四年级奥数——速算与巧算(加减乘除)
(完整版)四年级奥数速算与巧算
![(完整版)四年级奥数速算与巧算](https://img.taocdn.com/s3/m/6f41315b360cba1aa811daba.png)
四年级奥数知识点:速算与巧算(一)例1计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成100 0—1去计算.这是小学数学中常用的一种技巧.9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2计算199999+19999+1999+199+19解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.例3计算(1+3+5+...+1989)-(2+4+6+ (1988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995—1990×497=995.例4计算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—=2730—28=2702.解法2:也可以选380为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5计算(4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6)÷6(这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.例6计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99×99=99+99×99=99×(1+99)=99×100=9900.例7计算9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了.9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334 =3333×(6666+3334)=3333×10000=33330000.例81999+999×999解法1:1999+999×999 =1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法2:1999+999×999 =1999+999×(1000-1) =1999+999000-999=(1999-999)+999000=1000+999000=1000000.有多少个零.总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.四年级奥数知识点:速算与巧算(二)例1比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知A的第一个因数的个位数字比B的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1.所以不经计算,凭直接观察不容易知道A和B哪个大.但是无论是对A或是对B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B先进行恒等变形,再作判断.解:A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.例2不用笔算,请你指出下面哪道题得数最大,并说明理由.241×249 242×248 243×247244×246 245×245.解:利用乘法分配律,将各式恒等变形之后,再判断.241×249=(240+1)×(250—1)=240×250+1×9;242×248=(240+2)×(250—2)=240×250+2×8;243×247=(240+ 3)×(250—3)= 240×250+3×7;244×246=(240+4)×(250—4)=240×250+4×6;245×245=(240+5)×(250—5)=240×250+5×5.恒等变形以后的各式有相同的部分240 × 250,又有不同的部分1×9,2×8,3×7,4 ×6,5×5,由此很容易看出245×245的积最大.一般说来,将一个整数拆成两部分(或两个整数),两部分的差值越小时,这两部分的乘积越大.如:10=1+9=2+8=3+7=4+6=5+5则5×5=25积最大.例3求 1966、 1976、 1986、 1996、 2006五个数的总和.解:五个数中,后一个数都比前一个数大10,可看出1986是这五个数的平均值,故其总和为:1986×5=9930.例4 2、4、6、8、10、12…是连续偶数,如果五个连续偶数的和是320,求它们中最小的一个.解:五个连续偶数的中间一个数应为320÷5=64,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最小的是60.总结以上两题,可以概括为巧用中数的计算方法.三个连续自然数,中间一个数为首末两数的平均值;五个连续自然数,中间的数也有类似的性质——它是五个自然数的平均值.如果用字母表示更为明显,这五个数可以记作:x-2、x—1、x、x+1、x+2.如此类推,对于奇数个连续自然数,最中间的数是所有这些自然数的平均值.如:对于2n+1个连续自然数可以表示为:x—n,x—n+1,x-n+2,…, x —1, x, x+1,…x+n—1,x+n,其中 x是这2n+1个自然数的平均值.巧用中数的计算方法,还可进一步推广,请看下面例题.例5将1~1001各数按下面格式排列:一个正方形框出九个数,要使这九个数之和等于:①1986,②2529,③1989,能否办到?如果办不到,请说明理由.解:仔细观察,方框中的九个数里,最中间的一个是这九个数的平均值,即中数.又因横行相邻两数相差1,是3个连续自然数,竖列3个数中,上下两数相差7.框中的九个数之和应是9的倍数.①1986不是9的倍数,故不行;②2529÷9=281,是9的倍数,但是281÷7=40×7+1,这说明281在题中数表的最左一列,显然它不能做中数,也不行;③1989÷9=221,是9的倍数,且221÷7=31×7+4,这就是说221在数表中第四列,它可做中数.这样可求出所框九数之和为1989是办得到的,且最大的数是229,最小的数是213.这个例题是所谓的“月历卡”上的数字问题的推广.同学们,小小的月历卡上还有那么多有趣的问题呢!所以平时要注意观察,认真思考,积累巧算经验.四年级奥数习题:速算与巧算(一)1.计算899998+89998+8998+898+882.计算799999+79999+7999+799+793.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)4.计算1—2+3—4+5—6+…+1991—1992+19935.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到1 2点这12个小时内时钟共敲了多少下?6.求出从1~25的全体自然数之和.7.计算 1000+999—998—997+996+995—994—993+…+108+107—106—105 +104+103—102—1018.计算92+94+89+93+95+88+94+96+879.计算(125×99+125)×1610.计算3×999+3+99×8+8+2×9+2+911.计算999999×7805312.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?习题解答1.利用凑整法解.899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.利用凑整法解.799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.3.(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987) =1988+1986+1984+…+6+4+2-1-3-5…-1983-1985-1987=(1988-1987)+(1986-1985)+…+(6-5)+(4-3)+(2-1)=994.4.1-2+3—4+5-6+…+1991-1992+1993=1+(3-2)+(5-4)+…+(1991-1990)+(1 993-1992)= 1+1×996=997.5.1+2+3+4+5+6+7+8+9+10+11+12=13×6=78(下).6.1+2+3+…+24+25=(1+25)+(2+24)+(3+23)+…+(11+15)+(12+14)+13=26×12+13=325.7.解法1:1000+999—998—997+996+995—994-993+…+108+107—106—10 5+104+103—102—101=(1000+999—998—997)+(996+995—994-993)+…+(108+ 107—106—105)+(104+103—102—101)解法 2:原式=(1000—998)+(999—997)+(104—102)+(103—101)=2 × 450=900.解法 3:原式=1000+(999—998—997+996)+(995—994 -993+992)+…+(107—106—105+104)+(103—102—101+100)-100=1000—100=900.9.(125×99+125)×16=125×(99+1)×16= 125×100×8×2=125×8×100×2=200000.10.3×999+3+99×8+8+2×9+2+9= 3×(999+1)+8×(99+1)+2×(9+1)+9=3×1000+8×100+2×10+9=3829.11.999999×78053=(1000000—1)×78053=78053000000—78053=78052921947.12.1111111111×9999999999=1111111111×(10000000000—1)=11111111110000000000—1111111111 =11111111108888888889.这个积有10个数字是奇数.四年级奥数习题:速算与巧算(二)1.右图的30个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和(如方格中a=14+17=31).右图填满后,这30个数的总和是多少?2.有两个算式:①98765×98769,②98766 × 98768,请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?3.比较568×764和567×765哪个积大?4.在下面四个算式中,最大的得数是多少?① 1992×1999+1999② 1993×1998+1998③ 1994×1997+1997④ 1995×1996+19965.五个连续奇数的和是85,求其中最大和最小的数.6.45是从小到大五个整数之和,这些整数相邻两数之差是3,请你写出这五个数.7.把从1到100的自然数如下表那样排列.在这个数表里,把长的方面3个数,宽的方面2个数,一共6个数用长方形框围起来,这6个数的和为81,在数表的别的地方,如上面一样地框起来的6个数的和为429,问此时长方形框子里最大的数是多少?习题解答1.先按图意将方格填好,再仔细观察,找出格中数字的规律进行巧算. 解法1:先算每一横行中的偶数之和:(12+14+16+18)×6=360.再算每一竖列中的奇数之和:(11+13+15+17+19)× 5=375最后算30个数的总和=10+360+375=745.解法2:把每格的数算出填好.先算出10+11+12+13+14+15+16+17+18+19=145,再算其余格中的数.经观察可以列出下式:(23+37)+(25+35)× 2+(27+33)×3+(29+31)× 4= 60 ×(1+ 2+ 3+4)=600最后算总和:总和=145+600=745.2.① 98765 × 98769= 98765 ×(98768+ 1)= 98765 × 98768+98765.② 98766 × 98768=(98765+1)× 98768= 98765 × 98768+ 98768.所以②比①大3.3.同上题解法相同:568×764>567×765.4.根据“若保持和不变,则两个数的差越小,积越大”,则1996×1996=3 984016是最大的得数.5.85÷5=17为中数,则五个数是:13、15、17、19、21最大的是21,最小的数是13.6.45÷5=9为中数,则这五个数是:3,6,9,12,15.7.观察已框出的六个数,10是上面一行的中间数,17是下面一行的中间数,10+17=27是上、下两行中间数之和.这个中间数之和可以用81÷3=27求得.利用框中六个数的这种特点,求方框中的最大数.429÷3=143(143+7)÷2=75 75+1=76最大数是76.。
(完整版)四年级奥数速算与巧算.doc
![(完整版)四年级奥数速算与巧算.doc](https://img.taocdn.com/s3/m/2a8fd85af342336c1eb91a37f111f18583d00c81.png)
(完整版)四年级奥数速算与巧算.doc四年级奥数知识点:速算与巧算(一 )例1 计算 9+99+999+9999+99999解:在涉及所有数字都是 9 的计算中,常使用凑整法 . 例如将 999 化成 100 0—1 去计算 . 这是小学数学中常用的一种技巧 .9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算 199999+19999+1999+199+19解:此题各数字中,除最高位是1 外,其余都是9,仍使用凑整法 . 不过这里是加 1 凑整.( 如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.例3 算 (1+3+5+?+1989) - (2+4+6+?+1988)解法 2:先把两个括号内的数分相加,再相减 . 第一个括号内的数相加的果是:从1 到 1989 共有 995 个奇数,凑成 497 个 1990,剩下 995,第二个括号内的数相加的果是:从2 到 1988 共有 994 个偶数,凑成 497 个 1990.1990×497+995—1990×497=995.例 4 算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390 接近,所以选 390 为基准数 .389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—=2730—28=2702.解法 2:也可以选 380 为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5 计算 (4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6 个相接近的数之和,故可选4940 为基准数 .(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6) ÷6( 这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.例6 计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45 和 54 先结合可得 99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99 ×99=99+99×99=99×(1+99)=99×100=9900.例7 计算9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错 . 如果将9999 变为3333×3,规律就出现了 .9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334 =3333×(6666+3334)=3333×10000=33330000.例8 1999+999×999解法 1:1999+999×999 =1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法 2:1999+999×999 =1999+999×(1000 -1)=1999+999000-999=(1999-999)+999000=1000+999000=1000000.有多少个零 .总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.四年级奥数知识点:速算与巧算(二 )例1 比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知 A的第一个因数的个位数字比 B 的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1. 所以不经计算,凭直接观察不容易知道 A 和 B 哪个大 . 但是无论是对 A或是对 B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B 先进行恒等变形,再作判断 .解:A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.例 2 不用笔算,请你指出下面哪道题得数最大,并说明理由.241×249 242×248 243×247244×246245×245.解:利用乘法分配律,将各式恒等变形之后,再判断.241×249=(240+1) ×(250 —1)=240×250+1×9;242×248=(240+2) ×(250 —2)=240×250+2×8;243×247=(240+ 3) ×(250 —3)= 240 ×250+3×7;244×246=(240+4) ×(250 —4)=240×250+4×6;245×245=(240+5) ×(250 —5)=240×250+5×5.恒等变形以后的各式有相同的部分240 × 250 ,又有不同的部分1×9,2×8,3×7,4 ×6,5×5,由此很容易看出245×245 的积最大 .一般说来,将一个整数拆成两部分 ( 或两个整数 ) ,两部分的差值越小时,这两部分的乘积越大 .如: 10=1+9=2+8=3+7=4+6=5+5则5×5=25 积最大 .例3 求 1966 、 1976 、 1986 、 1996 、 2006 五个数的总和 .解:五个数中,后一个数都比前一个数大10,可看出1986 是这五个数的平均值,故其总和为:1986×5=9930.例 4 2 、4、6、8、10、12?是偶数,如果五个偶数的和是320,求它中最小的一个 .解:五个偶数的中一个数320÷5=64,因相偶数相差2,故五个偶数依次是60、62、64、66、68,其中最小的是 60.以上两,可以概括巧用中数的算方法. 三个自然数,中一个数首末两数的平均; 五个自然数,中的数也有似的性——它是五个自然数的平均 . 如果用字母表示更明,五个数可以作:x-2 、x—1、x、x+1、x+2. 如此推,于奇数个自然数,最中的数是所有些自然数的平均 .如:于 2n+1 个自然数可以表示:x—n,x—n+1,x-n+2 ,?,x —1, x , x+1 ,? x+n— 1,x+n,其中 x 是 2n+1 个自然数的平均 .巧用中数的算方法,可一步推广,看下面例 .例 5 将 1~1001 各数按下面格式排列:一个正方形框出九个数,要使九个数之和等于:①1986,② 2529,③ 1989,能否到 ?如果不到,明理由.解:仔细观察,方框中的九个数里,最中间的一个是这九个数的平均值,即中数 . 又因横行相邻两数相差 1,是 3 个连续自然数,竖列 3 个数中,上下两数相差 7. 框中的九个数之和应是 9 的倍数 .①1986 不是 9 的倍数,故不行 ;②2529÷9=281,是9 的倍数,但是281÷7=40×7+1,这说明281 在题中数表的最左一列,显然它不能做中数,也不行 ;③1989÷9=221,是9 的倍数,且221÷7=31×7+4,这就是说221 在数表中第四列,它可做中数 . 这样可求出所框九数之和为 1989 是办得到的,且最大的数是229,最小的数是 213.这个例题是所谓的“月历卡”上的数字问题的推广. 同学们,小小的月历卡上还有那么多有趣的问题呢! 所以平时要注意观察,认真思考,积累巧算经验.四年级奥数习题:速算与巧算(一 )1.算 899998+89998+8998+898+882.算 799999+79999+7999+799+793.算(1988+1986+1984+?+6+4+2)-(1+3+5+ ?+1983+1985+1987)4.算 1—2+3—4+5—6+?+1991— 1992+19935. 1 点敲 1 下,2 点敲 2 下,3 点敲 3 下,依次推 . 从 1 点到 1 2 点 12 个小内共敲了多少下 ?6.求出从 1~25 的全体自然数之和 .7.算1000+999—998—997+996+995—994—993+?+108+107— 106—105+104+103—102—1018.算 92+94+89+93+95+88+94+96+879.算(125 ×99+125)× 1610.算3×999+3+99×8+8+2×9+2+911.算999999×7805312. 两个 10 位数 1111111111和 9999999999 的乘中,有几个数字是奇数?解答1.利用凑整法解 . 899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.利用凑整法解 .799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.3.(1988+1986+1984+?+6+4+2)-(1+3+5+?+1983+1985+1987) =1988+1986+1984+?+6+4+2-1-3- 5?-1983-1985-1987=(1988-1987)+(1986- 1985)+?+(6 -5)+(4-3)+(2-1)=994.4.1-2+3 —4+5- 6+?+1991-1992+1993=1+(3-2)+(5- 4)+?+(1991 -1990)+(1 993-1992)=1+1×996 =997.5.1+2+3+4+5+6+7+8+9+10+11+12=13×6=78(下 ).6.1+2+3+?+24+25=(1+25)+(2+24)+(3+23)+ ?+(11+15)+(12+14)+13 =26×12+13=325.7.解法1:1000+999—998—997+996+995—994-993+?+108+107—106—10 5+104+103—102—101=(1000+999—998—997)+(996+995 —994- 993)+?+(108+ 107—106—105)+(104+103 —102—101)解法 2 :原式 =(1000—998)+(999 —997)+(104 —102)+(103—101)=2 × 450=900.解法3 :原式=1000+(999—998—997+996)+(995 —994 -993+992)+?+(107— 106—105+104)+(103—102—101+100)-100 =1000—100 =900.9.(125 ×99+125)×16=125×(99+1) ×16= 125 ×100×8×2=125×8×100×2=200000.10.3 ×999+3+99×8+8+2×9+2+9= 3 ×(999+1)+8 ×(99+1)+2 ×(9+1)+9=3×1000+8×100+2×10+9=3829.11.999999×78053=(1000000—1) ×78053=78053000000—78053=78052921947.12.1111111111×9999999999=1111111111×(10000000000—1)=11111111110000000000—1111111111=11111111108888888889.这个积有 10 个数字是奇数 .四年级奥数习题:速算与巧算(二 )1.右图的 30 个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和 ( 如方格中a=14+17=31). 右图填满后,这 30 个数的总和是多少 ?2.有两个算式:①98765×98769,②98766× 98768,请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?3.比较568×764 和567×765 哪个积大 ?4.在下面四个算式中,最大的得数是多少 ?① 1992 ×1999+1999 ② 1993 ×1998+1998③ 1994 ×1997+1997 ④ 1995 ×1996+19965.五个连续奇数的和是 85,求其中最大和最小的数 .6.45 是从小到大五个整数之和,这些整数相邻两数之差是3,请你写出这五个数 .7. 把从 1 到 100 的自然数如下表那样排列 . 在这个数表里,把长的方面 3 个数,宽的方面 2 个数,一共 6 个数用长方形框围起来,这6 个数的和为 81,在数表的别的地方,如上面一样地框起来的6 个数的和为429,问此时长方形框子里最大的数是多少 ?习题解答1. 先按图意将方格填好,再仔细观察,找出格中数字的规律进行巧算.解法 1:先算每一横行中的偶数之和:(12+14+16+18)×6=360.再算每一竖列中的奇数之和:(11+13+15+17+19)× 5=37 5最后算 30 个数的总和 =10+360+375=745.解法 2:把每格的数算出填好 .先算出 10+11+12+13+14+15+16+17+18+19=145,再算其余格中的数 . 经观察可以列出下式:(23+37)+(25+35) × 2+(27+33) ×3+(29+31) × 4=60 ×(1+ 2+ 3+4)=600最后算总和:总和 =145+600=745.2.①98765 ×98769= 98765 ×(98768+ 1)= 98765 × 98768+98765.② 98766 × 98768=(98765+1) × 98768 =98765 × 98768+ 98768.所以②比①大 3.3. 同上题解法相同:568×764>567×765.4.根据“若保持和不变,则两个数的差越小,积越大”,则1996×1996=3 984016 是最大的得数 .5.85 ÷5=17 为中数,则五个数是: 13、15、17、19、21 最大的是 21,最小的数是 13.6.45 ÷5=9 为中数,则这五个数是:3,6,9,12,15.7.观察已框出的六个数, 10 是上面一行的中间数, 17 是下面一行的中间数,10+17=27是上、下两行中间数之和. 这个中间数之和可以用81÷3=27 求得 .利用框中六个数的这种特点,求方框中的最大数.429÷3=143(143+7) ÷2=75 75+1=76最大数是 76.。
四年级奥数巧算与速算
![四年级奥数巧算与速算](https://img.taocdn.com/s3/m/9ad0293b52ea551811a68706.png)
巧算与速算(一)巧点晴——方法和技巧在计算中,我们通常根据加、减法的运算定理、性质,运用凑整法、拆数法、基数法等方法,使计算简单化。
巧指导——例题精讲A级冲刺名校·基础点晴一、凑整法[例1]计算:(1)648+863+352+137+57 (2)136+177+164+123 做一做1 计算:5678+426+2468+574+7532+4322二、拆数法[例2]计算:(1)772+288+40 (2)9898+203做一做2 计算:9979+997+124三、基数法[例3]计算:375+383+372+376+379+374做一做3计算:83+76+84+79+89+77B级培优竞赛·更上层楼四、找规律[例4]计算:8+88+888+8888+88888[例5]计算:(1)628-(186+328)(2)764-(387-136)做一做5计算:713-(513-229)五、合理分组[例6]计算:100+99-98-97+96+95-94-93+…+8+7-6-5+4+3-2-1做一做6计算:(2+4+6+...+2000)—(1+3+5+ (1999)[例7]计算:(1)25×248×5 (2)4256÷56 (3)1997×1999做一做3 计算:(1)9999×7853 (2)25×64×125巧练习——温故知新(三)A级冲刺名校·基础点晴用简便方法计算:1、(1)25×57×4 (2)37×48×6252、(1)438-52-67-48-38-33 (2)8+98+998+99983、(1)3842-1438-562-842 (2)2345+6789+1359+3211+8641+76554、(1)9600÷25÷4 (2)375÷25 (3)1375÷125 (4)7000÷125÷8 (5)150000÷125 (6)37500÷4÷255、(1)8÷7+9÷7+11÷7 (2)(12+24+36+48)÷66、21÷9+22÷9+23÷9+24÷9 (4)56000÷(14000÷16)B级培优竞赛·更上层楼用简便方法计算:6、(1)5600÷(28÷6)(2)7500÷125÷15(3)8440×976÷488 (4)125×16÷25(5)45000÷54×6 (6)45000÷(25×90)7、(1)5400÷15÷4 (2)567÷(105÷35)(3)84÷72×36÷21 (4)132×288÷(24×11)8、(1)308×[150÷(50-25]—48 (2)37×75+65×60+2259、(1)72×24+15×28+9×28 (2)99+11×11—11×1910、(1)1-2+3-4+5-6+…+97-98+99(2)3+33+33+...+33 (3)9个数(3)1+2―3―4+5+6-…+1990(4)1+2-3+4+5-6+7+8-9+…+97+98-99(5)99+198+297+396+495+594+693+792+891+990(6)99...9×99...9+199 (9)9个9 9个9 9911、(1)125×436×8 (2)67×614+33×614 (3)597500÷4÷2512、(1)21210÷42×6 (2)8125÷25+375÷25C级(选学)决胜总决赛·勇夺冠军13、99…9×99…9+199…9的末尾有多少个零?192个9 192个9 1992个914、计算:98+97-96-95+94+93―92―91+90+89-…-4-3+2+115、计算:98989898×99999999÷1010101÷11111111巧总结本节我的收获是:。
四年级奥数 速算与巧算课件
![四年级奥数 速算与巧算课件](https://img.taocdn.com/s3/m/5da701e0ddccda38366baf01.png)
方法一 凑整补零法
求一位数的平方,在乘法口诀的九九表中已经被同学们 熟知,如7×7=49(七七四十九)。对于两位数的平方,大 多数同学只是背熟了10~20的平方,
11×11=121,12×12=144,13×13=169,14×14=196
15×15=225,16×16=256,17×17=289,18×18=324
19×19=361,20×20=400 而21~99的平方就不大熟悉了。 有没有什么窍门,能够迅速算出两位数的平方呢?这里向同 学们介绍一种方法——凑整补零法。
所谓凑整补零法,就是用所求数与最接近的整十数的差, 通过移多补少,将所求数转化成一个整十数乘以另一数,再 加上零头的平方数。下面通过例题来说明这一方法。
四年级数学思维训练
第二讲
乘除法中的速算与巧算 常用方法及技巧
在进行加减运算时,为了又快又准确地算 出结果,除了要熟练地掌握运算法则外,还 需要掌握一些常用运算方法和技巧。
• 在速算与巧算中常用的三大基本思想:
1.凑整 (目标:整十 整百 整千...)
2.分拆(分拆后能够凑成 整十 整百 整千...) 3.组合(合理分组再组合 )
=(54+45)+99×99 =99+99×99 =99×(1+99) =99×100
=3333×3×2222+3333×3334 =3333×6666+3333×3334 =3333×(6666+3334) =3333×10000
=33330000
=9900
例3 计算 1999+999×999
1999+999×999 =1000+999+999×999 =1000+999×(1+999) =1000+999×1000 =1000×(1+999) =1000×1000
四年级奥数题及答案8篇
![四年级奥数题及答案8篇](https://img.taocdn.com/s3/m/8a7a3cf8970590c69ec3d5bbfd0a79563c1ed4cc.png)
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车 每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?
【分析】:依题意,大卡车每吨耗油量为10・5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。为了节省 汽油应尽量选派大卡车运货,又由于137=5X27+2,因此,最优调运方案是:选派27车次大卡
原有草量:21X8-12X8=72(份)
16头牛可吃:72÷(16-12)=18(天)
2)要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数
所以最多只能放12头牛。
篇3:四年级奥数题及答案
【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶 要用1分钟,如何安排才能尽早喝上茶。
=(2+1000)×500÷2-(l+999)×500÷2 =1002×250-1000X250 =(1002-1000)×250
=500 四年级奥数题:速算与巧算(四)
【试题】计算9999×2222+3333X3334 【分析】此题如果直接乘,数字较大,容易出错。如果将9999变为3333X3,规律就出现了。 9999×2222+3333X3334 =3333×3×2222+3333X3334 =3333×6666+3333X3334 =3333×(6666+3334) =3333X10000 =33330000o 四年级奥数题:速算与巧算(五) 【试题】56×3+56×27+56×96-56×57+56 【分析】:乘法分配律同样适合于多个乘法算式相加减的情况,在计算加减混合运算时要特别注意,提走公共乘 数后乘数前面的符号。同样的,乘法分配率也可以反着用,即将一个乘数凑成一个整数,再补上他们的和或是差。 56X3+56X27+56X96-56×57+56 =56×(32+27+96-57+1) 二56X99
小学数学四年级奥数1、速算与巧算
![小学数学四年级奥数1、速算与巧算](https://img.taocdn.com/s3/m/b3c31452a6c30c2258019e37.png)
小学数学——四年级奥数1.速算与巧算知识回顾1、数学中的速算与巧算主要是利用乘、除法的运算定律和性质来进行的,我们已经学习了四则混合运算的各种运算律,包括交换律、结合律、分配率、去括号和添括号的法则等等。
加法交换律:a+b=b+a乘法交换律:axb=bxa加法结合律:(a+b)+c=a+(b+c)乘法结合律:(axb)xc=ax(bxc)乘法分配律(a+b)xc=axc+bxc 或a-b)xc=axc-bxc减法的性质:a-b-c=a-(b+c)除法的性质:a÷b=(axn)÷(bxn)=(a÷n)÷(b÷n)(n≠0)2、去(添)括号规律:1.加、减法去(添)括号:括号前面是“+”,去(添)括号后不变号;括号前面是“-”,去(添)括号后要变号例如:234+(345-123)=234+345-123、345-(234-123)=345-234+1232.乘、除法去(添)括号:括号前面是“x”,去(添)括号后不变号;括号前面是“÷”(添)括号后要变号例如:8x(5÷8)=8×5÷8、93+(31+3)=93+31+33、带符号搬家同级运算时,可以带符号搬家,改变运算顺序,加、减法同为第一级运算,乘、除法同为第二级运算例如:241-164+59=241+59-164;165×29+5=165+5×29四则混合运算时要先算乘除法、后算加减法,同级运算按照从左到右的顺序计算,有括号时先算括号内的。
以上这些运算法则和性质在整数与小数中同样适用。
第一课时整数的速算与巧算经典题型一25+138+175解析:25+175=200,200+138=338,通过观察不难看出25+75正好可以得到一个整百数,所以我们利用加法交换律和结合律先算25+175的和,再和175相加,可以使运算变得简便。
练一练1、56+27+442、603+138+973、88+27+73+124、1+3+5+7+…+199+2015、1+2+3+4+…+48+49+50+49+48+…+4+3+2+1经典题型二125 x71 x8解析:125 x8=1000,1000 x71=71000,利用乘法交换律和结合律可以先算125 x8得到一个整千数,再乘71,可以直接口算出结果。
四年级奥数第一讲-速算与巧算含答案
![四年级奥数第一讲-速算与巧算含答案](https://img.taocdn.com/s3/m/cd69a9036bd97f192279e97c.png)
第一讲 速算与巧算一、 知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。
2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。
3. 掌握速算与巧算的方法:如等差数列求知、凑整、拆数等等。
二、典例剖析:例(1) 19199199919999199999++++分析:运用凑整法来解十分方便,也不容易出错误。
解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练一练:898998999899998999998+++++=答案:1111098例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若干个1,再与其余部分进行计算。
解:原式100(9998)(9796)(32)1=+-+-++-+ 100491=++150=练一练:989796959493929190894321+--++--++---++答案:99例(3) 1111111111⨯分析:111,1111121,11111112321⨯=⨯=⨯= 解:1111111111123454321⨯=练一练:2222222222⨯答案:493817284例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、十位、百位、千位上均各出现一次。
解:原式1111222233334444=+++ 1111(1234)=⨯+++ 111110=⨯ 11110=练一练:5678967895789568956795678++++答案:388885例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。
四年级奥数第一讲速算与巧算
![四年级奥数第一讲速算与巧算](https://img.taocdn.com/s3/m/6804ae7b5acfa1c7aa00cc4a.png)
延伸拓展
用“组合法”巧算
812-593+193-647+247-374+174+200 =812-400-400-200+200 =12 1-2+3-4+5-6+……+1991-1992+1993
= 1+(3-2)+(5-4)+(7-6)+ ……+(1991-1990)+(1993-1992) =1+(1992÷2)×1 =1+996 =997
一、速算与巧算
记住它们的特色 2×5=10 25×4=100 125×8=1000 625×8=5000 625×16=10000
简便计算加减篇
例1、 8+98+998+9998+99998+999998
=(8+2)+(98+2)+(998+2)+(9998+2)+(99998+2)+(999998+2)-2×6 = 10+100+1000+10000+100000+1000000 = 1111110-12 = 1111098
例3、99…9× 99…9+199…9的末尾有多少个零?
1992个9 1992个9 1992个9
因为99…9接近100…0,所以把99…9转化成100…0
1992个9 19根据乘法分配率将99…9 × 99…9变成99…9 × 100…0- 99…9
1992个9 1992个9 1992个9 1992个9 1992个9
347×69+653×31+306×19
四年级奥数第一讲_速算与巧算含答案
![四年级奥数第一讲_速算与巧算含答案](https://img.taocdn.com/s3/m/180ba8e6f71fb7360b4c2e3f5727a5e9856a27b1.png)
四年级奥数第⼀讲_速算与巧算含答案第⼀讲速算与巧算⼀、知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。
2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。
3. 掌握速算与巧算的⽅法:如等差数列求知、凑整、拆数等等。
⼆、典例剖析:例(1) 19199199919999199999++++分析:运⽤凑整法来解⼗分⽅便,也不容易出错误。
解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练⼀练:898998999899998999998+++++=例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若⼲个1,再与其余部分进⾏计算。
解:原式100(9998)(9796)(32)1=+-+-++-+100491=++150=练⼀练:989796959493929190894321+--++--++---++例(3) 1111111111?分析:111,1111121,11111112321?=?=?= 解:1111111111123454321?=练⼀练:2222222222?可以探索⼀下11×11,11×12,…11×19,11×21…11×29…例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、⼗位、百位、千位上均各出现⼀次。
解:原式1111222233334444=+++ 1111(1234)=?+++ 111110=? 11110=练⼀练:5678967895789568956795678++++例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。
小学四年级奥数第21讲 速算与巧算(二)(含答案分析)
![小学四年级奥数第21讲 速算与巧算(二)(含答案分析)](https://img.taocdn.com/s3/m/9130d6119b6648d7c0c74650.png)
第21讲速算与巧算(二)一、专题简析:乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。
二、精讲精练例1:计算325÷25练习一计算下面各题。
450÷25 525÷253500÷125 10000÷625例2:计算25×125×4×8练习二计算下面各题。
125×15×8×4 25×24 25×5×64×125 125×25×32例3:计算。
(1)(360+108)÷36 (2)(450-75)÷15练习三计算下面各题。
(720+96)÷24 (4500-90)÷4573÷36+105÷36+146÷36 (10000-1000-100-10)÷10 例4:计算158×61÷79×3练习四计算下面各题。
238×36÷119×5 624×48÷312÷8138×27÷69×50 406×312÷104÷203例5:计算下面各题。
(1)123×96÷16 (2)200÷(25÷4)练习五计算下面各题。
612×366÷183 1000÷(125÷4)(13×8×5×6)÷(4×5×6)三、课后作业计算下列各题。
49500÷900 9000÷22575×16 125×166342÷21 8811÷89241×345÷678÷345×(678÷241)第二十一周速算与巧算(二)专题简析:乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。
小学四年级奥数教程——第二讲
![小学四年级奥数教程——第二讲](https://img.taocdn.com/s3/m/69043bdf33d4b14e8524689f.png)
▲练习:巧算下面各题。
⑴947-95-47 ⑵0.28-2.8+5.72-3.2 ⑶481-(88+181) ⑷27.26-(16.8-2.74) ⑸39.46+(25.38-9.46) ⑹537-(343-263)-57 ⑺644-548+356-252+146 ⑻841-102+159 ⑼78.4-9.9 ⑽462+457+461+459+463+460 ⑾0.7+9.7+99.7+999.7+9999.7 ⑿1+3+5+„+97+99 ⒀10-9.8+9.6-9.4+9.2-9+„+0.8-0.6+0.4-0.2 ⒁1-2+3-4+5-6+„+1997-1998+1999
例9:计算。
①25×32×125 ②96×25×125 分析:①把32分解为4×8,使25与4、8与125结合巧算。 ②把96分解为3×4×8,使4与25、8与125结合巧算。
例10:计算。
①5000÷125÷8 ②3600÷(30×5) ③5400÷(27÷7) ④372÷180×60 ⑤864×29÷58 ⑥484÷36×18÷22 分析:第①题是根据乘除法的运算性质a÷b÷c=a÷(b×c),先 求125×8的积,再用5000除以这个积得出计算结果。 第②题是根据乘除法的运算性质a÷b÷c=a÷(b×c)的逆运 用,可以用3600依次除以30,再除以5得出计算结果。 第③题根据乘除法的运算性质a÷(b÷c)=a÷b×c, 可以用5400先除以27,然后再乘7这样算简便。
例10:计算。
四年级奥数——速算与巧算(加减乘除)
![四年级奥数——速算与巧算(加减乘除)](https://img.taocdn.com/s3/m/a231904c26d3240c844769eae009581b6bd9bd3f.png)
四年级奥数春季班速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
求平均每块麦田的产量。
小学四年级《速算与巧算》奥数试题及答案
![小学四年级《速算与巧算》奥数试题及答案](https://img.taocdn.com/s3/m/f4a22b4659fafab069dc5022aaea998fcc2240b5.png)
小学四年级《速算与巧算》奥数试题及答案这一周,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。
这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。
例1:计算236×37×27分析与解答:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。
例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764练习一计算下面各题:132×37×27 315×77×13 6666×6666例2:计算333×334+999×222分析与解答:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=333000练习二计算下面各题:9999×2222+3333×3334 37×18+27×42 46×28+24×63例3:计算20012001×2002-20022002×2001分析与解答:这道题如果直接计算,显得比较麻烦。
根据题中的数的特点,如果把20012001变形为2001×10001,把20022002变形为2002×10001,那么计算起来就非常方便。
完整版)四年级奥数速算与巧算
![完整版)四年级奥数速算与巧算](https://img.taocdn.com/s3/m/7c47e241a517866fb84ae45c3b3567ec102ddcce.png)
完整版)四年级奥数速算与巧算用了基准数的特性,直接求解)4940+14941.四年级奥数知识点:速算与巧算(一)例1:计算9+99+999+9999+.解法:在所有数字都是9的计算中,常使用凑整法。
例如,将999化成100-1去计算,这是小学数学中常用的一种技巧。
9+99+999+9999+10-1)+(100-1)+(1000-1)+(-1)+(-1)10+100+1000++-5-5.例2:计算++1999+199+19.解法:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。
不过这里是加1凑整(如199+1=200)。
++1999+199+19+1)+(+1)+(1999+1)+(199+1)+(19+1)-5++2000+200+20-5-5.例3:计算(1+3+5+…+1989)-(2+4+6+…+1988)。
解法:先把两个括号内的数分别相加,再相减。
第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995;第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995-1990×497=995.例4:计算389+387+383+385+384+386+388.解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数。
389+387+383+385+384+386+388390×7-1-3-7-5-6-42730-282702.解法2:也可以选380为基准数,则有:389+387+383+385+384+386+388380×7+9+7+3+5+4+6+82660+422702.例5:计算(4942+4943+4938+4939+4941+4943)÷6.解法:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数。
四年级上奥数第13讲 速算与巧算(一)
![四年级上奥数第13讲 速算与巧算(一)](https://img.taocdn.com/s3/m/f688af2bb84ae45c3b358ce6.png)
四秋第13讲 速算与巧算(一)一、教学目标速算与巧算是小学数学竞赛永恒的话题,每个杯赛都会有1-2道题目考察学生的运算能力,主要集中在整数的巧算,极少涉及小数。
掌握速算与巧算的技巧,往往能够在极短的时间内解决运算问题。
巧算的方法主要有:提取公因式、凑整、拆分、分组、换元,同学们需根据具体情况具体分析,选择合适的方法。
二、例题精选加减凑整:【例1】 计算:1、699999+69999+6999+699+692、1000-91-1-92-2-93-3-94-4-95-5-96-6-97-7-98-8-99-9【巩固1】计算:1、199+298+397+496+595+202、987654-151-269-149-31+346【例2】 计算:10020092000920000920009++++L L 14243个【巩固2】计算:98+998+9998+......+99 (98)乘除凑整:【例3】 计算:(1)125428525⨯⨯⨯⨯⨯ (2)2100425÷÷10个9【巩固3】计算:(1)125258÷÷⨯ (2)456⨯⨯÷⨯⨯36825()乘法分配律:【例4】 计算:(1)2748+5227⨯⨯ (2)329+2999⨯ (3)10199⨯【巩固4】计算:(1)3426+2666⨯⨯ (2)13250+25870⨯⨯ (3)9835⨯重叠数:【例5】 计算:123123123321321321321123⨯-⨯位值原理:【例6】 用7、8、9可以组成6个各位数字不相同的三位数,那么这6个数的和是多少?三、回家作业【作业1】计算:458+356+289+244-58+711【作业2】计算:11+12+13+14+21+22+23+24+31+32+33+34++91+92+93+94L【作业3】计算:197+1997+19997+......+199 (97)【作业4】计算:67200254335467_______⨯+⨯+⨯=【作业5】计算:82198219821919818119811981191983⨯-⨯10个9。
小学生奥数速算与巧算题五篇
![小学生奥数速算与巧算题五篇](https://img.taocdn.com/s3/m/23730f0715791711cc7931b765ce050876327523.png)
【导语】指利⽤数与数之间的特殊关系进⾏较快的加减乘除运算,⽤⼀种思维,⼀种⽅法快速准确地掌握任意数加、减、乘、除的速算⽅法。
这种运算⽅法称为速算法,⼼算法。
以下是⽆忧考整理的《⼩学⽣奥数速算与巧算题五篇》相关资料,希望帮助到您。
1.⼩学⽣奥数速算与巧算题 【思路】在计算没有括号的加减法混合运算式题时,有时可以根据题⽬的特点,采⽤添括号的⽅法使计算简便,与前⾯去括号的⽅法类似,我们可以把这种⽅法概括为:括号前⾯是加号,添上括号不变号;括号前⾯是减号,添上括号要变号。
(2)812-593+193 =812-(593-193) =812-400 =412 (1)286+879-679 =286+(879-679) =286+200 =868 练习: 计算下⾯各题。
1.368+1859-859 2.582+393-293 3.632-385+285 4.2756-2748+1748+244 5.612-375+275+(388+286) 6.756+1478+346-(256+278)-246 2.⼩学⽣奥数速算与巧算题 【例题】计算9+99+999+9999 【思路】这四个加数分别接近10、100、1000、10000。
在计算这类题⽬时,常使⽤减整法,例如将99转化为100-1。
这是⼩学数学计算中常⽤的⼀种技巧。
9+99+999+9999 =(10-1)+(100-1)+(1000-1)+(10000-1) =10+100+1000+10000-4 =11106 练习: 1、计算99999+9999+999+99+9 2、计算9+98+996+9997 3、计算1999+2998+396+497 4、计算198+297+396+495 5、计算1998+2997+4995+5994 6、计算19998+39996+49995+699963.⼩学⽣奥数速算与巧算题1、⽤2、3、4、6这四张牌进⾏计算,使最后得数等于24。
四年级下册奥数-速算与巧算 全国通用 (含答案)
![四年级下册奥数-速算与巧算 全国通用 (含答案)](https://img.taocdn.com/s3/m/f3e004e003d8ce2f0166234e.png)
速算与巧算计算(1)9+99+999+9999+99999 (2)489+487+485+484+486+488 (3)632-156-232 (4)128+186+72-86(5)248+(152-127)(6)325÷25(7)25×125×4×8 (8)(360+108)÷36(9)(450-75)÷15 (10)158×61÷79×3(11)123×96÷16 (12)200÷(25÷4)(13)19×25×64×125 (14)26×25(15)5×64×25×125×2009 (16)2004×25 (17)125×792 (18)125×16-111×9 (19)256×9999(20)5÷(7÷11)÷(11÷15)÷(15÷21)【答案】1.【解析】这四个加数分别接近10、100、1000、10000.在计算这类题目时,常使用减整法,例如将99转化为100-1.这是小学数学计算中常用的一种技巧.9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=111062.【解析】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数.489+487+483+485+484+486+488=490×7-1-3-7-5-6-4-2=3430-28=34023.【解析】在没有括号的算式里,如果只有第一级运算,计算时可根据减法的运算性质来做.632-156-232=632-232-156=400-156=2444.【解析】在没有括号的算式里,如果只有第一级运算,计算时可根据运算定律来做.128+186+72-86=128+72+186-86=(128+72)+(186-86)=200+100=3005.【解析】在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号.计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号.248+(152-127)= 324124+97= 200+97= 2976.【解析】在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变.利用这一性质,可以使这道计算题简便.325÷25=(325×4)÷(25×4)= 1300÷100= 137.【解析】经过仔细观察可以发现:在这道连乘算式中,如果先把25与4相乘,可以得到100;同时把125与8相乘,可以得到1000;再把100与1000相乘就简便了.这就启发我们运用乘法交换律和结合律使计算简便.25×125×4×8=(25×4)×(125×8)= 1000008.【解析】两个数的和除以一个数,可以用这个数分别去除这两个数,再求出两个商的和.(360+108)÷36=360÷36+108÷36=10+3=139.【解析】两个数的差除以一个数,可以用这个数分别去除这两个数,再求出两个商的差.(450-75)÷15=450÷15-75÷15=30-5=2510.【解析】在乘除法混合运算中,如果算式中没有括号,计算时可以根据运算定律和性质调换因数或除数的位置.158×61÷79×3=158÷79×61×3=2×61×3=36611.【解析】采用加括号或去括号的方法,使计算简便.括号前是乘号,添、去括号不变号.123×96÷16=123×(96÷16)=123×6=73812.【解析】采用加括号或去括号的方法,使计算简便.括号前是除号,添、去括号要变号.200÷(25÷4)=200÷25×4=8×4=3213.【解析】把64分成4×8×2,采用乘法结合律便可速算.19×25×64×125=(25×4)×(125×8)×(19×2)=100×1000×38=380000014.【解析】26不能被4整除,但26可以拆成6×4+2.26×25=(6×4+2)×25=6×4×25+2×25=600+50=65015.【解析】把64分成4×8×2,采用乘法结合律便可速算.5×64×25×125×2009=5×(2×4×8)×25×125×2009=(5×2)×(4×25)×(8×125)×2009=10×100×1000×2009=200900000016.【解析】把2004拆成2000+4,便可简便计算.2004×25=(2000+4)×25=2000×25+4×25=50000+100=5010017.【解析】把792拆成800-8,便可简便计算.125×792=125×(800-8)=125×800-125×8=100000-1000=9900018.【解析】根据乘法凑整原则可求125×16-111×9=125×8×2-999=2000-(1000-1)=2000-1000+1=100119.【解析】把9999拆成10000-1,便可简便计算.256×9999=256×(10000-1)=2560000-256=255974420.【解析】采用加括号或去括号的方法,使计算简便.括号前是除号,添、去括号要变号.5÷(7÷11)÷(11÷15)÷(15÷21)=5÷7×11÷11×15÷15×21=5×(11÷11)×(15÷15)×(21÷7)=5×3=15。
(完整版)四年级奥数巧算加减法.doc
![(完整版)四年级奥数巧算加减法.doc](https://img.taocdn.com/s3/m/fad1104bf90f76c661371ab9.png)
第一讲加、减法的计算及巧算四年级计算是数学的基础,在计算中,我们要巧妙利用数的某些特点进行速算与巧算,在解题的过程中,掌握其中的规律,做到灵活应用运算定律,这一讲,我们学习加、减法的巧算方法,主要根据加、减法的运算定律和运算性质,通过适当的技巧、方法,使计算简便化。
主要运算定律及性质:1、加法的交换律: A+B=B+A2、加法结合律:(A+B) +C=A+(B+C)3、减法运算性质: A-B-C=A-( B+C)1、综合运用加减法混合运算中可交换的性质巩固练习:937+115-37+851897+689+103564- (387-136 )2345+987-111+6552、选择“基准数”例题 1 、 701+697+703+704+696=700×5+(1-3+3+4-4)=3500+1=3501例题 2 、计算 9+99+999+9999+99999解:在涉及所有数字都是 9的计算中,常使用凑整法 . 例如将 999化成 1000—1去计算. 这是小学数学中常用的一种技巧 .9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5 =111105.习题 1、98+99+100+101+1022、72+66+75+63+693、995+996+997+998+9993、分算例 3、 100+99-98-97+96+95-94-93+ ⋯ +8+7-6-5+4+3-2-1 =( 100+99-98-97 )+(96+95-94-93 )+⋯+(4+3-2-1 )=4 ×25=1001:2000+1999-1998-1997+1996+1995-1994-1993+8+7-6-5+4+3-2-12:9.7+9.8+9.9+10.1+10.2+10.3合:1、算 (1+3+5+ ⋯ +1989)- (2+4+6+ ⋯ +1988)2、算 199999+19999+1999+199+19。
四年级奥数《速算与巧算》专项练习题及答案
![四年级奥数《速算与巧算》专项练习题及答案](https://img.taocdn.com/s3/m/88c3463c854769eae009581b6bd97f192279bf10.png)
四年级奥数《速算与巧算》专项练习题及答案1. 数的速算法2. 快速计算3. 小学奥数加减乘除练习4. 常见乘法口诀5. 方便的除法计算技巧6. 巧妙的加减法运算7. 优化的百分数计算方法8. 实用的几何图形计算技巧9. 实战的生活中的计算题目10. 视觉记忆的速算训练答案:1. 数的速算法答案:速算法指的是运用一些简便的技巧与方法来快速计算的方法。
例如用9段样条线来表示数字1,将数字的表达与视觉形象结合在一起,可以达到快速计算的效果。
2. 快速计算答案:快速计算技巧包括了加减乘除各个方面,如加法有凑数法、抵数法等;减法有加倍数法、分解数法等;乘法有竖式运算方法,交叉相乘计算法等;除法有竖式运算法、分解分子分母法等。
3. 小学奥数加减乘除练习答案:加减乘除是小学奥数的基础,掌握了这些基础的数学运算能力,才能在学习高阶数学知识时更加游刃有余。
可以通过刻意而有目的地训练来提高计算速度和准确度。
4. 常见乘法口诀答案:小学奥数中最为基础的技能之一就是乘法口诀,通过熟练掌握乘法口诀,可以极大地方便我们的计算。
如:1×8=8,2×8=16,3×8=24,8的下一个是9,所以 4×8=32,5×8=40,等等。
5. 方便的除法计算技巧答案:除法相对而言更为复杂一些,但我们可以通过一些简单易行的技巧来提高计算效率。
如:除法的大小关系可以和乘法相互转换,而某些数字的约数和倍数也可以有助于除法的计算。
6. 巧妙的加减法运算答案:加减法其实是一种递归的过程。
一旦我们掌握了这些技巧,就可以通过这些技巧来递归计算出较为复杂的问题。
例如,在求两个小数的相加时,我们可以把两个小数的小数位数统一,然后相加即可。
7. 优化的百分数计算方法答案:百分数在日常生活中也很常见,要精通百分数计算,通常需要对常用的百分数进行速算。
例如:50%等于1/2,25%等于1/4,10%等于1/10,更高级的百分数转化可以运用推导法来操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级剑桥奥数暑假班速算与巧算速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3-11)=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
求平均每块麦田的产量。
解:选基准数为450,则累计差=12+30-7-30+23-21+18-11+25+11=50,平均每块产量=450+50÷10=455(千克)。
答:平均每块麦田的产量为455千克。
求一位数的平方,在乘法口诀的九九表中已经被同学们熟知,如7×7=49(七七四十九)。
对于两位数的平方,大多数同学只是背熟了10~20的平方,而21~99的平方就不大熟悉了。
有没有什么窍门,能够迅速算出两位数的平方呢?这里向同学们介绍一种方法——凑整补零法。
所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,将所求数转化成一个整十数乘以另一数,再加上零头的平方数。
下面通过例题来说明这一方法。
例3 求292和822的值。
解:292=29×29=(29+1)×(29-1)+12=30×28+1=840+1=841。
822=82×82=(82-2)×(82+2)+22=80×84+4=6720+4=6724。
由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为82比80多2,所以从82中“移走”2,这叫“移多”。
因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一个数上“找齐”。
本例中,给一个29补1,就要给另一个29减1;给一个82减了2,就要给另一个82加上2。
最后,还要加上“移多补少”的数的平方。
由凑整补零法计算352,得35×35=40×30+52=1225。
这与三年级学的个位数是5的数的平方的速算方法结果相同。
这种方法不仅适用于求两位数的平方值,也适用于求三位数或更多位数的平方值。
例4求9932和20042的值。
解:9932=993×993=(993+7)×(993-7)+72=1000×986+49=986000+49=986049。
20042=2004×2004=(2004-4)×(2004+4)+42=2000×2008+16=4016000+16=4016016。
下面,我们介绍一类特殊情况的乘法的速算方法。
请看下面的算式:66×46,73×88,19×44。
这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10。
这类算式有非常简便的速算方法。
例5 88×64=?分析与解:由乘法分配律和结合律,得到88×64=(80+8)×(60+4)=(80+8)×60+(80+8)×4=80×60+8×60+80×4+8×4=80×60+80×6+80×4+8×4=80×(60+6+4)+8×4=80×(60+10)+8×4=8×(6+1)×100+8×4。
于是,我们得到下面的速算式:由上式看出,积的末两位数是两个因数的个位数之积,本例为8×4;积中从百位起前面的数是“个位与十位相同的因数”的十位数与“个位与十位之和为10的因数”的十位数加1的乘积,本例为8×(6+1)。
例6 77×91=?解:由例3的解法得到由上式看出,当两个因数的个位数之积是一位数时,应在十位上补一个0,本例为7×1=07。
用这种速算法只需口算就可以方便地解答出这类两位数的乘法计算。
练习11.求下面10个数的总和:165,152,168,171,148,156,169,161,157,149。
2.农业科研小组测定麦苗的生长情况,量出12株麦苗的高度分别为(单位:厘米):26,25,25,23,27,28,26,24,29,27,27,25。
求这批麦苗的平均高度。
3.某车间有9个工人加工零件,他们加工零件的个数分别为:68,91,84,75,78,81,83,72,79。
他们共加工了多少个零件?4.计算:13+16+10+11+17+12+15+12+16+13+12。
四年级剑桥奥数暑假班速算与巧算5.计算下列各题:(1)372;(2)532;(3)912;(4)682:(5)1082;(6)3972。
6.计算下列各题:(1)77×28;(2)66×55;(3)33×19;(4)82×44;(5)37×33;(6)46×99。
练习1 答案1.1596。
2.26厘米。
3.711个。
4.147。
5.(1)1369;(2)2809;(3)8281;(4)4624;(5)11664;(6)157609。
6.(1)2156;(2)3630;(3)627;(4)3608;(5)1221;(6)4554。
速算与巧算(二)上一讲我们介绍了一类两位数乘法的速算方法,这一讲讨论乘法的“同补”与“补同”速算法。
两个数之和等于10,则称这两个数互补。
在整数乘法运算中,常会遇到像72×78,26×86等被乘数与乘数的十位数字相同或互补,或被乘数与乘数的个位数字相同或互补的情况。
72×78的被乘数与乘数的十位数字相同、个位数字互补,这类式子我们称为“头相同、尾互补”型;26×86的被乘数与乘数的十位数字互补、个位数字相同,这类式子我们称为“头互补、尾相同”型。
计算这两类题目,有非常简捷的速算方法,分别称为“同补”速算法和“补同”速算法。
例1 (1)76×74=?(2)31×39=?分析与解:本例两题都是“头相同、尾互补”类型。
(1)由乘法分配律和结合律,得到76×74=(7+6)×(70+4)=(70+6)×70+(7+6)×4=70×70+6×70+70×4+6×4=70×(70+6+4)+6×4=70×(70+10)+6×4=7×(7+1)×100+6×4。
于是,我们得到下面的速算式:(2)与(1)类似可得到下面的速算式:由例1看出,在“头相同、尾互补”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如1×9=09),积中从百位起前面的数是被乘数(或乘数)的十位数与十位数加1的乘积。
“同补”速算法简单地说就是:积的末两位是“尾×尾”,前面是“头×(头+1)”。
我们在三年级时学到的15×15,25×25,…,95×95的速算,实际上就是“同补”速算法。
例2 (1)78×38=?(2)43×63=?分析与解:本例两题都是“头互补、尾相同”类型。
(1)由乘法分配律和结合律,得到78×38=(70+8)×(30+8)=(70+8)×30+(70+8)×8=70×30+8×30+70×8+8×8=70×30+8×(30+70)+8×8=7×3×100+8×100+8×8=(7×3+8)×100+8×8。
于是,我们得到下面的速算式:(2)与(1)类似可得到下面的速算式:由例2看出,在“头互补、尾相同”的两个两位数乘法中,积的末两位数是两个因数的个位数之积(不够两位时前面补0,如3×3=09),积中从百位起前面的数是两个因数的十位数之积加上被乘数(或乘数)的个位数。
“补同”速算法简单地说就是:积的末两位数是“尾×尾”,前面是“头×头+尾”。
例1和例2介绍了两位数乘以两位数的“同补”或“补同”形式的速算法。
当被乘数和乘数多于两位时,情况会发生什么变化呢?我们先将互补的概念推广一下。
当两个数的和是10,100,1000,…时,这两个数互为补数,简称互补。
如43与57互补,99与1互补,555与445互补。
在一个乘法算式中,当被乘数与乘数前面的几位数相同,后面的几位数互补时,这个算式就是“同补”型,即“头相同,尾互补”型。
例如,因为被乘数与乘数的前两位数相同,都是70,后两位数互补,77+23=100,所以是“同补”型。
又如,等都是“同补”型。
当被乘数与乘数前面的几位数互补,后面的几位数相同时,这个乘法算式就是“补同”型,即“头互补,尾相同”型。