霍普菲尔德(Hopfield)神经网络概述
第五章霍普菲尔德(Hopfield)神经网络
(2)极限环
(3)混沌现象
(4)状态轨迹发散
离散型 Hopfield神经网络
• 1982年,美国加州工学院J.Hopfield提出了可用作联想存储 器和优化计算的反馈网络,这个网络称为Hopfield神经网络 (HNN)模型,也称Hopfield模型.并用它成功地探讨了旅行商 问题(TSP)的求解方法。
HNN是一种循环NN,从输 出到输入有反馈连接. HNN有离散型和连续型 两种.
• 反馈NN由于其输出端有反馈到其输入端,所以,HNN在 输入的激励下,会产生不断的状态变化.
– 当有输入之后,可以求取出HNN的输出,这个输出反馈到 输入从而产生新的输出,这个反馈过程一直进行下去. – 如果HNN是一个能稳定的网络,则这个反馈与迭代的计算 过程所产生的变化越来越小,一旦到达了稳定平衡状态, 那么HNN就会输出一个稳定的恒值. – 对于HNN来说,关键是在于确定它在稳定条件下的权系数. – 应该指出,反馈网络有稳定的,也有不稳定的. • 对于HNN来说,还存在如何判别它是稳定网络,亦或是 不稳定的问题.而判别依据是什么,也是需要确定的.
在不考虑外部输入时,则有
j 1,2,..., n
n y j (t 1) f w i, j yi (t) θ j i 1
•通常网络从某一初始状态开始经过多次更新后才可 能达到某一稳态。使用异步状态更新策略有以下优点: (1)算法实现容易,每个神经元节点有自己的状态 更新时刻.不需要同步机制; (2)以串行方式更新网络的状态可以限制网络的输 出状态,避免不同稳态以等概率出现。 一旦给出HNN的权值和神经元的阈值,网络的状态转 移序列就确定了。
hopfield神经网络及其应用教学课件PPT
02
Hopfield神经网络的数学基础
向量运算和矩阵运算
向量加法
对应元素相加,得到一个新的向量。
向量数乘
一个标量与一个向量相乘,得到一个新的向量。
向量点乘
两个向量的对应元素相乘后求和,得到一个标量。
向量运算和矩阵运算
01
020304 Nhomakorabea向量叉乘
两个向量按照顺序相乘,得到 一个新的向量。
矩阵加法
对应位置的元素相加,得到一 个新的矩阵。
适用场景
旅行商问题、背包问题、图着色问题等组合优化问题,以 及各种工程优化问题。
05
Hopfield神经网络的未来发展
Hopfield神经网络与其他神经网络的结合
与卷积神经网络结合
利用Hopfield神经网络的记忆特性,与卷积神经网络共同处理图 像识别等任务,提高识别精度和稳定性。
与循环神经网络结合
训练方法
通过特定的训练算法,对 Hopfield神经网络进行训练,使 其能够记忆和识别特定的模式或 状态。
优化算法
采用优化算法(如梯度下降法、 遗传算法等),对Hopfield神经 网络的参数进行调整和优化,以 提高其性能和稳定性。
性能评估
通过测试和评估,对训练和优化 后的Hopfield神经网络进行性能 评估,包括准确率、稳定性、实 时性等方面的评估。
Hopfield神经网络及其应用教 学课件
目
CONTENCT
录
• Hopfield神经网络简介 • Hopfield神经网络的数学基础 • Hopfield神经网络的实现 • Hopfield神经网络的应用案例 • Hopfield神经网络的未来发展
01
Hopfield神经网络简介
霍普菲尔德Hopfield神经网络
故对任意的神经元k有E 0。另外能量函数是有界的,
所以它总能收敛到它的一个局部极小点。
全并行方式下也有同样的结论。
DHNN网络设计
用 DHNN实现联想记忆需要考虑两个重要的 问题:
①怎样按记忆确定网络的W和;②网络给定之 后如何分析它的记忆容量。下面将分别讨论。
1、权值设计的方法 2、记忆容量分析 3、权值修正的其它方法
图2.8.2
两种工作方式
DHNN主要有以下两种工作方式: 〔1〕串行工作方式 在某一时刻只有一个神经 元按照上式改变状态,而其它神经元的输出不 变。这一变化的神经元可以按照随机的方式或 预定的顺序来选择。 〔2〕并行工作方式 在某一时刻有N个神经元 按照上式改变状态,而其它的神经元的输出不变。 变化的这一组神经元可以按照随机方式或某种规 那么来选择。当N=n时,称为全并行方式。
dE 0,当且仅当 dv i 0时,dE 0, i 1,2, , n
dt
dt
dt
证明: dE n E dv i
dt i1 vi dt
E
vi
1 2
n
w ij v j
j 1
1 2
n
w ji v j
j 1
Ii
ui Ri
n
w ij v j
j 1
Ii
ui Ri
ci
du i dt
ci
1 i
穿插干扰
网络在学习多个样本后,在回忆阶段即验证该记忆样 本时,所产生的干扰,称为穿插干扰。
对外积型设计而言,如果输入样本是彼此正交的,n个 神经元的网络其记忆容量的上界为n。但是在大多数情况 下,学习样本不可能是正交的,因而网络的记忆容量要 比n小得多,一般为(0.13~0.15)n,n为神经元数。
五.反馈(Hopfield)神经网络
五.反馈(Hopfield)神经⽹络 前馈⽹络⼀般指前馈神经⽹络或前馈型神经⽹络。
它是⼀种最简单的神经⽹络,各神经元分层排列。
每个神经元只与前⼀层的神经元相连。
接收前⼀层的输出,并输出给下⼀层,数据正想流动,输出仅由当前的输⼊和⽹络权值决定,各层间没有反馈。
包括:单层感知器,线性神经⽹络,BP神经⽹络、RBF神经⽹络等。
递归神经⽹络(RNN)是两种⼈⼯神经⽹络的总称。
⼀种是时间递归神经⽹络(recurrent neural network),⼜名循环神经⽹络,包括RNN、LSTM、GRU等;另⼀种是结构递归神经⽹络(recursive neural network)。
反馈⽹络(Recurrent Network),⼜称⾃联想记忆⽹络,输出不仅与当前输⼊和⽹络权值有关,还和⽹络之前输⼊有关。
其⽬的是为了设计⼀个⽹络,储存⼀组平衡点,使得当给⽹络⼀组初始值时,⽹络通过⾃⾏运⾏⽽最终收敛到这个设计的平衡点上。
包括Hopfield,Elman,CG,BSB,CHNN、DHNN等。
反馈⽹络具有很强的联想记忆和优化计算能⼒,最重要研究是反馈⽹络的稳定性(即其吸引⼦)离散Hopfield神经⽹络Hopfield神经⽹络是⼀种单层反馈,循环的从输⼊到输出有反馈的联想记忆⽹络。
离散型为DHNN(Discrete Hopfield Neural Network)和连续型CHNN(Continues Hopfield Neural Network)。
Hopfield最早提出的⽹络是⼆值神经⽹络,各神经元的激励函数为阶跃函数或双极值函数,神经元的输⼊、输出只取{0,1}或者{ -1,1},所以也称为离散型Hopfield神经⽹络DHNN(Discrete Hopfiled Neural Network)。
在DHNN中,所采⽤的神经元是⼆值神经元;因此,所输出的离散值1和0或者1和-1分别表⽰神经元处于激活状态和抑制状态。
人工神经网络-连续型Hopfield神经网络
两点说明:
1)能量函数为反馈网络的重要概念。 根据能量函数可以方便的判断系统的稳定 性; 2)Hopfield选择的能量函数,只是保 证系统稳定和渐进稳定的充分条件,而不 是必要条件,其能量函数也不是唯一的。
* CHNN的几点结论
1)具有良好的收敛性; 2)具有有限个平衡点; 3)如果平衡点是稳定的,那么它也一定是渐进稳 定的; 4)渐进稳定平衡点为其能量函数的局部极小点; 5)能将任意一组希望存储的正交化矢量综合为网 络的渐进平衡点; 6)网络的存储信息表现为神经元之间互连的分布 式动态存储; 7)网络以大规模、非线性、连续时间并行方式处 理信息,其计算时间就是网络趋于平衡点的时间。
E 1 WijVj I i Ui Vi Ri j
由连续Hopfield运行方程可得
dVi d E dU i dU i C i C i C i f 1 i V dt dV Vi dt dVi i
将上式代入原式可得:
dV i dE C i dt dt j 1 f i V
WijViVj
i 1 j 1
n
n
ViIi
i 1
n
R i i
1
n
1
Vi
0
f 1 dV V
求取 其中:
dE
dt
dE dt
i
E dV i Vi dt
E 1 Vi 2
1 WijVj 2 j
W jiVj j
Ii
1
Ri
Ui
• 由于Wij=Wji 则有:
提 出
其原理与离散型Hopfield神经网络相似,它以模拟 量作为网络的输入输出量,各神经元采用并行方式工作
神经网络-- Hopfield网络
Hopfield 神经网络前馈(前向)网络和反馈网络是当前人工神经网络研究中最基本的两种网络模型。
1982年到1986年,美国物理学家Hopfield 陆续发表文章报导了对反馈神经网络理论与应用的研究成果,引起了人们广泛的兴趣,并且将这种单层反馈网络称为Hopfield 网络。
在单层全反馈网络中(基本Hopfield 网络中),节点之间相互连接,每个节点接收来自其它节点的输入,同时又输出给其它节点,每个神经元没有到自身的连接。
由于引入反馈,所以它是一个非线性动力学系统。
其结构如下所示:n1n32y y(a ) (b )图1 Hopfield 网络基本结构前馈网络大多表达的是输出与输入间的映射关系,一般不考虑输出与输入间在时间上的滞后效应;反馈网络需要考虑输出与输入间在时间上的延时,需要利用动态方程(差分方程或微分方程)描述神经元和系统的数学模型。
前馈网络的学习(训练)主要采用误差修正法,计算时间较长,收敛速度较慢;反馈网络(如Hopfield 网络)的学习主要采用Hebb 规则,收敛速度较快。
Hopfield 网络在应用上除可作为联想记忆与分类外,还可用于优化计算。
可以认为,Hopfield 网络的联想记忆和优化计算这两种功能是对偶的:当用于联想记忆时,通过样本模式的输入给定网络的稳定状态,经学习求得联接权值W ;当用于优化计算时,以目标函数和约束条件建立系统的能量函数来确定联接权值,当网络演变至稳定状态时即可得出优化计算问题的解。
Hopfield 网络神经元模型可以是离散变量,也可以连续取值。
一.离散Hopfield 网络 1.网络结构及性能描述:离散Hopfield 网络模型如图1所示。
设共有N 个神经元,ij 表示从神经元j 到神经元i 的联接权,j s 表示神经元j 的状态(取+1或-1),j v 表示神经元j 的净输入,有:⎪⎩⎪⎨⎧=+-⋅=∑=)](sgn[)1()()(1t v t s t s t v j j jNi i ji j θω,即:⎩⎨⎧<->+=+0)(,10)(,1)1(t v t v t s j j j (1) 或:⎪⎩⎪⎨⎧<-=>+=+0)(,10)(),(0)(,1)1(t v t v t s t v t s j j j j j当0)(=t v j 时可认为神经元的状态保持不变。
神经网络简史
神经网络简史自图灵提出“机器与智能”,一直就有两派观点,一派认为实现人工智能必须用逻辑和符号系统,这一派看问题是自顶向下的;还有一派认为通过仿造大脑可以达到人工智能,这一派是自底向上的,他们认定如果能造一台机器,模拟大脑中的神经网络,这台机器就有智能了。
前一派,我想用“想啥来啥”来形容;后一派就称之为“吃啥补啥”,估计他们的思想来源于中国古代的原始思维,套一句庸俗的哲学词,前者偏唯心,后者偏唯物。
这两派一直是人工智能领域里两个阶级、两条路线的斗争,这斗争有时还你死我活。
模拟神经网络的原创文章发表于1943年,两位作者都是传奇人物,麦卡洛可(McCulloch)和皮茨(Pitts)。
话分两头。
皮茨打小就喜欢数学和哲学,初中时还读过罗素的《数学原理》,还和罗素通信,罗素爱才,邀请他到英国跟随自己学习逻辑。
但皮茨家里是苦出身,连高中都读不起,英国留学自然未果。
他十五岁时,他爸强行要他退学上班,就像所有爱读书的穷孩子,皮茨一怒就离家出走了。
他打听到偶像罗素那时要到芝加哥大学任教,就只身来到芝加哥,还真见到了罗素,老罗遂把他推荐给那时也在芝加哥任教的卡尔纳普。
卡尔纳普想看看这孩子到底有多聪明,就把自己的《语言的逻辑句法》一书送给皮茨,没过一个月,皮茨就看完了,把写满笔记的原书还给卡尔纳普。
老卡惊为天人,于是给他在芝加哥大学安排了份打扫卫生的工作。
别看不起打扫卫生,电影《心灵捕手》(Good Will Hunting)里马特·达蒙饰演的角色也是在知名大学打扫卫生时,不小心解了道数学难题,引起老师的注意。
扫马路至少可避免流浪街头。
皮茨后来结识了也在芝加哥的麦卡洛可。
沃伦-麦卡洛可比皮茨大一辈,他本科在耶鲁学哲学和心理学,后在哥伦比亚得了心理学硕士和医学博士(MD),其实医学博士和哲学博士不是一回事,MD不是学术学位,属终极职业学位,和MBA、MFA 差不多。
MD的那个D是指“医生”,PhD的D才是博士。
Hopfield神经网络综述
Hopfield神经⽹络综述题⽬: Hopfield神经⽹络综述⼀、概述:1.什么是⼈⼯神经⽹络(Artificial Neural Network,ANN)⼈⼯神经⽹络是⼀个并⾏和分布式的信息处理⽹络结构,该⽹络结构⼀般由许多个神经元组成,每个神经元有⼀个单⼀的输出,它可以连接到很多其他的神经元,其输⼊有多个连接通路,每个连接通路对应⼀个连接权系数。
⼈⼯神经⽹络系统是以⼯程技术⼿段来模拟⼈脑神经元(包括细胞体,树突,轴突)⽹络的结构与特征的系统。
利⽤⼈⼯神经元可以构成各种不同拓扑结构的神经⽹络,它是⽣物神经⽹络的⼀种模拟和近似。
主要从两个⽅⾯进⾏模拟:⼀是结构和实现机理;⼆是从功能上加以模拟。
根据神经⽹络的主要连接型式⽽⾔,⽬前已有数⼗种不同的神经⽹络模型,其中前馈型⽹络和反馈型⽹络是两种典型的结构模型。
1)反馈神经⽹络(Recurrent Network)反馈神经⽹络,⼜称⾃联想记忆⽹络,其⽬的是为了设计⼀个⽹络,储存⼀组平衡点,使得当给⽹络⼀组初始值时,⽹络通过⾃⾏运⾏⽽最终收敛到这个设计的平衡点上。
反馈神经⽹络是⼀种将输出经过⼀步时移再接⼊到输⼊层的神经⽹络系统。
反馈⽹络能够表现出⾮线性动⼒学系统的动态特性。
它所具有的主要特性为以下两点:(1).⽹络系统具有若⼲个稳定状态。
当⽹络从某⼀初始状态开始运动,⽹络系统总可以收敛到某⼀个稳定的平衡状态;(2).系统稳定的平衡状态可以通过设计⽹络的权值⽽被存储到⽹络中。
反馈⽹络是⼀种动态⽹络,它需要⼯作⼀段时间才能达到稳定。
该⽹络主要⽤于联想记忆和优化计算。
在这种⽹络中,每个神经元同时将⾃⾝的输出信号作为输⼊信号反馈给其他神经元,它需要⼯作⼀段时间才能达到稳定。
2.Hopfield神经⽹络Hopfield⽹络是神经⽹络发展历史上的⼀个重要的⾥程碑。
由美国加州理⼯学院物理学家J.J.Hopfield 教授于1982年提出,是⼀种单层反馈神经⽹络。
Hopfield神经⽹络是反馈⽹络中最简单且应⽤⼴泛的模型,它具有联想记忆的功能。
hopfield网络
Hopfield最早提出的网络是二值神经网 络,输出只取1和0,所以也称离散 Hopfield神经网络。输出的离散值1和0分 别表示神经元处于激活和抑制状态。
1、网络结构
DNHH是一种单层的、其输入/输出为二值的反 馈网络。如图:由三个神经元组成的离散 hopfield神经网络。
第0层
第1层
x1
x2
网络,期望值向量T=[-1 -1 1;1 -1 1]’
构建一个Hopfield网络。 net=newhop(T); Ai=T; [Y,Pf,Af]=sim(net,2,[],Ai); Y
可见网络设计确实能够做到设计点稳 定,下面输入不同于设计点的其他初始值 再来验证: Ai={[-0.9;-0.8;0.7]}; [Y,Pf,Af]=sim(net,{1 5},{},Ai); Y{1}
Hopfield网络
1.1 离散hopfield网络(DHNN) 1.2 连续hopfield网络(CHNN) 1.3 Hopfield网络的设计
Hopfield神经网络模型是一种循环神经 网络,从输出到输入有反馈连接。分为离 散型和连续型。
稳定的 反馈网络:
不稳定的
1.1离散hopfield网络(DHNN)
Coben和Grossberg在1983年给出了关于hopfield网络 稳定的充分条件:如果hopfield网络的权系数矩阵W是一 个对称矩阵,并且对角线元素为0,则这个网络是稳定的。
第5讲-Hopfield-课件获奖课件
五、若干有关概念
2. DHNN旳记忆容量(Memory Capacity)
四、DHNN旳联想记忆功能与权值设计
联想记忆(Associative Memory,AM)功能是 DHNN旳一种主要应用。
在Hopfield网络旳拓扑构造及权值矩阵均一定旳 情况下,网络旳稳定状态将与其初始状态有关。
也就是说,Hopfield网络是一种能储存若干个预 先设置旳稳定状态旳网络。若将稳态视为一种记忆样 本,那么初态朝稳态旳收敛过程便是寻找记忆样本旳 过程。初态可以为是给定样本旳部分信息,网络变化 旳过程可以为是从部分信息找到全部信息,从而实现 了联想记忆旳功能。
(1) x(0) x(3) 1 1 1 1T
显然它比较接近x(1),用异步方式按1,2,3,4旳调整 顺序来演变网络:
n
x1 (1) f w1 j x j (0) f (6) 1
j1
x2 (1) x2 (0) 1 x3 (1) x3 (0) 1
即 x(1) 1 1 1 1 T x(1)
m ik max 4
m 2 n m 8 1 m 5
不满足前面给出旳充分条件,是否为吸引子需详细 加以检验:
6 1
6 1
f (Wx(1) ) f 6 1 x(1) , f (Wx(2) ) f 6 1 x(2)
6 1
6 1
6 1
6 1
可见,两个样本 均为网络旳吸引子。
3)考察两个吸引子引域
为了能实现联想记忆,对于每一种吸引子应该 有一定旳吸引范围,这个吸引范围便称为吸引域。
对于异步方式,对同一种状态,若采用不同旳 调整顺序,有可能弱吸引到不同旳吸引子。若存在 一种调整顺序能够从x演变到吸引子x(a),则称x弱吸 引到x(a) ;若对于全部旳调整顺序,都能够从x演变 到吸引子x(a),则称x强吸引到x(a) 。
连续型Hopfield神经网络
精选课件
22
3.连续型Hopfield网络结构及特点
连续型Hopfield网 络结构如右图所示, 它是单层反馈非线 性网络,每一个节 点的输出均反馈至 节点的输入。
精选课件
23
Hopfield网络用模拟 电路实现的神经元节 点如右图。图中电阻 Rio和电容Ci并联,模 拟生物神经元的延时 特性,电阻 Rij(j=1,2,…,n)模拟 突触特征,偏置电流 Ii相当于阈值,运算 放大器模拟神经元的 非线性饱和特性。
将上式代入原式可得:
dE
dt j
CiddV it2 f 1Vi
由于Ci>0, f(U)单调递增,故f -1 (U)也单调递 增,可得:
dE 0 dt
当且仅当, dV i 0 时, dE 0
dt
dt
结论:网络是渐进稳定的,随着时间的推移,网 络的状态向E减小的方向运动,其稳定平衡状态 就是E的极小点。
1) 递归网络 此类网络中,多个神经元互连组织成一个互连神经网络。 有些神经网络输出被反馈至同层或前层神经元。因此, 信号能从正向和反向流通。Hopfield 网络、Elmman 网 络和Jordan 网络是递归网络中具有代表性的例子。递 归网络又叫反馈网络。
Hopfield网络.
离散型 Hopfield神经网络
网络结构及I/O关系 对于以符号函数为激励函数的网络,网络的方程可 写为:
n
ui (t 1) wij x j t i
j 1
xi (t 1) sgnui (t 1) i 1,2,,n
图2.8.2
Hopfield网络为对称网络,wij=wji。当wii=0时为无 自反馈型,反之为全自反馈型
DHNN能量极小点的设计
DHNN能量极小点的设计
按照上述方法在设计能量极小点时,网络的权值和网 值可在某个允许区间内取值。因而所选择的一组参数 虽然满足了能量极小点设计的要求,但同时也可能产 生设计所不期望的能量极小点。 比如,如果选择的权值和阈值为:
/2因子。其原因在于离散Hopfield网络模型中,wij=wji,如直
接计算E,将会对Ei中的每一项计算两次。如上例中对于3个节
点的网络,其节点能量为:
DHNN的能量函数
DHNN的能量函数
由上面给出E定义,显然有: (1)在离散Hopfield模型状态更新过程中,能量函数E随状态 变化而严格单调递减。 (2)离散Hopfield模型的稳定状态与能量函数E在状态空间的 局部极小点是一一对应的。
DHNN能量极小点的设计
例 以3节点Hopfield网络为例,假定要求设计的能量
极小点为状态v1v2v3=(010)和v1v2v3=(111),且网络
参数(权值、阂值)的取值范围为[-1,1]试确定满足条件 的网络参数。
记v1v2v3=(010)为状态A,v1v2v3=(111)为状态B
对于状态A,节点激励函数必须满足下列不等式:
非线性系状态演变的形式
在Hopfield网络中,由于反馈的存在,其加 权y统1~。输yn可,入用和则非uui,线,y的性i=变1差~化n(为过微网程)络为分状一方态个程,非来网线描络性述的动。输力一出学般为系 有如下的几种状态演变形式:
人工神经网络简介
人工神经网络简介本文主要对人工神经网络基础进行了描述,主要包括人工神经网络的概念、发展、特点、结构、模型。
本文是个科普文,来自网络资料的整理。
一、人工神经网络的概念人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。
该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。
它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。
神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。
每个节点代表一种特定的输出函数,称为激活函数(activation function)。
每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。
网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。
而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
神经网络的构筑理念是受到生物的神经网络运作启发而产生的。
人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。
另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。
网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。
输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。
Hopfield网络-文档资料
DHNN的能量函数
按照能量变化量为负的思路,可将能量的变化量ΔEi表示为
假定首先选择节点v2,则节点状态为:
v2 sgn(1 0 (3) 0 0) sgn(3) 0
Байду номын сангаас
DHNN的状态变换
网络状态由(000)变化到(000)(也可以称为网络状态保持不变),转 移概率为1/3。 假定首先选择节点v3,则节点状态为:
v3 sgn(2 0 (3) 0 3) sgn(3) 0 网络状态由(000)变化到(000),转移概率为1/3。 从上面网络的运行看出,网络状态(000)不会转移到(010)和(001), 而以1/3的概率转移到(100),以2/3的概率保持不变
网络,考察各个节点的状态转移情况。现在考虑每个节点
v1v2v3以等概率(1/3)被选择。假定首先选择节点v1,则节点状
态为:
3
v1 sgn( w1 jv j 1 ) sgn(0 0 1 0 2 0 (5)) sgn(5) 1
j 1
网络状态由(000)变化到(100),转移概率为I/3
DHNN的能量函数
因此,v={0,1,1,1}是网络的一个稳定状态。实际上此例中有
4个神经元其可能的状态有16个,为便于验算,将其各状态的 能量列表如下:
显然,网络稳定状态下的能量为最小值-14。 网络能量极小状态即为网络的一个稳定平衡状态。能量极小点的 存在为信息的分布式存储记忆、优化计算提供了基础。如果将记 忆的样本信息存贮于不同的能量极小点,当输入某一模式时,网 络就能“联想记忆”与其相关的存储样本,实现联想记忆。
基于Hopfield神经网络的图像分割算法研究
基于Hopfield神经网络的图像分割算法研究一、背景介绍图像分割是数字图像处理领域中的一个重要任务,其作用是将一幅图像按照不同的区域进行划分,以便于后续的图像识别、目标跟踪、图像压缩等应用。
Hopfield神经网络是一种经典的神经网络结构,其应用广泛,被应用于图像处理、优化问题等各个领域。
本文将探讨基于Hopfield神经网络的图像分割算法的研究。
二、Hopfield神经网络的原理Hopfield神经网络是一种基于能量函数的反馈神经网络,其结构包括输入层、隐藏层以及输出层。
该网络的基本原理是通过将能量函数最小化来达成不同神经元之间的平衡状态。
在训练阶段,首先建立一个能量函数,然后通过反向传播算法来更新网络中各个神经元的权值,最终学习到一个稳定状态,该状态即为网络的输出。
三、基于Hopfield神经网络的图像分割算法图像分割是一个经典的图像处理问题,其目的是将一幅图像分为若干个不同的区域。
基于Hopfield神经网络的图像分割算法的基本思路是将图像中的像素点作为网络中的神经元,并利用Hopfield神经网络实现像素点的分类,以便于实现图像分割的目的。
1. 输入图像的预处理在图像分割算法中,必须进行一系列的预处理操作,以保证输入图像符合算法的要求。
预处理的过程中需要对图像进行降噪、增强、二值化等操作,以便于提取出有效的像素点信息。
同时,还需要将输入图像转换为一维向量形式,以便于在神经网络中进行处理。
2. 建立Hopfield神经网络模型基于Hopfield神经网络的图像分割算法需要建立一个神经网络模型,以便于对图像中的像素点进行分类。
在建立模型时,需要考虑神经元之间的相互作用关系,并利用反向传播算法来更新神经元的权值,以便于实现图像分割的目的。
3. 维度规约在对图像进行分类时,常常需要考虑维度规约的问题,以去除冗余信息、提高分类的准确率。
在Hopfield神经网络中,维度规约的操作可以通过PCA(Principal Component Analysis)降维来实现,以提高分类的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hopfield网络的应用
组合优化 (TSP问题) 组合优化问题,就是在给定约束条件下, 求出使目标函数极小(或极大)的变量组 合问题。 将Hopfield网络应用于求解组合优化问题, 就是把目标函数转化为网络的能量函数, 把问题的变量对应于网络的状态。这样当 网络的能量函数收敛于极小值时,问题的 最优解也随之求出。
Hopfield网络的特点
单层反馈式网络
x1 o1 W x2 o2 … … xn
on
Hopfield网络的特点
灌输式学习方式 灌输式学习中网络权值不是通过训练逐渐 形成的,而是通过某种设计方法得到的。 权值一旦设计好就一次灌输给网络,不再 变动, 这种学习是死记硬背式的,而不是训练式 的。
Hopfield网络的特点
各神经元的状态在运行中不断更新
x1 o1 W x2 o2 … … xn
on
Hopfield网络的特点
首次引入能量函数
考虑了输入与输出的延迟因素
Hopfield网络的分类
根据激活函数的不同,可以分为: 离散型 Hopfield神经网络(DHNN) 1 netj ≥ 0 f(netj ) = sgn(netj ) = − 1 netj < 0 连续型 Hopfield神经网络(CHNN)
霍普菲尔德(Hopfield Hopfield) Hopfield 神经网络概述
旅行商问题(TSP)
旅行商问题(Traveling Saleman Problem, TSP)又译为旅行推销员问题、货郎担问题, 简称为TSP问题,是最基Байду номын сангаас的路线问题。
是指一名推销员要拜访多个地点时,如何 找到在拜访每个地 TSP问题点一次后再回 到起点的最短路径。
旅行商问题(TSP)
旅行商问题(TSP)
Hopfield网络的提出
1982年,美国加州理工学院物理学家 J .J.Hopfield教授提出一种单层反馈神经网 络,后来人们将这种反馈网络称为Hopfield 网络。 1985年,J.J.Hopfield和D.W.Tank用模拟电 子线路实现了Hopfield网络,并用它成功地 求解了旅行商问题(TSP)的求解方法。
Hopfield网络的应用
分类、模式识别
联想记忆