21 认识一元二次方程-第1课时

合集下载

第1节认识一元二次方程(教案)

第1节认识一元二次方程(教案)
2.教学难点
-难点一:理解判别式Δ的含义及其与方程根的关系。学生可能难以理解为何Δ的正负决定了方程根的个数。
-难点二:灵活运用因式分解法解一元二次方程。学生可能对因式分解的技巧掌握不够熟练,难以快速找到合适的因式分解。
-难点三:掌握错误。
举例解释:
-掌握一元二次方程的判别式Δ=b^2-4ac及其与方程根的关系,这是判断方程有几个实数根的依据。
-学会一元二次方程的三种基本解法:直接开平方法、因式分解法、求根公式法,并能灵活运用。
-能够将现实生活中的问题转化为一元二次方程,培养数学建模能力。
举例解释:
-对于定义,教师应通过具体例子,如x^2-5x+6=0,强调a≠0的条件,并解释为何a不能为0。
-对于判别式的理解,教师可以通过图像(如抛物线与x轴的交点)和实际例子来帮助学生直观感受Δ与根的关系。
-在因式分解法的教学中,教师应提供多种类型的方程,如(x-2)(x-3)=0、2x^2-5x+3=0等,通过反复练习和总结,帮助学生掌握常见的因式分解模式。
-求根公式法的掌握,教师可以通过分解公式,如x = (-b ± √Δ) / (2a),让学生逐步记忆,并通过大量练习来加深理解,同时强调符号的准确使用和计算过程的细心。
4.举例说明一元二次方程在现实生活中的应用。
二、核心素养目标
《认识一元二次方程》一课的核心素养目标主要包括:
1.培养学生的逻辑推理能力,使其能够理解和运用一元二次方程的定义及性质,通过分析、归纳总结出一元二次方程的解法。
2.提高学生的数学建模素养,让学生能够将现实生活中的问题转化为数学问题,用一元二次方程进行描述,并解决实际问题。
第1节认识一元二次方程(教案)
一、教学内容

21-3实际问题与一元二次方程(第1课时传播问题)-

21-3实际问题与一元二次方程(第1课时传播问题)-

病源A 第1轮
第2轮传染后患病人数_1_+_2_+_(_1_+_2_)_×_2_人.
第2轮
合作探究
人教版数学九年级上册
探究1 有一人患了流感,经过两轮传染后共有121人患了 流感,每轮传染中平均一个人传染了几个人?
分析:设每轮传染中平均一个人传染了x个人. 第1轮传染后患病人数_(_1_+_x_)_人;
第2轮传染后患病人数_[_1_+_x_+_(_1_+_x_)_x_]人. 规律发现
传染源 第1轮传染后 第2轮传染后的人数 人数 的人数 1 1+x=(1+x)1 1+x+x(1+x)=(1+x)2
合作探究
人教版数学九年级上册
探究1 有一人患了流感,经过两轮传染后共有121人患了 流感,每轮传染中平均一个人传染了几个人?
课堂小结
人教版数学九年级上册
传播问题公式1:1+x+x(1+x)=(1+x)2 传播问题公式2: 1+x+x2 列一元二次方程解应用题的步骤: 1.审:理解题意,明确未知量、已知量以及它们之间的数量关系. 2.设:根据题意,可直接设未知数,也可间接设未知数. 3.列:根据题中的等量关系,用含所设未知数的代数式表示其他 未知量,从而列出方程. 4.解:准确求出方程的解. 5.验:检验所求出的根是否符合方程和实际问题. 6.答:写出答案.
A.x+(x+1)x=36
B.1+x+(1+x)x=36
C.1+x+x2=36
D.x+(x+1)2=36
课堂检测

人教版九年级数学上册21.3 实际问题与一元二次方程-解决代数问题(第1课时)公开课优质教案

人教版九年级数学上册21.3 实际问题与一元二次方程-解决代数问题(第1课时)公开课优质教案

21.3实际问题与一元二次方程第1课时解决代数问题教学目标知识技能1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题,百分率问题中的数量关系列一元二次方程并求解,熟悉解题解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.数学思考与问题解决1.通过列一元二次方程解决实际问题,培养学生的“模型思想”和对数学的“应用意识”.2.在病毒的传播问题中要弄清每一轮的传播源(即每一轮的感染者也是下一轮的传播者),同时要注意与细胞分裂、电脑病毒的传播等问题的区别与联系;在百分率问题中,注意弄清数量与百分率的关系,会归纳总结出增长率(降低率)问题的等量关系.情境态度通过列方程解决实际问题,让学生体会方程是刻画现实世界的一个有效的数学模型,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,感知数学与生活的密切联系,体会数学知识应用的价值,不断提高学生学习数学的兴趣.重点难点重点利用一元二次方程解决传播问题、百分率问题.难点如何理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题、百分率问题中的数量关系.教学设计活动1 创设情境一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?分析:设这个小组x人,那么每个人要送给除了他自己以外的人,共送张贺卡,由此可列方程: .提出问题:列一元二次方程解决实际问题的步骤有哪些?总结:(1)审:认真审题,分清题意,弄清已知量和未知量,寻找相等关系;(2)设:就是设未知数,分直接设未知数和间接设未知数,到底选择何种方式设未知数,要以有利于列出方程为准则;(3)列:就是根据题目中的已知量和未知量之间的关系列出方程;(4)解:就是求出所列方程的解;(5) 就是检验方程的解.首先检验计算是否正确,然后检验每个解是否复合问题的实际意义,再正确取舍;(6)答:就是对实际问题进行回答.提出问题:列一元二次方程解决实际问题的步骤与列一元一次方程解决实际问题的一般步骤有哪些相同点和不同点?活动2 探究新知例1 教材第19页探究2变化率问题.提出问题:(1)如何比较哪种药品成本的年平均下降率较大?(2)本题中应该如何设未知数?如何列方程?(3)讨论:在本题解方程的过程中,方程有两个解应该怎么办?(4)哪种药品成本的年平均下降率较大?哪种药品成本的年平均下降额较大?(5)讨论:经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?总结:变化率问题的公式若平均增长(或降低)的百分率为x ,增长(或降低)前的量是a ,增长(或降低)n 次后的量是b ,则它们的数量关系可表示为b x a n=±)1((其中增长取+,降低取-).例2 教材第19页探究1传播问题.提出问题:(1)本题中的已知量未知量分别是什么?(2)本题中我们设直接未知数还是间接未知数?(3)本题中的数量关系是什么?设每轮传染中平均一个人传染x 个人,那么①患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感.②在第二轮传染中传染源是 人,这些人中每一个人有传染了 人,第二轮传染后,共有 人患流感.(4)怎么列方程?(5)方程的解是多少?10和-12都是这个实际问题的解吗?(6)如果按这样的传染速度,三轮传染后有多少人患了流感?(7)请观察式子)1(1x x x +++与[])1(1)1(1x x x x x x x +++++++能不能化简?请在课后写出表示四轮传染、五轮传染后的患病人数的代数式,并猜测n 轮传染后的患病人数.活动3 练习巩固1.参加篮球联赛的每两队之间都进行了两次比赛(双双循环比赛),共要比赛90场,共有多少个队参加了比赛?2.某商场2014年的经营中,一月份的营业额为200万元.一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求平均每月营业额的增长率.3.某种细菌,一个细菌经过两轮繁殖后共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌? 活动4 课堂小结与作业布置课堂小结1. 列一元二次方程解决实际问题的一般步骤是哪些?2.列一元二次方程解决实际问题中,最关键是那一步?检验应该要注意什么?3.变化率问题和传播问题有什么规律?布置作业教材21-22页习题21.3第2—7题.。

《认识一元二次方程》第一课时教学设计

《认识一元二次方程》第一课时教学设计

《认识一元二次方程》第一课时教学设计作者:牛慧芳来源:《学校教育研究》2020年第02期教学内容:2.1 认识一元二次方程教材分析:(一)教材所处的位置认识一元二次方程是九年级《数学》上册第二章一元二次方程的第一节内容。

方程是刻画现实世界中数量关系的一个有效数学模型。

学生在七、八年级已经感受了利用方程解决实际问题的经验。

一元二次方程的知识是后续学习《二次函数》、解决函数及综合题的基础。

(二)教材结构本节通过丰富的实例“花边有多宽”“梯子的底端滑动多少米”等问题,建立一元二次方程,让学生通過观察归纳出一元二次方程的有关概念,并从中体会方程的模型思想。

(三)教学重点1.经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。

2.了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。

3.能准确说出一元二次方程的二次项,一次项、常数项。

(四)教学难点能准确运用一元二次方程解决现实生活中问题。

学情分析:学生在七年级上册《一元一次方程》一章中,已经结合丰富的现实情景,经历了方程概念的归纳过程,初步掌握了利用方程解决问题的基本步骤,为本节的深入学习奠定了基础。

素质目标:(一)知识点经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。

(二)能力训练点1.能利用去分母、去括号、移项、合并同类项等方法将一元二次方程转化为一般形式。

2.能准确确定一元二次方程的二次项,一次项、常数项。

(三)德育渗透点1.使学生在积极参与探索、交流的数学活动中,体验数学与实际活动的密切联系,感受与他人合作的重要性。

2.培养学生转化的数学思想。

教学策略:根据新教材的特点。

结合本班学生的实际情况,为了更好的突出本节重点,突破难点,圆满完成教学任务,取得良好的教学效果,本节采用“问题情景—建立模型—解释—应用与拓展的教学流程。

运用观察、比较、讨论、归纳、知识反馈等策略,引导学生多思善讲,在建立模型处适当给予点拨,以调动学生的自觉性、积极性,从而达到感知、归纳、应用、巩固和深化新知的目的。

2.1认识一元二次方程第1课时教学流程

2.1认识一元二次方程第1课时教学流程

九上数《2.1认识一元二次方程(第1课时)》教学流程
注:“H”指课件中的幻灯片,如“H4”指课件中的第4张幻灯片。

)
前面已学习了一元一次方程及其解
法。

提问学生,简单过。

学生齐读
通过此三题复习一元一次方程的概念及其解法。

(H3)3´
生2´,师1´
探究新知知识点1
通过此活动理解一元二
次方程的概念。

(H4、H5)①头天晚修自学完成;②生展示答案;③师精讲并归纳一元二次方程的概念。

2 通过此环节进一步掌握
一元二次方程的一般形
式及其相关概念。

(H6)
①分组+普做;②对答案,师点评;
③师傅再教徒弟小组合作学习。

内容二)
进一步掌握一元二次方
程的概念(H7)
对本节课所学知识的归
学生自由谈纳总结(H8)。

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1配方法(第一课时直接开平方法)课件人教版

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.1配方法(第一课时直接开平方法)课件人教版

∴ x3 5 或 x3- 5 .
∴ x1= 5-3 ,x2 = - 5-3 .
解一元二次方程的基本思路是:
把一个一元二次方程“ 降次 ”,转化 为两个一元一次方程.
由应用直接开平方法解形如:
x2=p(p≥0),那么x=± p
由应用直接开平方法解形如:
(mx+n)2=p(p≥0),则mx+n=____p_ .
问题:一桶油漆可刷的面积为1500 dm2 , 李林用这桶油漆恰好刷完10个同样的正方体 形状的盒子的全部外表面,你能算出盒子的 棱长吗?
提示
可以根据正方体表面积 S=6a2求解. 同时要注意 所得的结果要符合实际
意义.
解:设正方体的棱长为x dm,则一个正方 体的表面积为__6_x_2_dm2 .根据一桶油漆可 刷面积列出方程 1_0_×_6_x_2_=_1_5_0_0____.
解下列方程:
(1)9x2 5 3;
解:移项,得 9x2 8.
系数化为1,得 x2 8 .
9
直接开平方,得
x
8. 9
x1

22 3
,x2


22 3
.
注意:二次根 式必须化为最 简二次根式。
(2)9x2 5 1.
解:先移项,得 9x2 4. 系数化为1,得 x2 4 0 9
1

x1

, 3
x2

1.
整理,得_x_2_=_2_5 , 根据平方根的意义得x=___±_5__. 即x1=___5___,x2=__-_5___. 因为_棱__长__不_能__为__负__值__,所以正方体的棱长 是_5_d_m__.

数学北师大版九年级上册课题:§2.1 认识一元二次方程 (第1课时)教学设计

数学北师大版九年级上册课题:§2.1 认识一元二次方程 (第1课时)教学设计

课题:§2.1 认识一元二次方程(第1课时)【北师大版九年级上学期】宁德市福安县(市、区)学校福安三中姓名罗清声内容分析:1. 课标要求北师大版九年级上学期“§2.1认识一元二次方程”一节包括一元二次方程的概念,一元二次方程的一般形式以及一元二次方程的解的概念.《义务教育数学课程标准》对一元二次方程一节相关的内容没有提出具体的教学要求,但可以参照对方程概念的要求,即能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型.2. 教材分析知识层面:教科书先以一个设计人体雕像的实际问题作为开篇,并在第一节中又给出两个实际问题,通过建立方程,并引导学生思考这些方程的共同特点,从而归纳得出一元二次方程的概念、一般形式,给出一元二次方程根的概念.在这个过程中,通过归纳具体方程的共同特点,定义一元二次方程的概念,体现了研究代数学问题的一般方法.一般形式也是对具体方程从“元”(未知数的个数)、“次数和“项数”等角度进行归纳的结果;a≠0的规定是由“二次”所要求的,这实际上也是从不同侧面理解一元二次方程概念的契机.本节以实际问题为背景,引出一元二次方程的概念,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念,并指出一元二次方程的根不唯一。

本节内容实在前面所学方程的基础上进行学习,也是后面学习二次函数的一个基础。

这些概念是全章后继内容的基础。

能力层面:本章开篇,教科书利用花边有多宽这一典型的数学生活问题,通过建立数学模型得到一个一元二次方程,由此引发学习本章内容的需要.接着,通过五个连续整数,使前三个数的平方和等于后两个数的平方和的问题以及梯子的底端滑动距离的问题,又得到两个一元二次方程,然后引导学生从“未知数的个数”和“最高次数”两个方面进行归纳,抽象出一元二次方程的概念及其数学符号表示(一元二次方程的一般形式).这样编排,不仅可以使学生认识到学习一元二次方程是解决实际问题的需要,而且还可以使学生体验运用数学知识解决实际问题的基本过程,积累数学活动经验,从而培养模型思想,逐步形成应用意识.思想层面:引入一元二次方程概念的过程中,教科书在“边空”中多次安排提示性设问“方程中未知数的个数和最高次数各是多少?”再在“思考”栏目中提出归纳几个方程共同特点的学习任务;在给出一元二次方程概念、一般形式后,通过“为什么规定a≠0?”引导学生辨析概念;最后通过例题,让学生用概念做判断.这样安排,体现了概念学习的一般过程,教科书在归纳具体方程的共同特点、辨析概念的关键词等关键环节中设置问题,引导学生进行独立思考与发现.3. 学情分析本班为自己任课的班级,学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。

新人教版一元二次方程导学案

新人教版一元二次方程导学案

21.1一元二次方程(第1课时)一、学习目标1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。

2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。

二、学习重点、难点重点:建立一元二次方程的概念,认识一元二次方程的一般形式。

难点:在一元二次方程化成一般形式后,如何确定一次项和常数项。

三、学习过程(一)知识准备:(1) 多项式3x 2y-2x-1是次项式,其中最高次项是,二次项系数为,一次项系数为,常数项为 。

(2)叫方程,我们学过的方程类型有。

(3)解下列方程或方程组: ①1)1(2-=+x x ②⎩⎨⎧=+=-42y x y x ③211=-x(二)新课学习:1.自学教材P25——27,回答以下问题。

(1)一元二次方程的定义:等号两边都是,只含有个求知数(一元),并且求知数的最高次数是 (二次)的方程,叫做一元二次方程。

(2)一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: (a ≠0),这种形式叫做一元二次方程的一般形式。

其中是二次项,是二次项系数,是一次项,是一次项系数,是常数项。

【注意】①方程ax 2+bx +c =0只有当a ≠0时才叫一元二次方程,如果a =0,b ≠0时就是方程了。

所以在一般形式中,必须包含a ≠0这个条件。

②二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号。

2.新课应用: 1、下列方程是一元二次方程的是有:(1),(2)(x+1)(x-1)=0, (3),(4)01122=-+xx ,(5),(6)05322=-+y x2、参照教材P 26例题,解答:①一元二次方程15242+-=x x x 化为一般形式是:;其二次项是:;一次项是:;常数项是:.②把方程()()11212=+-y y 化为一般形式为:;其二次项系数是;一次项系数是;常数项是. 3、若033)3(2=++--nx xm n 是关于x 的一元二次方程,则().A m ≠0,n=3B m ≠3,n=4C m ≠0,n=4D m ≠3,n ≠0 4、已知:关于x 的方程()()021122=-++-x k x k .(1)当k 取何值时,此方程为一元一次方程. (2)当k 取何值时,此方程为一元二次方程.四、达标过关测试1.下列方程中,是关于x 的一元二次方程的是().A.()()12132+=+x x B.02112=-+x x C.02=++c bx ax D.1222-=+x x x2.一元二次方程12)3)(31(2+=-+x x x 化为一般形式为:,二次项系数为: ___,一次项系数为: ____,常数项为: _____.3.关于x 的方程023)1()1(2=++++-m x m x m ,当m ________时为一元一次方程;当m___________时为一元二次方程.4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为.5.如图所示,在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是()A .213014000x x +-= B .2653500x x +-=C .213014000x x --= D .0350652=+-x x21.1一元二次方程(第2课时)---- 一元二次方程的根一、学习目标1、会进行简单的一元二次方程的试解;理解方程解的概念。

人教版九上数学 21.2解一元二次方程(第1课时) 教案

人教版九上数学   21.2解一元二次方程(第1课时) 教案

21.1 解一元二次方程(1)【教学目标】知识与技能:1.会用开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程2.探索利用配方法解一元二次方程的一般步骤;能够利用配方法解一元二次方程.过程与方法:在探索配方法时,使学生感受前后知识的联系,体会配方的过程以及方法。

情感态度价值观:体会由未知向已知转化的思想方法.【教学重难点】重点:用直接开平方法和配方法解一元二次方程.难点:把一元二次方程通过配方转化为(x十m)2=n(n 0)的形式.【教学过程】一、复习引入【问题】1.求出下列各式中x的值,并说说你的理由.(1)x2=9 (2)x2=5 (3)x2=a(a>0).说明:复习平方根的意义,解形如x2=n的方程,为继续学习引入作好铺垫.2.什么是完全平方式?3. 填上适当的数,使下列各式成立.(1)x2+ 6x+ =(x+3)2(2) x2+8x+ =(x+ )2(3)a2+2ab+ =(a+ )2 (4)a2-2ab+=(a- )2二、探索新知【问题】一桶某种油漆可刷的面积为1 500 dm 2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部外表,你能算出盒子的棱长吗?分析:学生独立分析题意,发现若设正方体的棱长为x dm ,则一个正方体的表面积为6x 2 dm 2,根据一桶油漆可以刷的面积,列出方程:10×6x 2=1500整理,得x 2=25x=±5x 1=5,x 2=-5棱长不能为负数,所以盒子的棱长为5 dm说明:在学生列出方程后,让学生讨论方程的解法,由于所列出的方程形式比较简单,可以运用平方根的定义(即开平方法)来求出方程的解.让学生感受开平方可以解一些简单的一元二次方程.归纳:一般地,对于方程2x p =(1)当P >0时,方程有两个不等的实数根(2)当P=0时,方程有两个相等的实数根(3)当P <0时,方程没有实数根【探究】你认为怎样解方程2(3)5x +=?学生独立分析问题,发现和【问题】中的方程形式类似,可以利用平方根的定义,直接开平方得到35x +=±,于是得到13x =-23x =-归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程. 说明:在学生讨论方程的解法时,注意引导学生根据降次的思想,利用配方的方法解决问题,进而体会配方法解方程的一般步骤.【探究】怎样解方程2640x x ++=?归纳:1.通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;2.配方的目的是为了降次,把一元二次方程转化为两个一元一次方程说明:引导学生根据降次的思想,利用配方的方法把一元二次方程转化为两个一元一次方程来解方程.【例题讲解】例:解下列方程(1)x 2-8x + 1 = 0; (2)2213x x +=; (3)23640x x -+=.学生首先独立思考,自主探索,然后交流配方时的规律.经过分析得到(1)中经过移项可以化为281x x -=-,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到2228414x x -+=-+,得到(x -4)2=15;(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即23122x x -=-,方程两边都加上23()4,方程可以化为231()416x -=; (3)按照(2)的方式进行处理.总结:利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式20ax bx c ++=; (2)把方程的常数项通过移项移到方程的右边;(3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.说明:在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理等),通过解几个具体的方程,归纳作配方法解题的一般过程.归纳:一般地,对于方程2()x n p +=(1)当P >0时,方程有两个不等的实数根,1x n =-+2x n =-(2)当P=0时,方程有两个相等的实数根12x x n ==-(3)当P <0时,方程没有实数根三、巩固练习教材9页第1、2题.说明:检查学生对基础知识的掌握情况,进一步掌握配方法四、小结作业小结:1. 要熟练直接开平方法和配方法的技巧,来解一元二次方程,2.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。

211《一元二次方程教案》(第1课时).doc

211《一元二次方程教案》(第1课时).doc

22. 1 一元二次方程第一课时一、 教学内容一元二次方程概念及一元二次方程一般式及有关概念. 二、 教学目标了解一元二次方程的概念;一般式a/+bx+c 二0 (aHO )及其派生的概念;应用一元二 次方程概念解决一些简单题H .1. 通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2. 一元二次方程的一般形式及其有关概念.3. 解决一些概念性的题目.4. 通过生活学习数学,并用数学解决生活中的问题來激发学生的学习热情. 三、 重难点关键1. 重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概 念解决问题.2. 难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概 念迁移到一元二次方程的概念.四、 教学过程 (一、)复习引入 学牛活动:列方程.问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺•八寸,两隅相去适一 丈,问户高、广各儿何? ”人意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽 各是多少? 如果假设门的高为x 尺,那么,这个门的宽为 _________ 尺,根据题意,得 __________ 整理、化简,得: __________ ・问题(2)如图,一块四周镶冇宽度相等的花边的地毯, 毯中央的长方形图案的面积为18m2,求花边有多宽?设花边的宽为“ in ,那么地毯屮央长方形图案的 长为 m, 宽 为 _____________ m,根据题意, 得方程: ____________________________________ . 问题(3)观察下面等式:102+112+122=132+142你还能找到其他的五个连续整数,使前三个 数的平方和等于后两个数的平方和吗? 设五个连续整数中第一个为x,那么后四个___________________________________ ,根据题意, 得方程: ___________________________________________________________________ 老师点评并分析如何建立一元二次方程的数学模型,并整理. (二、)探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有儿个未知数?数为 __________ 它的长为8m,宽为5m,如果地(2)按照整式中的多项式的规定,它们最高次数是儿次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x; (2)它们的最高次数都是2次的;(3)都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.-般地,任何一个关于x的一元•二次方程,经过整理,都能化成如下形式ax2+bx+c=0 (aHO).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0 (aHO)后,其屮ax'是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(阅读练习册P1例题)巩固练习1、下列方程中,一元二次方程冇( )个(1)/ = 3 (2)5酹=3(/・ 1) ⑶丄二/ (+)yz・ A2 =5 (5)5/ ・2x = 5(/ +2)(/ ・ 1)x 4A. 2B. 3 C・ 4 D. 5例1.将方程(8-2x) (5-2x)二18化成一元二次方程的一般形式,并写出其屮的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=O(8工0).因此,方程(8~2x) ( 5~2x)=18必须运用整式运算进行整理,包括去•括号、移项等.解:去扭号,得:40-16x-l 0X+4X2= 18移项,得:4x-26x+22=0其中二次项系数为4, 一次项系数为-26,常数项为22.(三、)巩固练习教材匕练习1、(四、)应用拓展例2.求证:关于x的方程(m2-8m+17) x2+2mx+l=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m収何值,该方程都是一元二次方程,只要证明m2-8m+17 H0即可. 证明:m2-8m+17= (m-4) 2+1•・• (m-4)空0・・・(m-4) 2+1>0, B|J (m-4) 2+1^0・・・不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1) 一元二次方程的概念;(2) 一元二次方程的一般形式ax'+bx+c二0 CaHO)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.练习册P H提升:(A组)2.选用作业设计.作业设计一、选择题1.在下列方程中,一元二次方程的个数是().①3x'+7二0 ②ax"+bx+c二0 ③(x-2) (x+5) =x2-l ④3x2-— =0XA. 1个B. 2个C. 3个D. 4个2.px2-3x+p2-q=0是关于x的一元二次方程,则().A. p=lB. p>0C. pHOD. p 为任意实数二、填空题1.____________________________________ 方程3x「3二2x+l的二次项系数为, 一次项系数为 ______________________________________________ ,常数项为2.一元二次方程的一般形式是__________ .3.关于x的方程(旷1) X2+3X=0是一元二次方程,则a的取值范围是 __________ .三、综合提高题1. a满足什么条件时,关于x的方程a (x2+x) =>/3x- (x+1)是一元二次方程?2.关于x的方程(2m2+m) x,,M+3x=6可能是一元二次方程吗?为什么?反思提高:。

九年级数学上册21一元二次方程21.2解一元二次方程21.2.1配方法第一课时用直接开平方解一元二次

九年级数学上册21一元二次方程21.2解一元二次方程21.2.1配方法第一课时用直接开平方解一元二次
第3页
1.方程x2-64=0解是( D)
A.x=8
B.x=-8
C.x=4
D.x1=8 ,x2=-8
2.方程3x2+9=0根为( D)
A.3
B.-3
C.±3
D.无实数根
3.(滨州)以下方程中,一定有实数解是( B)
A.x2+1=0
B.(2x+1)2=0
C.(2x+1)2+3=0
D.( -a)2=a
4.方程(x+1)2=9解是( C)
∵一元二次方程(x-3)2=1两个解恰好分别是等腰△ABC底边长和腰长, ∴①当底边长和腰长分别为4和2时,4=2+2,此时不能组成三角形; ②当底边长和腰长分别是2和4时,4+4>2,此时能组成三角形, ∴△ABC周长为:2+4+4=10.
第8页
12.当m为何值时,方程
是关于x一元二次方程?
第9页
13.已知:x2+4x+y2-6y+13=0,求xx- 2+2yy2的值. 【解】 已知:x2+4x+y2-6y+13=0, 变形得:(x2+4x+4)+(y2-6y+9)=0, 即(x+2)2+(y-3)2=0, 所以x=-2,y=3.
第10页
21.2.1 配方法
第1课时 用直接开平方法解一元二次方程
1.利用直接开平方法解一元二次方程,其依据是__平__方__根__意义,即:假 如x2=p(p>0),则x1=____,x2=_____.
2.形如(ax+m)2=n(n>0)一元二次方程,也可利用直接开平方法求
解,即:先利用平方根意义把原方程转化为两个_____一__元__一__次__方ax程+m=
A.x=1或x=-1
B.x=3或Байду номын сангаас=-3
C.x1=2或x2=-4

秋九年级数学上册 第二十一章 一元二次方程 21.3 实际问题与一元二次方程 第1课时 传播问题与一

秋九年级数学上册 第二十一章 一元二次方程 21.3 实际问题与一元二次方程 第1课时 传播问题与一

第二十一章 一元二次方程21.3实际问题与一元二次方程第1课时 传播问题与一元二次方程学习目标:1.会分析实际问题(传播问题)中的数量关系并会列一元二次方程.2.正确分析问题(传播问题)中的数量关系.3.会找出实际问题(传播问题)中的相等关系并建模解决问题.重点:分析实际问题(传播问题)中的数量关系并会列一元二次方程来解决问题.难点:正确分析问题(传播问题)中的数量关系.一、知识1.解一元二次方程的四种解法是什么?2.列方程解应用题的一般步骤是什么?二、要点探究探究点1:传播问题与一元二次方程探究1有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?想一想如果按照这样的传染速度,三轮传染后有多少人患流感?例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是133,每个支干长出多少小分支?讨论1在分析探究1和例1中的数量关系时它们有何区别?讨论2解决这类传播问题有什么经验和方法?方法归纳:运用一元二次方程模型解决实际问题的步骤有哪些?(1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.(2)“设”是指设未知数;(3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程;(4)“解”就是求出所列方程的解;(5)“验”就是对所得的解进行检验,得到实际问题的解.例2某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?练一练某中学组织了一次联欢会,参会的每两个人都握了一次手,所有人共握了10次手,有多少人参加聚会?方法总结:握手问题及球赛单循环问题要注意重复进行了一次,所以要在总数的基础上除以2.【变式题】某中学组织初三学生足球比赛,以班为单位,采用主客场赛制(即每两个班之间都进行两场比赛),计划安排72场比赛,则共有多少个班级参赛?方法总结:关键是抓住主客场赛制,即每两个班之间都进行两场比赛,就可以根据班级数乘每个班级要进行的场数等于总场数列等量关系.例3一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是多少?方法总结:解决这类问题关键要设数位上的数字,并能准确的表达出原数.三、课堂小结1.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980X,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为()A. x2=1980B. x(x+1)=1980C. 12x(x-1)=1980 D. x(x-1)=19802.有一根月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73,设每个支干长出x个小分支,根据题意可列方程为()A. 1+x+x(1+x)=73B. 1+x+x2=73C. 1+x2=73D. (1+x)2=733.早期,甲肝流行,传染性很强,曾有2人同时患上甲肝.在一天内,一人平均能传染x人,经过两天传染后128人患上甲肝,则x的值为()A. 10B. 9C. 8D. 74.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有111个人参与了传播活动,则n=______.5.某校初三各班进行篮球比赛(单循环制),每两班之间共比赛了6场,则初三有几个班?6.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?7.一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数.参考答案自主学习知识1.直接开平方法、配方法、公式法、因式分解法.2.设未知数,找等量关系,列方程,解方程,检验作答.课堂探究二、要点探究探究点1:传播问题与一元二次方程探究1 解:设每轮传染中平均一个人传染了x个人.根据题意,得(1+x)2=121.解方程,得x1=10, x2=-12(不符合题意,舍去). 答:平均一个人传染了10个人.想一想第1种做法:以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331(人).第2种做法:以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331(人).例1 解:设每个支干长出x个小分支,则 1+x+x2=133,即x2+x-132=0.解得x1=11, x2=-12(不合题意,舍去).答:每个支干长出11个小分支.讨论1 每个支干只分裂一次,每名患者每轮都传染.讨论2 (1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.例2解:设共有x个班级参赛,则每个班级要进行(x-1)场比赛,共要进行x(x-1)场比赛,但每两班之间只比赛一场,故根据题意得(1)15,2x x解得x1=6, x2=-5(舍去).∴x=6, 答:共有6个班级参赛.练一练解:设共有x人参加聚会,则每个人要握手(x-1)次,共握手x(x-1)次,但每人都重复了一次,故根据题意得(1)10,2x x解得x1=5, x2=-4(舍去).∴x=5.答:共有5个人参加聚会.【变式题】解:设共有x个班级参赛,则每个班级要进行(x-1)场比赛,根据题意得(1)72,x x解得x 1=9, x2=-8(舍去).∴x=9.答:共有9个班级参赛.例3解:设这个两位数个位数字为x,则十位数字为(x-3),根据题意得x2=10(x-3)+x,解得x1=5, x2=6.∴x=5时,十位数字为2,x=6时,十位数字为3.答:这个两位数是25或36.当堂检测1.D2.B3.D4.105.解:初三有x个班,根据题意列方程,得1(1)6,2x x化简,得x2-x-12=0,解得x1=4, x2=-3(舍去).答:初三有4个班.6.解:(1)设每个有益菌一次分裂出x个有益菌,60+60x+60(1+x)x=24000,∴x1=19, x2=-21(舍去).∴每个有益菌一次分裂出19个有益菌.(2)三轮后有益菌总数为 24000×(1+19)=480000(个).7.解:设原来的两位数十位上的数字为x,则个位数的数字为(5-x),依题意得(10x+5-x)[10(5-x)+x]=736,解得x1=2, x2=x=2时,5-x=3;当x=3时,5-x=2.答:原来的两位数是23或32.。

人教版九年级上册数学第21章 一元二次方程 认识一元二次方程

人教版九年级上册数学第21章 一元二次方程    认识一元二次方程

知4ห้องสมุดไป่ตู้练
x 在油画四周外围镶上宽度 90 为x cm的边框,则整个挂 图的长与宽各增加了4多0 少?
本题涉及两个基本量: 油画的面积与整个挂 图的面积.
40+2x
利用长方形的面积公
9式0+和2x油画面积与整个 挂图面积之间的关系
解:(90+2x)(40+2x)×54列%方=程90×40.
感悟新知
总结
知1-讲
的底面积为3600cm2,得
(100-2x)(50-2x)=3600. 整理,得4x2-300x+1400=0 化简,得x2-75x+350=0 解上面方程即可得出所切正方形
化简后的方程中 未知数的个数和
最高次数各是 多少?
的具体尺寸.
感悟新知
问题(二)
知1-讲
要组织一次排球邀请赛,参赛的每两个队之间都要 比赛一场.根据场地和时间等条件,赛程计划安排7 天,每天安排4场比赛,比赛组织者应该邀请多少个 队参赛?
知识点 4 一元二次方程的解(根)
一元二次方程的模型:
知4-讲
一元二次方程是刻画现 实世界的一个有效数学 模型,它是把实际问题 中语言叙述的数量关系 通过设未知数用一元二 次方程来表达.
常用于一元二次方程 来建模的问题有:
• 圆形的面积 • 增长(利润)率 • 行程问题 • 工程问题等
感悟新知
建立一元二次方程模型的一般步骤:
知识点 1 一元二次方程的定义
知1-讲
问题(一) 如图,有一块矩形铁皮,长100cm,宽50cm.在它的四个
角分别切去一个正方形,然后将四周突出的部分折起,就
能制作一个无盖方盒.如果要制作的无盖方盒的底面积是
3600cm2,那么铁皮各角应切去多大的正方形?

九年级数学:21.1一元二次方程教案(第一课时)

九年级数学:21.1一元二次方程教案(第一课时)

2.一元二次方程的一般形式:
我们把一元二次方程按未知数的降幂排列有:20(0)
ax bx c a
++=≠.这种形式叫做一元二次方程的一般形式.其中a叫做二次项系数,b叫做一次项系数,c叫做常数项.
想一想:为什么要限制a≠0 ? b、c可以为零吗?强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现,但二次项必须存在,而且左边通常按未知数的次数从高到低排列,特别注意的是“=”的右边必须整理成0。

二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。

1_认识一元二次方程_第1课时_教案1

1_认识一元二次方程_第1课时_教案1

第二章一元二次方程1.认识一元二次方程(一)一、学生知识状况分析学生的知识技能基础:学生在七年级已学过一元一次方程的概念,经历过由具体问题抽象出一元一次方程的过程;学生在八年级已学过二元一次方程组的概念,经历过由具体问题抽象出二元一次方程组的过程;学生已理解了“元”和“次”的含义,具备了学习一元二次方程的基本技能。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和数学思考,具备了一定的合作与交流的能力。

二、教学任务分析教科书基于学生对方程认识的基础之上,提出了本课的具体学习任务:1、经历抽象一元二次方程概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。

2、会识别一元二次方程及各部分名称。

从数学课堂的远期目标来看,还应该培养学生提出问题、分析问题、解决问题的能力。

三、教学过程分析本节课设计了七个教学环节:第一环节:自主探究问题一;第二环节:自主探究问题二;第三环节:自主探究问题三;第四环节:总结归纳;第五环节:学以致用;第六环节:反思;第七环节:布置作业。

第一环节:自主探究问题一活动内容:出示问题一:幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,根据这一情境,结合已知量你想求哪些量?你能根据条件列出关于这个量的什么关系式?活动目的:提出了半开放性的问题:根据这一情境,结合这些已知量,你想求哪些量?旨在培养学生的问题意识;要求学生根据条件列出关系式,旨在提高学生分析问题的能力、提高学生抽象思维能力,同时也为后续归纳一元二次方程提供材料。

教学要求与效果:教学中,为了帮助学生理解题意,可以首先提出问题:你能找到图中的矩形地面、条形区域和地毯区域吗?并让一生指出对应的三部分;接着要求学生从这一实物图中抽象出几何图形,自己画出所抽象出的几何图形,然后教师呈现第二幅图。

2022年人教版九年级数学上册第二十一章一元二次方程教案 配方法(第1课时)

2022年人教版九年级数学上册第二十一章一元二次方程教案  配方法(第1课时)

21.2 解一元二次方程21.2.1 配方法一、教学目标【知识与技能】1.会利用直接开平方法解形如x2=p(p≥0)的方程;2.初步了解形如(x+n)2=p(p≥0)方程的解法.3.能根据具体问题的实际意义检验结果的合理性.【过程与方法】通过对实例的探究过程,体会类比、转化、降次的数学思想方法.【情感态度与价值观】在成功解决实际问题过程中,体验成功的快乐,增强数学学习的信心和乐趣.二、课型新授课三、课时第1课时,共2课时四、教学重难点【教学重点】解形如x2=p(p≥0)的方程.【教学难点】把一个方程化成x2=p(p≥0)的形式.五、课前准备课件六、教学过程(一)导入新课1.什么是平方根?一个数的平方根怎么样表示?(出示课件2)一个数的平方等于a,这个数就叫做a的平方根..a(a≥0)的平方根记作:.x2=a(a≥0),则根据平方根的定义知,x=.2. 求出下列各式中x的值,并说说你的理由.(出示课件3)⑴x2=9;⑵x2=5.解:⑴x=±3 ;⑵x=.思考:如果方程转化为x2=p,该如何解呢?(二)探索新知探究直接开平方法一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?(出示课件5)教师问:设一个盒子的棱长为xdm,则它的外表面面积为6x2dm2,10个这种盒子的外表面面积的和为10×6x2,由此你可得到方程为10×6x2=1500,你能求出它的解吗?学生思考后,共同解答如下:.解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,可列出方程:10×6x2=1500,由此可得x2=25.开平方得x=±5,即x 1=5,x 2=-5.因棱长不能是负值,所以正方体的棱长为5dm .教师问:解下列方程,并说明你所用的方法,与同伴交流.(出示课件6)(1) x 2=4;(2) x 2=0;(3) x 2+1=0.学生回答:⑴根据平方根的意义,得x 1=2, x 2=-2.⑵根据平方根的意义,得x 1=x 2=0.⑶根据平方根的意义,得x 2=-1,因为负数没有平方根,所以原方程无解.教师归纳:(出示课件7)一般地,对于可化为方程 x 2 = p, (I)(1)当p>0 时,根据平方根的意义,方程(I)有两个不等的实数根1x =,2x =;(2)当p=0时,方程(I)有两个相等的实数根x 1 = x 2 =0;(3)当p<0时,因为任何实数x,都有x 2≥0 ,所以方程(I)无实数根.利用平方根的定义直接开平方求一元二次方程的根的方法叫直接开平方法. 例1 利用直接开平方法解下列方程:(出示课件8)(1) x 2=6;(2) x 2-900=0.师生共同讨论解答如下:解:(1)直接开平方,得x =12,∴==x x(2)移项,得x 2=900.直接开平方,得x=±30,∴x 1=30, x 2=-30.出示课件9:解下列方程: (1) 2280;x -=(2)2953.x -=学生自主思考并解答.解:(1)移项,得228.=x系数化为1,得2 4.=x∴=x即122,2;==-x x(2)移项,得298.=x系数化为1,得28.9=x12,∴==-x x教师问:对照前面方法,你认为怎样解方程(x+3)2=5①?(出示课件10)学生自主讨论后回答:解:把x+3看做一个整体,两边开平方得3x +=33.x x ∴+=+=,或③于是,方程(x+3)2=5的两个根为1233x x ∴=-+=--或教师总结:由方程①得到②,实质是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程①转化为我们会解的方程了.例2 解下列方程:(1)(x+1)2= 2;(出示课件11)教师分析:本题中只要将(x+1)看成是一个整体,就可以运用直接开平方法求解.师生共同解答如下:解:(1)∵x+1是2的平方根,∴x+1=即x12=-1-(2)(x-1)2-4 = 0;(出示课件12)教师分析:本题先将-4移到方程的右边,再同第1小题一样地解.师生共同解答如下:解:(2)移项,得(x-1)2=4.∵x-1是4的平方根,∴x-1=±2.即x1=3,x2=-1.(3) 12(3-2x)2-3 = 0.(出示课件13)教师分析:本题先将-3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.师生共同解答如下:解:(3)移项,得12(3-2x)2=3,两边都除以12,得(3-2x)²=0.25.∵3-2x 是0.25的平方根,∴3-2x=±0.5.即3-2x=0.5,3-2x=-0.5,∴ x 1=54 x 2=74.出示课件14,学生自主思考并解答.例3 解下列方程:(出示课件15)(1)2445x x -+=; (2)29614x x ++=. 师生共同解答如下:解:(1)()225,x -=2x ∴-=22x x -=-=方程的两根为12=+x22x =-(2)()2314,x +=312,x ∴+=±312312,x x , +=+=-方程的两根为113,=x 2 1.x =-出示课件16,学生自主思考并解答.(三)课堂练习(出示课件17-21)1. 一元二次方程x 2﹣9=0的解是______________.2.下列解方程的过程中,正确的是( )A. x 2=-2,解方程,得x=B. (x-2)2=4,解方程,得x-2=2,x=4C.4(x-1)2=9,解方程,得4(x-1)= ±3, x 1=14,x 2=74D.(2x+3)2=25,解方程,得2x+3=±5, x 1= 1;x 2=-43. 填空:(1)方程x 2=0.25的根是______________ .(2)方程2x 2=18的根是______________.(3)方程(2x-1)2=9的根是______________ .4.下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.解:21150,3⎛⎫+-= ⎪⎝⎭y 2115,3⎛⎫+= ⎪⎝⎭y ① 113+=y ② 113=-+y ③1.y =-④5.解方程22(2)(25)x x -=+参考答案:1.x 1=3,x 2=﹣3解析:∵x 2﹣9=0,∴x 2=9,解得:x 1=3,x 2=﹣3.故答案为:x 1=3,x 2=﹣3.2.D3.⑴x 1=0.5,x 2=-0.5 ⑵x 1=3,x 2=-3 ⑶x 1=2,x 2=-14.解:不对,从②开始错,应改为113y +=123, 3.y y =-=--5.解:()()22225,x x -=+2(25),x x ∴-=±+ 225,22 5.∴-=+-=--x x x x方程的两根为17,=-x 2 1.=-x(四)课堂小结(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.(五)课前预习预习下节课(21.2.1)第2课时的相关内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 一元二次方程
** 认识一元二次方程
第1课时 一元二次方程
1、知识与技能:理解一元二次方程的定义,会判断满足一元二次方程的条件。

2、能力培养:能根据具体情景应用知识。

3、情感与态度:体验与他人合作的重要性及数学活动中的探索和创造性。

自学指导 阅读教材第31至32页,并完成预习内容.
(1)如果设未铺地毯区域的宽为xm ,那么地毯中央长方形图案的长为 (8-2x ) m ,宽为为 (5-2x ) m.
根据题意,可得方程 (8 - 2x) (5 - 2x) = 18
(2)试再找出(10、11、12、13、14以外)其他的五个连续整数,使前三个数的平方和等于后两个数的平方和: ;
如果设五个连续整数中的第一个数为x ,那么后面四个数依次可表示为 x +1 、 x +2 、 x +3 、 x +4 ,根据题意可得方程: 22222
(x 1)(x 2)(x 3)(x 4)x ++++=+++ (3)根据图2-2,由勾股定理可知,滑动前梯子底端距墙 6 m ,如果设梯子底端滑动xm ,那么滑动后梯子底端
距墙 x+6 m ,梯子顶端距地面的垂直距离为 7 m ,根据题意,可得方程: 72+(x +6)2 =102
归纳总结:
观察上述三个方程,它们的共同点为:① 含有一个未知数x ;② 整式方程 ;这样的方程叫做 一
元二次方程 .其中我们把 ax 2+bx +c =0(a ,b ,c 为常数, a ≠0) 称为一元二次方程的一般形式,
ax 2,bx ,c 分别称为 二次项 、 一次项 、 常数项 ,a 、b 分别称为 二次项系数 、 一次项系数 .
活动1小组讨论
例1将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
解:2x 2-13x+11=0;2,-13,11.
将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.
例2判断下列方程是否为一元二次方程:
(1)1-x2=0 ; (2)2(x 2-1)=3y ; (3)2x2-3x-1=0;
(4)212x x
-=0 ; (5)(x+3)2=(x-3)2; (6)9x 2=5-4x. 解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.
(1)一元二次方程为整式方程;(2)类似(5)这样的方程要化简后才能判断.
活动2 跟踪训练
1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
(1)5x 2-1=4x ; (2)4x 2=81;
(3)4x(x+2)=25 ; (4)(3x-2)(x+1)=8x-3.
解:(1)5x 2-4x-1=0; 5, -4, -1;
(2)4x 2-81=0; 4, 0, -81;
(3)4x 2+8x-25=0; 4, 8, -25;
(4)3x 2-7x+1=0; 3, -7, 1.
4.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:
(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;
(2)一个长方形的长比宽多2,面积是100,求长方形的长x;
(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.
解:(1)4x2=25;4x2-25=0;(2)x(x-2)=100;x2-2x-100=0;
(3)x=(1-x)2;x2-3x+1=0.
活动3课堂小结
1.一元二次方程的概念以及怎样利用概念判断一元二次方程.
2.一元二次方程的一般形式ax2+bx+c=0(a≠0)特别强调a≠0.
当堂训练
请使用《名校课堂》相应部分练习。

相关文档
最新文档