济南模拟)如图所示,在正交坐标系O xyz 中,分布着电场和磁场(图中未画出).在Oyz 平面的左方空间内存在沿y 轴负方向、磁感应强度大小为B 的匀强磁场;在Oyz 平面右方、Oxz 平面上方的空间内分布着沿z 轴负方向、磁感应强度大小也为B 的匀强磁场;在Oyz 平面右方、Oxz 平面下方分布着沿y 轴正方向的匀强电场,电场强度大小为aqB 24m .在t =0时刻,一个质量为m 、电荷量为+q 的微粒从P 点静止释放,已知P 点的坐标为(5a ,-2a,0),不计微粒的重力.则( )A .微粒第一次到达x 轴的速度大小为aqb mB .微粒第一次到达x 轴的时刻为4mqBC .微粒第一次到达y 轴的位置为y =2aD .微粒第一次到达y 轴的时刻为⎝ ⎛⎭⎪⎫40+5π2mqBBD [微粒从P 点由静止释放至第一次到达y 轴的运动轨迹如图所示.释放后,微粒在电场中做匀加速直线运动,由E =aqB 24m ,根据动能定理有Eq ·2a =12mv 2,解得微粒第一次到达x 轴的速度v =aqB m ,又Eq m t 1=v ,解得微粒第一次到达x 轴的时刻t 1=4mqB ,故选项A 错误,B 正确;微粒进入磁场后开始做匀速圆周运动,假设运动的轨道半径为R ,则有qvB =m v 2R ,可得:R =a ,所以微粒到达y 轴的位置为y =a ,选项C 错误;微粒在磁场中运动的周期T =2πR v =2πm qB ,则运动到达y 轴的时刻:t 2=5t 1+54T ,代入得:t 2=⎝ ⎛⎭⎪⎫40+5π2m qB ,选项D 正确.]【巩固2】 (多选)(2018·兰州模拟)如图所示,空间中存在一水平方向的匀强电场和一水平方向的匀强磁场,磁感应强度大小为B ,电场强度大小为E =3mgq ,且电场方向和磁场方向相互垂直,在正交的电磁场空间中有一足够长的固定粗糙绝缘杆,与电场正方向成60°夹角且处于竖直平面内,一质量为m ,带电量为q (q >0)的小球套在绝缘杆上,若小球沿杆向下的初速度为v 0时,小球恰好做匀速直线运动,已知重力加速度大小为g ,小球电荷量保持不变,则以下说法正确的是( )A .小球的初速度v 0=mg2qBB .若小球沿杆向下的初速度v =mgqB ,小球将沿杆做加速度不断增大的减速运动,最后停止C .若小球沿杆向下的初速度v =3mgqB ,小球将沿杆做加速度不断减小的减速运动,最后停止D. 若小球沿杆向下的初速度v =4mgqB ,则从开始运动到稳定过程中,小球克服摩擦力做功为6m 3g 2q 2B 2BD题型三 带电粒子在复合场中运动的常见实例考向1 回旋加速器的工作原理【例6】(多选)(2018·成都模拟)粒子回旋加速器的工作原理如图所示,置于真空中的D 形金属盒的半径为R ,两金属盒间的狭缝很小,磁感应强度为B 的匀强磁场与金属盒盒面垂直,高频率交流电的频率为f ,加速器的电压为U ,若中心粒子源处产生的质子质量为m ,电荷量为+e ,在加速器中被加速.不考虑相对论效应,则下列说法正确是( )A .质子被加速后的最大速度不能超过2πRfB .加速的质子获得的最大动能随加速器的电压U 增大而增大C .质子第二次和第一次经过D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电的频率f ,该加速器也可加速其它粒子AC [质子出回旋加速器时速度最大,此时的半径为R ,最大速度为:v =2πRT =2πRf ,故A 正确; 根据qvB =m v 2R 得,v =qBR m ,则粒子的最大动能E km =12mv 2=q 2B 2R 22m ,与加速器的电压无关,故B 错误;粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据qU =12mv 2,得v =2qU m ,质子第二次和第一次经过D 形盒狭缝的速度比为2∶1,根据r =mvqB ,则半径比为2∶1,故C 正确;带电粒子在磁场中运动的周期与加速电场的周期相等,根据T =2πmqB 知,换用其它粒子,粒子的比荷变化,周期变化,回旋加速器需改变交流电的频率才能加速其它粒子,故D 错误.故选AC.]考向2 速度选择器的工作原理【例7】在如图所示的平行板器件中,电场强度E 和磁感应强度B 相互垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,则该粒子( ) A .一定带正电B .速度v =EBC .若速度v >EB ,粒子一定不能从板间射出D .若此粒子从右端沿虚线方向进入,仍做直线运动B考向3 质谱仪的工作原理【例7】质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图所示为质谱仪的原理示意图,现利用质谱仪对氢元素进行测量.让氢元素三种同位素的离子流从容器A 下方的小孔S 无初速度飘入电势差为U 的加速电场.加速后垂直进入磁感应强度为B 的匀强磁场中.氢的三种同位素最后打在照相底片D 上,形成a 、b 、c 三条“质谱线”.则下列判断正确的是( ) A .进入磁场时速度从大到小排列的顺序是氕、氘、氚 B .进入磁场时动能从大到小排列的顺序是氕、氘、氚 C .在磁场中运动时间由大到小排列的顺序是氕、氘、氚 D .a 、b 、c 三条“质谱线”依次排列的顺序是氕、氘、氚A [离子通过加速电场的过程,有qU =12mv 2,因为氕、氘、氚三种离子的电量相同、质量依次增大,故进入磁场时动能相同,速度依次减小,故A 项正确,B 项错误;由T =2πmqB 可知,氕、氘、氚三种离子在磁场中运动的周期依次增大,又三种离子在磁场中运动的时间均为半个周期,故在磁场中运动时间由大到小排列依次为氚、氘、氕,C 项错误;由qvB =m v 2R 及qU =12mv 2,可得R =1B 2mUq ,故氕、氘、氚三种离子在磁场中的轨道半径依次增大,所以a 、b 、c 三条“质谱线”依次对应氚、氘、氕,D 项错误.]【巩固3】(多选)如图所示,含有11H 、21H 、42He 的带电粒子束从小孔O 1处射入速度选择器,沿直线O 1O 2运动的粒子在小孔O 2处射出后垂直进入偏转磁场,最终打在P 1、P 2两点.则( ) A .打在P 1点的粒子是42HeB .打在P 2点的粒子是21H 和42He C .O 2P 2的长度是O 2P 1长度的2倍D .粒子在偏转磁场中运动的时间都相等BC [通过同一速度选择器的粒子具有相同的速度,故11H 、21H 、42He 的速度相等,由牛顿第二定律得qvB 2=m v 2R ,解得R =mv qB 2,由此可知,设质子的质量为m ,质子带电量为q ,11H 的半径R 1=mvqB 2,21H的半径R 2=2mv qB 2,42He 的半径R 3=2mvqB 2,故打在P 1点的粒子是11H ,打在P 2点的粒子是21H 和42He ,选项A 错误,B 正确;O 2P 1=2R 1=2mv qB 2,O 2P 2=2R 2=4mvqB 2,故O 2P 2=2O 2P 1,选项C 正确;粒子在磁场中运动的时间t =T 2=πmqB ,11H 运动的时间与21H 和42He 运动的时间不同,选项D 错误.故选B 、C.]基础练习:考查点:速度选择器1.如图所示,一束质量、速度和电荷不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A 、B 两束,下列说法中正确的是( ) A .组成A 束和B 束的离子都带负电 B .组成A 束和B 束的离子质量一定不同 C .A 束离子的比荷大于B 束离子的比荷D .速度选择器中的磁场方向垂直于纸面向外[答案] C考查点:磁流体发电机2.(多选)磁流体发电机是利用洛伦兹力的磁偏转作用发电的.A 、B 是两块处在磁场中互相平行的金属板,一束在高温下形成的等离子束(气体在高温下发生电离,产生大量的带等量异种电荷的粒子)射入磁场.下列说法正确的是( ) A .B 板是电源的正极 B .A 板是电源的正极C .电流从上往下流过电流表D .电流从下往上流过电流表[答案] AD考查点:电磁流量计3.如图所示,电磁流量计的主要部分是柱状非磁性管.该管横截面是边长为d 的正方形,管内有导电液体水平向左流动.在垂直于液体流动方向上加一个水平指向纸里的匀强磁场,磁感应强度为B .现测得液体上下表面a 、b 两点间的电势差为U .则管内导电液体的流量Q (流量是指流过该管的液体体积与所用时间的比值)为( )A.UdB B.Ud 2B C.U BdD.d BU[答案] A考查点:质谱仪4. A 、B 是两种同位素的原子核,它们具有相同的电荷、不同的质量.为测定它们的质量比,使它们从质谱仪的同一加速电场由静止开始加速,然后沿着与磁场垂直的方向进入同一匀强磁场,打到照相底片上.如果从底片上获知A 、B 在磁场中运动轨迹的直径之比是d 1∶d 2,则A 、B 的质量之比为( )A .d 21∶d 22B .d 1∶d 2C .d 22∶d 21D .d 2∶d 1 [答案] A分类巩固:带电粒子在组合场中的运动1.如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射入水平放置、电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关A [带电粒子在电场中做类平抛运动,可将射出电场的粒子速度v 分解成初速度方向与加速度方向,设出射速度与水平夹角为θ,则有:v 0v =cos θ 而在磁场中做匀速圆周运动,设运动轨迹对应的半径为R ,由几何关系得,半径与直线MN 夹角正好等于θ,则有:d2R =cos θ,所以d =2Rv 0v ,又因为半径公式R =mv Bq ,则有d =2mv 0Bq =2B 2mU 1q .故d 随U 1变化,d 与U 2无关,故A 正确,B 、C 、D 错误.]2.(多选)(2017·烟台模拟)如图所示,在x 轴上方有沿y 轴负方向的匀强电场,电场强度为E ,在x 轴下方的等腰直角三角形CDM 区域内有垂直于xOy 平面向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,它们到原点O 的距离均为a .现将质量为m 、电荷量为+q 的粒子从y 轴上的P 点由静止释放,设P 点到O 点的距离为h ,不计重力作用与空气阻力的影响.下列说法正确的是( )A .若粒子垂直于CM 射出磁场,则h =B 2a 2q2mEB .若粒子垂直于CM 射出磁场,则h =B 2a 2q8mEC .若粒子平行于x 轴射出磁场,则h =B 2a 2q2mED .若粒子平行于x 轴射出磁场,则h =B 2a 2q8mEAD [粒子在电场中加速,有qEh =12mv 20.在磁场中做圆周运动,若粒子垂直于CM 射出磁场,则轨迹所对的圆心角θ=45°,半径R =a ,由洛伦兹力提供向心力,有qv 0B =mv 20R ,得R =mv 0qB ,联立以上各式得h =B 2a 2q2mE ,A 正确;若粒子平行于x 轴射出磁场,则轨迹所对的圆心有θ=90°,半径R =a 2,同理可得h =B 2a 2q8mE ,D 正确.]3.(2018·银川模拟)如图所示,AB 、CD 间的区域有竖直向上的匀强电场,在CD 的右侧有一与CD 相切于M 点的圆形有界匀强磁场,磁场方向垂直于纸面.一带正电粒子自O 点以水平初速度v 0正对P 点进入该电场后,从M 点飞离CD 边界,再经磁场偏转后又从N 点垂直于CD 边界回到电场区域,并恰能返回O 点.已知OP 间距离为d ,粒子质量为m ,电荷量为q ,电场强度大小E =3mv 20qd ,不计粒子重力.试求: (1)M 、N 两点间的距离;(2)磁感应强度的大小和圆形匀强磁场的半径;(3)粒子自O 点出发到回到O 点所用的时间.[解析](1)据题意,作出带电粒子的运动轨迹,如图所示:粒子从O 到M 的时间:t 1=d v 0;粒子在电场中加速度:a =qE m =3v 2d故PM 间的距离为:PM =12at 21=32d粒子在M 点时竖直方向的速度:v y =at 1=3v 0粒子在M 点时的速度:v =v 20+v 2y =2v 0速度偏转角正切:tan θ=v yv 0= 3 ,故θ=60°粒子从N 到O 点时间:t 2=d 2v 0,粒子从N 到O 点过程的竖直方向位移:y =12at 22故P 、N 两点间的距离为:PN =y =38d.所以MN =PN +PM =538 d.(2)由几何关系得:Rcos 60°+R =MN =538d,可得半径:R =5312d由qvB =m v 2R 解得:B =83mv 05qd ;由几何关系确定区域半径为:R ′=2Rcos 30°,即R ′=54d.(3)O 到M 的时间:t 1=d v 0;N 到O 的时间:t 2=d2v 0在磁场中运动的时间:t 3=4π3R 2v 0=53πd18v 0无场区运动的时间:t 4=Rcos 30°2v 0=5d 16v 0;t =t 1+t 2+t 3+t 4=29d 16v 0+53πd18v 0. 带电物体在叠加场中的运动4.如图所示,界面MN 与水平地面之间有足够大且正交的匀强磁场B 和匀强电场E ,磁感线和电场线都处在水平方向且互相垂直.在MN 上方有一个带正电的小球由静止开始下落,经电场和磁场到达水平地面.若不计空气阻力,小球在通过电场和磁场的过程中,下列说法中正确的是( )A .小球做匀变速曲线运动B .小球的电势能保持不变C .洛伦兹力对小球做正功D .小球的动能增量等于其电势能和重力势能减少量的总和D [带电小球在刚进入复合场时受力如图所示,则带电小球进入复合场后做曲线运动,因为速度会发生变化,洛伦兹力就会跟着变化,所以不可能是匀变速曲线运动,选项A 错误;根据电势能公式E p =q φ,知只有带电小球竖直向下做直线运动时,电势能保持不变,选项B 错误;根据洛伦兹力的方向确定方法知,洛伦兹力方向始终和速度方向垂直,所以洛伦兹力不做功,选项C 错误;从能量守恒角度知道选项D 正确.]5. (2017·桂林模拟)如图所示,空间存在互相垂直的匀强电场和匀强磁场,图中虚线为匀强电场的等势线,一不计重力的带电粒子在M 点以某一初速度垂直等势线进入正交电磁场中,运动轨迹如图所示(粒子在N 点的速度比在M 点的速度大).则下列说法正确的是( )A .粒子一定带正电B .粒子的运动轨迹一定是抛物线C .电场线方向一定垂直等势面向左D .粒子从M 点运动到N 点的过程中电势能增大C [根据粒子在电、磁场中的运动轨迹和左手定则可知,粒子一定带负电,选项A 错误;由于洛伦兹力方向始终与速度方向垂直,故粒子受到的合力是变力,而物体只有在恒力作用下做曲线运动时,轨迹才是抛物线,选项B 错误;由于空间只存在电场和磁场,粒子的速度增大,说明在此过程中电场力对带电粒子做正功,则电场线方向一定垂直等势面向左,选项C 正确;电场力做正功,电势能减小,选项D 错误.]6.如图所示,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场,电场和磁场相互垂直.在电磁场区域中,有一个光滑绝缘圆环,环上套有一个带正电的小球.O 点为圆环的圆心,a 、b 、c 为圆环上的三个点,a 点为最高点,c 点为最低点, bd 沿水平方向.已知小球所受电场力与重力大小相等.现将小球从环的顶端a 点由静止释放,下列判断正确的是( )A .当小球运动到c 点时,洛伦兹力最大B .小球恰好运动一周后回到a 点C .小球从a 点运动到b 点,重力势能减小,电势能减小D .小球从b 点运动到c 点,电势能增大,动能增大C [电场力与重力大小相等,则二者的合力指向左下方45°,由于合力是恒力,故类似于新的重力,所以ad 弧的中点相当于平时竖直平面圆环的“最高点”.关于圆心对称的位置(即bc 弧的中点)就是“最低点”,速度最大,此时洛伦兹力最大;由于a 、d 两点关于新的最高点对称,若从a 点静止释放,最高运动到d 点,故A 、B 错误.从a 到b ,重力和电场力都做正功,重力势能和电势能都减少,故C 正确.小球从b 点运动到c 点,电场力做负功,电势能增大,但由于bc 弧的中点速度最大,所以动能先增大后减小,故D 错误.所以C 正确,A 、B 、D 错误.]7.(多选)(2018·哈尔滨模拟)如图所示,空间同时存在竖直向上的匀强磁场和匀强电场,磁感应强度为B ,电场强度为E .一质量为m ,电量为q 的带正电小球恰好处于静止状态,现在将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v ,则关于小球的运动,下列说法正确的是( )A .小球做匀速圆周运动B .小球运动过程中机械能守恒C .小球运动到最低点时电势能增加了mgv 2BqD .小球第一次运动到最低点历时πm2qB。
带电粒子的周期性变化
研究背景和意义
随着科技的发展,带电粒子的周期性 变化在许多领域都有广泛的应用,如 粒子加速器、核聚变、量子计算等。
深入理解带电粒子的周期性变化有助 于推动相关领域的技术进步,为解决 能源、医疗、环保等领域的实际问题 提供理论支持。
02
带电粒子基础知识
带电粒子基本属性
01
02
03
电荷
带电粒子具有正负电荷, 可以吸引或排斥其他带电 粒子。
对采集到的数据进行处理和分析 ,计算带电粒子的运动周期、速 度和加速度等参数,并绘制运动 轨迹图。
实验结论和讨论
实验结论
实验结果表明,带电粒子在电场和磁场中的运动轨迹呈现周期性变化,验证了 洛伦兹力对带电粒子运动的影响。
实验讨论
本实验存在一定的误差和局限性,如粒子源的纯度、电场和磁场的均匀性和稳 定性等。为了提高实验精度和可靠性,需要进一步优化实验条件和改进实验方 法。
带电粒子在周期性电场中的行为包括稳定运动和混沌 运动,取决于粒子的质量和电荷以及电场的频率和幅
度。
研究带电粒子在周期性电场中的行为有助于深入了解 电磁波与带电粒子的相互作用机制,对于电磁波传播、
散射和吸收等领域具有重要意义。
04
带电粒子周期性变化的实验验证
实验设计和方法
实验目标
验证带电粒子在电场和磁场中的 周期性运动,观察洛伦兹力对带
发展数值模拟和理论模型,以更精确 地描述带电粒子的周期性变化过程。
探讨不同类型带电粒子(如电子、离 子等)的周期性变化特性,以及影响 因素(如温度、压力、磁场等)。
探索新的应用领域和技术
发掘带电粒子周期性变化在能源、环境、医疗等 领域的应用潜力。
研究带电粒子周期性变化在新型电子器件、传感 器、加速器等领域的应用。
物理专题三带电粒子在复合场(电场磁场)中的运动解读
物理专题三 带电粒子在复合场(电场磁场)中的运动解决这类问题时一定要重视画示意图的重要作用。
⑴带电粒子在匀强电场中做类平抛运动。
这类题的解题关键是画出示意图,要点是末速度的反向延长线跟初速度延长线的交点在水平位移的中点。
⑵带电粒子在匀强磁场中做匀速圆周运动。
这类题的解题关键是画好示意图,画示意图的要点是找圆心、找半径和用对称。
例1 右图是示波管内部构造示意图。
竖直偏转电极的板长为l =4cm ,板间距离为d =1cm ,板右端到荧光屏L =18cm ,(本题不研究水平偏转)。
电子沿中心轴线进入偏转电极时的速度为v 0=1.6×107m/s ,电子电荷e =1.6×10-19C ,质量为0.91×10-30kg 。
为了使电子束不会打在偏转电极的极板上,加在偏转电极上的电压不能超过多少?电子打在荧光屏上的点偏离中心点O 的最大距离是多少?[解:设电子刚好打在偏转极板右端时对应的电压为U ,根据侧移公式不难求出U (当时对应的侧移恰好为d /2):2212⎪⎭⎫ ⎝⎛⋅=v l dm Ue d ,得U =91V ;然后由图中相似形对应边成比例可以求得最大偏离量h =5cm 。
]例2 如图甲所示,在真空中,足够大的平行金属板M 、N 相距为d ,水平放置。
它们的中心有小孔A 、B ,A 、B 及O 在同一条竖直线上,两板的左端连有如图所示的电路,交流电源的内阻忽略不计,电动势为U ,U 的方向如图甲所示,U 随时间变化如图乙所示,它的峰值为ε。
今将S 接b 一段足够长时间后又断开,并在A 孔正上方距A 为h (已知d h <)的O 点释放一个带电微粒P ,P 在AB 之间刚好做匀速运动,再将S 接到a 后让P 从O 点自由下落,在t=0时刻刚好进入A 孔,为了使P 一直向下运动,求h 与T 的关系式?[解析:当S 接b 一段足够长的时间后又断开,而带电微粒进入A 孔后刚好做匀速运动,说明它受到的重力与电场力相等,有d q mg ε= 若将S 接a 后,刚从t=0开始,M 、N 两板间的电压为,2ε,故带电粒子进入电场后,所受到的电场力为mg d q F 22==ε,也就是以大小为g 、方向向上的加速度作减速运动。
带电粒子在复合场中的运动
设粒子在电场中运动的路程为 s2, 根据动能定理得 Eq·s22=12mv2,得 s2=mEvq2, 则总路程 s=πR+mEvq2, 代入数据得 s=(0.5π+1)m。
[答案] (1)0.2 T (2)(0.5π+1)m
(3)较复杂的曲线运动: 当带电粒子所受合外力的大小和方向均变化,且与初 速度方向不在同一条直线上,粒子做 非匀变速曲线运动, 这时粒子运动轨迹既不是圆弧,也不是抛物线。 (4)分阶段运动: 带电粒子可能依次通过几个情况不同的复合场区域, 其运动情况随区域发生变化,其运动过程由几种不同的运 动阶段组成。
(1)小球运动到 O 点时的速度大小; (2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离。 [解析] (1)小球从 A 运动到 O 点的过程中,根据动能 定理: 12mv2=mgl-qEl 则小球在 O 点时的速度为 v= 2lg-qmE=2 m/s。
(2)小球运动到 O 点绳子断裂前瞬间,对小球应用牛 顿第二定律:
场 荷受力的方向与该点电场 电势能,且W电=-ΔEp
强度的方向相反)
磁 (1)大小:F=qvB 场 (2)方向:垂直于v和B决
定的平面
洛伦兹力不做功
2.电偏转和磁偏转的比较
受力特征 运动性质
电偏转 F电=qE(恒力) 匀变速曲线运动
运动轨迹
磁偏转 F洛=qvB(变力) 匀速圆周运动
电偏转
类平抛运动
图2
(1)小球运动的速率v; (2)电场E2的大小与方向; (3)磁场B2的大小与方向。
解析:(1)小球在 x 轴下方受力如图所示: 其中重力竖直向下,G=mg=3×10-2 N 电场力水平向右,F=qE1=4×10-2 N G 与 F 的合力 F 合= G2+F2=5×10-2N 设合力与水平方向的夹角为 α, 则 tan α=GF,即 tan α=34,α=37° 由 f=qvB1,f=F 合 得 v=qBf 1=2×5×101-03-×2 5 m/s=5 m/s。
高三物理磁场专题复习二带电粒子在复合场中的运动知识点分析.
高考综合复习——磁场专题复习二带电粒子在复合场中的运动知识要点梳理知识点一——带电粒子在复合场中的运动▲知识梳理一、复合场复合场是指电场、磁场和重力场并存或其中某两种场并存,或分区域存在。
粒子在复合场中运动时,要考虑静电力、洛伦兹力和重力的作用。
二、带电粒子在复合场中运动问题的分析思路1.正确的受力分析除重力、弹力和摩擦力外,要特别注意电场力和磁场力的分析。
2.正确分析物体的运动状态找出物体的速度、位置及其变化特点,分析运动过程。
如果出现临界状态,要分析临界条件。
带电粒子在复合场中做什么运动,取决于带电粒子的受力情况。
(1)当粒子在复合场内所受合力为零时,做匀速直线运动(如速度选择器)。
(2)当带电粒子所受的重力与电场力等值反向,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。
(3)当带电粒子所受的合力是变力,且与初速度方向F在一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,由于带电粒子可能连续通过几个情况不同的复合场区,因此粒子的运动情况也发生相应的变化,其运动过程也可能由几种不同的运动阶段所组成。
3.灵活选用力学规律是解决问题的关键(1)当带电粒子在复合场中做匀速直线运动时,应根据平衡条件列方程求解。
(2)当带电粒子在复合场中做匀速圆周运动时,往往同时应用牛顿第二定律和平衡条件列方程联立求解。
(3)当带电粒子在复合场中做非匀变速曲线运动时,应选用动能定理或能量守恒列方程求解。
注意:由于带电粒子在复合场中受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解。
4.三种场力的特点(1)重力的大小为,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始末位置的高度差有关。
(2)电场力的大小为,方向与电场强度E及带电粒子所带电荷的性质有关,电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始末位置的电势差有关。
8.3带电粒子在复合场中的运动
2.如图所示,在长方形abcd区域内有正交的电磁场,ab=bc/2=L, 一带电粒子从ad的中点垂直于电场和磁场方向射入,恰沿直线从bc边 的中点P射出,若撤去磁场,则粒子从c点射出;若撤去电场,则粒子 将(重力不计)( )
A.从b点射出 B.从b、P间某点射出 C.从a点射出 D.从a、b间某点射出
(1)M、N两点间的电势差UMN; (2)粒子在磁场中运动的轨道半径r; (3)粒子从M点运动到P点的总时间t. [思路点拨] 根据粒子在不同区域内的运动特点和受力特点画出轨 迹,分别利用类平抛和圆周运动的分析方法列方程求解.
[自主解答] (1)设粒子过 N 点时的速度大小为 v,有vv0=cos θ v=2v0 粒子从 M 点运动到 N 点的过程,有 quMN=12mv2-12mv20, UMN=3m2qv20. (2)粒子在磁场中以 O′为圆心做匀速运动, 半径为 O′N,有 qvB=mrv2,r=2qmBv0.
律求解. ③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律 求解. ④对于临界问题,注意挖掘隐含条件.
2.复合场中粒子重力是否考虑的三种情况 (1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况 下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体, 如带电小球、液滴、金属块等一般应当考虑其重力.
(3)由几何关系得 ON=rsin θ
设粒子在电场中运动的时间为 t1,有 ON=v0t1
t1=
3m qB
粒子在磁场中做匀速圆周运动的周期 T=2qπBm
设粒子在磁场中运动的时间为 t2,有 t2=π2-πθT,故 t2=23πqmB
t=t1+t2,t=3
3+2πm 3qB .
[答案]
带电粒子在复合场中的运动例题
带电粒子在复合场中的运动例题引言本文将围绕带电粒子在复合场中的运动进行详细的探讨和解析。
我们将通过一个具体的运动例题,展示带电粒子在电磁场和重力场共同作用下的运动规律,帮助读者更好地理解这一过程。
问题描述考虑一个带电质量为m的粒子,在匀强电场和重力作用下,其运动方程如下:$$F=qE+m g$$其中,F表示粒子所受的合外力,q表示粒子的电荷量,E表示电场强度,g表示重力加速度。
在给定初速度v0的情况下,我们的目标是确定带电粒子在复合场中的运动轨迹。
解析为了解决这个问题,我们将采取以下步骤:步骤一:分析受力情况带电粒子所受的合外力由电场力和重力构成,因此可以将合外力表示为:$$F=qE+m g$$步骤二:列出运动方程根据牛顿第二定律,粒子的加速度与合外力成正比,因此可以得到运动方程为:$$a=\f ra c{F}{m}=\f ra c{qE}{m}+g$$将加速度与速度的关系带入上式,得到:$$\f ra c{dv}{dt}=\f ra c{qE}{m}+g$$步骤三:解微分方程对上式进行积分,可以得到粒子的速度与时间的关系:$$v=\f ra c{qE}{m}t+gt+v_0$$其中,v0为初始速度。
步骤四:求解轨迹方程将速度与时间的关系带入运动方程中,即可得到带电粒子在复合场中的运动轨迹:$$x=\f ra c{1}{2}\l e ft(\fr ac{q E}{m}t^2+g t^2+v_0t\ri g ht)+x _0$$其中,x0为初始位置。
结论通过以上的推导和计算,我们得到了带电粒子在复合场中的运动轨迹方程。
这个运动方程将帮助我们更好地理解带电粒子在电场和重力场中的相互作用情况,并能够准确地描述其运动过程。
希望读者通过本文的学习,能够加深对带电粒子在复合场中运动的理解,并能够应用相关原理解决类似的问题。
*注意:本文所使用的公式和推导过程纯属示例,实际问题中需要根据具体情况进行适当的调整。
高三复习专题——带电粒子在复合场中的运动优秀教案
的带负电粒子从静止开始经过场强为 E0 、宽度为 d 的电场加速后,从 O 点( O 点为 AD的中点)垂直入 AD
进入磁场,从 BC 边离开磁场,离开磁场时速度方向与 BC 边成 60o ,不计重力与空气阻力的影响。 (1)粒子经电场加速射入磁场时的速度? (2)长方形 ABCD区域内磁场的磁感应强度为多少?
例题 2: 如图所示,在平面直角坐标系 xoy 内,第Ⅰ象限的等腰直角三角形 MNP 区域内存在垂直于坐标平面 向外的匀强磁场, y O 的区域内存在着沿 y 轴正方向的匀强电场.一质量 m ,带电量 q 的带电粒子从电 场中 Q(2h,h) 点以速度 v 0 水平向右射出,经坐标原点 O 处射入第Ⅰ象限,最后以垂直于 PN 的方向射出 磁场.已知 MN 平行于 x 轴, N 点的坐标为 (2h,2h) ,不计粒子的重力,求: (1)电场强度 E 的大小; (2)磁感应强度 B 的大小;
E0qd
1 2
mv2
0
洛 伦 兹 力 与 速 运动 度垂直
qvB mv 2 r
(3)规范解答过程:必要的文字说明;作出准确受力分析图及运动轨迹图;建立准确物理方程
解:(1)带电粒子在电场中加速运动,
带电粒子运动轨迹如图所示,由几何关系可知
由动能定理得
E0qd
1 2
mv2
0
粒子经电场加速射入磁场时的速度 v
受力特点 只受电场力 电场力与速度垂直
第一阶段 运动特点 类平抛运 动
运动过程分析
第二阶段
物理规律
受力特点
运动特点
牛顿第二定律 只受洛伦兹力
匀速圆周
运动学公式
洛伦兹力与速度垂直 运动
高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)
微专题8 带电粒子在组合场和复合场中的运动一带电粒子在组合场中的运动组合场是指电场与磁场同时存在或者磁场与磁场同时存在,但各位于一定的区域内,并不重叠的情况。
所以弄清带电粒子在电场及磁场中的运动形式、规律和研究方法是解决此类问题的基础。
1.基本类型运动类型带电粒子在匀强电场中加速(v0与电场线平行或为零)带电粒子在匀强电场中偏转(v0⊥E)带电粒子在匀强磁场中匀速运动(v0与磁感线平行)带电粒子在匀强磁场中偏转(v0与磁感线垂直)受力特点受到恒定的电场力;电场力做功不受磁场力作用受磁场力作用;但磁场力不做功运动特征匀变速直线运动类平抛运动匀速直线运动匀速圆周运动研究方法牛顿运动定律匀变速运动学规律牛顿运动定律匀变速运动学公式正交分解法匀速直线运动公式牛顿运动定律向心力公式圆的几何知识表达方式如何求运动时间、速度和位移如何求飞行时间、偏移量和偏转角-如何求时间和偏转角用匀变速直线运动的基本公式、导出公式和推论求解飞出电场时间:t=打在极板上t=偏移量:y=偏转角:tan-时间t=T(θ是圆心角,T是周期)偏转角sin θ=(l是磁场宽度,R是粒子轨道半径)α=运动情境2.解题思路题型1电场与磁场的组合例1如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着沿y轴负方向的匀强电场。
初速度为零、带电荷量为q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,重力不计,经磁场偏转后过y轴上的P点且垂直于y轴进入电场区域,在电场中偏转并击中x轴上的C点。
已知OA=OC=d。
则磁感应强度B和电场强度E分别为多少?解析设带电粒子经电压为U的电场加速后速度为v,则qU=mv2带电粒子进入磁场后,由洛伦兹力提供向心力qBv=依题意可知r=d,联立解得B=带电粒子在电场中偏转,做类平抛运动,设经时间t从P点到达C点,由d=vt,d=t2联立解得E=。
带电粒子在磁场中运动之周期性磁场问题
考点4.5 周期性磁场问题周期性磁场问题:粒子在磁场或含有磁场的复合场中运动时,磁场周期性变化,有方向周期性变化,也有大小周期性变化,不论是哪种周期性变化,最终引起的都是粒子轨迹周期性变化。
有效地区分与联系粒子运动周期与磁场变化周期是解题的关键。
【例题】如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电荷量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,速度方向与x 轴夹角为30°.此时在圆形区域有如图乙所示周期性变化的磁场,以垂直于纸面向外为磁场正方向,最后电子运动一段时间后从N 飞出,速度方向与进入磁场时的速度方向相同(与x 轴夹角为30°).求:(1) 电子进入圆形磁场区域时的速度大小; (2) 0≤x ≤L 区域内匀强电场场强E 的大小;(3) 写出圆形磁场区域磁感应强度B 0的大小、磁场变化周期T 各应满足的表达式. 解析 (1)电子在电场中做类平抛运动,射出电场时,如图所示.由速度关系:v 0v =cos 30°解得v =233v 0(2)由速度关系得v y =v 0tan 30°=33v 0在竖直方向a =eE mv y =at =eE m ·Lv 0解得E =3mv 203eL(3)在磁场变化的半个周期内粒子的偏转角为60°,根据几何知识,在磁场 变化的半个周期内,粒子在x 轴方向上的位移恰好等于R ,如图所示.粒子到达N 点而且速度符合要求的空间条件是:2nR =2L电子在磁场内做圆周运动的轨道半径R =mv eB 0=23mv 03eB 0,解得B 0=23nmv 03eL (n =1、2、3…)若粒子在磁场变化的半个周期恰好转过16圆周,同时MN 间运动时间是磁场变化周期的整数倍时,可使粒子到达N 点并且速度满足题设要求.应满足的时间条件:2n ·16T 0=nT ,T 0=2πm eB 0解得:T =3πL3nv 0(n =1、2、3…) 【答案】(1)233v 0 (2)3mv 23eL (3)B 0=23nmv 03eL (n =1、2、3…) T =3πL 3nv 0(n =1、2、3…)1. 图(a)所示的xOy 平面处于匀强磁场中,磁场方向与xOy 平面(纸面)垂直,磁感应强度B随时间t 变化的周期为T ,变化图线如图(b)所示.当B 为+B 0时,磁感应强度方向指向纸外.在坐标原点O 有一带正电的粒子P ,其电荷量与质量之比恰好等于2πTB 0.不计重力.设P 在某时刻t 0以某一初速度沿y 轴正向从O 点开始运动,将它经过时间T 到达的点记为A .(a)(b)(1) 若t 0=0,则直线OA 与x 轴的夹角是多少? (2) 若t 0=T4,则直线OA 与x 轴的夹角是多少?【答案】(1)0 (2)π22. 如图甲所示,在xOy 平面内存在均匀、大小随时间周期性变化的磁场和电场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向,沿y 轴正方向电场强度为正).在t =0时刻由原点O 发射初速度大小为v 0、方向沿y 轴正方向的带负电粒子.已知v 0、t 0、B 0,粒子的比荷为πB 0t 0,不计粒子的重力.求:(1) t =12t 0时,求粒子的位置坐标;(2) 若t =5t 0时粒子回到原点,求0~5t 0时间内粒子距x 轴的最大距离.【答案】(1) (v 0t 0π,v 0t 0π). (2) (32+2π)v 0t 0.3. 如图甲所示,在坐标系xOy 中,y 轴左侧有沿x 轴正向的匀强电场,场强大小为E ;y轴右侧有如图乙所示,大小和方向周期性变化的匀强磁场,磁感应强度大小B 0已知.磁场方向垂直纸面向里为正.t =0时刻,从x 轴上的P 点无初速度释放一带正电的粒子,质量为m ,电荷量为q (粒子重力不计),粒子第一次在电场中运动的时间与第一次在磁场中运动的时间相等.求:(1) P 点到O 点的距离;(2) 粒子经一个周期沿y 轴发生的位移;(3) 粒子能否再次经过O 点,若不能说明理由.若能,求粒子再次经过O 点的时刻; (4) 粒子第4n (n =1、2、3…)次经过y 轴时的纵坐标. 【答案】(1)mE π22qB 20 (2)πmE qB 20 (3)15πm qB 04.如图a所示的平面坐标系xOy,在整个区域内充满了匀强磁场,磁场方向垂直坐标平面,磁感应强度B随时间变化的关系如图b所示.开始时刻,磁场方向垂直纸面向里(如图),t=0时刻有一带正电的粒子(不计重力)从坐标原点O沿x轴正方向进入磁场,初速度为v0=2×103 m/s.已知该带电粒子的比荷为qm=1.0×104 C/kg.试求:(1)t1=4π3×10-4 s时粒子所处位置的坐标(x1,y1);(2)带电粒子进入磁场运动后第一次到达y轴时离出发点的距离h.【答案】(1)(35m,0.6 m)(2)1.6 m5.在竖直平面内建立一平面直角坐标系xOy,x轴沿水平方向,如图甲所示。
高中物理(新人教版)选择性必修二课后习题:第一章带电粒子在有界磁场或复合场中的运动【含答案及解析】
第一章安培力与洛伦兹力习题课:带电粒子在有界磁场或复合场中的运动课后篇素养形成必备知识基础练1.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直磁场方向射入磁场中,并从B 点射出。
∠AOB=120°,如图所示,则该带电粒子在磁场中运动的时间为( ) A.2πr3v 0B.2√3πr3v 0C.πr 3v 0D.√3πr3v 0t=AB ⏜v 0,从题图分析有R=√3r ,则AB ⏜=R ·θ=√3r×π3=√33πr ,则t=AB⏜v 0=√3πr3v 0,故D 正确。
2.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点 ( )A.可能做直线运动B.可能做匀减速运动C.一定做曲线运动D.可能做匀速圆周运动,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,一定做曲线运动,C 正确。
3.(多选)长为l 的水平极板间,有垂直纸面向里的匀强磁场,如图所示,磁感应强度为B ,板间距离为l ,极板不带电,现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是 ( )A.使粒子的速度v<Bql4mB.使粒子的速度v>5Bql4m C.使粒子的速度v>BqlmD.使粒子的速度Bql4m <v<5Bql4m,由题意知,若带正电的粒子从极板左边射出磁场,其在磁场中做圆周运动的半径R<l4,粒子在磁场中做圆周运动,洛伦兹力提供向心力,即qvB=m v 2r可得粒子做圆周运动的半径 r=mvqB粒子不从左边射出,则mv qB<l 4即v<Bql4m带正电的粒子从极板右边射出磁场,如图所示,此时粒子的最大半径为R ,由上图可知R 2=l 2+(R -l 2)2可得粒子做圆周运动的最大半径R=5l 4又因为粒子做圆周运动,洛伦兹力提供向心力,粒子不从右边射出,则mv qB>5l 4即v>5Bql4m,故欲使粒子打在极板上,粒子的速度必须满足v<Bql4m或v>5Bql4m故A 、B 正确,C 、D 错误。
带电粒子在电场磁场复合场中的运动-备战2020年高考物理知识点详解之带电粒子在磁场中的运动
带电粒子在电场磁场复合场中的运动所谓电场、磁场的复合场,是指空间既有电场也有磁场,有的电场和磁场空间不重合,有的重合。
带电粒子在电场中一般做类平抛运动,用运动分解的规律和方法解决;在磁场中一般做圆周运动,用圆周运动的向心力公式等解决,这两种运动规律都要用,并且把它们联系起来、综合起来。
1.如图所示,在x轴上方存在匀强磁场,磁感应强度为B,方向垂直纸面向里.在x轴下方存在匀强电场,方向竖直向上.一个质量为m,电荷量为q,重力不计的带正电粒子从y轴上的a(h,0)点沿y轴正方向以某一初速度开始运动,经过一段时间后,粒子与x轴正方向成45°进入电场,当粒子经过y轴的b点时速度方向恰好与y轴垂直.求:(1)粒子在磁场中运动的轨道半径和速度大小v;(2)匀强电场的电场强度大小E;(3)粒子从开始运动到第三次经过x轴的时间t.2.如图所示,空间以AOB为界,上方有方向竖直向下的匀强电场,下方有垂直于纸面向里的匀强磁场,以过O点的竖直虚线OC为界,∠AOC=∠BOC=60°。
左侧到AA’间和右侧到BB’间磁感应强度的大小不同。
现在A点上方某一点以初速度v0水平向右射出一带电粒子,粒子的质量为m,电荷量为q,粒子恰好从AO 的中点垂直AO进入OC左侧磁场,并垂直OC离开左侧磁场进入右侧磁场,粒子从OB边恰好以竖直向上的速度进入匀强电场,AO=BO=L,不计粒子的重力,求:(1)匀强电场的场强E的大小;(2)OC左侧磁场磁感应强度B1的大小和右侧磁场磁感应强度B2的大小;(3)粒子从进入电场到第一次离开磁场运动的总时间。
3. 如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E,在y<0的区域存在方向垂直于xOy平面向外的匀强磁场。
一个氕核11H和一个氘核21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向。
已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场。
带电粒子在复合场中的运动
等,简化动力学方程的求解过程。
动力学方程的应用
带电粒子在磁场中的回旋运动
当带电粒子在磁场中作圆周运动时,其轨迹为一回旋线,可以根据动力学方程计算粒子的 回旋半径和回旋频率等参数。
带电粒子在电场中的加速运动
当带电粒子在电场中作加速运动时,可以根据动力学方程计算粒子的速度和位移等参数。
带电粒子的偏转运动
速度恒定
带电粒子的速度保持不变, 不随时间变化。
运动轨迹稳定
带电粒子的运动轨迹应是 一条稳定的曲线,不会发 生突变或震荡。
平衡位置的确定
受力分析
对带电粒子进行受力分析,找出各个力的方向和 大小,判断其平衡位置。
速度分析
根据速度恒定的条件,分析带电粒子在平衡位置 附近的速度变化情况。
轨迹分析
根据运动轨迹稳定的条件,分析带电粒子在平衡 位置附近的轨迹变化情况。
动力学方程的求解
分离变量法
01
将带电粒子的运动分解为在电场中的运动和在磁场果合并。
数值计算方法
02
对于一些复杂的动力学问题,可以采用数值计算方法,如有限
差分法、有限元法等,通过迭代求解动力学方程。
近似解法
03
对于一些特殊情况,可以采用近似解法,如小参数法、变分法
能量守恒定律的应用场景
在解决带电粒子在复合场中的运动问题时,我们通常需要分析带电粒子的受力情况,然后利用能量守恒 定律计算出带电粒子的速度、位移等物理量。
THANKS FOR WATCHING
感谢您的观看
匀速圆周运动
总结词
带电粒子在复合场中以恒定速率绕圆周运动,受到的电场力和洛伦兹力提供向心 力。
详细描述
当带电粒子在复合场中受到的电场力和洛伦兹力达到平衡时,粒子将绕圆周匀速 运动。此时,粒子的速度大小保持不变,方向不断变化,且受到的磁场力充当向 心力,使粒子保持圆周运动。
2022届高考物理:带电粒子在电场、磁场、复合场中的运动
2022年高考物理专题突破︰带电粒子在电场、磁场、复合场中的运动计算题1.(18分)平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅰ现象存在沿y 轴负方向的匀强电场,如图所示。
一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离的2倍。
粒子从坐标原点O离开电场进入电场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等。
不计粒子重力,为:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比。
2.如图所示,真空中四个相同的矩形匀强磁场区域,高为4d,宽为d,中间两个磁场区域间隔为2d,中轴线与磁场区域两侧相交于O、O′点,各区域磁感应强度大小相等.某粒子质量为m、电荷量为+q,从O沿轴线射入磁场.当入射速度为v0时,粒子从O上方d2处射出磁场.取sin53°=0.8,cos53°=0.6.(1)求磁感应强度大小B;(2)入射速度为5v0时,求粒子从O运动到O′的时间t;(3)入射速度仍为5v0,通过沿轴线OO′平移中间两个磁场(磁场不重叠),可使粒子从O运动到O′的时间增加Δt,求Δt的最大值.3.如图所示,竖直平面内有一直角坐标系xOy,x轴沿水平方向.第二、三象限有垂直于坐标平面向里的匀强磁场,与x轴成θ=30°角的绝缘细杆固定在二、三象限;第四象限同时存在着竖直向上的匀强电场和垂直于坐标平面向里磁感应强度大小为B的匀强磁场,一质量为m,电荷量为q带电小球a穿在细杆上沿细杆匀速下滑,在N点脱离细杆恰能沿圆周轨道运动到x轴上的A点,且速度方向垂直于x轴.已知A点到坐标原点O的距离为32l,小球a与绝缘细杆的动摩擦因数μ=√3 4;B=mq√5πg6l,重力加速度为g,空气阻力忽略不计.求:(1)带电小球的电性及电场强度的大小E;(2)第二、三象限里的磁场的磁感应强度大小B1;(3)当带电小球a刚离开N点时,从y轴正半轴距原点O为ℎ=20πl3的P点(图中未画出)以某一初速度水平向右平抛一个不带电的绝缘小球b,b球刚好运动到x轴时与向上运动的a球相碰,则b球的初速度为多大?4.如图所示,平面直角坐标系的第二象限内存在与水平方向成45 ° 、大小为E 1的匀强电场,一质量为m 、带电荷量为+q 的小球从 A(−L,L) 点静止释放,穿过y 轴后,在y 轴和竖直线PQ 之间的第一象限内有垂直纸面向外的匀强磁场B 1,整个第一象限内都有竖直向上的匀强电场E 2,且 E 2=√22E 1, B 1=m q √2g L,小球在里面恰好能做匀速圆周运动在y 轴与PQ 之间的第四象限内有一竖直向上,大小为 E 3=2mg q 的匀强电场;而在一、四象限PQ 的右侧是一大小为 B 2=2m q √2g L,方向垂直纸面向内的匀强磁场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在磁场或复合场中的运动
带电粒子在磁场,特别是在包括磁场在内的复合场中运动的问题,是中学物理中的重点内容,这类问题对学生的空间想象水平、分析综合水平、应用数学知识处理物理问题的水平有较高的要求,易于考查学生综合利用中学物理知识分析处理实际问题的水平,所以该部分知识几乎是高考每年必考的内容,且多以难度中等或中等偏上的计算题出现在高考试卷中,复习过程中,在理解和掌握分析处理此类问题的方法上多下功夫。
1.带电粒子在匀强磁场中的运动(限B 和v 平行和垂直两类)
(1)射入匀强磁场的粒子,若速度方向与B 平行,在磁场中作匀速直线运动。
粒子在匀强磁场中作匀速圆周运动时,洛仑兹力的方向始终与即时速度垂直,任意两点洛仑兹力作用线的交点即为圆心(即时速度总是与该点的半径相垂直,任意两条半径的交点即为圆心,通常取电荷射入和穿出磁场时速度方向垂线的交点)。
③使用几何知识求出轨道半径;④根据v s T πr s T πθt ===22求粒子在磁场中运动的时间。
【例1】(2005年高考广东物理试题)如图1所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A 2A 4为边界的两个半圆形区域Ⅰ、Ⅱ中,A 2A 4与A 1A 3的夹角为60º。
一质量为m 、带电量为+q 的粒子以某一速度从Ⅰ区的边缘点A 1处沿与A 1A 3成30º角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入Ⅱ区,最后再从A 4处射出磁场。
已知该粒子从射入到射出磁场所用的时间为t ,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力)。
【解析】设粒子的入射速度为v ,已知粒子带正电,故它在
磁场中先顺时针做圆周运动,再逆时针做圆周运动,最后从A 4
点射出,用B 1、B 2、R 1、R 2、T 1、T 2分别表示在磁场Ⅰ、Ⅱ区
的磁感应强度、轨道半径和周期。
则1
2
1R v m qvB = ①,222R v m qvB = ②,1
1122qB m v R T ππ== ③,22222qB m v R T ππ== ④ 设圆形区域的半径为r ,如图2所示,已知带电粒子过圆心且垂直A 3A 4进入Ⅱ区磁场,连接A 1A 2,△A 1OA 2为等边三角形,A 2为带电粒子在Ⅱ区磁场中运动轨迹的圆心,其半径R 1=A 1A 2=OA 2=r ⑤,圆心角∠A 1A 2O =60°,带电粒子在Ⅰ区磁
场中运动的时间为116
1T t = ⑥,带电粒子在Ⅱ区磁场中运动轨迹的圆心在OA 4的中点,即R 2=21r ⑦,在Ⅱ区磁场中运动时间为222
1T t = ⑧,带电粒子从射入到射出磁场所用的总时间21t t t += ⑨,由以上各式可得qt
m B 651π=,qt m B 352π=。
【点评】处理带电粒子在匀强磁场中的圆周运动问题,关键在于掌握方法,对于带电粒子的运动半径,在确定轨迹圆心后要充分利用几何关系求解;对于带电粒子在磁场中运动的时间,要利用粒子在磁场中偏转的圆心角与周期的关系予以解决,这是解决此类问题的关键。
2.带电粒子在复合场中的运动
(1)若带电粒子在匀强电磁场中做直线运动,在考虑重力时,因为电场力和重力为恒图1 A 1 A 3 A 4
A 2
30º 60º
Ⅰ
Ⅱ
O 图2
力,带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动时,一定是做匀速直线运动。
这是因为洛伦兹力方向和速度方向垂直且大小随速度的大小而改变,只要带电粒子的速度大小发生变化,垂直于速度方向的合力就要发生变化,该方向带电粒子的运动状态就会发生变化,粒子就会脱离原来的直线轨道而沿曲线运动。
(2)若带电粒子在上述复合场中做匀速圆周运动时,因为物体做匀速圆周运动的条件是所受合外力大小恒定,方向时刻和速度方向垂直,这是任何几个恒力或几个恒力与某一变力无法合成实现的,所以带电粒子在上述复合场中如果做匀速圆周运动,只能是除洛伦兹力以外的所有恒力的合力为零才能实现。
处理此类问题,一定要牢牢把握这个隐含条件。
(3)处理带电粒子在复合场中的运动的解题思路:
①对研究对象~带电粒子实行受力分析,画出受力分析图。
②对带电粒子实行的运动状态和运动过程分析,如果出现临界状态,确定临界条件。
③恰当选用解决力学问题的三个观点列方程求解:
A .动力学观点:即根据带电粒子所受的力,使用牛顿第二定律并结合运动学规律求解。
(只适用于匀变速运动);
B .动量观点:动量定理,动量守恒定律(注意守恒条件);
C .能量观点:动能定理,机械能守恒定律,能量守恒定律。
根据场力及其它外力对带电粒子做功引起的能量变化或全过程中的功能关系,从而可确定带电粒子的运动情况,此观点不但适用于均匀场,也适用于非均匀场。
处理过程中,应注意,无论带电粒子运动状态如何,洛伦兹力对带电粒子永远不做功。
④受力分析时应注意:
基本粒子,如电子、质子、 粒子、离子等,若无特殊说明或明确的暗示,一般不计重力,但并不忽略质量;带电颗粒,如尘埃、液滴、油滴、小球等,若无特殊说明或明确的暗示,一般要考虑重力;
【例2】如图3所示,坐标系xoy 在竖直平面内,空间有沿水平方向垂直于纸面向外的匀强磁场,磁感应强度大小为B ,在x <0的空间里有沿x 轴正方向的匀强电场,场强的大小为E ,一个带正电的小球经过图中x 轴上的A 点,沿着与水平方向成θ=30°角的斜向下直线做匀速运动,经过y 轴上的B
点进入x <0的区域,要使小球进入x <0区域后能在竖直面内做匀速圆周运动,需在x <0区域内另加一匀强电场。
若带电
小球做圆周运动通过x 轴上的C 点,且OA=OC ,设重力加速度为g ,求:
(1)小球运动速率的大小。
(2)在x <0的区域所加电场大小和方向。
(3)小球从B 点运动C 点所用时间及OA 的长度。
【解析】(1)油滴从A 运动到B 的过程中,油滴受重力、电场力和洛仑兹力作用而处于平衡状态,由题设条件知:sin30°= qE Bqv ①,所以油滴的运动速率为v= 2E B ②
(2)油滴在x <0的区域作匀速圆周运动,则油滴的重力与所受的电场力平衡,洛仑兹力提供油滴作圆周运动的向心力。
∴mg=qE ',又tan30°= qE
mg ,∴E'= 3E ③,方向竖直向
上。
(3)如图4所示,连接BC ,过B 作AB 的垂线交x 轴于O ′。
因为∠θ=30°,所以在△ABO ′中,∠AO ′B=60°,又OA=OC ,故∠OCB=θ=30°,所以
∠CBO ′=30°,∴O ′C=O ′B ,则O ′为油滴作圆周运动的圆心。
设油滴作圆周运动的半径为R ,周期为T ,则 E
图3
图4
O′C=O′B=R,且:qvB=m v2
R ,R=
mυ
qB ,T=
2πR
v=
2πm
qB ④,因为∠CO′B=120°,油滴从B
运动到C的时间为t1=1
3T=
2πm
3qB ⑤,又∠O′BO =30°,∴O′O =
1
2O′B=
1
2R⑥,∴OC=R+
1
2
R=3
2R,即OA=
3
2R=
3mv
2Bq⑦,由①知
m
q=
3E
g
⑧,联立②⑤⑦⑧解得t1=
23πE
3gB
,OA=
33E2
gB2。
【点评】带电粒子在复合场中的运动问题,难点在于受力情况和运动性质的判断。
带电
粒子在磁场中特别是在复合场中的运动问题,因其涉及的知识点多、综合性较强而具有一定
的难度,但是只要掌握了分析问题的一般方法,分析清楚带电粒子的受力特点和运动性质,
就能够逐步地予以解决。
在具体解决实际问题时,要认真做好以下三点:第一,准确分析受
力情况;第二,充分理解和掌握不同场对电荷作用的特点和差异;第三,认真分析运动的详
细过程,充分发掘题目中的隐含条件,建立清晰的物理情景,最终把物理模型转化为数学表
达式。
θ。