认识一元二次方程-课件ppt

合集下载

21.1一元二次方程-完整版课件PPT

21.1一元二次方程-完整版课件PPT
21.1 一元二次方程
探究一:一元二次方程的概念和一般形式
重点、难点知识★▲
活动1
问题:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一 个正方形,然后将四周突出部分折起,就能制作一个无盖长方体 盒子.如果要制作的无盖长方体盒子底面积为3600cm²,那么铁皮 各角应切去边长为多少cm的正方形?
(2)为什么要限制a≠0,b、c可以为0吗?
(3)一元二次方程3x2-x+2=0的一次项系数是1吗?为什么?
总结一元二次方程的特殊形式:
当c=0时, ax2 bx 0a 0 当b=0时, ax2 c 0a 0 当b=0,c=0时, ax 2 0a 0
探究一:一元二次方程的概念和一般形式
活动2 一元二次方程的一般形式的应用
例4 若关于x的方程 (m 1)x2 x c x2 是一元二次 方程,求m的取值范围. 【解题过程】
解:原方程整理得(m 2)x2 x c 0, 因其是一元二次方程,所以m-2≠0, 即m≠2.
【思路点拨】先将原方程化为一般形式,再根据一元二次 方程的二次项系数不能为0,求出m的范围.
一元二次方程的一般形式:ax2 bx c 0(a 0)
其中ax2是二次项,a是二次项系数; bx是一次项,b是一次项系数; c是常数项.
探究一:一元二次方程的概念和一般形式
重点、难点知识★▲
活动4 一元二次方程的一般形式: ax2 bx c 0(a 0)
问题: (1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
探究二:利用一元二次方程的概念解决简单的问题
重点、难点知识★▲
活动2 一元二次方程的一般形式的应用
练习4:若关于x的方程 (m 1)xm2 1 x c 0 是一元二次 方程,求m的值. 【解题过程】

21.1.1一元二次方程第1节ppt(共36张)

21.1.1一元二次方程第1节ppt(共36张)
第30页,共36页。
课内练习
1.下列(xiàliè)方程中是一元二次方程的为( C )
(A)、x2+3x= 2
x2
(B)、2(X-1)+3x=2
(C)、x2=2+3x
(D)、x2+x3-4=0
第31页,共36页。
把一元二次方程(x-√5 )(x+√5 )+(2x-1)2 =0 化为一般形式(xíngshì),正确的是(A )
③未知数的最高次数是2。
一元二次 方程是刻 画现实世 界的一种 数学模型
像这样的等号两边都是整式, 只含有一个未知数,并且 未知数的最高次数是2(二次)的方程叫做一元二次方程。
第5页,共36页。
例1:判断(pànduàn)下列方程是否为一元二次方程?
(1)x2+x =36
(2) x3+ x2=36
第36页,共36页。
第17页,共36页。
3 4x x 2 25 43x 2 x 1 8x 3
3 4xx 2 25
一般(yībān) 式:
二次项系数为4,一次项系数8,常数项-25.
4 3x 2x 1 8x 3
一般式: 3x2 7x 1 0.
二次项系数为3,一次项系数-7,常数项1.
第18页,共36页。
第16页,共36页。
例: 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式, 并写出其中(qízhōng)的二次项系数,一次项系数及常数项.
解:去括号,得
3x2-3x=5x+10.
移项,合并同类项,得一元二次方程的一般 形式:
3x2-8x-10=0.
其中二次项系数为3,一次项系数为-8,常数项为-10.

《公式法》一元二次方程PPT课件 (共8张PPT)

《公式法》一元二次方程PPT课件 (共8张PPT)

= -q+(
)2
)2 =
-q
用配方法解一般形式的一元二次方程 解:把方程两边都除以 a,得x2 + x+ = 0
移项,得
配方,得 即 ∵4a2>0 x2 +
x2 +
x+(
x= )2 =)2 = +( )2
( x +
∴当b2-4ac≥0时, 解得 即 x= x= ±
x +

用求根公式解一元二次方程的方法叫做
X=求根公式 : 3、代入
(a≠0, b2-4ac≥0)
4、写出方程的解: x1=?, x2=?
思考题: 1、关于x的一元二次方程ax2+bx+c=0 (a≠0)。 当
a,b,c 满足什么条件时,方程的两根为
互为相反数?
2、m取什么值时,方程 x2+(2m+1)x+m2-4=0
有两个相等的实数解
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
一元二次方程
用配方法解一元二次方程 2x2+4x+1=0 用配方法解一元二次方程的步骤: 1.把原方程化成 x2+px+q=0的形式。 2.移项整理 得 x2+px=-q 3.在方程 x2+px= -q 的两边同加上一次项系数 p的一半的平方。
x2+px+( 4. 用直接开平方法解方程 (x+

2021年北师大版九年级数学上册《认识一元二次方程》优质课课件(共13张PPT)

2021年北师大版九年级数学上册《认识一元二次方程》优质课课件(共13张PPT)
认识一元二次方程
问题1
5x-15=0
这是一个什么样的方程?
只含有一个未知数(元),并且未知数的次数是1的整式 方程叫一元一次方程(linear equation with one unknown)
问题2 大明休闲中心有一个长为10m,宽为6m的游泳池,
现想将游泳池的面积改造成35m2,若长宽同时减少 相同的长度,问减少多少米?
解 去括号,得 3x2-3x=2x-4-4
移项,合并同类项,得方程的一般形式:
3x2-5x+8=0 它的二次项系数是3,一次项系数是-5,常数项是8
1、填空:
方程
一般式
x2-4x-3=0 x2-4x-3=0
0.5x2= 5
0.5x2-√5 =0
2 y-4y2=0 -4y2 +√2y =0
(2x)2=(x+1)2 3x2-2x-1=0
你能结合方程①给方 程②起一个名字吗?
一元二次方程
一元二次方程的定义 方程X2-16x+25=0的两边都是整式,只含有一个未知数,并且
未知数的最高次数是2次,我们把这样的方程叫做一元二次方程。 ①方程两边都是整式
一元二次方程要素
②只含有一个未知数
③未知数的最高次数是2次
试一试
1、判断下列方程中,哪些是一元二次方程?
bx+c=0
ax2+c=0 ax2+bx=0
ax2=0
只要满足a≠0,a,b,c可以为任意实数
一元二次方程的一般形式 ax2+bx+c=0中
二次项系数 a
ax2
二次项
一次项系数 b
bx
一次项
c
常数项

《一元二次方程》PPT课件

《一元二次方程》PPT课件

的值为多少?
?
解 :∵ x 0是方程的解 代入得m2 4 0 m 2,且m 2 0 m 2 2m2 4m 3 2 22 4 2 3 3 代数式的值为3.
பைடு நூலகம் 例例题题讲讲解解
(2)关于x的 一方元程二次方程
(m 2)2 x2 3m2x m2 4 0
有一根为0,则2m2 4m 3
解:设邀请了x队参加比赛,根据题意得:
1 x(x 1) 28 2
即:x2-x=56
x 1 2 3 4 5 6 7 8 9 10 …
X2-x 0 2 6 12 20 30 42 56 72 90 …
由表中数值可以发现,当x=8时是方程x2-x=56的解. 是否只有x=8是方程的根呢? X= -7呢?
分析: 全部比赛共 4×7=28场
设应邀请x个队参赛,每个队要与其他 (x-1) 个队
各赛1场, 由于甲队对乙队的比赛和乙队对甲队的比赛
是同一场比赛,所以全部比赛共
1 x(x 1) 28 2
场.

x2 x 56
?
一块四周镶有宽度相等的花边的地毯如下图,它的 长为8m,宽为5m.如果地毯中央长方形图案的面 积为18m2 ,则花边多宽?
B. (x+7)(x+6)=0
C. x2-x+42=0
D. x2+x-42=0
练习
1)若a b c 0,则一元二次方程 ax2 bx c 0必有一解为_X_=_
1
2)若a b c 0,则一元二次方程 ax2 bx c 0必有一解为X_=_-_1
3)若4a 2b c 0,则一元二次方程
是 2 ___ ,等号两边是 整 __ 式。
2、和以前所学的方程比较它们叫什么方程? 请定义。

《一元二次方程》数学PPT课件(10篇)

《一元二次方程》数学PPT课件(10篇)
4-7x2=0
一般形式
二次项 一次项 常数项 系数 系数
3x2-5x+1=0
3 -5 1
1x2 +1x-8=0
1
-7x2 +4=0 或-7x2 +00x+4=0 -7
或7x2 - 4=0
7
1 -8
04 0 -4
抢答: 一元二次方程
2x2+x+4=0
-4y2+2y=0 3x2-x-1=0
4x2-5=0
二次项系数
一次项系数
例1:判断下列方程是否为一元二次方程?
(1)x2+x =36
(2) x3+ x2=36
(3)x+3y=36
(4)
1 x2
2 x
0
(5) x+1=0 (6) x2 6 (7)4x2 1 (2x 3)2 3
(8)( x )2 2 x 6 0
练习巩固
下列方程哪些是一元二次方程? 为什么? (1)7x2-6x=0 (2)2x2-5xy+6y=0
?
问题(1) 有一块矩形铁皮,长100㎝,宽50㎝,在
它的四角各切去一个正方形,然后将四周突出部 分折起,就能制作一个无盖方盒,如果要制作的方 盒的底面积为3600平方厘米,那么铁皮各角应切 去多大的正方形?
分析:
设切去的正方形的边长为xcm,
则盒底的长为 (100-2x)cm ,宽
为 (50-2x)cmБайду номын сангаас.
① 只含一个未知数;
②未知数的最高次数是2.
③ 都是整式方程;
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2 bx的形c 式0,我们把

北师大版初中九年级上册数学课件 《认识一元二次方程》一元二次方程PPT课件

北师大版初中九年级上册数学课件 《认识一元二次方程》一元二次方程PPT课件

(2) x表示长方形的实际宽,不可能小于0
(3)不可能,因为长与宽的和是15, x可能大于15.
(1)根据题意列方程。 (2)x可能小于0吗?说出理由. (3)x可能大于15吗?说出理由. (4)能否想一个办法求得长方形的长x?
x
15-x
x
1
2
3
4
5
6
7
x2 -15x+54
40
28
18
10
4
0
解:如果设花边的宽为 x m ,那么地毯中央长方形图案的长为 m,宽为 m,根据题意,可得方程:
(8-2x)
(5-2x)
(8-2x)(5 -2x) = 18.
整理, 得
8m
10m
解:设梯子底端滑动x米,则由题意可得方程:
问题2 一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?
当a=2,b≠0时是一元一次方程;
3、 关于x的方程ax2 -2bx+a=2x2 , 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?
变式练习(1): (k+3)x|k|-1 -5x+6=0 是关于x的一元二次方程, 则k= .
变式练习(2):关于x的一元二次方程(m-1)x2 +5x+m2-1=0 的常数项是0, 则m= .
一元二次方程
没有未知数,不是方程
不是等式,不是方程
一元一次方程
二元一次方程
不是等式,不是方程
(1)2+3=5 (2)3x+2 (3)5x+3=18 (4)x-2y=5
一元一次方程、二元一次方程、分式方程
分式方程

一元二次方程数学PPT课件

一元二次方程数学PPT课件
解: 3 2 + 2 − 2 − 6 + 6 = 0
3 2 = 0
二次项:3 2 . 其系数为3.
二次项: 2 、系数为1
一次项:-8,其系数为-8
一次项:0、系数: 0
常数项: -10
常数项:0
课堂测试
一元二次方程
3x2=6x-1
(x+3)(x -1)=6
5-7x2=0
一般
形式Βιβλιοθήκη 二次项二次项系数
一次项
一次项
系数
常数项
课堂测试
1、判断下列方程中,哪些是一元二次方程?
(1)X
2
1
+ -3=0

分母中有未知数
(2)X 3-3x+4=0
最高项次数为3
(3)X 2 -2y-3=0
有两个未知数
(4)Ax 2+bx+c=0
(5)4x 2+3x-2=(2x-1)2
a可能为0
化简之后是一元一次方程
情景思考
问题1:正方形桌面的面积是 4 m2,求它的边长?
分析:正方形的面积=边长×边长
解:设正方形桌面的边长是
2 = 4
情景思考
问题2:一个数的平方是这个数的
6倍,求这个数?
解:设这个数为,得
2 = 6
思考
观察下列各方程有什么共同点?
2
=4
2
= 6
1 2 1
− = 28
2023最新整理收集
do
something
第一单元 一元二次方程
1.1 一元二次方程
部 编 版 九 年 级 数 学 上 册
汇报人:xx
一元一次方程知识点回顾

人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)

人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)
解:设小道的宽度为x米,得(20-2x)(10-x)=120整理得x2-要建造一个长10m,宽5m玻璃顶观景亭,如图所示在它的四角建造四个截面为正方形的承重柱. 已知需要用到玻璃的面积为45m2,那么承重柱的宽度多少?
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程

一元二次方程(PPT课件)

一元二次方程(PPT课件)

x2 5 . x1 1, 所以:
解法3:利用配方法。将方程左边配方,有:
x 2 6 x 9 9 5 0 ,即 x 32 4
x2 5 . x 3 2 即 x1 1, 所以:
想一想
例题中的三种解法各具有哪些特点?本题 中使用哪种方法比较简洁?
返回目录
(1) x 2 4 x 12 0 ;(2) 3x 2 4 x 1 0;
(3) x 2 2 x 2 0 ;(4) x 2 4 x 2 0 .
再 见!
返回目录
§3.3
一元二次方程
安溪华侨职校数学组
目 录
知 识 讲 授 典 型 例 题
课 堂 练 习
课 外 作 业
1、一元二次方程:
含有一个未知数,并且未知数的最高次数是2的整 式方程叫做一元二次方程。其一般形式为:
ax2 bx c 0
a 0 .
2、解一元二次方程的基本方法:
公式法、配方法和因式分解法
_______ ⑷方程 x 2 2 x 8 0中, ,此方程
_______实数根;
课堂练习
2、解下列各方程:
(1) x 2 3x 10 0 ; (2) 2 x 2 3x 9 0; (3)பைடு நூலகம்3x 2 4 x 4 0 .
返回目录
课外作业
用适当的方法解下列各方程:
3、一元二次方程的求根公式:
一元二次方程的解也叫一元二次方程的根。求根公 式为:
b b 2 4ac x . 2a
4、一元二次方程解得讨论:
2 b 4ac ,则: 判别式为
(1) 当 0 时,一元二次方程有两个不相等的实 数解; (2) 当 0 时,一元二次方程有两个相等的实数解; (3) 当 0 时,一元二次方程没有实数解。

一元二次方程课件ppt

一元二次方程课件ppt

• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:

2.1-认识一元二次方程(第一课时)(共19张PPT)

2.1-认识一元二次方程(第一课时)(共19张PPT)
努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧 者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学技 的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁击 重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。最深 一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一个人 贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知,最苦 的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世界的 弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便是黑 可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太过短暂 不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目标,去 的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒服的枕头 他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑微中站 想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所以,过 今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不是逃避 面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。做不了 间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自 把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。 的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶, 出现不是对愿望的否定,而是把愿望合并和提升到一个更高的意识无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。即 难,已经开始了的事情决不放弃。最可怕的敌人,就是没有坚强的信念。既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。意志若是屈从 它都帮助了暴力。有了坚定的意志,就等于给双脚添了一对翅膀。意志坚强,只有刚强的人,才有神圣的意志,凡是战斗的人,才能取得胜利。卓越的人的一大优点 的遭遇里百折不挠。疼痛的强度,同自然赋于人类的意志和刚度成正比。能够岿然不动,坚持正见,度过难关的人是不多的。钢是在烈火和急剧冷却里锻炼出来的, 么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。只要持续地努力,不懈地奋斗,就没有征服不了的东西。

《认识一元二次方程》公开课ppt

《认识一元二次方程》公开课ppt
结论:当一元二次方程的系数满足某些条件时,它的解会具有对称性。这种对称性可以为我们提供更多关于方程的信息,例如当一个一元 二次方程具有根的对称性时,它的系数必须满足特定的条件。
应用:在解决实际问题时,我们可以利用根的对称性来简化计算过程,例如在一些物理问题中,当一个物体做对称运动时,我们可以利用 根的对称性来求解一些物理量。
如何利用一元二次方程解决实际问题
理解一元二次方 程的概念和解题 思路
掌握求解一元二 次方程的方法
了解一元二次方 程的应用场景
学会利用一元二 次方程解决实际 问题
06
总结与展望
对一元二次方程的认识与收获总结
理解一元二次方程的概念和一 般形式
掌握求解一元二次方程的方法
理解一元二次方程的应用和实 际意义
a x ²+ b x + c = 0 ( a , b , c 是 常 数 , a≠0)
根的判别式:Δ=b²-4ac
配方法:将一元二次方程配成 ( x + m ) ²= n 的 形 式 , 再 利 用 直 接开平方法求解
公式法:用求根公式解一元二 次方程
一元二次方程的解法
公式法:$ax^{2} + bx + c = 0$,其中$a \neq 0$
科学中的一元二次方程应用场景
物理:解决与速 度、加速度、重 力等有关的问题
化学:计算化学 反应中物质的质 量、能量等问题
经济学:预测市 场趋势、评估投 资风险等
工程学:设计建 筑结构、机械装 置等
04
一元二次方程的拓 展知识
一元二次方程的根的判别式
定义:一元二次方程的根的判别式是二次项系数a、一次项系数b和常数项c之间的一种关 系式。

《一元二次方程》PPT优秀课件【可编辑全文】

《一元二次方程》PPT优秀课件【可编辑全文】
一元一次方程与一元二次方程有什么联系与区别?
一元一次方程
一元二次方程
一般式
相同点
不同点
ax+b=0 (a≠0)
ax2+bx+c=0 (a≠0)
整式方程,只含有一个未知数
未知数最高次数是1
未知数最高次数是2
1.本节学习的数学知识是:
2、学习的数学思想方法是
3、如何理解一元二次方程的一般形式
1.当m为何值时,方程 是关于x的一元二次方程.
D
作业
3、课本P28 1、2
(1)x2+x =36
(2) x3+ x2=36
(3)x+3y=36
(5) x+1=0
下列方程哪些是一元二次方程? 为什么?
(2)2x2-5xy+6y=0
(5)x2+2x-3=1+x2
(1)7x2-6x=0
解: (1)、 (4)
练习巩固
1.关于x的方程(k-3)x2 + 2x-1=0,当k 时,是一元二次方程.
(x-4)2+ (x-2)2= x2

x2-12 x +20 = 0
4尺
2尺
x
x-4
x-2
(x-4)
(x-2)
1.根据题意,列出方程:
(1)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,这个正方形的边长是多少?
解:设正方形的边长为xm,则原长方形的长为(x+5) m,宽为(x+2) m,依题意得方程:
(8-2x)(5-2x)=18;
即 2x2 - 13x + 11 = 0 .
(x+6)2+72=102
即 x2 +12 x -15 =0.

《一元二次方程》一元二次方程PPT课件

《一元二次方程》一元二次方程PPT课件

3.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?
对一元二次方程: ax2 + bx +c = 0(a≠0). b2 - 4ac > 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac < 0 时,方程无实数根.
学习目标 1.探索一元二次方程的根与系数的关系. 2.不解方程利用一元二次方程的根与系数的关系解决问题.
新知探究
跟踪训练 把下列方程化成一元二次方程的一般形式,并写出它们的二次项系
数、一次项系数和常数项.
(1) x 2 2 4;
x2 4x 0 1 -4 0
(2)2 x 3 x 4 x2 10 ;
x2 2x 14 0 1 2 -14
(3)x2 x 1 1. 32
2x2 3x 9 0 2 -3 -9
新知探究 知识点3
x2-(x1+x2)x+x1x2=0.
对接中考
关于 x 的一元二次方程 x2-(a2-2a)x+a-1=0 的两个实数根互为相反数,
则 a 的值为( B )
A.2
B.0
C.1
D.2或0
已知x1,x2是一元二次方程 x2−2x=0 的两个实数根,下列结论错误的是 (D )
方程两个根的和、积与系数分别有如下关系: x1+x2=-p,x1x2=q.
新知探究
一般的一元二次方程 ax2+bx+c=0 中,二次项系数 a 未必是1,它的两个 根的和、积与系数又有怎样的关系呢?
新知探究
由求根公式知
x1 b
b2 4ac 2a
x2 b
b2 4ac 2a
x1 x2 b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
-3 -2

9
10
x2-8x-20 13
0
… -11
0
所以,x=-2或x=10
预习展示 质疑探究 当堂检测 布置作业
质疑探究
大庆市第十四中学
NO.14 Middle School,Daqing
B同学的做法: 设五个连续整数中的中间一个数为x,那么其余四 个数 依次可表示为x-2,x-1,x+1,x+2.根据题意,可得 方程:(x-2)2+(x-1)2+x2=(x+1)2+(x+2)2 即:x2-12x=0
x
-1 0
x2-12x 13
0

11
12
… -11
0
所以,x=0或x=12
预习展示 质疑探究 当堂检测 布置作业
课堂小结
大庆市第十四中学
NO.14 Middle School,Daqing
本节课你又学会了哪些新知识呢? 1.学习了什么是一元二次方程,以及它的
一般形式ax2+bx+c=0(a,b,c为常数 ,a≠0)和有关概念,如二次项、一次项 、常数项、二次项系数、一次项系数. 2.会用一元二次方程表示实际生活中的数 量关系
大庆市第十四中学
NO.14 Middle School,Daqing
一元二次方程的概念 由上面三个问题,我们可以得到三个方程:
(8-2x)(5-2x)=18;
即 2x2 - 13x + 11 = 0 .
x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2 即 x2 - 8x - 20=0.
( x+6)2+72=102
一次项和常数项,a, b分别称为二次项系数和一次项系数.
预习展示 质疑探究 当堂检测 布置作业
质疑探究
பைடு நூலகம்
大庆市第十四中学
NO.14 Middle School,Daqing
下列方程哪些是一元二次方程? 解: (1)、 (4)
(1)7x2-6x=0
(2)2x2-5xy+6y=0
(3)2x2--31x -1 =0 (4) -y22 =0
少吗?
预习展示 质疑探究 当堂检测 布置作业
质疑探究
大庆市第十四中学
NO.14 Middle School,Daqing
A同学的做法: 设五个连续整数中的第一个数为x,那么后面四 个数依次可表示为x+1,x+2,x+3,x+4.根据题意, 可得方程: x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2 即:x2-8x-20=0
二次项系数为5,一次项系数为36 ,常数项为- 32 .
预习展示 质疑探究 当堂检测 布置作业
质疑探究
大庆市第十四中学
NO.14 Middle School,Daqing
对于方程(8-2x)(5-2x)=18,即2x2-13x+11=0 (1)x可能小于0吗? x可能大于4吗?可能大于2.5吗? 说说你的理由,并与同伴进行交流. (2)根据题目的已知条件,你能确定x的大致范围吗? 4 说说你的理由. (3)完成下表:
k ≠±1 时,是一元二次方程.当k =-1 时,
是一元一次方程.
预习展示 质疑探究 当堂检测 布置作业
质疑探究
大庆市第十四中学
NO.14 Middle School,Daqing
1.从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿 都进不去,横着比门框宽4尺,竖着比门框高2尺, 另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉 汉一试,不多不少刚好进去了.你知道竹竿有多长吗? 请根据这一问题列出方程.
x
0.5
1
1.5
2
( 8-2x)(5-2x)
28
18
10
4
(4)你知道所求的宽度x(m)是多少吗? 还有其他求 解方法吗?与同伴进行交流.
预习展示 质疑探究 当堂检测 布置作业
质疑探究
大庆市第十四中学
NO.14 Middle School,Daqing
对于方程(8-2x)(5-2x)=18,即2x2-13x+11=0 (1)x可能小于0吗? x可能大于4吗?可能大于2.5吗? 说说你的理由,并与同伴进行交流. (2)根据题目的已知条件,你能确定x的大致范围吗? 4 说说你的理由. (3)完成下表:
预习展示 质疑探究 当堂检测 布置作业
质疑探究
大庆市第十四中学
NO.14 Middle School,Daqing
甲同学的做法:
x
0 0.5
1
1.5
2
x2+12x-15 -15 -8.75 -2 5.25 13
所以1<x<1.5
预习展示 质疑探究 当堂检测 布置作业
质疑探究
大庆市第十四中学
NO.14 Middle School,Daqing
x2+12x-15 -0.59 0.84 2.29 3.76 5.25
所以1.1<x<1.2 因此x的整数部分是1,十分位是1。
预习展示 质疑探究 当堂检测 布置作业
质疑探究
大庆市第十四中学
NO.14 Middle School,Daqing
五个连续整数,前三个数的平方和等于后两 个数的平方。您能求出这五个整数分别是多
预习展示 质疑探究 当堂检测 布置作业
质疑探究
大庆市第十四中学
NO.14 Middle School,Daqing
如图,一个长为10m的梯子斜靠在墙上,梯子的 顶端距地面的垂直距离为8m.如果梯子的顶端 下滑1m,那么梯子的底端滑动多少米?
1
8m 7m
6m
x
预习展示 质疑探究 当堂检测 布置作业
质疑探究
解:设竹竿的长
为x尺,则门的宽 度为(x-4)尺,长 为 (x-2)尺,依题
意得方程:
2尺 x
数学化 x-2
(x-4)2+ (x- 2)2= x2 即 x2-12 x +20 =x-0 4
4尺
预习展示
质疑探究
当堂检测
布置作业
质疑探究
大庆市第十四中学
NO.14 Middle School,Daqing
预习展示 质疑探究 当堂检测 布置作业
布置作业
大庆市第十四中学
NO.14 Middle School,Daqing
1.根据题意,列出方程:
(1)有一面积为54m2的长方形,将它的一边剪短5m,另一 边剪短2m,恰好变成一个正方形,这个正方形的边长是多少?
解:设正方形的边长为xm,则原长方形的长为(x+5) m,
(5)x2+2x-3=1+x2
预习展示 质疑探究 当堂检测 布置作业
质疑探究
大庆市第十四中学
NO.14 Middle School,Daqing
1.关于x的方程(k-3)x2 + 2x-1=0,当k ≠__3_____
时,是一元二次方程.
2.关于x的方程(k2-1)x2 + 2 (k-1) x + 2k + 2=0,当
大庆市第十四中学
NO.14 Middle School,Daqing
大庆市第十四中学
NO.14 Middle School,Daqing
第二章 一元二次方程 2.1 认识一元二次方程
北师大版 2018.3.18
预习展示
大庆市第十四中学
NO.14 Middle School,Daqing
教室地面有多宽 幼儿园某教室矩形地面的长为8m,宽为5m,现准
大庆市第十四中学
NO.14 Middle School,Daqing
在上一节课的问题中,梯子底端滑动的距离 x(m)满足方程(x+6)2+72 =102,把这个方程 化为一般形式为 x2+12x-15=0 (1)你能猜出滑动距离x(m)的大致范围吗? (2)小明认为底端也滑动了1 m,他的说法正 确吗?为什么? (3)底端滑动的距离可能是2 m吗?可能是3 m吗?为什么? (4)x的整数部分是几?十分位是几?
即 x2 +12 x -15 =0.
上述三个方程有什么共同特点?
上面的方程都是只含有 一个未知数x 的 整式方程,并且都可
以化为 ax2+bx+c=0(a,b,c为常数, a≠0) 的形式,
这样的方程叫做一元二次方程.
把ax2+bx+c=0(a,b,c为常数,a≠0)称为一元二
次方程的一般形式,其中ax2 , bx , c分别称为二次项、
2.把方程(3x+2)2=4(x-3)2化成一元二次方程的一般 形式,并写出它的二次项系数、一次项系数和常数项. 解:将原方程化简为:
9x2+12x+4=4(x2-6x+9) 9x2+12x+4= 4 x2 -24x +36
9x2 - 4 x2 + 12x + 24x + 4 - 36=0 5x2 + 36 x - 32=0
NO.14 Middle School,Daqing
如图,一个长为10m的梯子斜靠在墙上,梯子的顶 端距地面的垂直距离为8m.如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米?
解:由勾股定理可知, 滑动前梯子底端距墙
数学化1m
m. 6 如果设梯子底端滑动
8 m
7m
x m,那么滑动后梯
子底端距墙 (x+6) m;
方程:
(8 - 2x) (5 - 2x) = 18.
你能化简这个方程吗?
8
x
x 数学
(8-2x)
x
化5
18m2
x
预习展示 质疑探究 当堂检测 布置作业
相关文档
最新文档