小学数学必背定义定理公式
小学数学公式一年级到六年级知识大全
必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
1-6年级数学公式大全
小学数学1-6年级公式大全必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
小学数学定义定理公式大全(精)
小学数学定义定理公式大全(精) 小学数学定义、定理、公式大全:三角形的面积公式为底乘高除以2,记作S=a×h÷2.正方形的面积公式为边长的平方,记作S=a×a。
长方形的面积公式为长乘宽,记作S=a×b。
平行四边形的面积公式为底乘高,记作S=a×h。
梯形的面积公式为上底加下底乘高除以2,记作S=(a+b)×h÷2.三角形的内角和为180度。
长方体的体积公式为长乘宽乘高,记作V=abh。
长方体或正方体的体积公式为底面积乘高,记作V=abh。
正方体的体积公式为棱长的立方,记作V=aaa。
圆的周长公式为直径乘π,记作L=πd=2πr。
圆的面积公式为半径的平方乘π,记作S=πr2.圆柱的表面积公式为底面的周长乘高,记作S=ch=πdh=2πrh。
圆柱的表面积公式为底面的周长乘高再加上两头的圆的面积,记作S=ch+2s=ch+2πr2.圆柱的体积公式为底面积乘高,记作V=Sh。
圆锥的体积公式为底面积乘高除以3,记作V=1/3Sh。
分数的加减法则:同分母的分数相加减,只需分子相加减,分母不变。
异分母的分数相加减,先通分,再相加减。
分数的乘法则:分子的积做分子,分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
算术方面:1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5.6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
小学一到六年级数学必备知识点
小学一到六年级数学必备知识点一到六年级数学基础知识整理【必背定义、定理公式】三角形的面积=底×高÷2。
公式S=a×h÷2正方形的面积=边长×边长公式S=a×a长方形的面积=长×宽公式S=a×b平行四边形的面积=底×高公式S=a×h梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
定义定理性质公式1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
小学数学基础知识整理(定义定理记忆篇)
小学数学基础知识整理(定义定理记忆篇)必背定义、定理公式三角形的面积=底×高÷2。
公式 S=a×h÷2 正方形的面积=边长×边长公式 S=a×a 长方形的面积=长×宽公式 S= a×b平行四边形的面积=底×高公式 S= a×h梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2内角和:三角形的内角和=180 度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式: V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式: S=ch=πdh= 2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两端的圆的面积。
公式: S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积= 1/3 底面×积高。
公式: V=1/3Sh分数的加、减法例:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,而后再加减。
分数的乘法例:用分子的积做分子,用分母的积做分母。
一般说来,“教师”观点之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子师长教之弗为变”其“师长”自然也赐教师。
这儿的“师资”和“师长”可称为“教师”观点的雏形,但仍说不上是货真价实的“教师”,由于“教师”一定要有明确的教授知识的对象和自己明确的职责。
小学数学公式定理定义大全
送给愿意学好数学的小朋友之—————小学数学公式定理定义第一部分:概念、定义定理1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O 前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、方程式:含有未知数的等式叫方程式。
9、一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
即分母乘以这个整数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学公式定理总结大全
小学数学公式定理总结大全以下是一些常用的小学数学公式和定理总结:1. 加法公式:- 加法交换律:a + b = b + a- 加法结合律:(a + b) + c = a + (b + c)- 加法零元:a + 0 = a2. 减法公式:- 减法定义:a - b = c,其中 b + c = a3. 乘法公式:- 乘法交换律:a × b = b × a- 乘法结合律:(a × b) × c = a × (b × c)- 乘法分配律:- a × (b + c) = a × b + a × c- (a + b) × c = a × c + b × c- 乘法零元:a × 0 = 04. 除法公式:- 除法定义:a ÷ b = c,其中 b × c = a5. 平方公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²- (a + b) × (a - b) = a² - b²6. 三角形公式:- 三角形内角和定理:三个内角之和为180度- 直角三角形定理:直角三角形两直角边平方和等于斜边平方(勾股定理):a² + b ² = c²- 等腰三角形定理:等腰三角形底角相等,等腰线段相等- 等边三角形定理:等边三角形三个内角都是60度- 同位角定理:如果两条直线被一条截线分成两个同位角,则这两个同位角相等- 同旁内角定理:同旁内角互补,即两个同旁内角之和为180度7. 数列公式:- 等差数列通项公式:an = a1 + (n - 1)d- 等差数列求和公式:Sn = n/2(a1 + an)- 等比数列通项公式:an = a1 × r^(n - 1)- 等比数列求和公式(当|r| < 1):Sn = a1 / (1 - r)这些公式和定理是小学数学学习中常见的公式,帮助学生计算和解决问题。
小学数学必背定义定理公式
小学数学必背定义定理公式一.分数乘法概念总结1.分数乘法整数的意义和整数乘法的意义相同,就是求几个相同加数的和的的简便运算。
例如:×5的意义是:表示求5个的和是多少。
2.分数乘法整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
(为了计算简便,能约分的要约分,然后再相乘。
)3.一个数与分数相乘,可以看作是求这个数的几分之几时多少。
4.例如:5×的意义是:表示求5的是多少5.4.分数乘分数计算法则:分数乘分数,用分子相乘的积作分子,分母相乘分母的积做分母。
(为了计算简便,能约分的要约分,然后再相乘。
)5.乘积是1的两个数互为倒数。
6.求一个数(0除外)的倒数,只要把这个数的分子,分母调换位置。
(1的倒数是1,0没有倒数)真分数的倒数大于1;假分数的倒数小于或等于1;注意:倒数必须是成双的两个数,单独的一个数不能称作倒数。
7.一个的数(0除外)乘以的真分数,所得的积小于它的本身。
8.一个数(0除外)乘于以的假分数,所得的积大于或等于它的本身。
9.如果几个不为0的数与不同分数相乘的积相等,那么与得分数相乘的因数反而小,与小分数相乘的因数反而大。
例如:a×=b×=c×cab.(都不为0)因为<<,所以吧》b>a>c.二.分数除法概念总结。
1.分数除法的意义:分数除法的意义与整数除法意义相同,都是已知两因数的积于其中一个因数,另一个因数的运算。
2.分数除法口诀:被除数不变,除号变乘号,除数变倒数。
3.两个数相除,又叫做两个数的比。
比的前项除以后项所得的商,叫做比值。
4.比值通常用分数、小数和整数表示。
5.比的后续不能为0,(分母不能为0,除数不能为0)6.比同除数比较,比的前项相当于被除数,后项相当于除数比值相当于商7.和分数比较,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
8.比的基本性质:比的前项和后项同时乘上或同时除以相同的数(0除外),比值不变。
部编人教版小学阶段各年级数学公式定理定义大全
部编人教版小学阶段各年级数学公式定理定义大全部编人教版小学数学公式定理定义大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
7、简便乘法:被乘数、乘数末尾有O的乘法,可以先把O 前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
9、什么叫方程?含有未知数的等式叫方程。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
1-6年级数学公式大全
小学数学1-6年级公式大全必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
小学数学公式定理定义大全
小学数学公式定理定义大全1.数与数的运算:定义:数是用来计数、比较大小和进行运算的抽象概念。
数的种类包括自然数、整数、分数、小数等。
定理1:加法交换律:a+b=b+a定理2:加法结合律:(a+b)+c=a+(b+c)定理3:乘法交换律:a×b=b×a定理4:乘法结合律:(a×b)×c=a×(b×c)定理5:乘法分配律:a×(b+c)=(a×b)+(a×c)2.数的整除与倍数:定义:如果一个数b除以另一个数a可以整除,即没有余数,那么a就称为b的约数,b称为a的倍数。
定理6:若a能整除b,b能整除c,则a能整除c。
定理7:任何一个数a都能整除它本身。
3.算式的计算规则:定义:算式是由数字、符号和运算符号组成的表达式,用来表示数与数之间的关系。
定理8:在一个算式中,先进行乘除运算,再进行加减运算。
定理9:在一个算式中,先进行括号内的运算,再进行括号外的运算。
4.分数与小数:定义:分数是表示部分数量的数,小数是表示除法运算结果的数。
定理10:分数可以化简为最简形式,即分子与分母没有公因数。
定理11:小数可以化为分数,分子是小数点后的数字,分母是1后面跟着相应数量的0。
定理12:分数和小数可以相互转换,如1/2和0.5表示同一个数。
5.图形的性质:定义:图形是由点、线、面组成的平面图形。
定理13:平行线在同一平面上,它们不会相交。
定理14:垂直线之间的夹角是90度。
6.长方形和正方形:定义:长方形是一个长和宽不同的四边形,正方形是一个边长相等的长方形。
定理15:长方形的面积等于长乘以宽,即A=l×w。
定理16:正方形的面积等于边长的平方,即A=s^27.三角形的性质:定义:三角形是由三条边和三个内角组成的多边形。
定理17:直角三角形的两条直角边的平方和等于斜边的平方,即a^2+b^2=c^2(勾股定理)。
小学数学必背公式
小学数学公式、概念、定理、规律、性质、特征公式:体积和表面积三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a2长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高)×2公式:S=(a×b+a×c+b×c)×2正方体的表面积=棱长×棱长×6 公式:S=6a2长方体的体积=长×宽×高公式:V = abh长方体(或正方体)的体积=底面积×高公式:V = abh正方体的体积=棱长×棱长×棱长公式:V = a3圆的周长=直径×π公式:c=πd=2πr圆的面积=半径×半径×π公式:S=πr2环形的周长=外圆周长+内圆周长半圆的周长等于圆的周长的一半加直径。
公式:C=πd÷2+d或C=πr+2r 注:半圆的周长不等于圆周长的一半。
(圆周长的一半=πr)圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh运算律及运算性质1、加法交换律:两数相加交换加数的位置,和不变。
a + b = b + a2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
小学数学基础公式及知识点汇总
小学数学基础公式及知识点汇总必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h ÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh 圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
小学数学必背定义和公式
小学数学必背定义、定理公式小学数学知识概念公式汇总小学一年级九九乘法口诀表.学会基础加减乘.小学二年级完善乘法口诀表,学会除混合运算,基础几何图形.小学三年级学会乘法交换律,几何面积周长等,时间量及单位.路程计算,分配律,分数小数.小学四年级线角自然数整数,素因数梯形对称,分数小数计算.小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积.小学六年级比例百分比概率,圆扇圆柱及圆锥.一、公式及应用:长方形 C周长 S面积 a边长长方形的周长=(长+宽)×2 公式:C=2(a+b)长方形的长=周长÷2—宽长方形的宽=周长2—长长方形的面积=长×宽公式:S=a×b长=面积÷宽宽=面积÷长长方体 V:体积 s:面积 a:长 b: 宽 h:高长方体的底面积=长×宽长方体的表面积=(长×宽+长×高+宽×高)×2 公式:S=2(ab+ah+bh)长方体的棱长总和=(长+宽+高)×4或长×4+宽×4+高×4长方体的长=(棱长总和—宽×4—高×4)÷4长方体的体积=长×宽×高公式:V=abh长方体的高=体积÷长÷宽长方体的长=体积÷宽÷高长方体的宽=体积÷长÷高正方形 C周长 S面积 a边长正方形的周长=边长×4 公式:C=4a边长=周长÷4 正方形的面积=边长×边长公式:S= a×a 正方体 V:体积 a:棱长正方体的棱长总和=棱长×12 棱长=棱长总和÷12正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长公式:V=aaa三角形 s面积 a底 h高三角形的周长=三条边之和三角形的面积=底×高÷2 公式:S=a×h÷2三角形的高=面积÷底×2。
小学数学必背定义、定理公式
小学数学必背定义、定理公式
1、三角形的面积=底×高÷2。
公式 S= a×h÷2
2、正方形的面积=边长×边长公式 S= a×a=a²
3、长方形的面积=长×宽公式 S= a×b
4、平行四边形的面积=底×高公式 S= a×h
5、梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
6、内角和:三角形的内角和=180度。
7、长方体的体积=长×宽×高公式:V=abh
8、长方体(或正方体)的体积=底面积×高公式:V=abh
9、正方体的体积=棱长×棱长×棱长公式:V=aaa=a³
10、圆的周长=直径×π公式:L=πd=2πr
11、圆的面积=半径×半径×π公式:S=πr²
12、圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh
13、圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2
14、圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh
15、圆锥的体积=1/3底面×积高。
公式:V=1/3Sh
16、分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
17、分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学必背定义定理公式一、分数乘法概念总结1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:二分之一×5的意义是:表示求5个二分之一的和是多少。
2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
(为了计算简便,能约分的要先约分,然后再乘。
)3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。
例如:5×二分之一的意义是:表示求5的二分之一是多少。
4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
(为了计算简便,可以先约分再乘。
)5.乘积是1的两个数互为倒数。
6.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
(1的倒数是1。
0没有倒数。
)真分数的倒数大于1;假分数的倒数小于或等于1;注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
7.一个数(0除外)乘以一个真分数,所得的积小于它本身。
8.一个数(0除外)乘以一个假分数,所得的积大于或等于它本身。
9.如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
例如:a×= b×= c×(a、b、c都不为0)因为 < < ,所以b > a > c。
二、分数除法概念总结1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2.分数除法口诀:被除数不变,除号变乘号,除数变倒数。
分数的除法则:除以一个数等于乘以这个数的倒数。
3.两个数相除又叫做两个数的比。
比的前项除以后项所得的商,叫做比值。
4.比值通常用分数、小数和整数表示。
5.比的后项不能为0。
(分母不能为0,除数不能为0)6.比同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;7.和分数比较,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
8.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
9.一个数(0除外)除以一个真分数,所得的商大于它本身。
10.一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
三、解分数(百分数)应用题注意事项:1.找单位“1”的方法:从含有分数的句子中找,“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
2.分数(百分数)应用题三种基本类型①求比较量,用乘法单位“1”×分率=比较量;②求单位“1”,用除法比较量÷分率=单位“1”③求分率,用除法比较量÷单位“1”=分率3.注意比较量与分率的对应:①多的比较量对多的分率;②少的比较量对少的分率;③增加的比较量对增加的分率;④减少的比较量对减少的分率;⑤提高的比较量对提高的分率;⑥降低的比较量对降低的分率;⑦工作总量的比较量对工作总量的分率;⑧工作效率的比较量对工作效率的分率;⑨部分的比较量对部分的分率;⑩总量(和)的比较量对总量(和)的分率;4.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
5.单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。
三、圆概念总结1、圆中心的一点,这一点叫做圆心。
圆心一般用字母O 表示。
2.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
3.圆心确定圆的位置,半径确定圆的大小。
4.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
5.在同一个圆内,有无数条半径,所有的半径都相等,有无数条直径。
所有的直径都相等。
7.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2r r = d÷2 8.圆的周长:围成圆的曲线的长度叫做圆的周长。
9.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取 3.14。
10.世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
圆周率=π≈3.1411.把一个圆切拼成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形的面积=长×宽,所以圆的面积=πr×r=πr²。
12.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
15.环形的周长=外圆周长+内圆周长16.半圆的周长等于圆的周长的一半加直径。
公式:C=πd÷2+d 或C=πr+2r注:半圆的周长不等于圆周长的一半。
(圆周长的一半=πr)17.半圆面积=圆的面积÷2 公式为:S=πr²÷2 18.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小以上倍数的平方倍。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。
19.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
如:两个圆的半径比是2︰3,那么这两个圆的直径比和周长比都是2︰3,面积比是4︰9。
20.当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
21.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。
22.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
23.有1条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、同心圆环。
注意:平行四边形不是轴对称图形24.直径所在的直线是圆的对称轴。
四、百分数概念总结1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
2.百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。
分子部分可为小数、整数,可以大于100,小于100或等于100。
4.应纳税额:缴纳的税款叫应纳税额。
5.税率:应纳税额与各种收入的比率叫做税率。
6.应纳税额=各种收入×税率7.本金:存入银行的钱叫做本金。
8.利息:取款时银行多支付的钱叫做利息。
9.国家规定,存款的利息要按20%(现在是5%,应以题目为准)的税率纳税。
国债的利息不纳税。
10.利率:利息与本金的比值叫做利率。
(注意前、后项不要掉转)一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。
11.银行存款税后利息的计算公式:利息=本金×利率×时间×(1-20%)12.国债利息的计算公式:利息=本金×利率×时间13.本息:本金与利息的总和叫做本息。
五、图形总结(几何知识)(一)、直线、射线、线段直线:没有端点,两边无限延长,无法度量。
射线:有一个端点,一边可以无限延长,无法度量。
线段:有两个端点,可以度量。
(二)、角1、角的大小取决于角两边叉开的大小,与边的长短无关。
2、角的分类锐角:大于0度小于90度直角:等于90度钝角:大于90度小于180度平角:等于180度 1周角=2平角=4直角周角:等于360度(三)、三角形1. 意义:由三条线段围成的图形叫做三角形。
2. 特性:三角形具有稳定性。
3. 三角形的内角和为180°;直角三角形的两锐角之和为90°。
4、三角形的分类:按角分:①锐角三角形(三个角都是锐角)②直角三角形(有一个角是直角)③钝角三角形(有一个角是钝角)按边分:①等边三角形(三条边相等,三个角都是60度)②等腰三角形(两条边相等)③不等边三角形(三条边都不相等)(四)、四边形1. 平行四边形:两组对边分别平行的四边形叫做平行四边形。
(或有两组对边分别相等的四边形)(或有一组对边平行且相等的四边形)2. 长方形:长方形是特殊的平行四边形,它的两组对边分别平行且相等,四个角都是直角。
3. 正方形:正方形是特殊的长方形,它的四条边都相等,四个角都是直角。
4. 梯形:只有一组对边平行的四边形叫做梯形。
两腰相等的梯形叫做等腰梯形。
有一个角是直角的梯形叫做直角梯形。
5. 四边形的四个内角和为360°。
(五)、立体图形1、正方体的特征:有6个面(都是全等的正方形),12条棱(长度都相等),8个顶点。
2、长方体的特征:有6个面(都是长方形,有可能两个面是正方形,相对面的面积相等),12 条棱(相对的棱长相等),8个顶点。
(正方体是一种特殊的长方体。
当长方体的长、宽、高都相等时,即为正方体。
)3、圆柱的特征:上下底是相等的两个圆,有无数条高,条条相等,侧面是曲面,展开是一个长方形,长等于圆柱底面的周长,宽等于圆柱的高。
4、圆锥的特征:1个底面、1个顶点、一个侧面、1条高。
底面是一个圆,顶点到底面圆心的距离是高,侧面展开得到一个扇形。
它的体积是等底等高的圆柱体积的。
(六)图形公式总结(几何形体的周长、面积、体积计算公式)长方形的周长=(长+宽)×2 公式C=(a+b)×2正方形的周长=边长×4 公式C=4a三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
多边形的内角和=(边数—2)×180长方体的体积=长×宽×高公式V=abh 长方体(或正方体)的体积=底面积×高公式V=abh 正方体的体积=棱长×棱长×棱长公式V=aaa=a3长方体的表面积=(长×宽+长×高+宽×高)×2公式:S=(ab+ac+bc)×2正方体的表面积=棱长×棱长×6 公式S=a×a×6=6×a的平方圆的周长=直径×π或2×半径×π公式C=πd或C=2πr圆的面积=半径×半径×π公式S=πr2环形面积=大圆面积—小圆面积公式S环=πR2 -πr2圆柱的侧面积=底面的周长×高公式S=ch=πdh=2πrh圆柱的表面积=底面的周长×高﹢底面积×2。