八年级下册等腰三角形ppt课件
合集下载
等腰三角形ppt课件
新课讲授
由此得到另一条等边三角形的判定定理:
有一个角是60°的等腰三角形是等边三角形.
几何语言: ∵∠A=60°,AB=AC, ∴ AB=BC=AC (或△ABC是等边三角形).
例题讲解
例1 已知:如图,在△ABC中,AB=AC,点D,E 分别是AB,AC上的点,且DE∥BC.
求证:△ADE为等腰三角形.
新知探究 你能说出“等腰三角形的两个底角相等”这个定理条 件和结论吗?请写出它的逆命题。
逆命题:有两个角相等 的三角形是等腰三角形
这个命题是真命题么?你能证明么?
新知探究
活动探究:画△ABC,使∠B=∠C, 量一量,线段AB与AC的长度.
我测量后发现AB与AC相等.
3cm
3cm
新课讲授
事实上,如图,在△ABC中,∠B=∠C. 沿过点A的直线把∠BAC对折,
证明 : ∵ AB=AC,
性质定理
∴ ∠B=∠C(等边对等角).
又∵ DE∥BC,
∴ ∠ADE=∠B,∠AED=∠C, ∴ ∠ADE=∠AED,
∴△ADE为等腰三角形(等角对等边).
判定定理
例题讲解
例2 已知:如图,△ABC是等边三角形,点D,E 分别在BA,CA的延长线上,且AD=AE.
求证:△ADE是等边三角形.
类比探究
等腰三角形的判定方法:
方法一: 从边看 有两条边相等的三角形是
等腰三角形(定义). 方法二: 从角看
有两个角相等的三角形是 等腰三角形.
等边三角形的判定方法:
方法一: 从边看 有三条边相等的三角形是
等边三角形(定义). 方法二: 从角看
有三个角相等的三角形是 等边三角形.
新课讲授,
《等腰三角形》教材课件ppt
垂直
问题(5)线段BD与线段CD的长相等吗?
相等
问题(6)你能总结一下折痕所在直线AD具有 的性质吗?
重要结论
等腰三角形是轴对称图形,等腰三角形的对称轴
是底边的垂直平分线。 PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuwen/ 英语课件:/kejian/yingyu/ 科学课件:/kejian/kexue/ 化学课件:/kejian/huaxue/
实验探究
在纸上任意画一个等腰三角形ABC, 把纸对折,使它的两腰AB与AC重合, 记折痕与底边的交点为D,然后把纸展 开铺平,思考下面的问题:
问题(1)等腰三角形ABC是轴对称图形吗? 是
问题(2)∠BAC与∠CAD相等吗?
相等
问题(3) ∠B与∠C相等吗? ?
相等
问题(4)折痕所在直线AD与底边有什么位置关系?
地理课件:/kejian/dili/
历史课件:/kejian/lishi/
等腰三角形的顶角平分线,底边上的高,底边上的中线 重合﹙也称三线合一﹚。
等腰三角形的两个底角相等。
交流与发现
画一个等边三角形ABC, 思考下面问题?
等边三角形有几条对称轴?你能画出这些对称轴吗?
等边三角形的每一个内角都等于600
感谢您的阅读! 为了便于学习和使用,本 文档下载后内容可随意修 改调整及打印。 欢迎下载!
例1 试说明“等边三角形的每个内角都等于600 ” A
解:因为△ABC是等边三角形,从而AB=AC,
所以∠B= ∠CBC同理∠A= ∠B 所以∠A= ∠B= ∠C
问题(5)线段BD与线段CD的长相等吗?
相等
问题(6)你能总结一下折痕所在直线AD具有 的性质吗?
重要结论
等腰三角形是轴对称图形,等腰三角形的对称轴
是底边的垂直平分线。 PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuwen/ 英语课件:/kejian/yingyu/ 科学课件:/kejian/kexue/ 化学课件:/kejian/huaxue/
实验探究
在纸上任意画一个等腰三角形ABC, 把纸对折,使它的两腰AB与AC重合, 记折痕与底边的交点为D,然后把纸展 开铺平,思考下面的问题:
问题(1)等腰三角形ABC是轴对称图形吗? 是
问题(2)∠BAC与∠CAD相等吗?
相等
问题(3) ∠B与∠C相等吗? ?
相等
问题(4)折痕所在直线AD与底边有什么位置关系?
地理课件:/kejian/dili/
历史课件:/kejian/lishi/
等腰三角形的顶角平分线,底边上的高,底边上的中线 重合﹙也称三线合一﹚。
等腰三角形的两个底角相等。
交流与发现
画一个等边三角形ABC, 思考下面问题?
等边三角形有几条对称轴?你能画出这些对称轴吗?
等边三角形的每一个内角都等于600
感谢您的阅读! 为了便于学习和使用,本 文档下载后内容可随意修 改调整及打印。 欢迎下载!
例1 试说明“等边三角形的每个内角都等于600 ” A
解:因为△ABC是等边三角形,从而AB=AC,
所以∠B= ∠CBC同理∠A= ∠B 所以∠A= ∠B= ∠C
13.等腰三角形的判定PPT课件(华师大版)
两角相等 的三角形
互为逆命题
等腰三角形的判定 方法
基本模型
A
B
C
等腰三角形的判定定理是证明 线段相等的一种重要 的方法
等腰三角形性质与判定 的区分
等
腰
变式模型
三 角 形 的 判
A
3
D
21
定
B
C
已知:⊿ABC中,∠B=∠C
求证:A⊿BA=BACC等腰三角形
证明:经过点A作AD⊥BC,垂足为D. A
∴ ∠1= ∠2=90°
练习 在ΔABC中,OB平分∠ABC, OC平分∠ACB,过O点作MN ∥BC.
A (2)线段BM、CN与MN 的长度有什么关系?
M 3 1
O
6
N
∴MN=BM+CN
5
2
4
B
C
(3) ΔAMN的周长=AB+AC吗?为什么?
∵ ΔAMN的周长= AM+MN+AN
=AM+
+AN
=AB +AC
两边相等 的三角形
∵ AD∥BC
E
)
A1 2
D
∴ ∠1=∠B ( 两直线平行, 同位角相等 )
∠2=∠C ( 两直线平行,内错角相等) B
C
∴∠1=∠2 ( 等量代换 )
即 AD平分∠CAE ( 角平分线的定义 )
如图,OA=OB, AB∥DC, 求证:OC=OD. 分析:
(1)从求证看: 要证 OC=OD
需证 ∠D=∠C
(2)从已知看:
由OA=OB 得到 ∠B=∠A 由AB∥DC得到∠D= ∠B ∠C= ∠A
所以:∠D=∠C
如图,OA=OB, AB∥DC, 求证:OC=OD.
等腰三角形 ppt课件
复习回顾
两角分别相等且其中一组等角的对边相等的两个三角形全等
已知:如图,∠A=∠D,∠B=∠E,BC =EF. 求证:△ABC ≌ △DEF.
证明:∵∠A+∠B+∠C=180°,
A
D
∠D+∠E+∠F=180°,
∴∠C=180°-(∠A+∠B),
∠F=180°-(∠D+∠E). B
CE
F
∵∠A=∠D,∠B=∠E(已知),
在△BAD和△CAD中 AB=AC ( 已知 ), ∠BAD=∠CAD ( 已作 ),
AD=AD (公共边),
∴ ∴
∠△BB=AD∠≌C (△全C等AD三(角SA形S的). 对应角相等)B.
D
C
等腰三角形的“三线合一”
AB=AC AD平分∠BAC AD⊥BC
几何语言: ∵
BD=CD∴Biblioteka D学以致用A
求证:∠B=∠C
方法一:作底边上的中线 证明:取BC的中点D,连结AD
∴BD=CD
∵AB=AC,BD=CD,AD=AD
B
D
C
∴△ABD≌△ACD (SSS)
∴∠B=∠C
你还有其他方法吗?请同学交流
方法二:作顶角的平分线
已知: 如图,在△ABC中,AB=AC. 求证: ∠B= ∠C.
证明:作顶角的平分线AD,则∠BAD=∠CAD. A
例1.如图所示,在△ABC中,AB=AC,点D在BC上,且BD=AD,DC=AC,求∠B的度数.
分析:根据题目中给出的相等线段,你发现图中有几个的等腰三角形呢?
解:设∠B的度数为x. ∵AB=AC,∴∠C=∠B=x. ∵AD=BD,∴∠B=∠DAB=x. ∴∠ADC=∠B+∠DAB=2x. ∵AC=CD,∴∠ADC=∠CAD=2x. 在△ACD中, ∠CAD+∠ADC+∠C=180°,
北师大版数学八年级下册1.等腰三角形的特殊性质及等边三角形的性质课件
新课讲授
典例分析
例 如图,已知△ABC,△BDE都是等边三角形. 求证:AE=CD.
分析:要证AE=CD,可通过证AE,CD所在的两个三角 形全等来实现,即证△ABE≌△CBD,条件可从 等边三角形中去寻找.
新课讲授
证明:∵△ABC和△BDE都是等边三角形, ∴AB=BC,BE=BD,∠ABC=∠DBE=60°. AB=CB, 在△ABE与△CBD中, ABE=CBD, BE=BD, ∴△ABE≌△CBD(SAS). ∴AE=CD.
第一章 三角形的证明
1 等腰三角形
课时2 等腰三角形的特殊性质及等边三角形的性质
学习目标
等腰三角形中相等的线段 等边三角形的性质.(重点、难点)
新课导入
等腰三角形有哪些性质?
1.等腰三角形的性质:等边对等角. 2.等腰三角形性质的推论:三线合一,即等腰三角形
顶角的平分线、底边上的中线及底边上的高线互相 重合.
新课讲授
典例分析
例 求证:等腰三角形两腰上的中线相等.
分析:先根据命题分析出题设和结论,画出图形,写 出已知和求证,然后利用等腰三角形的性质和 三角形全等的知识证明.
新课讲授
解:如图,在△ABC中,AB=AC,CE和BD分别是AB 和AC上的中线, 求证:CE=BD.
证明:∵AB=AC,CE和BD分别是AB 和AC上的中线,
新课讲授
知识点2 等边三角形的性质
1.等边三角形的定义是什么? 2.想一想
等边三角形是特殊的等腰三角形,那么等边三角 形的内角有什么特征呢?
新课讲授
定理 等边三角形的三个内角都相等,并且每个角 都等于60°.
新课讲授
典例分析
例 已知:如图, 在△ABC中,AB= AC=BC. 求证:∠A= ∠ B = ∠ C = 60°. ∵AB = AC, ∴∠ B = ∠ C (等边对等角). 又∵AC = BC, ∴∠A= ∠ B (等边对等角). ∴∠A= ∠ B = ∠ C. 在△ABC中,∠A+∠ B+∠ C = 180°. ∴∠A= ∠ B = ∠ C = 60°.
《等腰三角形的性质》ppt课件
若只知道一个角为60°,但无法确定该角是顶角还是底角,则不能判定为等边三角形 。
在处理与等腰三角形有关的问题时,常常需要分类讨论,并考虑各种特殊情况。
04
等腰三角形面积计算与应用
面积计算公式推导
1 2
等腰三角形面积公式
S = 1/2 × b × h,其中b为底边长度,h为高。
通过已知两边和夹角求面积
特点
等腰三角形是轴对称图形,有一条对称轴,即底边的垂直平 分线;等腰三角形的两底角相等;等腰三角形底边上的垂直 平分线、底边上的中线、顶角平分线和底边上的高互相重合 ,简称“三线合一”。
与等边三角形关系
区别
等边三角形的三边都相等,而等腰三 角形只有两边相等;等边三角形的三 个内角都是60度,而等腰三角形的 两个底角相等,但不一定都是60度 。
应用举例
利用两边相等定理解决与等腰 三角形相关的问题,如角度计
算、边长求解等。
两角相等定理
两角相等定理内容
等腰三角形的两个底角相 等。
定理证明方法
通过构造高线或利用相似 三角形进行证明。
应用举例
利用两角相等定理解决与 等腰三角形相关的问题, 如角度计算、相似三角形 判定等。
对称性及其推论
对称性
等腰三角形是轴对称图形,其 对称轴是底边的垂直平分线。
若已知等腰三角形的两边a和夹角θ,则面积S = 1/2 × a^2 × sinθ。
3
通过已知三边求面积
应用海伦公式,先求出半周长p = (a + b + c) / 2,再代入公式S = sqrt[p(p - a)(p - b)(p - c)] 。
典型例题解析
例题1
例题3
已知等腰三角形的底边长为10cm, 腰长为8cm,求其面积。
在处理与等腰三角形有关的问题时,常常需要分类讨论,并考虑各种特殊情况。
04
等腰三角形面积计算与应用
面积计算公式推导
1 2
等腰三角形面积公式
S = 1/2 × b × h,其中b为底边长度,h为高。
通过已知两边和夹角求面积
特点
等腰三角形是轴对称图形,有一条对称轴,即底边的垂直平 分线;等腰三角形的两底角相等;等腰三角形底边上的垂直 平分线、底边上的中线、顶角平分线和底边上的高互相重合 ,简称“三线合一”。
与等边三角形关系
区别
等边三角形的三边都相等,而等腰三 角形只有两边相等;等边三角形的三 个内角都是60度,而等腰三角形的 两个底角相等,但不一定都是60度 。
应用举例
利用两边相等定理解决与等腰 三角形相关的问题,如角度计
算、边长求解等。
两角相等定理
两角相等定理内容
等腰三角形的两个底角相 等。
定理证明方法
通过构造高线或利用相似 三角形进行证明。
应用举例
利用两角相等定理解决与 等腰三角形相关的问题, 如角度计算、相似三角形 判定等。
对称性及其推论
对称性
等腰三角形是轴对称图形,其 对称轴是底边的垂直平分线。
若已知等腰三角形的两边a和夹角θ,则面积S = 1/2 × a^2 × sinθ。
3
通过已知三边求面积
应用海伦公式,先求出半周长p = (a + b + c) / 2,再代入公式S = sqrt[p(p - a)(p - b)(p - c)] 。
典型例题解析
例题1
例题3
已知等腰三角形的底边长为10cm, 腰长为8cm,求其面积。
《等腰三角形的性质》优秀课件
全等识别
若两个三角形三边及三角分别相等,则这两个三角形全等。在等腰三角形中, 若两个等腰三角形的底边和腰长分别相等,则这两个等腰三角形全等。
2024/1/26
21
对后续知识点(如圆、三角函数)的铺垫作用
对圆的知识点铺垫
等腰三角形的性质与圆的性质有密切联系。例如,在等腰三角形中,底边上的中垂线同时也是底边所 在圆的直径;此外,在等腰三角形中引入外接圆和内切圆的概念,可以进一步探讨三角形的性质。
SAS全等判定
若两个三角形两边和夹角分别相等,则这两个三 角形全等。
3
HL全等判定(直角三角形)
在直角三角形中,若斜边和一条直角边分别相等 ,则这两个三角形全等。
2024/1/26
5
与其他特殊三角形关系
与等边三角形的关系
等边三角形是特殊的等腰三角形,三 边都相等。
与相似三角形的关系
若两个等腰三角形的顶角和底角分别 相等,则这两个三角形相似。
8
边角关系
等腰三角形中,两个等腰边所 对的两个底角相等,即等边对 等角。
2024/1/26
等腰三角形的顶角平分线、底 边上的中线、底边上的高相互 重合,即“三线合一”。
等腰三角形中,若有一个角是 60度,则这个三角形是等边三 角形。
9
面积计算公式
等腰三角形的面积可以通过以下公式计算
面积 = (底边长度 × 高) / 2。其中,底边长度是两个等腰边所夹的底边的长度, 高是从顶点到底边的垂直距离。
《等腰三角形的性质》 优秀课件
2024/1/26
1
目录
2024/1/26
• 等腰三角形基本概念 • 等腰三角形性质探究 • 等腰三角形在生活中的应用 • 等腰三角形相关定理证明 • 等腰三角形在几何变换中的地位和作用 • 典型例题解析与课堂互动环节
等腰三角形ppt课件
02
等腰三角形的判定
定义与判定方法
定义:有两边长度相等的三角形称为等 腰三角形。
3. 角平分线法:若一个三角形一个角的 平分线等于其对应边的高线,则该三角 形为等腰三角形。
2. 中线法:若一个三角形中线等于其一 半长度,则该三角形为等腰三角形。
判定方法
1. 定义法:根据等腰三角形的定义,只 需判断一个三角形有两边长度相等即可 。
等腰三角形性质定理的推广与拓展主要涉及以下几个方面:一是推广到更复杂的几何图形中,如平行四边形、菱 形等;二是拓展到三角函数中,用于研究三角函数的对称性和周期性等问题;三是拓展到物理学中,用于研究力 矩平衡等问题。
04
等腰三角形的实际应用
建筑中的等腰三角形
总结词
建筑美学与等腰三角形的完美结合
详细描述
性质定理的应用举例
总结词
等腰三角形性质定理的应用场景及实例
详细描述
等腰三角形性质定理的应用场景广泛,例如在几何、三角函数、建筑等领域都有 应用。以几何为例,通过等腰三角形的性质定理可以证明一些重要的几何定理, 如勾股定理、余弦定理等。
性质定理的推广与拓展
总结词
等腰三角形性质定理的推广及拓展方向
详细描述
等腰三角形在实际VS
详细描述
等腰三角形在实际问题中有着广泛的应用 ,它是解决问题的重要工具。例如,在物 理学中,等腰三角形可以用来解决力臂平 衡的问题;在生物学中,可以用来解释 DNA分子的结构;在经济学中,可以用 来分析股票市场的波动等。
05
等腰三角形的相关练习题及 解析
边角关系在判定中的应用
等边对等角
在等腰三角形中,相等的两边所对的角也相等。
三角形内角和定理
北师版八年级数学下册等腰三角形的性质课件
形顶角的平分线、底边上的中线及底边上的高线 互相重合. 2.思想方法:转化思想的应用,等腰三角形的性质是 证明角相等、边相等的重要方法.
易错点拨
已知等腰三角形的一个外角等于110°,这个等腰三
角形的一个底角的度数为( D )
A.40°
B.55°
C.70°
D.55°或70°
易错点:求等腰三角形的角时易出现漏解的错误
易错点拨
本题应用分类讨论思想,分顶角为70°和 底角为70°两种情况,解题时易丢掉一种情况 而漏解.
课堂小结
1.知识方面: (1)等腰三角形的性质:等边对等角. (2)等腰三角形性质的推论:三线合一,即等腰三角
EF⊥AB,垂足为F.
(1)若∠BAD=25°,求∠C的度数;
(2)求证:EF=ED.
(1)解:∵AB=AC,AD是BC边上的中线,
∴∠BAD=∠CAD.∴∠BAC=2∠BAD=50°.
∵AB=AC,
∴ ∠C=∠ABC = 1 (180°-∠BAC)
=
1
2
(180°-50°)=65°.
2
例题精析
(2)求证:EF=ED. 证明:∵AB=AC,AD是BC边上的中线, ∴ED⊥BC. 又∵BG平分∠ABC,EF⊥AB, ∴EF=ED.
导引:利用全等三角形的判定方法,当∠D=∠B时, 两个三角形符合“边角边等腰三角形的相关概念回顾:
顶
腰
角
腰
底角 底角 底边
探究新知
2.议一议 (1)还记得我们探索过的等腰三角形的性质吗? (2)请你选择等腰三角形的一条性质进行证明,并与
同伴交流. 定理 等腰三角形的两底角相等. 这一定理可以简述为:等边对等角.
课堂精练
易错点拨
已知等腰三角形的一个外角等于110°,这个等腰三
角形的一个底角的度数为( D )
A.40°
B.55°
C.70°
D.55°或70°
易错点:求等腰三角形的角时易出现漏解的错误
易错点拨
本题应用分类讨论思想,分顶角为70°和 底角为70°两种情况,解题时易丢掉一种情况 而漏解.
课堂小结
1.知识方面: (1)等腰三角形的性质:等边对等角. (2)等腰三角形性质的推论:三线合一,即等腰三角
EF⊥AB,垂足为F.
(1)若∠BAD=25°,求∠C的度数;
(2)求证:EF=ED.
(1)解:∵AB=AC,AD是BC边上的中线,
∴∠BAD=∠CAD.∴∠BAC=2∠BAD=50°.
∵AB=AC,
∴ ∠C=∠ABC = 1 (180°-∠BAC)
=
1
2
(180°-50°)=65°.
2
例题精析
(2)求证:EF=ED. 证明:∵AB=AC,AD是BC边上的中线, ∴ED⊥BC. 又∵BG平分∠ABC,EF⊥AB, ∴EF=ED.
导引:利用全等三角形的判定方法,当∠D=∠B时, 两个三角形符合“边角边等腰三角形的相关概念回顾:
顶
腰
角
腰
底角 底角 底边
探究新知
2.议一议 (1)还记得我们探索过的等腰三角形的性质吗? (2)请你选择等腰三角形的一条性质进行证明,并与
同伴交流. 定理 等腰三角形的两底角相等. 这一定理可以简述为:等边对等角.
课堂精练
等腰三角形的PPT课件
详细描述
在力学中,等腰三角形结构可以提供稳定的支撑,如在建筑和桥梁设计中利用等腰三角形来提高结构 的稳定性。在电磁学中,等腰三角形可以用来设计天线和微波暗室等设施,实现电磁波的定向传播和 聚焦。
感谢您的观看
THANKS
判定定理三
如果一个三角形中,有一 个角是另一个角的相等邻 补角,则这个三角形是等 腰三角形。
证明方法
方法一
利用等腰三角形的性质,证明两 腰相等。
方法二
利用全等三角形的性质,证明两 腰相等。
方法三
利用角的性质,证明两腰相等。
应用举例
应用一
在几何图形中,判断哪些图形是等腰三角形。
应用二
在解决实际问题中,利用等腰三角形的性质进行 计算或证明。
等腰三角形在数学中的运用
总结词
等腰三角形是数学中一个重要的基本 图形,具有许多重要的性质和定理。
详细描述
在几何学中,等腰三角形是研究对称 性、全等三角形和三角函数等知识的 重要载体。通过对等腰三角形的研究, 可以推导出许多重要的数学定理和性 质。
等腰三角形在物理学中的应用
总结词
等腰三角形在物理学中也有广泛的应用,特别是在力学和电磁学领域。
元素的值。
边角互换的证明
可以通过三角形的全等定理或相似 定理来证明边角互换定理的正确性。
边角互换的应用
在实际应用中,可以利用边角互换 定理来解决一些几何问题,如计算 角度、长度等。
03
等腰三角形的判定与证明
判定定理
判定定理一
如果一个三角形中,有两 边相等,则这个三角形是 等腰三角形。
判定定理二
如果一个三角形中,有一 个角对应的两边相等,则 这个三角形是等腰三角形。
应用三
在力学中,等腰三角形结构可以提供稳定的支撑,如在建筑和桥梁设计中利用等腰三角形来提高结构 的稳定性。在电磁学中,等腰三角形可以用来设计天线和微波暗室等设施,实现电磁波的定向传播和 聚焦。
感谢您的观看
THANKS
判定定理三
如果一个三角形中,有一 个角是另一个角的相等邻 补角,则这个三角形是等 腰三角形。
证明方法
方法一
利用等腰三角形的性质,证明两 腰相等。
方法二
利用全等三角形的性质,证明两 腰相等。
方法三
利用角的性质,证明两腰相等。
应用举例
应用一
在几何图形中,判断哪些图形是等腰三角形。
应用二
在解决实际问题中,利用等腰三角形的性质进行 计算或证明。
等腰三角形在数学中的运用
总结词
等腰三角形是数学中一个重要的基本 图形,具有许多重要的性质和定理。
详细描述
在几何学中,等腰三角形是研究对称 性、全等三角形和三角函数等知识的 重要载体。通过对等腰三角形的研究, 可以推导出许多重要的数学定理和性 质。
等腰三角形在物理学中的应用
总结词
等腰三角形在物理学中也有广泛的应用,特别是在力学和电磁学领域。
元素的值。
边角互换的证明
可以通过三角形的全等定理或相似 定理来证明边角互换定理的正确性。
边角互换的应用
在实际应用中,可以利用边角互换 定理来解决一些几何问题,如计算 角度、长度等。
03
等腰三角形的判定与证明
判定定理
判定定理一
如果一个三角形中,有两 边相等,则这个三角形是 等腰三角形。
判定定理二
如果一个三角形中,有一 个角对应的两边相等,则 这个三角形是等腰三角形。
应用三
17.1 等腰三角形 - 第1课时课件(共23张PPT)
等边三角形的性质定理
等边三角形的三个角都相等,并且每一个角都等于60°.
例题解析
例1已知:如图,在△ABC中,AB=BC,BD,CE分别为∠ABC,∠ACB的平分线.求证:BD=CE.
证明:∵BD,CE分别为∠ABC,∠ACB的平分线,∴∠ABD=½∠ABC,∠ACE=½∠ACB.∵∠ABC=∠ACB(等边对等角)∴∠ABD=∠ACE(等量代换).∵AB=AC(已知),∠A=∠A(公共角),∴△ABD≌△ACE( ASA ).∴BD=CE(全等三角形的对应边相等).
2.如图,在△ABC中,AB=AC,∠B=50°,则∠C的度数为( ).A.80° B.60°C.50° D.40°
C
3.如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,则∠ADB的度数为( )A.25° B.60° C.85° D.95°
(1)证明:∵△ABC和△ECD都是等边三角形,∴AC =BC,CD =CE,∠ACB =∠DCE=60°,又∵∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DBC,∴∠ACD=∠BCE,在△ACD和△BCE中,AC =BC,∠ACD=∠BCE,CD =CE,∴△ACD≌△BCE(SAS).∴AD=BE.
三边都相等的三角形叫做等边三角形.等边三角形是等腰三角形的特例.
定义
知识点3 等边三角形的定义及性质定理
已知:如图,在△ABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.
证明:∵在△ABC中,AB=BC=AC,∴∠A=∠B=∠C(等边对等角).∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°.
(2)解:在等边△ECD中,∠CDE=∠CED=60°,∴∠ADC=120°,∵△ACD≌△BCE,∴∠BEC=∠ADC=120°,∴∠AEB=∠BEC-∠CED=120°-60°=60°.
等边三角形的三个角都相等,并且每一个角都等于60°.
例题解析
例1已知:如图,在△ABC中,AB=BC,BD,CE分别为∠ABC,∠ACB的平分线.求证:BD=CE.
证明:∵BD,CE分别为∠ABC,∠ACB的平分线,∴∠ABD=½∠ABC,∠ACE=½∠ACB.∵∠ABC=∠ACB(等边对等角)∴∠ABD=∠ACE(等量代换).∵AB=AC(已知),∠A=∠A(公共角),∴△ABD≌△ACE( ASA ).∴BD=CE(全等三角形的对应边相等).
2.如图,在△ABC中,AB=AC,∠B=50°,则∠C的度数为( ).A.80° B.60°C.50° D.40°
C
3.如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,则∠ADB的度数为( )A.25° B.60° C.85° D.95°
(1)证明:∵△ABC和△ECD都是等边三角形,∴AC =BC,CD =CE,∠ACB =∠DCE=60°,又∵∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DBC,∴∠ACD=∠BCE,在△ACD和△BCE中,AC =BC,∠ACD=∠BCE,CD =CE,∴△ACD≌△BCE(SAS).∴AD=BE.
三边都相等的三角形叫做等边三角形.等边三角形是等腰三角形的特例.
定义
知识点3 等边三角形的定义及性质定理
已知:如图,在△ABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.
证明:∵在△ABC中,AB=BC=AC,∴∠A=∠B=∠C(等边对等角).∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°.
(2)解:在等边△ECD中,∠CDE=∠CED=60°,∴∠ADC=120°,∵△ACD≌△BCE,∴∠BEC=∠ADC=120°,∴∠AEB=∠BEC-∠CED=120°-60°=60°.
北师大版数学八年级下册1.等腰三角形的判定及反证法课件
解:△BDE 是等腰三角形. ∵ BD 平分∠ABC, ∴∠ABD = ∠DBC, 又∵DE∥BC, ∴∠DBC = ∠EDB, ∴∠ABD =∠EDB, ∴△BDE 是等腰三角形.
练习
1-1 如图,AE平分∠BAC,DE∥AB,若 AD=5,则DE的长是____5___.
知识点二:反证法
于是∠A +∠B +∠C = 180°+∠C >180°. 这与三角形内角和定理相矛盾,因此“∠A 和∠B 是直角”的假设不成立. 所以,一个三角形中不能有两个角是直角.
【选自教材P9随堂练习第2题】
2. 已知五个正数的和等于1,用反证法证明:
这五个数中至少有一个大于或等于 1 . 5
证明:假设这五个数是a1,,a3,a4,a5全
∴AB = AC.
B
D
C
定理 有两个角相等的三角形是等腰三角形.
这一定理可以简述为:等角对等边.
几何语言:
A
在△ABC中,
∵∠B =∠C (已知)
∴ AB = AC(等角对等边) B
C
例 已知:如图,AB = DC,BD = CA, BD 与 CA 相交于点 E.求证:△AED 是等腰三 角形.
第3课时 等腰三角形的判定及反证法
北师版八年级数学下册
学习目标
1、掌握并运用等腰三角形的判定定理; 2、理解反证法的含义,并运用反证法证明命 题.
回顾复习
等腰三角形的特殊性质: 等腰三角形_两__底__角__的__平__分__线__相等、_两__腰__上__的__高_ 相等、_两__腰__上__中__线__相等. 等腰三角形的性质定理: 等腰三角形的两个底角相等.
A C
反证法:在证明时,先假设命题的结论不 成立,然后推导出与定义、基本事实、已有定 理或已知条件相矛盾的结果,从而证明命题的 结论一定成立.这种证明方法称为反证法.
八年级数学《等腰三角形的性质》课件
基本训练:
1.等腰三角形的概念 2.请拿出一张的长方形纸片,试一试, 通过折叠一次,剪一次,是否可以剪出 一个等腰三角形呢?
动手操作
如图,把一张长方形的纸按图中虚线对折, 并剪去绿色部分, 再把它展 开,得到的△ABC有什么特点? B
A
AB=AC 等腰三角形
C
导新定向:
1.了解等腰三角形的概念,认识等腰三角形
折 演
示
证明:等腰三角形的两个底角相等 已知: △ ABC中,AB=AC.
作底边中线 A
求证: ∠B= ∠C.
作底边中线AD.
在△BAD和△CAD中,
证明: AB=AC
( 已知 ),
BD=CD ( 辅助线作法 ),
AD=ADபைடு நூலகம்(公共边) ,
BDC
∴ △BAD ≌ △CAD (SSS).
∴ ∠ B= ∠C (全等三角形的对应角相等). 思考:再通过做顶角平分线和底边上的高线,你能发现什么结论?
是轴对称图形 2.经历探究等腰三角形性质的过程,理解等 腰三角形的性质的证明 3.掌握等腰三角形的性质,能运用等腰三角 形的性质解决生活中简单的实际问题
观察你所得到等腰三角形,你能发现等
腰三角形具有哪些性质?
A
∠B=∠C
等腰三角形的性质1:
B
C
等腰三角形的两个底角相等 D
(简写成“等边对等
对
角”)
5. 等腰三角形的两边长为3和6,则这个三角形的周长为
一、填空:
1、△ ABC中,AB=AC,∠A= 36◦,则∠B=____,∠C=____。
2、△ ABC中,AB=AC,∠B= 36◦,则∠A=___,∠C=____。
二、R t△ ABC,∠BAC=100◦,AB=AC, AD⊥BC,求∠BAD, ∠CAD ,∠B, C
1.等腰三角形的概念 2.请拿出一张的长方形纸片,试一试, 通过折叠一次,剪一次,是否可以剪出 一个等腰三角形呢?
动手操作
如图,把一张长方形的纸按图中虚线对折, 并剪去绿色部分, 再把它展 开,得到的△ABC有什么特点? B
A
AB=AC 等腰三角形
C
导新定向:
1.了解等腰三角形的概念,认识等腰三角形
折 演
示
证明:等腰三角形的两个底角相等 已知: △ ABC中,AB=AC.
作底边中线 A
求证: ∠B= ∠C.
作底边中线AD.
在△BAD和△CAD中,
证明: AB=AC
( 已知 ),
BD=CD ( 辅助线作法 ),
AD=ADபைடு நூலகம்(公共边) ,
BDC
∴ △BAD ≌ △CAD (SSS).
∴ ∠ B= ∠C (全等三角形的对应角相等). 思考:再通过做顶角平分线和底边上的高线,你能发现什么结论?
是轴对称图形 2.经历探究等腰三角形性质的过程,理解等 腰三角形的性质的证明 3.掌握等腰三角形的性质,能运用等腰三角 形的性质解决生活中简单的实际问题
观察你所得到等腰三角形,你能发现等
腰三角形具有哪些性质?
A
∠B=∠C
等腰三角形的性质1:
B
C
等腰三角形的两个底角相等 D
(简写成“等边对等
对
角”)
5. 等腰三角形的两边长为3和6,则这个三角形的周长为
一、填空:
1、△ ABC中,AB=AC,∠A= 36◦,则∠B=____,∠C=____。
2、△ ABC中,AB=AC,∠B= 36◦,则∠A=___,∠C=____。
二、R t△ ABC,∠BAC=100◦,AB=AC, AD⊥BC,求∠BAD, ∠CAD ,∠B, C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴∠C=180°-(∠A+∠B), ∠F=180°-(∠D+∠E)
∵∠A=∠D, ∠B=∠E(已知)
Hale Waihona Puke ∴∠C=∠F(等量代换)又 ∵BC=EF, ∠B =∠E (已知)
∴△ABC≌△DEF(ASA)
ppt课件.
3
由全等三角形定义,
可以得到 __对__应__边__相__等__,对应角相等
还记得等腰三角形的性质吗? 等腰三角形两个底角 相等 ,你会证明它吗?
内角也为60°.
()
(3)等腰三角形的底角都是锐角.
()
(4)钝角三角形不可能是等腰三角形 .
(×)
ppt课件.
9
2、如图,在等腰三角形ABC中,AB=AC,D为BC的
中点,点D到AB,AC的距离相等吗?请说明理由。
解:
A
E
F
B
DC
ppt课件.
10
等腰三角形是轴对称图形,底边上的中线(顶角 平分线,底边上的高)所在的直线就是它的对 称轴。
ppt课件.
4
【合作探究】
证明:等腰三角形两个底角相等
证法一: 已知:如图, 在△ABC中, AB=AC. 求证:∠B=∠C.
ppt课件.
5
证法二:
已知:如图, 在△ABC中, AB=AC. 求证:∠B=∠C.
ppt课件.
6
由△ABD≌△ACD得:
∠BAD=∠CAD 即AD是△ABC中∠BAC的角平分线
性质1:
等腰三角形两个底角相等,简称“等边 对等角”(前提是在同一个三角形中。)
性质2 :
等腰三角形的顶角的顶角平分线、底边上的
中线、和底边上的高互相重合,简称
“三线合 一”(前提是在同一个等腰三角形中。)
ppt课件.
11
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
ppt课件.
2
推论 两角及其中一角的对边对应相等的两个三角形全等. (AAS),你能用有关的基本事实和已经学过的定理证明它吗?
已知:△ABC和△DEF中,∠A =∠D,∠B =∠E, BC =EF
求证:△ABC≌△DEF
A
D
B
CE
F
证明:∵在△ABC和△DEF中,
∠A+∠B+∠C=180°,
∠D+∠E+∠F=180°(三角形内角和等于180°)
第一节 等腰三角形(一)
ppt课件.
1
【温故知新】回顾我们已经认识的八条公理
① _两__点__确定一条直线
② 两点之间_线__段__最短
③ 同一平面内,过一点有且只有_一__条__直__线_与已知直线垂直 ④ 两条直线被第三条直线所截,如果_同_位__角_相等,那么这两条直 线平行 ⑤ 过直线外一点有且只有_一__条_直__线__与这条直线平行 ⑥ _两__边__及__其__夹_角__分别相等的两个三角形全等 SAS ⑦ _两__角__及__其__夹_边__分别相等的两个三角形全等 ASA ⑧_____三__边______分别相等的两个三角形全等 SSS
BD=CD
即AD是△ABC中底边上的中线
∠ADB=∠ADC=90度 即AD是△ABC中底边上的高线
思考:由此你还有什么发现?写出你的结论。
ppt课件.
7
ppt课件.
8
随堂练习
1.判断下列语句是否正确。
(1)等腰三角形的角平分线、中线和高互相重
合。( ×) (2)有一个角是60°的等腰三角形,其它两个