(六)数学归纳法

合集下载

2015届高考数学总复习 基础知识名师讲义 第六章 第九节数学归纳法 理

2015届高考数学总复习 基础知识名师讲义 第六章 第九节数学归纳法 理

第九节 数学归纳法知识梳理数学归纳法:对于某些与正整数n 有关的命题常常采用下面的方法来证明它的正确性.先证明当n 取第一个值n 0时命题成立;然后假设当n =k (k ∈N *,k ≥n 0)时命题成立,证明当n =k +1时命题也成立.这种证明方法就叫做数学归纳法.用数学归纳法证明一个与正整数(或自然数)有关的命题的步骤:(1)(归纳奠基)证明当n 取第一个值n 0(例如n 0=1,n 0=2等)时结论正确;(2)(归纳递推)假设当n =k (k ∈N *,且k ≥n 0)时结论正确,证明当n =k +1时结论也正确.由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确.用数学归纳法来证明与正整数有关的命题时,要注意: 递推基础不可少,归纳假设要用到,结论写明莫忘掉.基础自测1.(2013·深圳月考)用数学归纳法证明“2n >n 2+1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取( )A .2B .3C .5D .6解析:当n ≤4时,2n >n 2+1不成立,n ≥5时,2n >n 2+1成立,所以取n 0=5. 答案:C2.下列代数式中(其中k ∈N *),能被9整除的是( )A .6+6×7kB .2+7k -1C .3 (2+7k )D .2(2+7k +1)解析:(1)当k =1时,显然只有3(2+7k)能被9整除.(2)假设当k =n (n ∈N *)命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n)-36,这就说明,当k =n +1时命题也成立.故选C.答案:C3.(2013·厦门质检)观察下列不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,…,由此猜测第n 个不等式为________(n ∈N *).解析:3=22-1,7=23-1,15=24-1,可猜测:1+12+13+…+12n -1>n 2.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.答案:1+12+13+…+12n -1>n24.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是________.解析:a 1=13=11×3,a 2=115=13×5,a 3=135=15×7,猜想a n =1n -n +.答案:a n =1n -n +1.已知f (x )=12⎝⎛⎭⎪⎫x -1x .(1)若x ≥1时,证明:f (x )≥ln x ;(2)证明:1+12+13+…+1n >ln(n +1)+nn +(n ≥1).证明:(1)设g (x )=f (x )-ln x =x 2-12x -ln x (x ≥1),则g ′(x )=12x 2-1x +12=x 2-2x +12x2=x -22x≥0(x ≥1),所以g (x )在[1,+∞)上单调递增,即当x ≥1时,g (x )≥g (1)=0,即f (x )≥ln x .(2)(法一)由(1)有f (x )=12⎝ ⎛⎭⎪⎫x -1x ≥ln x (x ≥1),且当x >1时,12⎝ ⎛⎭⎪⎫x -1x >ln x .令x =k +1k ,有ln k +1k <12k +1k -k k +1=12⎝ ⎛⎭⎪⎫1+1k -⎝ ⎛⎭⎪⎫1-1k +1,即ln(k +1)-ln k <12⎝ ⎛⎭⎪⎫1k +1k +1,k =1,2,3,…,n .将上述n 个不等式依次相加,得ln(n +1)<12+12+13+…+1n +1n +.整理得1+12+13+…+1n >ln(n +1)+nn +.(法二)用数学归纳法证明.(1)当n =1时,左边=1,右边=ln 2+14<1,不等式成立.(2)假设n =k (k ≥1,k ∈N *)时,不等式成立,即 1+12+13+…+1k >ln(k +1)+k k +. 那么n =k +1时,1+12+13+…+1k +1k +1>ln(k +1)+k k ++1k +1=ln(k +1)+k +2k +. 由(1)有f (x )=12⎝⎛⎭⎪⎫x -1x ≥ln x (x ≥1).令x =k +2k +1,得12⎝ ⎛⎭⎪⎫k +2k +1-k +1k +2≥ln k +2k +1= ln(k +2)-ln(k +1).∴ln(k +1)+k +2k +≥ln(k +2)+k +1k +.∴1+12+13+…+1k +1k +1>ln(k +2)+k +1k +.这就是说,当n =k +1时,不等式也成立.根据(1),(2),可知不等式对任何n ∈N *都成立.2.(2012·大纲全国卷)函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x x +1<3; (2)求数列{x n }的通项公式.(1)证明:因为f (4)=42-8-3=5,故点P (4,5)在函数f (x )的图象上,故由所给出的两点P (4,5),Q n (x n ,f (x n ))可知,直线PQ n 斜率一定存在. 故有直线PQ n 的直线方程为y -5=f x n -5x n -4·(x -4).令y =0,可求得-5=x 2n -2x n -8x n -4·(x -4)⇔-5x n +2=x -4⇔x =4x n +3x n +2.所以x n +1=4x n +3x n +2.下面用数学归纳法证明2≤x n <3. ①当n =1时,x 1=2,满足2≤x 1<3.②假设n =k (k ≥1,k ∈N *)时,2≤x k <3成立,则当n =k +1时,x k +1=4x k +3x k +2=4-5x k +2,由2≤x k <3⇔x k +2<5⇔1<5x k +2≤54⇔2<114≤4-5x k +2<3即2≤x k +1<3也成立.综上可知,2≤x n <3对任意正整数恒成立. 下面证明x n <x n +1:由x n +1-x n =4x n +3x n +2-x n =4x n +3-x 2n -2x n x n +2=-x n -2+4x n +2,由2≤x n <3⇒0<-(x n -1)2+4≤3, 故有x n +1-x n >0,即x n <x n +1.综合①②可知,2≤x n <x n +1<3恒成立.(2)解析:由(1)及题意得x n +1=3+4x n2+x n.设b n =x n -3,则1b n +1=5b n +1,1b n +1+14=5⎝ ⎛⎭⎪⎫1b n +14,所以数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列.因此1b n +14=-34·5n -1,即b n =-43·5n -1+1, 所以数列{x n }的通项公式为x n =3-43·5n -1+1(n ∈N *).1.观察下表:设第n 行的各数之和为S n ,则S n =______________.解析:第一行,1=12,第二行,2+3+4=9=32,第三行,3+4+5+6+7=25=52,第四行,4+5+6+7+8+9+10=49=72,归纳:第n 行的各数之和S n =(2n -1)2.答案:(2n -1)22.(2013·揭阳一模改编)已知函数f (x )=ax1+xa (x >0,a 为常数),数列{a n }满足:a 1=12,a n +1=f (a n ),n ∈N *. (1)当a =1时,求数列{a n }的通项公式;(2)在(1)的条件下,证明对∀n ∈N *有:a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2=n n +n +n +.(1)解析:当a =1时,a n +1=f (a n )=a n1+a n ,两边取倒数,得1a n +1-1a n =1,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=2为首项,1为公差的等差数列,所以1a n =n +1,a n =1n +1,n ∈N *. (2)证明:(法一)由(1)知a n =1n +1,故对k =1,2,3,…,a k a k +1a k +2=1k +k +k +=12⎣⎢⎡⎦⎥⎤1k +k +-1k +k + 所以a 1a 2a 3+a 2a 3a 4+…+a n a n +1a n +2=12⎣⎢⎡⎝ ⎛⎭⎪⎫12×3-13×4+⎝ ⎛⎭⎪⎫13×4-14×5+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n +n +-1n +n + =12⎣⎢⎡⎦⎥⎤12×3-1n +n +=n n +n +n +.(法二)①当n =1时,等式左边=12×3×4=124,等式右边=1×+++=124,左边=右边,等式成立;②假设当n =k (k ≥1)时等式成立,1 2 3 4 3 4 5 6 7 4 5 6 7 8 9即a 1a2a3+a2a3a4+…+a k a k+1a k+2=k k+k+k+,则当n=k+1时,a1a2a3+a2a3a4+…+a k a k+1a k+2+a k+1a k+2a k+3=k k+k +k++1k+k+k+=k k+k++121k+k+k+=k3+9k2+20k+12k+k+k+=k2k++k+k+k+k+k+=k+k+k+k+k+k+=k+k++5]k++k++3].这就是说当n=k+1时,等式成立,综①②知对于∀n∈N*有:a1a2a3+a2a3a4+…+a n a n+1a n+2=n n+512n+2n+3.。

第六章数列与数学归纳法

第六章数列与数学归纳法

第六章⎪⎪⎪数列与数学归纳法第一节数列的概念与简单表示法1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类[小题体验]1.已知数列{a n }的前4项为12,34,78,1516,则数列{a n }的一个通项公式为________.答案:a n =2n -12n (n ∈N *)2.已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 5等于________. 答案:11613.(教材改编题)已知数列{a n }的前n 项和为S n ,若S n =3n -1,则a n =________. 答案:2×3n -11.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.[小题纠偏]1.已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥22.数列{a n }的通项公式为a n =-n 2+9n ,则该数列第________项最大. 答案:4或5考点一 由数列的前几项求数列的通项公式(基础送分型考点——自主练透)[题组练透]1.(2019·温岭模拟)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 018项与5的差即a 2 018-5=( )A .2 017×2 024B .2 017×1 012C .2 018×2 024D .2 018×1 012解析:选B 结合图形可知,该数列的第n 项为a n =2+3+4+…+(n +2),所以a 2 018-5=4+5+6+…+2 020=2 017×(2 020+4)2=2 017×1 012.2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…;(2)(易错题)-11×2,12×3,-13×4,14×5,…; (3)-1,7,-13,19, …; (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以它的一个通项公式a n =2(n +1),n ∈N *. (2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1),n ∈N *.(3)这个数列,去掉负号,可发现是一个等差数列,其首项为1,公差为6,所以它的一个通项公式为a n =(-1)n (6n -5),n ∈N *.(4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1,n ∈N *.[谨记通法]由数列的前几项求数列通项公式的策略(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项符号特征等.(2)根据数列的前几项写出数列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n+1来调整.考点二 由a n 与S n 的关系求通项a n (重点保分型考点——师生共研)[典例引领]已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式. (1)S n =n 2+1; (2)S n =2n -a n .解:(1)a 1=S 1=1+1=2,当n ≥2时,a n =S n -S n -1=n 2+1-(n -1)2-1=2n -1,而a 1=2,不满足此等式.所以a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.(2)当n =1时,S 1=a 1=2-a 1,所以a 1=1;当n ≥2时,a n =S n -S n -1=(2n -a n )-[2(n -1)-a n -1]=2-a n +a n -1, 即a n =12a n -1+1,即a n -2=12(a n -1-2).所以{a n -2}是首项为a 1-2=-1,公比为12的等比数列,所以a n -2=(-1)·⎝⎛⎭⎫12n -1, 即a n =2-⎝⎛⎭⎫12n -1.[由题悟法]已知S n 求a n 的 3个步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[即时应用]已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若a n >0,S n >1,且6S n =(a n +1)(a n +2),求a n . 解:(1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式, 所以a n =(-1)n +1·(2n -1).(2)当n =1时,a 1=S 1=16(a 1+1)(a 1+2),即a 21-3a 1+2=0.解得a 1=1或a 1=2.因为a 1=S 1>1,所以a 1=2.当n ≥2时,a n =S n -S n -1=16(a n +1)(a n +2)-16(a n -1+1)(a n -1+2),所以(a n -a n -1-3)(a n+a n -1)=0.因为a n >0,所以a n +a n -1>0, 所以a n -a n -1-3=0,所以数列{a n }是以2为首项,3为公差的等差数列. 所以a n =3n -1.考点三 由递推关系式求数列的通项公式(题点多变型考点——多角探明) [锁定考向]递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.常见的命题角度有: (1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .[题点全练]角度一:形如a n +1=a n f (n ),求a n 1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. 解:∵a n =n -1n a n -1(n ≥2), ∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立. ∴a n =1n(n ∈N *).角度二:形如a n +1=a n +f (n ),求a n2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).角度三:形如a n +1=Aa n +B (A ≠0且A ≠1),求a n3.已知数列{a n }满足a 1=1,当n ≥2,n ∈N *时,有a n =2a n -1-2,求数列{a n }的通项公式.解:因为a n =2a n -1-2,所以a n-2=2(a n-1-2).所以数列{a n-2}是以a1-2=-1为首项,2为公比的等比数列.所以a n-2=(-1)×2n-1,即a n=2-2n-1.[通法在握]典型的递推数列及处理方法[演练冲关]根据下列条件,求数列{a n}的通项公式.(1)a1=1,a n+1=a n+2n(n∈N*);(2)a1=1,2na n+1=(n+1)a n(n∈N*);(3)a1=1,a n=3a n-1+4(n≥2).解:(1)由题意知a n+1-a n=2n,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=2n-1+2n-2+…+2+1=1-2n1-2=2n-1.(2)由2na n+1=(n+1)a n,得a n+1a n=n+12n.所以a n=a na n-1·a n-1a n-2·a n-2a n-3·…·a2a1·a1=n2(n-1)·n-12(n-2)·n-22(n-3)·…·22×1×1=n2n-1.(3)因为a n=3a n-1+4(n≥2),所以a n+2=3(a n-1+2).因为a1+2=3,所以{a n+2}是首项与公比都为3的等比数列.所以a n+2=3n,即a n=3n-2.一抓基础,多练小题做到眼疾手快1.(2018·嘉兴七校联考)已知数列{a n}的通项公式为a n=n2+n,则a5=() A.25B.30C .10D .12解析:选B 因为a n =n 2+n ,所以a 5=25+5=30.2.(2018·浙江三地联考)已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n (n ∈N *),则数列{a n }的通项公式a n =( )A .2nB .2n -1C .2n -1-1D.⎩⎪⎨⎪⎧1,n =1,2n ,n ≥2解析:选B 由log 2(S n +1)=n 可得S n =2n -1.当n ≥2时,a n =S n -S n -1=2n -1-(2n-1-1)=2n -1;当n =1时,a 1=S 1=21-1=1满足上式.所以数列{a n }的通项公式a n =2n -1.3.(2018·衢州模拟)已知数列{a n }满足:a 1=1,a n +1=2a na n +2,则数列{a n }的通项公式a n 为( )A.1n +1B.2n +1 C.1n D.2n解析:选B 由a n +1=2a n a n +2可得1a n +1=a n +22a n =1a n +12. 所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,公差为12的等差数列,所以1a n =n +12,即a n =2n +1.4.(2018·诸暨模拟)已知数列{a n }中,对任意的p ,q ∈N *都满足a p +q =a p a q ,若a 1=-1,则a 9=________.解析:由题可得,因为a 1=-1,令p =q =1,则a 2=a 21=1;令p =q =2,则a 4=a 22=1;令p =q =4,则a 8=a 24=1,所以a 9=a 8+1=a 1a 8=-1.答案:-15.(2019·杭州模拟)设数列{a n }的前n 项和S n =n 2,则a 8=________,a 2+a 3+a 4=________.解析:因为S n =n 2,所以a 8=S 8-S 7=82-72=15,a 2+a 3+a 4=S 4-S 1=42-1=15. 答案:15 15二保高考,全练题型做到高考达标1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π解析:选D 令n =1,2,3,…,逐一验证四个选项,易得D 正确.2.(2019·天台模拟)已知数列{a n }的前n 项和S n ,且满足S n =2a n -3(n ∈N *),则S 6=( ) A .192 B .189 C .96D .93解析:选B 因为S n =2a n -3,当n =1时,S 1=2a 1-3=a 1,解得a 1=3.当n ≥2时,a n =S n -S n -1=2a n -3-2a n -1+3=2a n -2a n -1,解得a na n -1=2.所以数列{a n }是首项为3,公比为2的等比数列,所以S 6=3(1-26)1-2=189.3.设数列{a n }的前n 项和为S n ,且S n +S n +1=a n +1(n ∈N *),则此数列是( ) A .递增数列 B .递减数列 C .常数列D .摆动数列解析:选C 因为S n +S n +1=a n +1,所以当n ≥2时,S n -1+S n =a n ,两式相减,得a n+a n +1=a n +1-a n ,所以有a n =0.当n =1时,a 1+a 1+a 2=a 2,所以a 1=0.所以a n =0.即数列是常数列.4.(2019·绍兴模拟)已知数列{a n }的通项公式a n =1n +n +1,若该数列的前n 项和为10,则项数n 的值为( )A .11B .99C .120D .121解析:选C 因为a n =1n +n +1=n +1-n ,所以该数列的前n 项和S n =n +1-1=10,解得n =120.5.(2018·丽水模拟)数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n<12,2a n-1,12≤a n<1,若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 由a 1=35∈⎣⎡⎭⎫12,1,得a 2=2a 1-1=15∈⎣⎡⎭⎫0,12,所以a 3=2a 2=25∈⎣⎡⎭⎫0,12,所以a 4=2a 3=45∈⎣⎡⎭⎫12,1,所以a 5=2a 4-1=35=a 1.由此可知,该数列是一个周期为4的周期数列,所以a 2 018=a 504×4+2=a 2=15.6.(2019·镇海模拟)已知数列{a n }满足a 1=2,a n +1=a 2n (a n >0,n ∈N *),则数列{a n }的通项公式a n =________.解析:对a n +1=a 2n 两边取对数,得log 2a n +1=log 2a 2n =2log 2a n .所以数列{log 2a n }是以log 2a 1=1为首项,2为公比的等比数列,所以log 2a n =2n -1,所以a n =22n -1.答案:22n -17.(2018·海宁模拟)已知数列{a n }满足a n +1+a n =2n -1,则该数列的前8项和为________.解析:S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=1+5+9+13=28. 答案:288.在一个数列中,如果对任意的n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知数列{a n }满足a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *).(1)求a 2,a 3的值; (2)证明:a n =3n -12.解:(1)因为a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *),所以a 2=32-1+1=4,a 3=33-1+a 2=9+4=13.(2)证明:因为a n =3n -1+a n -1(n ≥2,n ∈N *),所以a n -a n -1=3n -1,所以a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…+(a 2-a 1)+a 1 =3n -1+3n -2+…+3+1=3n -12(n ≥2,n ∈N *).当n =1时,a 1=3-12=1满足条件. 所以当n ∈N *时,a n =3n -12.10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 三上台阶,自主选做志在冲刺名校1.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行、第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵第10行、第3个数为97.答案:972.(2018·温州模拟)设函数f (x )=log 2x -log x 4(0<x <1),数列{a n }的通项公式a n 满足f (2a n )=2n (n ∈N *).(1)求数列{a n }的通项公式; (2)判定数列{a n }的单调性.解:(1)因为f (x )=log 2x -log x 4(0<x <1),f (2a n )=2n (n ∈N *) , 所以f (2a n )=log 22a n -log2a n 4=a n -2a n=2n ,且0<2a n <1, 解得a n <0.所以a n =n -n 2+2.(2)因为a n +1a n =(n +1)-(n +1)2+2n -n 2+2=n +n 2+2n +1+(n +1)2+2<1.因为a n <0,所以a n +1>a n . 故数列{a n }是递增数列.第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题体验]1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案:102.(2018·温州模拟)已知等差数列{a n }的前n 项和为S n ,若a 3=5,a 5=3,则a n =________;S 7=________.答案:-n +8 283.(2018·温州十校联考)在等差数列{a n }中,若a 3+a 4+a 5=12,则S 7=______.答案:281.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.[小题纠偏]1.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( ) A .(-3,+∞) B.⎝⎛⎭⎫-∞,-83 C.⎝⎛⎭⎫-3,-83 D.⎣⎡⎭⎫-3,-83 答案:D2.(2018·湖州模拟)设等差数列{a n }的前n 项和为S n ,已知a 3=16,a 6=10,则公差d =________;S n 取到最大时的n 的值为________.解析:因为数列{a n }是等差数列,且a 3=16,a 6=10,所以公差d =a 6-a 36-3=-2,所以a n =-2n +22,要使S n 能够取到最大值,则需a n =-2n +22≥0,所以解得n ≤11.所以可知使得S n 取到最大时的n 的值为10或11.答案:-2 10或11考点一 等差数列的基本运算(基础送分型考点——自主练透)[题组练透]1.(2017·嘉兴二模)设S n 为等差数列{a n }的前n 项和,若S 1S 4=110,则S 3S 5=( )A.25 B.35 C.37D.47解析:选A 设数列{a n }的公差为d ,因为S n 为等差数列{a n }的前n 项和,且S 1S 4=110,所以10a 1=4a 1+6d ,所以a 1=d .所以S 3S 5=3a 1+3d 5a 1+10d =6d 15d =25.2.设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( ) A .5 B .6 C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9或k =0(舍去),故选C.3.公差不为零的等差数列{a n }中,a 7=2a 5,则数列{a n }中第________项的值与4a 5的值相等.解析:设等差数列{a n }的公差为d ,∵a 7=2a 5,∴a 1+6d =2(a 1+4d ),则a 1=-2d ,∴a n =a 1+(n -1)d =(n -3)d ,而4a 5=4(a 1+4d )=4(-2d +4d )=8d =a 11,故数列{a n }中第11项的值与4a 5的值相等.答案:114.(2019·绍兴模拟)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=______,公差d =________.解析:由S 2=S 6,得S 6-S 2=a 3+a 4+a 5+a 6=4a 1+14d =0,即2a 1+7d =0.由S 55-S 44=2,得52(a 1+a 5)5-42(a 1+a 4)4=12(a 5-a 4)=12d =2,解得d =4,所以a 1=-14.答案:-14 4[谨记通法]等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.解决这些问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想. 考点二 等差数列的判断与证明(重点保分型考点——师生共研)[典例引领](2019·温州模拟)已知数列{a n }中,a 1=12,a n +1=1+a n a n +12(n ∈N *).(1)求证:⎩⎨⎧⎭⎬⎫1a n -1是等差数列;(2)求数列{a n }的通项公式.解:(1)证明:因为对于n ∈N *,a n +1=1+a n a n +12, 所以a n +1=12-a n, 所以1a n +1-1-1a n -1=112-a n-1-1a n -1=2-a n -1a n -1=-1.所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为1a 1-1=-2,公差为-1的等差数列.(2)由(1)知1a n -1=-2+(n -1)(-1)=-(n +1), 所以a n -1=-1n +1, 即a n =n n +1. [由题悟法]等差数列的判定与证明方法已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式. 解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2+1a n ,∴b n +1-b n =2+1a n -1a n =2.又b 1=1a 1=1,∴数列{b n }是首项为1,公差为2的等差数列. (2)由(1)知数列{b n }的通项公式为 b n =1+(n -1)×2=2n -1, 又b n =1a n,∴a n =1b n=12n -1. ∴数列{a n }的通项公式为a n =12n -1. 考点三 等差数列的性质及最值(重点保分型考点——师生共研)[典例引领]1.(2019·宁波模拟)在等差数列{a n }中,若a 9a 8<-1,且其前n 项和S n 有最小值,则当S n >0时,n 的最小值为( )A .14B .15C .16D .17解析:选C ∵数列{a n }是等差数列,它的前n 项和S n 有最小值,∴公差d >0,首项a 1<0,{a n } 为递增数列,∵a 9a 8<-1,∴a 8·a 9<0,a 8+a 9>0,由等差数列的性质知2a 8=a 1+a 15<0,a 8+a 9=a 1+a 16>0.∵S n =(a 1+a n )n2,∴当S n >0时,n 的最小值为16. 2.(2018·嘉兴一中模拟)设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足a n >0的最大n 的值为______,满足S k S k +1<0的正整数k =______.解析:由题可得a 6=S 6-S 5>0,a 7=S 7-S 6<0,所以使得a n >0的最大n 的值为6.又a 6+a 7=S 7-S 5>0,则S 11=11(a 1+a 11)2=11a 6>0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,S 13=13(a 1+a 13)2=13a 7<0,因为{a n }是递减的等差数列,所以满足S k S k +1<0的正整数k =12. 答案:6 12[由题悟法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时应用]1.(2018·浙江新高考联盟)已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.310 B.37 C.13D.12解析:选A 因为数列{a n }是等差数列,所以S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列,因为S 4S 8=13,所以不妨设S 4=1,则S 8=3,所以S 8-S 4=2,所以S 16=1+2+3+4=10,所以S 8S 16=310.2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18一抓基础,多练小题做到眼疾手快1.(2018·杭州模拟)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4.则数列{a n }的通项公式为( )A .a n =2n -1B .a n =-2n +3C .a n =2n -1或-2n +3D .a n =2n解析:选A 设数列{a n }的公差为d ,由a 3=a 22-4可得1+2d =(1+d )2-4,解得d =±2.因为数列{a n }是递增数列,所以d >0,故d =2.所以a n =1+2(n -1)=2n -1.2.(2018·舟山期末)在等差数列{a n }中,若a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .25解析:选B 因为a 2=1,a 4=5,所以S 5=5(a 1+a 5)2=5(a 2+a 4)2=15. 3.(2019·缙云模拟)已知{a n }为等差数列,其公差d 为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( )A .-110B .-90C .90D .110解析:选D 设数列{a n }的首项为a 1,因为a 7是a 3与a 9的等比中项,所以(a 1-12)2=(a 1-4)(a 1-16),解得a 1=20.所以S 10=10a 1+45d =200-90=110.4.(2019·腾远调研)我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:________日相逢?解析:由题意知,良马每日行的距离成等差数列,记为{a n },其中a 1=103,d 1=13;驽马每日行的距离成等差数列,记为{b n },其中b 1=97,d 2=-0.5.设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m (m -1)×132+97m +m (m -1)×(-0.5)2=2×1 125,解得m =9(负值舍去).即二马需9日相逢.答案:95.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5二保高考,全练题型做到高考达标1.(2018·金丽衢十二校联考)已知正项数列{a n }中,a 1=1,a 2=2,当n ≥2,n ∈N *时,a n =a 2n +1+a 2n -12,则a 6=( ) A .2 2 B .4 C .16D .45解析:选B 因为a n =a 2n +1+a 2n -12,所以2a 2n =a 2n +1+a 2n -1,即a 2n +1-a 2n =a 2n -a 2n -1,所以数列{a 2n }是等差数列,公差d =a 22-a 21=4-1=3,所以a 2n =1+3(n -1)=3n -2,所以a n =3n -2,所以a 6=18-2=4.2.(2018·浙江五校联考)等差数列{a n }中,a 1=0,等差d ≠0,若a k =a 1+a 2+…+a 7,则实数k =( )A .22B .23C .24D .25解析:选A 因为a 1=0,且a k =a 1+a 2+…+a 7, 即(k -1)d =21d ,又因为d ≠0,所以k =22.3.(2018·河南六市一联)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A.114 B.32 C.72D .1解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,又{a n }和{S n}都是等差数列,且公差相同,∴⎩⎨⎧d = d 2,a 1-d2=0,解得⎩⎨⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(2018·东阳模拟)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A nB n=7n +45n +3,则使得a nb n 为整数的正整数的个数为( )A .2B .3C .4D .5解析:选D 由A n B n =7n +45n +3,可得a n b n =A 2n -1B 2n -1=7n +19n +1=7+12n +1,所以要使a n b n为整数,则需12n +1为整数,所以n =1,2,3,5,11,共5个. 5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0, 解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.(2019·台州中学期中)已知等差数列{a n }的前n 项和为S n ,若a 2=18,S 18=54,则a 17=________,S n =__________.解析:设等差数列{a n }的首项为a 1,公差为d ,因为a 2=18,S 18=54,所以⎩⎪⎨⎪⎧a 1+d =18,18a 1+18×172d =54,解得a 1=20,d =-2.所以a 17=a 1+16d =20-32=-12,S n =na 1+n (n -1)2d =-n 2+21n .答案:-12 -n 2+21n7.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 8.(2018·金华浦江适考)设数列{a n },{b n }的前n 项和分别为S n ,T n ,其中a n =-3n +20,b n =|a n |,则使T n =S n 成立的最大正整数n 为________,T 2 018+S 2 018=________.解析:根据题意,数列{a n }中,a n =-3n +20,则数列{a n }是首项为17,公差为-3的等差数列,且当n ≤6时,a n >0,当n ≥7时,a n <0,又由b n =|a n |,当n ≤6时,b n =a n ,当n ≥7时,b n =-a n ,则使T n =S n 成立的最大正整数为6,T 2 018+S 2 018=(a 1+a 2+…+a 6+a 7+a 8+…+a 2 018)+(b 1+b 2+…+b 6+b 7+b 8+…+b 2 018)=2(a 1+a 2+…+a 6)=(17+2)×6=114.答案:6 1149.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n . 解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k . 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1), 则b n =S nn=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2. 10.(2018·南昌调研)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0.当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列, 所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(2018·浙江五校联考)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 为数列{a n }的前n 项和,则2S n +16a n +3的最小值为________.解析:设公差为d .因为a 1,a 3,a 13成等比数列,所以(1+2d )2=1+12d ,解得d =2.所以a n =2n -1,S n =n 2.所以2S n +16a n +3=2n 2+162n +2=n 2+8n +1.令t =n +1,则原式=t 2+9-2t t =t +9t -2.因为t ≥2,t ∈N *,所以当t =3,即n =2时,⎝ ⎛⎭⎪⎫2S n +16a n +3min=4.答案:42.已知数列{a n }满足a n +1+a n =4n -3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值; (2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3, ∴2dn +(2a 1-d )=4n -3, 即2d =4,2a 1-d =-3, 解得d =2,a 1=-12.法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1, ∴2d =a n +2-a n =(a n +2+a n +1)-(a n +1+a n ) =4n +1-(4n -3)=4, ∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=4×1-3=1, ∴a 1=-12.(2)由题意,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n ) =2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52.②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7) =2n 2-3n 2.第三节等比数列及其前n 项和1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . [小题体验]1.(教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4,…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列C .公比为q 3的等比数列D .不一定是等比数列答案:B2.(2018·台州模拟)已知等比数列{a n }各项都是正数,且a 4-2a 2=4,a 3=4,则a n =________;S 10=________.解析:设公比为q ,因为a 4-2a 2=4,a 3=4, 所以有4q -8q =4,解得q =2或q =-1. 因为q >0,所以q =2.所以a 1=a 3q 2=1,a n =a 1q n -1=2n -1.所以S 10=1-2101-2=210-1=1 023.答案:2n -1 1 0233.在数列{a n }中,a 1=1,a n +1=3a n (n ∈N *),则a 3=______;S 5=_________. 答案:9 1211.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.[小题纠偏]1.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4D .±4解析:选C a 25=a 3a 7=2×8=16,∴a 5=±4,又∵a 5=a 3q 2>0,∴a 5=4. 2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 答案:-12或1考点一 等比数列的基本运算(重点保分型考点——师生共研)[典例引领]1.(2018·绍兴模拟)等比数列{a n }的公比为2,前n 项和为S n .若1+2a 2=S 3,则a 1=( ) A .17 B.15 C.13D .1解析:选C 由题可得,1+4a 1=a 1+2a 1+4a 1,解得a 1=13.2.(2018·杭二中仿真)各项都是正数的等比数列{a n }中,若a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( ) A.5+12B.5-12C.1-52D.5+12或1-52解析:选B 设数列{a n }的公比为q (q >0,q ≠1),由a 2,12a 3,a 1成等差数列可得a 3=a 2+a 1,所以有q 2-q -1=0,解得q =5+12(负值舍去).所以a 3+a 4a 4+a 5=1q =5-12. [由题悟法]解决等比数列有关问题的2种常用思想1.(2019·浙北联考)设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4 C.152D.172解析:选C 因为q =2,所以S 4a 2=a 1+a 2+a 3+a 4a 2=1+q +q 2+q 3q =1+2+4+82=152.2.(2018·宁波模拟)已知等比数列{a n }满足a 2=14,a 2a 8=4(a 5-1),则a 4+a 5+a 6+a 7+a 8的值为( )A .20B .31C .62D .63解析:选B 因为a 2a 8=a 25=4(a 5-1),解得a 5=2.所以q =2.所以a 4+a 5+a 6+a 7+a 8=1+2+4+8+16=31.3.(2018·杭州二检)设各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=80,S 2=8,则公比q =________,a 5=________.解析:由题可得,设数列{a n }的公比为q (q >0,q ≠1),根据题意可得a 1(1-q 4)1-q =80,a 1(1-q 2)1-q=8,解得a 1=2,q =3,所以a 5=a 1q 4=2×34=162. 答案:3 162考点二 等比数列的判定与证明(重点保分型考点——师生共研)[典例引领](2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.[由题悟法]等比数列的4种常用判定方法选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[即时应用](2018·衢州模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若数列{b n }满足b n =a n +1-2a n ,求证:{b n }是等比数列.证明:因为S n +1=4a n +2, 所以S 2=a 1+a 2=4a 1+2,又a 1=1,所以a 2=5,b 1=a 2-2a 1=3, 当n ≥2时,S n =4a n -1+2. 所以S n +1-S n =a n +1=4a n -4a n -1. 因为b n =a n +1-2a n , 所以当n ≥2时,b n b n -1=a n +1-2a n a n -2a n -1=4a n -4a n -1-2a n a n -2a n -1=2(a n -2a n -1)a n -2a n -1=2. 所以{b n }是以3为首项,2为公比的等比数列.考点三 等比数列的性质(重点保分型考点——师生共研)[典例引领]1.(2018·宁波模拟)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=( )A .1B .2C .4D .8解析:选D 由等差数列的性质,得a 6+a 8=2a 7. 由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.2.若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.解析:由题可得,S 2,S 4-S 2,S 6-S 4,S 8-S 6成等比数列,因为S 4S 2=5,不妨设S 2=1,则S 4=5,所以S 4-S 2=4, 所以S 8=1+4+16+64=85, 所以S 8S 4=855=17.答案:17[由题悟法]等比数列的性质可以分为3类1.(2018·诸暨模拟)已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20.则该数列的前9项和为( )A .50B .70C .80D .90解析:选B 由等比数列的性质得S 3,S 6-S 3,S 9-S 6也成等比数列,由S 3=40,S 6-S 3=20,知公比为12,故S 9-S 6=10,S 9=70.2.(2018·浙江联盟模拟)已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5=________;a 4的最大值为________.解析:因为a n >0,a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25,所以a 3+a 5=5,所以a 3+a 5=5≥2a 3a 5=2a 4,所以a 4≤52.即a 4的最大值为52.答案:552一抓基础,多练小题做到眼疾手快1.(2018·舟山模拟)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( )A .-3B .±3C .-3 3D .±3 3解析:选C 因为-1,x ,y ,z ,-3成等比数列,由等比数列的性质及等比中项可知,xz =3,y 2=3,且y 与-1,-3符号相同,所以y =-3,所以xyz =-3 3.2.(2019·湖州六校联考)已知等比数列的前n 项和为54,前2n 项和为60,则前3n 项和为( )A .66B .64C .6623D .6023解析:选D 因为等比数列中,S n ,S 2n -S n ,S 3n -S 2n 成等比数列,所以54(S 3n -60)=36,解得S 3n =6023.3.(2018·金华十校联考)在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为( ) A .10 B .25C .50D .75解析:选B 因为a 7a 12=a 8a 11=a 9a 10=5,所以a 8a 9a 10a 11=52=25.4.(2018·浙江名校协作体测试)设等比数列{a n }的前n 项和为S n ,且对任意的正整数n ,均有S n +3=8S n +3,则a 1=_________,公比q =________.解析:因为S n +3=8S n +3,所以当n ≥2时,S n +2=8S n -1+3,两式相减,可得a n +3=8a n ,所以q 3=8,解得q =2;当n =1时,S 4=8S 1+3,即15a 1=8a 1+3,解得a 1=37.答案:3725.(2018·永康适应性测试)数列{a n }的前n 项和为S n ,S n =2a n +n ,则a 1=______,数列{a n }的通项公式a n =_______.解析:因为S n =2a n +n ,所以当n =1时,S 1=a 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n +n -2a n -1-n +1,即a n =2a n -1-1,即a n -1=2(a n -1-1),所以数列{a n -1}是以-2为首项,2为公比的等比数列,所以a n -1=-2n ,所以a n =1-2n .答案:-1 1-2n二保高考,全练题型做到高考达标1.(2019·浙大附中模拟)已知数列{a n }的前n 项和为S n ,且a n +1=pS n +q (n ∈N *,p ≠-1),则“a 1=q ”是“{a n }为等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为a n +1=pS n +q ,所以当n ≥2时,a n =pS n -1+q ,两式相减得a n +1-a n =pa n ,即当n ≥2时,a n +1a n =1+p .当n =1时,a 2=pa 1+q .所以当a 1=q 时,a 2a 1=1+p ,满足上式,故数列{a n }为等比数列,所以是充分条件;当{a n }为等比数列时,有a 2=pa 1+q =(1+p )a 1,解得a 1=q ,所以是必要条件,从而选C.2.(2019·乐清模拟)设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( )A .44B .45 C.46-13D.45-13解析:选B 因为a 1=1,a n +1=3S n =S n +1-S n ,所以S n +1=4S n ,所以数列{S n }是首项为S 1=a 1=1,公比为4的等比数列,所以S 6=45.3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.15解析:选A ∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是以公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.4.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为( )A .7B .8C .9D .10解析:选B 设该女子第一天织布x 尺,则x (1-25)1-2=5,得x =531,∴前n 天所织布的尺数为531(2n -1).由531(2n -1)≥30,得2n ≥187,则n 的最小值为8.5.(2019·金华模拟)设A n ,B n 分别为等比数列{a n },{b n }的前n 项和.若A n B n =12n +1,则a 7b 3=( )。

第六章第七节数学归纳法

第六章第七节数学归纳法

所以当n=k+1时,等式也成立,
由(1)(2)可知,对于一切n∈N+等式都成立.
第七节 数学归纳法
考点一
抓主干 知识回顾
研考向 考点研究
答题模板 系列8
课时 跟踪检测
上页 下页
典题悟法 演练冲关
用数学归纳法证明与正整数有关的一些等式时,关键在于“先 看项”,弄清等式两边的构成规律,等式的两边各有多少项, 项的多少与n的取值是否有关,由n=k到n=k+1时等式的两边 变化的项,然后正确写出归纳证明的步骤,使问题得以证明.
知识点二
抓主干 知识回顾
[自测练习]
研考向 考点研究
答题模板 系列8
课时 跟踪检测
解析
上页 下页
知识点一 知识点二
3.(2015·南昌调研)用数学归纳法证明等
式:1+2+3+…+n2=
n4+n2 2
(n∈N+),则
从n=k到n=k+1时,左边应添加的项为
(D )
A.k2+1
B.(k+1)2
n=k时,左边有k2项, 当n=k+1时左边有(k+ 1)2=k2+2k+1项,从n =k到n=k+1左边应添 加2k+1项,故选D.
时,{an}是以b为公比的等比
数列,又a1=b+r,a2=b(b-
1),
a2 a1
=b,即
bb-1 b+r
=b,解
得r=-1.
第七节 数学归纳法
考点二
抓主干 知识回顾
典题悟法 演练冲关
等比数列{an}的前n项和为
Sn.已知对任意的n∈N+,点(n,Sn) 均在函数y=bx+r(b>0,且b≠1,
b,r均为常数)的图像上.
课时 跟踪检测
上页 下页

第六节 数学归纳法

第六节 数学归纳法

所以当 n=k+1 时,等式也成立. 由①,②可知,对一切 n∈N*等式都成立.
考点二 用数学归纳法证明不等式 【例2】 设fn(x)是等比数列1,x,x2,…,xn的各项和,其中x>0,n∈N,n≥2. 设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和 为gn(x),比较fn(x)和gn(x)的大小,并加以证明.
项和为 Tn.求证: (1) an1 ≤ 1 (n∈N*);
an 2
证明:(1)猜想:0<an≤ 1 . 2
用数学归纳法证明如下:
①当 n=1 时,a1= 1 ,结论成立; 2
②假设 n=k 时结论成立,即 0<ak≤ 1 , 2

ak+1=
1 2
ak2
+
1 4
ak=
1 2
(ak+
1 4
)2-
1 32
所以 2ak+1=2+ak.所以 ak+1= 2 ak 2
=
2

2k 1 2k 1
2
= 2k 1 1 . 2k

n=k+1
时,结论成立.由①②知猜想
an=
2n 1 2 n 1
(n∈N*)成立.
考点四 用数学归纳法证明整除性与几何问题
【例 4】 用数学归纳法证明:凸 n 边形的对角线的条数为 f(n)= 1 n(n-3)(n∈N,n≥3). 2
(2)假设当 n=k(k≥1)时不等式成立,即 1 2 + 2 3 +…+ k k 1 < 1 (k+1)2,
2
则 1 2 + 2 3 +…+ k k 1 + k 1k 2 < 1 (k+1)2+ k 1k 2

小学六年级数学归纳法练习题

小学六年级数学归纳法练习题

小学六年级数学归纳法练习题数学归纳法是一种用于证明与自然数有关的命题的方法。

对于小学六年级的同学来说,通过练习数学归纳法的相关题目,可以培养逻辑思维和推理能力。

下面我们就来一起看看一些小学六年级数学归纳法的练习题。

一、基础练习1、观察下列算式:1 + 3 = 41 + 3 + 5 = 91 + 3 + 5 + 7 = 161 + 3 + 5 + 7 + 9 = 25根据以上规律,用数学归纳法证明:1 + 3 + 5 +… +(2n 1) =n²证明:当 n = 1 时,左边= 1,右边= 1²= 1,等式成立。

假设当 n = k(k ≥ 1)时,等式 1 + 3 + 5 +… +(2k 1) = k²成立。

那么当 n = k + 1 时,左边= 1 + 3 + 5 +… +(2k 1) +(2(k + 1) 1)= k²+(2k + 1)= k²+ 2k + 1=(k + 1)²所以当 n = k + 1 时,等式也成立。

综上,对于任意正整数 n,1 + 3 + 5 +… +(2n 1) = n²成立。

2、计算:1×2 + 2×3 + 3×4 +… + n(n + 1),并用数学归纳法证明你的结论。

解:1×2 + 2×3 + 3×4 +… + n(n + 1) = 1/3 × n(n + 1)(n + 2)证明:当 n = 1 时,左边= 1×2 = 2,右边= 1/3 × 1×2×3 = 2,等式成立。

假设当 n = k(k ≥ 1)时,等式 1×2 + 2×3 + 3×4 +… + k(k + 1) = 1/3 × k(k + 1)(k + 2) 成立。

那么当 n = k + 1 时,左边= 1×2 + 2×3 + 3×4 +… + k(k + 1) +(k + 1)(k + 2)= 1/3 × k(k + 1)(k + 2) +(k + 1)(k + 2)=(k + 1)(k + 2)(1/3k + 1)= 1/3 ×(k + 1)(k + 2)(k + 3)所以当 n = k + 1 时,等式也成立。

高考数学一轮复习第6章不等式及其证明第6节数学归纳法教师用书

高考数学一轮复习第6章不等式及其证明第6节数学归纳法教师用书

第六节 数学归纳法1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 2.数学归纳法的框图表示1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( ) (2)用数学归纳法证明问题时,归纳假设可以不用.( )(3)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )(4)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( )[答案] (1)× (2)× (3)× (4)√2.(2017·杭州二中月考)在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A .1B .2C .3D .0C [因为凸n 边形最小为三角形,所以第一步检验n 等于3,故选C.]3.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2,且k 为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立 B [k 为偶数,则k +2为偶数.]4.(教材改编)已知{a n }满足a n +1=a 2n -na n +1,n ∈N *,且a 1=2,则a 2=__________,a 3=__________,a 4=__________,猜想a n =__________.3 4 5 n +15.用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是__________.【导学号:51062209】2k[当n =k 时,不等式为1+12+13+…+12k -1<k .则n =k +1时,左边应为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1,则左边增加的项数为2k +1-1-2k+1=2k.]设f (n )=1+2+3+…+n(n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).[证明] (1)当n =2时,左边=f (1)=1,右边=2⎝ ⎛⎭⎪⎫1+12-1=1,左边=右边,等式成立.4分(2)假设n =k (k ≥2,k ∈N *)时,结论成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1],8分那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k =(k +1)⎣⎢⎡⎦⎥⎤f k +-1k +1-k =(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1],12分 ∴当n =k +1时结论仍然成立.由(1)(2)可知:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).15分[规律方法] 1.用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.2.由n =k 时命题成立,推出n =k +1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.[变式训练1] 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).[证明] (1)当n =1时,左边=1-12=12,右边=11+1=12,左边=右边.4分 (2)假设n =k 时等式成立, 即1-12+13-14+…+12k -1-12k=1k +1+1k +2+ (12),8分 则当n =k +1时,⎝ ⎛⎭⎪⎫1-12+13-14+…+12k -1-12k +⎝ ⎛⎭⎪⎫12k +1-12k +2 =⎝ ⎛⎭⎪⎫1k +1+1k +2+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2.13分 即当n =k +1时,等式也成立.综合(1)(2)可知,对一切n ∈N *,等式成立.15分用数学归纳法证明:对一切大于1的自然数n ,不等式⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12n -1>2n +12均成立. [证明] (1)当n =2时,左边=1+13=43;右边=52.∵左边>右边,∴不等式成立.4分(2)假设n =k (k ≥2,且k ∈N *)时不等式成立, 即⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1>2k +12.8分则当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+1k +-1>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=k ++12.14分∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立.15分[规律方法] 1.当遇到与正整数n 有关的不等式证明时,若用其他方法不容易证明,则可考虑应用数学归纳法.2.用数学归纳法证明不等式的关键是由n =k 时命题成立,再证n =k +1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用基本不等式、不等式的性质等放缩技巧,使问题得以简化.[变式训练2] 已知数列{a n },当n ≥2时,a n <-1,又a 1=0,a 2n +1+a n +1-1=a 2n ,求证:当n ∈N *时,a n +1<a n .[证明] (1)当n =1时,∵a 2是a 22+a 2-1=0的负根, ∴a 1>a 2.4分(2)假设当n =k (k ∈N *)时,a k +1<a k ,6分∵a 2k +1-a 2k =(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0, ∴a 2k +1-a 2k >0.10分又∵a k +2+a k +1+1<-1+(-1)+1=-1, ∴a k +2-a k +1<0,∴a k +2<a k +1,即当n =k +1时,命题成立. 由(1)(2)可知,当n ∈N *时,a n +1<a n .15分已知数列{a n }的前n 项和S n 满足:S n =n 2+a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.[解] (1)当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0.∴a 1=3-1(a 1>0).2分当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0).同理可得a 3=7- 5. 猜想a n =2n +1-2n -1(n ∈N *).7分(2)证明:①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1.10分 由于a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k, 将a k =2k +1-2k -1代入上式,整理得a 2k +1+22k +1a k +1-2=0,∴a k +1=2k +3-2k +1, 即n =k +1时通项公式成立.14分由①②可知对所有n ∈N *,a n =2n +1-2n -1都成立.15分[规律方法] 1.猜想{a n }的通项公式时应注意两点:(1)准确计算a 1,a 2,a 3发现规律(必要时可多计算几项);(2)证明a k +1时,a k +1的求解过程与a 2,a 3的求解过程相似,注意体会特殊与一般的辩证关系.2.“归纳—猜想—证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式,这种方法在解决探索性问题、存在性问题时起着重要作用,它的模式是先由合情推理发现结论,然后经逻辑推理证明结论的正确性.[变式训练3] (2017·绍兴调研)已知数列{x n }满足x 1=12,x n +1=11+x n,n ∈N *.猜想数列{x 2n }的单调性,并证明你的结论. 【导学号:51062210】[解] 由x 1=12及x n +1=11+x n ,得x 2=23,x 4=58,x 6=1321,由x 2>x 4>x 6猜想:数列{x 2n }是递减数列.4分 下面用数学归纳法证明:(1)当n =1时,已证命题成立.6分 (2)假设当n =k (k ≥1,k ∈N *)时命题成立, 即x 2k >x 2k +2,易知x k >0,那么x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x2k+3-x2k+1+x2k+1+x2k+3=x2k-x2k+2+x2k+x2k+1+x2k+2+x2k+3>0,12分即x2(k+1)>x2(k+1)+2.也就是说,当n=k+1时命题也成立.结合(1)(2)知,对∀n∈N*命题成立.15分[思想与方法]1.数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学命题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据.2.在推证n=k+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要弄清n=k与n=k+1之间的关系.在推证时,应灵活运用分析法、综合法、反证法等方法.[易错与防范]1.第一步验证当n=n0时,n0不一定为1,要根据题目要求选择合适的起始值.2.由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用归纳假设,否则就不是数学归纳法.3.解“归纳——猜想——证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础.否则将会做大量无用功.课时分层训练(三十五) 数学归纳法A组基础达标(建议用时:30分钟)一、选择题1.用数学归纳法证明2n>2n +1,n 的第一个取值应是( ) A .1 B .2 C .3D .4C [∵n =1时,21=2,2×1+1=3,2n>2n +1不成立;n =2时,22=4,2×2+1=5,2n >2n +1不成立; n =3时,23=8,2×3+1=7,2n >2n +1成立.∴n 的第一个取值应是3.]2.一个关于自然数n 的命题,如果验证当n =1时命题成立,并在假设当n =k (k ≥1且k ∈N *)时命题成立的基础上,证明了当n =k +2时命题成立,那么综合上述,对于( ) 【导学号:51062211】A .一切正整数命题成立B .一切正奇数命题成立C .一切正偶数命题成立D .以上都不对B [本题证的是对n =1,3,5,7,…命题成立,即命题对一切正奇数成立.]3.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1n -n + B.12nn +C.1n -n +D.1n +n +C [由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =1n -n +.]4.凸n 多边形有f (n )条对角线,则凸(n +1)边形的对角线的条数f (n +1)为( )A .f (n )+n +1B .f (n )+nC .f (n )+n -1D .f (n )+n -2C [边数增加1,顶点也相应增加1个,它与和它不相邻的n -2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加(n -1)条.]5.用数学归纳法证明3(2+7k)能被9整除,证明n =k +1时,应将3(2+ 7k +1)配凑成( ) 【导学号:51062212】A .6+21·7kB .3(2+7k)+21 C .3(2+7k)D .21(2+7k)-36D [要配凑出归纳假设,故3(2+7k +1)=3(2+7·7k)=6+21·7k=21(2+7k)-36.]二、填空题6.用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =__________时,命题亦真.2k +1 [n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立.] 7.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上的项为__________. 【导学号:51062212】(k 2+1)+(k 2+2)+…+(k +1)2[当n =k 时左端为1+2+3+…+k +(k +1)+(k +2)+…+k 2,则当n =k +1时,左端为1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2, 故增加的项为(k 2+1)+(k 2+2)+…+(k +1)2.]8.已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则其一般结论为__________________.f (2n )>n +22(n ≥2,n ∈N *) [因为f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n)>n +22.故填f (2n)>n +22(n ≥2,n ∈N *).]三、解答题9.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).[证明] (1)当n =2时,1+122=54<2-12=32,命题成立.4分(2)假设n =k 时命题成立,即 1+122+132+…+1k 2<2-1k .7分 当n =k +1时,1+122+132+…+1k 2+1k +2<2-1k+1k +2<2-1k +1kk +=2-1k +1k -1k +1=2-1k +1命题成立.14分 由(1)(2)知原不等式在n ∈N *,n ≥2时均成立.15分10.在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2-λ)2n(n∈N*,λ>0).(1)求a2,a3,a4;(2)猜想{a n}的通项公式,并加以证明. 【导学号:51062213】[解](1)a2=2λ+λ2+2(2-λ)=λ2+22,a3=λ(λ2+22)+λ3+(2-λ)22=2λ3+23,a4=λ(2λ3+23)+λ4+(2-λ)23=3λ4+24.6分(2)由(1)可猜想数列通项公式为:a n=(n-1)λn+2n.8分下面用数学归纳法证明:①当n=1,2,3,4时,等式显然成立,②假设当n=k(k≥4,k∈N*)时等式成立,即a k=(k-1)λk+2k,10分那么当n=k+1时,a k+1=λa k+λk+1+(2-λ)2k=λ(k-1)λk+λ2k+λk+1+2k+1-λ2k=(k-1)λk+1+λk+1+2k+1=[(k+1)-1]λk+1+2k+1,所以当n=k+1时,猜想成立,由①②知数列的通项公式为a n=(n-1)λn+2n(n∈N*,λ>0).15分B组能力提升(建议用时:15分钟)1.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立.”那么,下列命题总成立的是( )A.若f(1)<1成立,则f(10)<100成立B.若f(2)<4成立,则f(1)≥1成立C.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立D.若f(4)≥16成立,则当k≥4时,均有f(k)≥k2成立D[∵f(k)≥k2成立时,f(k+1)≥(k+1)2成立,∴f(4)≥16时,有f(5)≥52,f(6)≥62,…,f(k)≥k2成立.]2.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=__________;当n>4时,f(n)=__________(用n表示).5 12(n+1)(n-2)(n≥3)[f(3)=2,f(4)=f(3)+3=2+3=5,f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1) =12(n +1)(n -2)(n ≥3).] 3.设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15. (1)求a 1,a 2,a 3的值;(2)求数列{a n }的通项公式. 【导学号:51062214】 [解] (1)由题意知S 2=4a 3-20, ∴S 3=S 2+a 3=5a 3-20.2分又S 3=15,∴a 3=7,S 2=4a 3-20=8. 又S 2=S 1+a 2=(2a 2-7)+a 2=3a 2-7, ∴a 2=5,a 1=S 1=2a 2-7=3. 综上知,a 1=3,a 2=5,a 3=7.6分(2)由(1)猜想a n =2n +1,下面用数学归纳法证明. ①当n =1时,结论显然成立;7分 ②假设当n =k (k ≥1)时,a k =2k +1, 则S k =3+5+7+…+(2k +1)=k [3+k +2=k (k +2).又S k =2ka k +1-3k 2-4k , ∴k (k +2)=2ka k +1-3k 2-4k , 解得2a k +1=4k +6,13分∴a k +1=2(k +1)+1,即当n =k +1时,结论成立. 由①②知,∀n ∈N *,a n =2n +1.15分。

数学方法有哪些

数学方法有哪些

数学方法有哪些数学方法是指在数学问题的解决过程中所采用的一系列策略和技巧。

数学方法的选择对于解决问题起着至关重要的作用,不同的问题可能需要采用不同的方法来解决。

下面我们将介绍一些常见的数学方法。

一、数学归纳法。

数学归纳法是一种证明方法,它通常用于证明一个命题对于所有自然数都成立。

数学归纳法的基本思想是,首先证明当n取某个特定值时命题成立,然后假设当n=k时命题成立,再证明当n=k+1时命题也成立。

通过这种递推的方式,可以得出结论,对于所有自然数n,命题都成立。

二、数学推理法。

数学推理法是指通过逻辑推理来解决数学问题的方法。

在数学推理中,我们根据已知条件和逻辑关系,得出结论。

数学推理包括直接推理、间接推理、逆否命题等多种形式,它是数学证明的重要手段。

通过数学推理,我们可以建立数学命题之间的逻辑联系,从而解决各种数学问题。

三、数学建模法。

数学建模是指利用数学方法来描述和解决实际问题的过程。

在数学建模中,我们首先对实际问题进行分析,然后利用数学工具建立数学模型,最后通过数学方法对模型进行求解,得出问题的解决方案。

数学建模方法在实际问题的解决中发挥着重要作用,它涉及到数学、物理、经济、生物等多个领域。

四、数学统计法。

数学统计是指利用数学方法对数据进行收集、整理、分析和解释的过程。

在数学统计中,我们可以利用各种统计方法对数据进行描述性统计、推断统计、回归分析等,从而得出数据的规律和结论。

数学统计方法在科学研究、社会调查、经济预测等领域有着广泛的应用。

五、数学优化法。

数学优化是指利用数学方法寻找最优解的过程。

在数学优化中,我们可以利用微积分、线性代数、凸优化等数学工具,对目标函数进行求导、求极值,从而得出最优解。

数学优化方法在工程优化、生产调度、资源分配等领域有着重要的应用。

六、数学变换法。

数学变换是指利用数学变换技巧将原问题转化为更容易解决的形式。

在数学变换中,我们可以利用代数变换、几何变换、函数变换等方法,将原问题进行等价变换,从而简化问题的求解过程。

数学归纳法相关知识点总结

数学归纳法相关知识点总结

数学归纳法相关知识点总结数学归纳法是一种常用且重要的证明方法,广泛应用于数学和计算机科学等领域。

它是建立在自然数的基础上,通过确定基本情况成立和对于任意情况的假设进行推理,来证明任意情况成立的方法。

以下是与数学归纳法相关的知识点总结。

一、数学归纳法的基本思想1.1 证明基本情况成立:通过直接验证第一个情况是否成立来确保归纳法的开始。

1.2 假设第k个情况成立:假设前k个情况均成立,即假设第k个情况成立。

1.3 推导第k+1个情况成立:根据第k个情况的成立,推导第k+1个情况的成立。

1.4 利用数学归纳法原理:基于第一个情况成立、第k个情况成立能推导第k+1个情况成立,所以根据数学归纳法原理,可以得出所有情况均成立。

二、数学归纳法的应用场景2.1 整数证明:证明与整数相关的等式或不等式。

2.2 数列证明:证明数列的性质,如递推关系、通项公式等。

2.3 集合证明:证明集合的性质,如集合的元素个数等。

2.4 图论证明:证明与图论相关的问题,如图的染色问题、路径问题等。

三、数学归纳法常见误区及注意事项3.1 遗漏基本情况:在使用数学归纳法时,必须验证基本情况的成立,否则无法进行后续推导。

3.2 假设过强:假设第k个情况成立时,注意不要假设第k-1个情况也成立,否则可能导致推导错误。

3.3 步骤不清晰:数学归纳法需要严谨的逻辑推导,每一步的推导必须明确、清晰,不能存在模棱两可的推理。

3.4 漏掉递归关系:在推导第k+1个情况成立时,需要明确并合理利用第k个情况的假设,也即递归关系的应用。

四、数学归纳法的拓展应用4.1 强归纳法:相比于数学归纳法只假设前一个情况成立,强归纳法假设前k个情况均成立。

4.2 双重归纳法:在证明数学命题时,先对整数n归纳,再对其他相关数值归纳。

4.3 递归定义证明:对于递归定义的数列或集合,可以通过数学归纳法来证明其性质。

五、数学归纳法在计算机科学中的应用5.1 证明算法的正确性:通过数学归纳法来证明算法在各个情况下的正确性。

第六讲数学归纳法

第六讲数学归纳法

4.某个命题与自然数n有关,若n=k(k∈N)时该命题成
立,那么可推得n=k+1时该命题也成立.现已知当n=5
时该命题不成立,则下列命题中为真命题的是______
①n=6时假;②n≤6时假;③n≥6时假;④若n=6时
真→n≥6时真;⑤n=4时假;⑥n=1,2,3,4,5时命题假. 5.用数学归纳法证明下列等式,从”k到k+1“左端需增 乘(加)的代数式是______.
一、基础知识概要 1.数学归纳法原理是:n=n0时命题成立,假设n=k (k≥n0)时命题成立,推出n=k+1时命题成立. 综上:n≥n0,n∈N*时命题成立. 你怎样理解? n=n0真
n n0 1真
n n0 2真
n n0 , n N * 真, 滚动真.
2.数学归纳法证明数学命题的步骤是什么?它的适应 范围是什么? 思考:在数学归纳法证题第2步中,它的逆否命题 是什么?
例3 数列{an}中,a1=a,an+1是函数fn(x)= (1/3)x3 -(1/2)(3an+n2)x2+3n2anx的极小值点. (1)当a=0时,求通项an; (2)是否存在a,使数列{an}是等比数列?若存在, 求a的取值范围;若不存在,请说明理由.
例4 设数列{an}满足an+1= 式;
a
2 -nan+1,n=1,2,3,…. n
(1)当a1=2时,求a2,a3,a4,并由此猜想an的一个通项公 (2)当a1≥3时,证明对所有n≥1,有①an≥n+2;
1 1 1 1 ② . 1 a1 1 a 2 1 an 2
例5 设数列{an}满足a0=(等差)数列模型.二是间接法,

浅谈数学归纳法

浅谈数学归纳法

浅谈“数学归纳法”论文摘要:“观察—归纳—猜想—论证”的思想方法,既能发现问题,又能证明结论,还能激发学习兴趣,它是由揭露个别事物或某一对象的部分属性过渡到一般或整体的思维形式。

由于归纳推理的过程和人类认识进程的一致性,因而这种推理方法显得非常自然,容易被人接受,是认识数学真理的一个重要手段,其地位越来越重要,数学归纳法正是应用这一思想方法来证明某些与自然数n有关的数学命题的一种方法。

本文简单总结了一下它的基本依据和证明过程,以及它两个条件的内在联系,然后回顾了一下数学归纳法的各种其他形式,在原来的基础上拓宽了对数学归纳法的认识。

最后举例说明数学归纳法的应用,其中有代数、不等式方面的证明,也有几何方面的典型例子,从中可以窥见数学归纳法的强大功能。

正文:已知最早的使用数学归纳法的证明出现于Francesco Maurolico的Arithmeticorum libri duo(1575年)。

Maurolico利用递推关系巧妙的证明出证明了前n个奇数的总和是n^2,由此揭开了数学归纳法之谜。

最简单和常见的数学归纳法证明方法是证明当n属于所有正整数时一个表达式成立,这种方法是由下面两步组成:(1)递推的基础:证明当n=1时表达式成立。

(2)递推的依据:证明如果当n=m时成立,那么当n=m+1时同样成立。

这种方法的原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的。

如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中。

或许想成多米诺效应更容易理解一些,如果你有一排很长的直立着的多米诺骨牌那么如果你可以确定:第一张骨牌将要倒下,只要某一个骨牌倒了,与之相邻的下一个骨牌也要倒,那么你就可以推断所有的的骨牌都将要倒。

这样就确定出一种递推关系,只要满足两个条件就会导致所有骨牌全都倒下:(1)第一块骨牌倒下;(2)任意两块相邻骨牌,只要前一块倒下,后一块必定倒下。

第六章 第七节 数学归纳法

第六章  第七节  数学归纳法

解析:3=22-1,7=23-1,15=24-1, 1 1 1 n 可猜测:1+ + +„+ n > 2 3 2 -1 2
1 1 1 n 答案:1+ + +„+ n > 2 3 2 -1 2
1 2.在数列{an}中,a1= ,且 Sn=n(2n-1)an 通过求 a2, 3 a3,a4 猜想 an 的表达式为 1 A. n-1n+1 1 C. 2n-12n+1 1 B. 2nn+1 1 D. 2n+12n+2 ( )
解“归纳—猜想—证明”题的关键环节:
(1)准确计算出前若干具体项,这是归纳、猜想的基础.
(2)通过观察、分析、比较、联想,猜想出一般结论. (3)用数学归纳法证明之.
一、把脉考情
从近两年的高考试题来看,用数学归纳法证明与自然数
有关的不等式以及与数列有关的命题是高考的热点,题型为 解答题,主要考查用数学归纳法证明数学命题的能力,同时 考查学生分析问题、解决问题的能力,难度为中高档. 预计2012年高考可能会以数列、有关的等式或不等式的 证明为主要考点,重点考查学生运用数学归纳法解决问题的 能力.
3 1 3 ∴ ≤1+ ≤ ,即命题成立. 2 2 2 (2)假设当 n=k(k∈N*)时命题成立,即 k 1 1 1 1+1 时,
1 1 1 1 1 1 1+ + +„+ k+ k + +„+ k 2 3 2 2 +1 2k+2 2 +2k k+1 k k 1 >1+ +2 ·k . k=1+ 2 2 2 +2 1 1 1 1 1 1 又 1+ + +„+ k+ k + +„+ k 2 3 2 2 +1 2k+2 2 +2k 1 1 k 1 < +k+2 ·k= +(k+1), 2 2 2 即 n=k+1 时,命题成立. 由(1)(2)可知,命题对所有 n∈N*都成立. n 1 1 1 1 即 1+ ≤1+ + +„+ n≤ +n(n∈N*). 2 2 3 2 2

例说组合恒等式的六种证明方法

例说组合恒等式的六种证明方法

例说组合恒等式的六种证明方法组合恒等式是组合数学中的重要概念之一,其表达了同一个集合中的元素分组的不同方法的数量相等。

组合恒等式可以通过多种方法进行证明,本文将介绍六种常用的证明方法。

首先我们来看第一种证明方法,数学归纳法。

数学归纳法是一种常见的证明方法,它分为两个步骤,即证明基础情况和归纳假设。

对于组合恒等式来说,我们可以使用数学归纳法证明其成立。

首先,我们验证当n=1时恒等式成立。

然后,假设当n=k时恒等式成立,我们可以证明当n=k+1时恒等式也成立。

通过数学归纳法的证明,我们可以得出组合恒等式成立的结论。

接下来我们来看第二种证明方法,图形法。

通过使用图形来表示两边的数量,我们可以更直观地看到它们是相等的。

例如,我们可以使用方格来表示一边的数量,并用另一种方式填充这些方格以表示另一边的数量。

通过对两边数量进行图形化表示,我们可以清楚地看到它们是相等的,从而证明组合恒等式成立。

第三种证明方法是代数法。

代数法通过对两边的符号或式子进行代数变换,从而证明它们是相等的。

例如,我们可以通过展开组合式、使用恒等式和化简等代数运算,将一个式子转化为另一个式子,从而得到它们是相等的。

通过代数法的证明,我们可以明确地看到两边的值是相等的,从而证明组合恒等式成立。

第四种证明方法是计数法。

计数法是一种直接计算两边数量的方法。

例如,我们可以将组合式分成几种情况,然后分别计算每种情况下的数量,并将它们加起来。

通过计数法的证明,我们可以得到两边的数量是相等的,从而证明组合恒等式成立。

第五种证明方法是逻辑法。

逻辑法通过使用逻辑推理证明恒等式成立。

例如,我们可以使用逻辑推理来说明两边的元素是一一对应的,从而证明组合恒等式成立。

通过逻辑法的证明,我们可以推导出两边的元素是一一对应的,从而证明组合恒等式成立。

第六种证明方法是双射法。

双射法通过构造一个一一映射(双射)来证明组合恒等式成立。

例如,我们可以构造一个映射,将一个集合中的元素映射到另一个集合中的元素,并证明这是一个一一映射。

高中数学高三第六章不等式数学归纳法(教案)

高中数学高三第六章不等式数学归纳法(教案)

高三一轮复习 6.7 数学归纳法【教学目标】1.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.【重点难点】1。

教学重点:了解数学归纳法的原理并能用数学归纳法证明一些简单的数学命题;2。

教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】叫做数学归纳法.2.数学归纳法的框图表示1.必知关系;数学归纳法是一种只适用于与正整数有关的命题的证明方法,第一步是递推的“基础”,第二步是递推的“依据",两个步骤缺一不可.2.必清误区;运用数学归纳法应注意以下两点:(1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值.(2)第二步中,归纳假设起着“已知条件”的作用,在证明n =k+1时,命题也成立的过程中一定要用到它,否则就不是拨从而提高学生的解题能力和兴教师引导学生及时总结,以帮助学生形成完整的认知结构。

强理解记忆,提高解题技能。

k+1·错误!=错误!,要证当n=k+1时结论成立,只需证错误!≥错误!,即证错误!≥k+1k+2,由基本不等式得错误!=错误!≥错误!成立,故错误!≥错误!成立,所以,当n=k+1时,结论成立.由①②可知,n∈N*时,不等式错误!·错误!·……·错误!〉错误!成立.跟踪训练:1。

已知数列{a n},a n≥0,a1=0,a错误!+a n+1-1=a错误!。

求证:当n∈N*时,a n<a n+1.【证明】(1)当n=1时,因为a2是方程a错误!+a2-1=0的正根,所以a1〈a2。

(2)假设当n=k(k∈N*)时,。

第六章 第七节 数学归纳法(理)

第六章  第七节  数学归纳法(理)

返回
返回
1 1 1 1.(教材习题改编 已知 为正偶数,用数学归纳法证明 -2+3-4+… . 教材习题改编 已知n为正偶数 用数学归纳法证明1- 教材习题改编)已知 为正偶数, 1 1 1 1 为偶数)时 -n=2( + +…+2n)时,若已假设 =k(k≥2且k为偶数 时 时 若已假设n= ≥ 且 为偶数 n+2 n+4 + + 命题为真, 命题为真,则还需要用归纳假设再证 A.n=k+1时等式成立 . = + 时等式成立 C.n=2k+2时等式成立 . = + 时等式成立 B.n=k+2时等式成立 . = + 时等式成立 D.n=2(k+2)时等式成立 . = + 时等式 时等式成立 ( )
第 六 章 不 等 式、 推 理 与 证 明
第 七 节 数 学 归 纳 法 (理)
抓 基 础
明 考 向
教 你 一 招
提 能 力
我 来 演 练
[备考方向要明了 备考方向要明了] 备考方向要明了 考 什 么 了解数学归纳法的原理, 了解数学归纳法的原理 , 能用数学归纳法证明一些 简单的数学命题. 简单的数学命题
(
)
解析:由n=1时,左=1+2+22+23. 解析: = 时 + + 答案: 答案: D
返回
1 1 1 1 3.已知 .已知f(n)=n+ = + +…+n2,则 n+1 n+2 + + 1 1 A.f(n)中共有 项,当n=2时,f(2)=2+3 . 中共有n项 中共有 = 时 = 1 1 1 B.f(n)中共有 +1项,当n=2时,f(2)=2+3+4 . 中共有n+ 项 中共有 = 时 = 1 1 C.f(n)中共有 2-n项,当n=2时,f(2)=2+3 . 中共有n 中共有 项 = 时 = 1 1 1 D.f(n)中共有 2-n+1项,当n=2时,f(2)=2+3+4 . 中共有n 中共有 + 项 = 时 =

第六章 第七节 数学归纳法(理)

第六章  第七节  数学归纳法(理)

×1×2× × ×
22+42+…+(2k)2+(2k+2)2 + + = = = k(k+1)(2k+1)+4(k+1)2 + + + + (k+1)[k(2k+1)+6(k+1)] + + + + (k+1)(2k2+7k+6)= + + = (k+1) (k+2)(2k+3)= + + + =
1.用数学归纳法证明 用数学归纳法证明 22+42+62+…+(2n)2= + (n+1)(2n+1). + +
证明: 当 = 时 左边= 证明:(1)当n=1时,左边=22=4,右边= ,右边= 3=4, = , ∴左边=右边,即n=1时,等式成立 左边=右边, = 时 等式成立. (2)假设当 =k(k∈N*,k≥1)时等式成立, 假设当n= ∈ 时等式成立, 假设当 时等式成立 即22+42+62+…+(2k)2= + 那么当n= + 时 那么当 =k+1时, k(k+1)(2k+1), + + ,
数学归纳法的两个步骤各有何作用? 数学归纳法的两个步骤各有何作用? 提示:数学归纳法中两个步骤体现了递推思想, 提示:数学归纳法中两个步骤体现了递推思想, 第一步是递推基础,也叫归纳奠基, 第一步是递推基础,也叫归纳奠基,第二步是递 推的依据,也叫归纳递推 两者缺一不可 两者缺一不可. 推的依据,也叫归纳递推.两者缺一不可
由此猜测第n个不等式为 由此猜测第 个不等式为
(n∈N*). ∈
解析: = 解析:3=22-1,7=23-1,15=24-1, = = , 可猜测: 可猜测:
答案: 答案:1+
5.记凸 边形的内角和为 ,则凸 +1边形的内角和 +1)= 记凸k边形的内角和为 边形的内角和f(k+ = 记凸 边形的内角和为f(k),则凸k+ 边形的内角和 f(k)+ + .

高三数学第六章知识点

高三数学第六章知识点

高三数学第六章知识点高三数学第六章主要涉及以下几个知识点:函数、数列、数学归纳法和排列组合。

下面将对每个知识点进行详细介绍。

一、函数函数是数学中的一个重要概念,在解决实际问题中起着重要作用。

函数可以用数学符号表示为f(x),其中x是自变量,f(x)是因变量。

函数可以有不同的形式,常见的函数有线性函数、二次函数、指数函数和对数函数等。

二、数列数列是按照一定规则排列的一系列数的集合。

数列中的每个数称为数列的项。

数列有多种表示方法,如通项公式、递归公式和图形表示等。

常见的数列有等差数列和等比数列。

在解决数列问题时,可以利用数列的性质和特点进行推导和计算。

三、数学归纳法数学归纳法是一种证明方法,常用于证明数学命题中的递推关系。

数学归纳法分为三个步骤:基础步骤、归纳假设和归纳步骤。

通过对递推关系的正确性进行基础步骤的验证和归纳步骤的推理,可以证明递推关系对于一切自然数成立。

四、排列组合排列组合是数学中的一个分支,用于求解集合元素的选择和排列方法。

排列是从一组元素中选取若干个元素按一定顺序排列的方法,组合是从一组元素中选取若干个元素不考虑顺序的方法。

在解决排列组合问题时,需要灵活应用排列组合的性质和公式,进行计算和判断。

以上就是高三数学第六章的主要知识点。

函数、数列、数学归纳法和排列组合在数学中都具有广泛的应用,掌握这些知识点对于解决实际问题和提高数学能力都非常重要。

在学习过程中,要注重理论与实践相结合,通过做题和思考巩固所学知识,提高解决问题的能力。

希望同学们能够认真学习、积极思考,掌握好高三数学第六章的知识点,为高考做好充分准备。

第六章 第七节 数学归纳法(理)

第六章  第七节  数学归纳法(理)

(a≠1), ( )
解析:因为当n=1时,an+1=a2,所以验证n=1时,
等式左端计算所得的项是1+a+a2. 答案:C
3.利用数学归纳法证明“(n+1)(n+2)…(n+n)= 2n×1×3×…×(2n-1),n∈N+”时,从“n=k”变到 “n=k+1”时,左边应增乘的因式是 A.2k+1 C. B.2(2k+1) D. ( )
(2)假设n=k(k≥n0,k∈N+) 时命题成立,推证当n= k+1 时
命题也成立,从而推出对所有的 n≥n0,n∈N+ 命题成立.
[思考探究] (1)数学归纳法的两个步骤的作用分别是什么? 提示:数学归纳法中两个步骤体现了递推思想,第一步是
递推基础,也叫归纳奠基,第二步是递推的依据,也叫归
纳递推.两者缺一不可. (2)归纳推理与数学归纳法有什么区别与联系? 提示:归纳推理是合情推理的一种方式,得到的结论不一 定正确,不可以作为数学证明的方法,数学归纳法是科学 的方法,可以用来证明与正整数n有关的问题,但在某些 与正整数有关的问题中,往往先用归纳推理得到结论后, 再用数学归纳法来证明.
(2)假设当n=k时等式成立,即1· k+2· (k-1)+3· (k-2)+
…+(k-1)· 2+k· 1= 则当n=k+1时, k(k+1)(k+2),
f(k+1)=1· (k+1)+2[(k+1)-1]+3[(k+1)-2]+…+[(k
+1)-2]· 3+[(k+1)-1]· 2+(k+1)· 1
1.在应用数学归纳法证明凸n边形的对角线为 条时,第一步检验n等于 A.1 C.3 B.2 D.0
n(n-3) ( )
解析:因为n≥3,所以,第一步应检验n=3. 答案:C
2.用数学归纳法证明1+a+a2+…+an+1= 在验证n=1时,等式左端计算所得的项是 A.1 C.1+a+a2 B.1+a D.1+a+a2+a3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(六)数学归纳法
一、知识要点
1.一般地,当要证明一个命题对于不小于某正整数0n 的所有正整数n 都成立时,可以用数学归纳法。

2.数学归纳法的证明步骤:
(1)证明0n n =时命题成立;
(2)假设),(0n k N k k n ≥∈=+时命题成立,证明1+=k n 时命题也成立。

由(1)、(2)两步可得,所证命题成立。

二、例题解析
例1.用数学归纳法证明:
))(12()2()12(4321222222+∈+-=--++-+-N n n n n n .
例2.如果x 是实数,且n x x ,0,1≠->为大于1的自然数,证明:nx x n
+>+1)1(.
例3.平面上有n 条直线,其中任意两条都相交,任意三条不共点,这些直线把平面分成多少
个区域?证明你的结论。

例4.证明:当)1(3221+++•+•=n n a n (n 是正整数)时,不等式
2
)1(2)1(2
+<<+n a n n n .
【点评】
利用数学归纳法证明不等式的关键是由k n =到1+=k n 的变形,为了达到目标,往往要采用“放缩”等手段。

知识检测
1.用数学归纳法证明不等式),2)((1
2131211+∈≥<-++++N n n n f n 的过程中,由k n =到1+=k n 时,左边增加了( )
A.1 项
B.k 项
C.12+k 项
D.k 2 项
2.某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时,命题也成立。

现已知当5=n 时命题不成立,那么可推得( )
A.当6=n 时该命题不成立
B.当6=n 时该命题成立
C.当4=n 时该命题不成立
D.当4=n 时该命题成立
3.证明不等式θθsin sin n n ≤(+∈N n )
4.证明:1131211)321(2-+≥⎪⎭⎫ ⎝⎛++++
++++n n n n (2,>∈n N n ).
5.证明:
n n n
113121222-<+++ (1,>∈n N n ).
6.用数学归纳法证明,对于n n n N n <+++•+•∈)1(1321211,* .
*7.已知数列{}n b 是等差数列,)(145,1*10211N n b b b b ∈=+++= . (1)求数列{}n b 的通项.
(2)设数列{}n a 的通项)11(log n
a n
b a +=(其中0>a 且1≠a ),记n S 是数列{}n a 的前n 项的和,试比较n S 与1log 3
1
+n a b 的大小,并证明你的结论。

相关文档
最新文档