解线性方程组的直接方法(matlab)

合集下载

第三章MATLAB线性方程组及矩阵特征值

第三章MATLAB线性方程组及矩阵特征值
0.2000
情形2:m<n(不定方程)
- 0.8000
情形3:m>n(超定方程),多用于曲线拟合。
解线性方程组的一般函数文件如下:
function [x,y]=line_solution(A,b)
[m,n]=size(A);y=[];
if norm(b,1)>0
%非齐次方程组
if rank(A)==rank([A,b]) %方程组相容
for i=1:3
if i~=2, a(i,:)=a(i,:)-a(i,2)*a(2,:); end
end
a
a(3,:)=a(3,:)/a(3,3)
for i=1:3;
if i~=3, a(i,:)=a(i,:)-a(i,3)*a(3,:); end;
end; a A_inv = a(:,4:6) A*A_inv
2in
ai 2
,对调2
r2行.
消元:用a22把ai2消为0 (i 3, 4, , n) :
第2 行
ai 2 a22
第i行,则
aij
a2 j
ai 2 a22
aij (i
3, 4,
, n;j
2, 3,
, n 1)
到此原方程组化为
a11x1 a12 x2 a13 x3
a22 x2 a23 x3
2, 3,
, n;j 1, 2,
, n 1)
到此原方程组化为
a11 x1 a12 x2 a22 x2
ai2 x2
an2 x2
a1n xn a1,n1 a2n xn a2,n1
ain xn ai,n1
ann xn an,n1
(2) 找r2,使 ar2 2

MATLAB计算方法3解线性方程组计算解法

MATLAB计算方法3解线性方程组计算解法

MATLAB计算方法3解线性方程组计算解法线性方程组是数学中的一个重要问题,解线性方程组是计算数学中的一个基本计算,有着广泛的应用。

MATLAB是一种功能强大的数学软件,提供了多种解线性方程组的计算方法。

本文将介绍MATLAB中的三种解线性方程组的计算方法。

第一种方法是用MATLAB函数“linsolve”解线性方程组。

该函数使用高斯消元法和LU分解法求解线性方程组,可以处理单个方程组以及多个方程组的情况。

使用该函数的语法如下:X = linsolve(A, B)其中A是系数矩阵,B是常数向量,X是解向量。

该函数会根据A的形式自动选择求解方法,返回解向量X。

下面是一个使用“linsolve”函数解线性方程组的例子:A=[12;34];B=[5;6];X = linsolve(A, B);上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。

运行代码后,X的值为[-4.0000;4.5000]。

第二种方法是用MATLAB函数“inv”求解逆矩阵来解线性方程组。

当系数矩阵A非奇异(可逆)时,可以使用逆矩阵求解线性方程组。

使用“inv”函数的语法如下:X = inv(A) * B其中A是系数矩阵,B是常数向量,X是解向量。

该方法先计算A的逆矩阵,然后将逆矩阵与B相乘得到解向量X。

下面是一个使用“inv”函数解线性方程组的例子:A=[12;34];B=[5;6];X = inv(A) * B;上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。

运行代码后,X的值为[-4.0000;4.5000]。

第三种方法是用MATLAB函数“mldivide”(或“\”)求解线性方程组。

该函数使用最小二乘法求解非方阵的线性方程组。

使用“mldivide”函数的语法如下:X=A\B其中A是系数矩阵,B是常数向量,X是解向量。

专题4 使用MATLAB求解线性方程组的不同方法

专题4 使用MATLAB求解线性方程组的不同方法

Z = null(A) 求出 Ax=0 的基础解系后,将基础解系的向量正交单位化,存储在 Z 中. MATLAB 源代码如下: A=[1 2 2 1;2 1 -2 -2;1 -1 -4 -3]
A= 12 2 1 2 1 -2 -2 1 -1 -4 -3
Rank(A) Ans= 2 A=sym(A) A= [1,2,2,1] [2,1,-2,-2] [1,-1,-4,-3] null(A) ans= [2, 5/3] [-2,-4/3] [1, 0] [0, 1]
运行结果为: rank_A =
2 rank_B =
2 S_H =
-2
1
1
0
0
2
0
1
S_P =
0
1.7500
0
-0.5000
则该线性方程组有无穷多解为:
2 1 0
x

k1
1 0


k2

0 2



7 0
/
4


,
k1
,Leabharlann k2R 0 1 1/ 2
nulla?r?求系数矩阵为a的齐次线性方程组ax0的基础解系结果为有理数bnulla求出ax0的基础解系后将基础解系的向量正交单位化存储在zmatlab源代码如下
专题 4 使用 MATLAB 求解线性方程组的方法
x1 2 x2 2x3 x4 0
【例
1】求齐次方程组

2 x1
end end
x1 2x2 2x3 3x4 2 【例 1.3】使用 Matlab 求解方程组 2x1 4x2 3x3 4x4 5

matlab线性方程组的矩阵解法

matlab线性方程组的矩阵解法
2 解 Ux = −1 7 2 0 0 1 -1 x1 1 x1 13 1 0 x 2 2 x2 2 ,得 2 = 13 x = − 13 ,得 x 0 −1 3 7 3 7 x x4 −1 0 11 4 − 11 7 7 0
function x=lupdsv(A,b) n=length(b); [LU,p]=lupd(A); y(1)=b(p(1)); for i=2:n y(i)=b(p(i))-LU(i,1:i-1)*y(1:i-1)'; end x(n)=y(n)/LU(n,n); for i=(n-1):-1:1 x(i)=(y(i)-LU(i,i+1:n)*x(i+1:n)')/LU(i,i); end
lupdsv.m %功能:调用列主元三角分解函数 [LU,p]=lupd(A) % 求解线性方程组Ax=b。 。 求解线性方程组
%解法:PA=LU, Ax=b←→PAx=Pb 解法: 解法 % % LUx=Pb, Ly=f=Pb, y=Ux f(i)=b(p(i))
%输入:方阵A,右端项 (行或列向量均可) 输入:方阵 ,右端项b(行或列向量均可) 输入 %输出:解x(行向量) 输出: 输出 (行向量)
Ax = d 用矩阵表示 应用追赶法求解三对角线性方程组。追赶法仍然 追赶法求解三对角线性方程组 应用追赶法求解三对角线性方程组。追赶法仍然 保持LU分解特性,它是一种特殊的LU分解。 LU分解特性 LU分解 保持LU分解特性,它是一种特殊的LU分解。充分利用 了系数矩阵的特点,而且使之分解更简单, 了系数矩阵的特点,而且使之分解更简单,得到对三对 角线性方程组的快速解法。 角线性方程组的快速解法。

matlab求解代数方程组解析

matlab求解代数方程组解析

第三讲 Matlab 求解代数方程组理论介绍:直接法+迭代法,简单介绍相关知识和应用条件及注意事项 软件求解:各种求解程序讨论如下表示含有n 个未知数、由n 个方程构成的线性方程组:11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (1)一、直接法 1.高斯消元法:高斯消元法的基本原理: 在(1)中设110,a ≠将第一行乘以111,k a a -加到第(2,3,,),k k n = 得: (1)(1)(1)(1)11112211(2)(1)(2)22112(2)(2)(2)22n n n n n nn n n a x a x a x b a x a x b a x a x b ⎧+++=⎪++=⎪⎨⎪⎪++=⎩(2)其中(1)(1)1111,.k k aa b b ==再设(2)220,a ≠将(2)式的第二行乘以(2)2(2)22,(3,,)k a k n a -= 加到第k 行,如此进行下去最终得到:(1)(1)(1)(1)11112211(2)(1)(2)22112(1)(1)(1)1,111,1()()n n n n n n n n n n n n n n n n nn n n a x a x a x b a x a x b a x a x b a x b --------⎧+++=⎪++=⎪⎪⎨⎪+=⎪⎪=⎩(3) 从(3)式最后一个方程解出n x ,代入它上面的一个方程解出1n x -,并如此进行下去,即可依次将121,,,,n n x x x x - 全部解出,这样在()0(1,2,,)k kk a k n ≠= 的假设下,由上而下的消元由下而上的回代,构成了方程组的高斯消元法. 高斯消元法的矩阵表示:若记11(),(,,),(,,)T T ij n n n n A a x x x b b b ⨯=== ,则(1)式可表为.Ax b =于是高斯消元法的过程可用矩阵表示为:121121.n n M M M Ax M M M b --=其中:(1)21(1)111(1)1(1)11111n a a M a a ⎛⎫ ⎪ ⎪- ⎪=⎪ ⎪ ⎪ ⎪- ⎪⎝⎭ (2)32(2)222(2)2(2)221111n a a M a a ⎛⎫⎪⎪ ⎪-⎪=⎪ ⎪ ⎪⎪- ⎪⎝⎭高斯消元法的Matlab 程序: %顺序gauss 消去法,gauss 函数 function[A,u]=gauss(a,n) for k=1:n-1%消去过程 for i=k+1:n for j=k+1:n+1%如果a(k,k)=0,则不能削去 if abs(a(k,k))>1e-6 %计算第k 步的增广矩阵 a(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j); else%a(k,k)=0,顺序gauss 消去失败 disp (‘顺序gauss 消去失败‘); pause; exit; end end end end%回代过程 x(n)=a(n,n+1)/a(n,n); for i=n-1:-1:1 s=0; for j=i+1:n s=s+a(i,j)*x(j); endx(i)=(a(i,n+1)-s)/a(i,i); end%返回gauss 消去后的增广矩阵 A=triu(a); %返回方程组的解 u=x ;练习和分析与思考: 用高斯消元法解方程组:12345124512345124512452471523814476192536x x x x x x x x x x x x x x x x x x x x x x ++++=⎧⎪+++=⎪⎪++++=⎨⎪+++=⎪+++=⎪⎩2.列主元素消元法在高斯消元法中进行到第k 步时,不论()k ik a 是否为0,都按列选择()||(,,)k ik a i k n = 中最大的一个,称为列主元,将列主元所在行与第k 行交换再按高斯消元法进行下去称为列主元素消元法。

解线性方程组的直接法的Matlab实现1

解线性方程组的直接法的Matlab实现1

学校编码:****** 分类号密级学号:********* UDC本科毕业论文(设计)解线性方程组的直接法的Matlab实现学生姓名:***********************所属院部:***********************专业:***********************指导教师:***********************2014年5 月14 日赤峰学院本科毕业论文(设计)摘要:给出用MATLAB解线性方程组的各种方法,用MATLAB直接操作,不用编程,便可立即求出线性方程组的解.方法直观、简便、速度快,具有较强的实用性,另外提供了Jacobi迭代法程序.1 引言在自然科学与社会科学的研究中,常常需要求解线性代数方程组,如实验数据的曲线、曲面的拟合和用差分法或有限元法解偏微分方程等都要用到线性代数方程组的求解。

由于从不同的问题导出的线性代数方程组的系数矩阵不同,比如:矩阵阶数的大小、矩阵中的非零元稠密情况等,粗略地,系数矩阵可以分为低阶稠密矩阵和大型稀疏矩阵。

关于线性代数程组的求解,主要分为直接法和迭代法两大类,在理论上,用直接法可以通过有限步的计算得到精确解,而迭代法是通过逐次迭代逼近来求得近似解,实际上,由于舍入误差的影响,由直接法得到的解也不精确,因此,在某些需要高精度解的问题中,常常把由直接法得到的解再运用迭代法迭代若干步,以提高解的精度,一般地说,对于低阶稠密的线性代数方程组以及大型带形方程组的求解,采用直接法比较有效,而对于大型稀疏(非带形)方程组则用迭代法求解比较有利。

当然,采用直接法,还是迭代法,还是直接法与迭代法交替运用,要根据具体情况确定。

本章主要讨论一些最基本的直接法,并在此基础上讨论它的变形情况,大量的科技与工程实际问题,常常归结为解线性代数方程组,有关线性方程组解的存在性和唯一性在“线性代数”理论中已经作过详细介绍,本章的主要任务是讨论系数行列式不为零的n阶非齐次线性方程组Ax=b的两类主要求方法:直接法(精确法)和迭代法。

matlab解方程组方法

matlab解方程组方法

matlab解方程组方法在MATLAB中,有多种方法可以解方程组。

以下是其中几种常用的方法:1.solve函数:这是最直接的方法,适用于解线性方程组。

假设你有以下线性方程组:(Ax = b)你可以使用solve函数来求解。

例如:2.matlab复制代码A = [1, 2; 3,4];b = [5; 6];x = solve(A,b);3.\和/运算符:这两个运算符也可以用于解线性方程组。

例如:4.matlab复制代码A = [1, 2; 3, 4];b = [5; 6];x = A\b; % 使用左除运算符或者matlab复制代码x = b/A; % 使用右除运算符5.gaussj函数:这个函数使用高斯-约当消元法来解方程组。

使用方法如下:6.matlab复制代码A = [1, 2; 3,4];b = [5; 6];x = gaussj(A,b);7.mldivide函数:这个函数与\运算符相同,也是用于解线性方程组。

例如:8.matlab复制代码A = [1, 2; 3, 4];b = [5; 6];x = mldivide(A, b); % 等价于A\b9.lyap函数:对于非线性方程组,可以使用lyap函数来求解。

这个函数用于解决Lyapunov方程,通常用于控制系统和稳定性分析。

使用方法如下:10.matlab复制代码A = [1, 2; 3, 4];lyap(A); % 对于给定的A矩阵,求解Lyapunov方程。

11.fzero和root函数:这两个函数用于求解非线性方程的根。

例如,如果你有一个非线性方程(f(x) = 0),你可以使用fzero或root来找到这个方程的根。

使用方法如下:12.matlab复制代码f = @(x) x^2 - 4; % 非线性方程 f(x) = x^2 - 4x = fzero(f, [1, 2]); % 在区间[1,2]内寻找方程的根或者:matlab复制代码root(f) % 使用root函数求解非线性方程的根。

MATLAB编程与工程应用——第7章 MATLAB解方程与函数极值

MATLAB编程与工程应用——第7章 MATLAB解方程与函数极值
一般调用格式( ode45为例) 一般调用格式(以ode45为例) 为例 [t,y]=ode45('fname',tspan,y0) 其中fname是定义f(t,y)的函数文件名,该函数文件必 须返回一个列向量。 tspan形式为[t0,tf],表示求解区间。要获得问题在时 间点t0,t1,…tf上的解,则令tspan=[t0,t1,…,tf] (要求是单调的) y0是初始状态列向量。 t和y分别给出时间向量和相应的状态向量。 求ቤተ መጻሕፍቲ ባይዱ描述振荡器的经典的Ver Pol微分方程 例7.9 求解描述振荡器的经典的Ver der Pol微分方程 d2y verderpol.m exp7_9.m 2 dy (1 y ) + 1 = 0
MATLAB解方程与函数极值
7.1 线性方程组求解
二、迭代解法
迭代解法非常适合求解大型系数矩阵的方程组。在数值 分析中,迭代解法主要包括 Jacobi迭代法、GaussSerdel迭代法、超松弛迭代法和两步迭代法。 Jacobi迭代法 1.Jacobi迭代法 对于线性方程组Ax=b,如果A为非奇异方阵,即aii≠0, 则A可分解为A=D-L-U,其中D为对角阵,其元素为A的对 角元素,L与U为A的下三角阵和上三角阵,于是Ax=b化为: x=D-1(L+U)x+D-1b 与之对应的迭代公式为: x(k+1)=D-1(L+U)x(k)+D-1b 利用jacobi jacobi迭代法求方程的解 例7.4 利用jacobi迭代法求方程的解 exp7_4.m jacobi.m
如s=2时
j =1 j =1
i 1
i 1
1 ym +1 = ym + h[ f ( xm , ym ) + f ( xm + h, ym + h)] 2

线性方程组直接解法实验

线性方程组直接解法实验

实验一 线性方程组直接解法实验一、实验目的1.运用matlab 软件完成线性方程组的直接实验;2.通过实验,了解Doolittle 分解方法和列主元消去法解方程组的过程,并比较两种方法的优点。

二、实验题目分别用Doolittle 分解方法和列主元消去法解方程组123410-7018-3 2.09999962 5.9000015-15-1521021⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭x x x x . 输出A ,b ;Doolittle 分解方法的L 和U ;解向量x,det A ;列主元方法的行交换次序,解向量x,det A ;比较两种方法所得的结果。

三、实验原理1) Doolittle 分解方法的原理算法原理:应用高斯消去法解n 阶线性方程Ax b =经过1n -步消去后得出一个等价的上三角形方程组()()n n A x b =,对上三角形方程组用逐步回代就可以求出解来。

这个过程也可通过矩阵分解来实现。

将非奇异阵分解成一个下三角阵L 和上三角阵U 的乘积称为对矩阵A 的三角分解,又称LU 分解。

根据LU 分解,将Ax b =分解为Ly bUx y =⎧⎨=⎩形式,简化了求解问题。

程序框图:变量说明:ij a 为系数矩阵元素,i b 为常数矩阵系数,,ij ij l u 分别为下、上三角矩阵元素。

2)列主元消去法解方程组的原理算法原理:列选主元是当变换到第k步时,从k列的kk a及以下的各元素中选取绝对值a的位置上,然后再进行消元过程。

交换系数矩阵中最大的元素,通过行交换将其交换到kk的两行(包括常数项),相当于两个方程的位置交换了。

程序框图:Array变量说明:k表示消元到a为消元第k步时第k步,kk主对角线元素3)四、实验过程及结果1)Doolittle分解方法的输出结果----------计算实习题----------Page64 第1题用Doolittle分解方法解方程组A =10.0000 -7.0000 0 1.0000-3.0000 2.1000 6.0000 2.00005.0000 -1.0000 5.0000 -1.00002.0000 1.0000 0 2.0000b =8.00005.90005.00001.0000L =1.0e+006 *0.0000 0 0 0-0.0000 0.0000 0 00.0000 -2.5000 0.0000 00.0000 -2.4000 0.0000 0.0000 U =1.0e+007 *0.0000 -0.0000 0 0.00000 -0.0000 0.0000 0.00000 0 1.5000 0.57500 0 0 0.0000 X =-0.0000-1.00001.00001.0000det(A)值为-762.00009000----------输出完毕----------2)列主元消去法输出结果----------计算实习题----------Page64 第1题列主元消去法解方程组A =10.0000 -7.0000 0 1.0000-3.0000 2.1000 6.0000 2.00005.0000 -1.0000 5.0000 -1.00002.0000 1.0000 0 2.0000b =8.00005.90005.00001.0000X =0.0000-1.00001.00001.0000detA值为-762.00009000----------输出完毕----------五、实验分析1.运用LU分解法可以成批地解方程组,且速度快.若c先求LU=A3,再解(LU)x=b,则要重新计算,计算量增加;如果按照上述方法计算,能够减少运算次数,加快运算速度.3. ⑴无论当n=10、n=100、n=1000时,x1与x2的值都相等,且随着n的增大,变化的只是解的中间部分数字,头、前后几位数都没有变化.⑵高斯消去法应用于三对角方程组得到的就是所谓的“追赶法”.追赶法不需要对零元素计算,只有6n-5次乘除法计算量,求解速度快.且当系数矩阵对角占优时数值稳定,是解三对角方程组的优秀解法.⑶用LU分解法解此方程组速度慢.顺序高斯消去法实际上就是将方程组的系数矩阵分解成单位下三角矩阵与上三角矩阵的乘积.顺序高斯消去法的消元过程相当于LU分解过程和Ly=b的求解,回代过程则相当于解线性方程组Ux=y,故其求解速度慢.六、附原程序1)Doolittle分解方法原程序fprintf('----------计算实习题----------\n')fprintf('Page64 第1题用Doolittle分解方法解方程组\n')A=[10 -7 0 1 ; -3 2.099999 6 2 ;5 -1 5 -1 ; 2 1 0 2];b=[8;5.900001;5;1];n=length(A);U=zeros(n,n);L=eye(n,n);U(1,:)=A(1,:);L(2:n,1)=A(2:n,1)/U(1,1);for i=2:n;U(i,i:n)=A(i,i:n)-L(i,1:i-1)*U(1:i-1,i:n);L(i+1:n,i)=(A(i+1:n,i)-L(i+1:n,1:i-1)*U(1:i-1,i))/U(i,i); endY=zeros(n);Y(1)=b(1);for i=2:nY(i)=b(i)-L(i,1:i-1)*Y(1:i-1,1);endX=zeros(n,1);if det(U)==0;X=0;elseX(n)=Y(n)/U(n,n);for i=n-1:-1:1X(i)=(Y(i)-U(i,i+1:n)*X(i+1:n,1))/U(i,i);endendAbLUXfprintf('det(A)值为%9.8f\n',det(A))fprintf('----------输出完毕 ----------\n')2)列主元消去法原程序fprintf('----------计算实习题----------\n')fprintf('Page64 第1题列主元消去法解方程组\n')A=[10 -7 0 1 ; -3 2.099999 6 2 ;5 -1 5 -1 ; 2 1 0 2];b=[8;5.900001;5;1];C=[A b];n=length(A);D=zeros(n,n+1);l=zeros(n,1);for i=1:nD=C;k=min(find(C(i:n,i)==max(C(i:n,i))));C(i,i:n+1)=D(k+i-1,i:n+1);C(k+i-1,i:n+1)=D(i,i:n+1);l(i+1:n,1)=C(i+1:n,i)/C(i,i);C(i+1:n,i:n+1)= C(i+1:n,i:n+1)- l(i+1:n,1)*C(i,i:n+1); endX=zeros(n,1);X(n)=C(n,n+1)/C(n,n);for i=n-1:-1:1X(i)=(C(i,n+1)-C(i,i+1:n)*X(i+1:n,1))/C(i,i); endAbXfprintf('detA值为%9.8f\n',det(A))fprintf('----------输出完毕----------\n')。

matlab求线性方程组的解

matlab求线性方程组的解

matlab求线性方程组的解求解线性方程分为两种方法–直接法和迭代法常见的方法一共有8种直接法Gauss消去法Cholesky分解法迭代法Jacobi迭代法Gauss-Seidel迭代法超松弛迭代法共轭梯度法Bicg迭代法Bicgstab迭代法这里我从计算代码的角度来解释一下,代码按以下顺序给出。

把方程组直接带入已知条件,就可以得到答案。

适用条件Gauss消去法:求解中小规模线性方程(阶数不过1000),一般用于求系数矩阵稠密而且没有任何特殊结构的线性方程组Cholesky分解法:对称正定方程优先使用,系数矩阵A是n 阶对称正定矩阵Jacobi迭代法非奇异线性方程组,分量的计算顺序没有关系Gauss-Seidel迭代法与Jacobi迭代法相似,但计算的分量不能改变超松弛迭代法Jacobi迭代法和Gauss-Seidel迭代法的加速版,由Gauss-Seidel迭代法改进而来,速度较快共轭梯度法需要确定松弛参数w,只有系数矩阵具有较好的性质时才可以找到最佳松弛因子。

但好处是不用确定任何参数,他是对称正定线性方程组的方法也是求解大型稀疏线性方程组最热门的方法Bicg迭代法本质是用双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Bicgstab迭代法本质是用稳定双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Gauss消去法第一、二个函数ltri、utri是一定要掌握的,后面的几乎每个函数都要用到ltri简单来说,当Ly=bb,L(非奇异下三角矩阵)已知求yfunction y =ltri(L,b)n=size(b,1);y=zeros(n,1);for j =1:n-1y(j)=b(j)/L(j,j);b(j+1:n)=b(j+1:n)-y(j)*L(j+1:n,j); endy(n)=b(n)/L(n,n);utri简单来说,当Ux=yy,U(非奇异上三角矩阵)已知求xfunction x =utri(U,y)n=size(y,1);x=zeros(n,1);for j = n:-1:2x(j)=y(j)/U(j,j);y(1:j-1)=y(1:j-1)-x(j)*U(1:j-1,j);endx(1)=y(1)/U(1,1);gauss算法,计算时粘贴过去就好function[L,U]=gauss(A)n=size(A,1);for k =1:n-1A(k+1:n,k)=A(k+1:n,k)/A(k,k);A(k+1:n,k+1:n)=A(k+1:n,k +1:n)-A(k+1:n,k)*A(k,k+1:n);endL=tril(A,-1)+eye(n);U=triu(A);使用例子已经知道一个线性方程组,这里我就不写出数学形式了,A是系数矩阵,直接把上面写好的函数复制过来在运算就可以。

MATLAB计算方法3解线性方程组计算解法名师公开课获奖课件百校联赛一等奖课件

MATLAB计算方法3解线性方程组计算解法名师公开课获奖课件百校联赛一等奖课件

li1 ai1
u11
(i 2,3,, n)
k 1
ukj akj lkmumj akj
m 1
(
j
k,
k
1,,
n)
lik
aik
k 1
limumk
m 1
(i
k
1,,
n)
ukk aik
(k 2,3,, n)
例3.1
2 1 2 6 2 1 2 6
4 5 4 18 2 3 0 6
a11 a12 a1n l11
a21
a22
a2n
l21
l22
l11 l21 l n1
l22
l
n2
an1
an2
ann
l n1
l n2
l
nn
l
nn
其中aij a ji
由矩阵乘法
(1)
1)
l2 11
a11
l11
a11
(取正)
2) L第1行 LT第j列 (j 2,,n)
…….
(k)
1求u的第k行:用L的第k行 u的第j列
(j k,k 1,,n)
(lk1 , lk 2 ,, lkk,0,0) (u1 j , u2 j ,, u jj,0,0)' akj
k 1
k 1
lkmumj 1 ukj akj ukj akj lkmumj
m 1
m 1
2 求L的第k列:用L的第i行 u的第k列
利用Gauss消元法得到同解旳三角方程为
1 c1
y1
2 c2
y2
n1
ቤተ መጻሕፍቲ ባይዱ
cn1

MATLAB实验一 解线性方程组的直接法

MATLAB实验一 解线性方程组的直接法

输出 Ax b 中系数 A LU 分解的矩阵 L 和 U ,解向量 x 和 det(A) ;用列主元法 的行交换次序解向量 x 和求 det(A) ;比较两种方法所得结果。
2、用列主高斯消元法解线性方程组 Ax b 。
3.01 6.03 1.99 x1 1 4.16 1.23 x 2 1 (1) 、 1.27 0.987 4.81 9.34 x 1 3 3.00 6.03 1.99 x1 1 4.16 1.23 x 2 1 (2) 、 1.27 0.990 4.81 9.34 x 1 3
index = 1 3、在 MATLAB 窗口:
A=[10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10]; b=[32 23 33 31]'; x=A\b b1=[32.1 22.9 33.1 30.9]'; x1=A\b1 A1=[10 7 8.1 7.2;7.08 5.04 6 5;8 5.98 9.89 9;6.99 5 9 9.98]; x2=A1\b delta_b=norm(b-b1)/norm(b) delta_A=norm(A-A1)/norm(A) delta_x1=norm(x-x1)/norm(x) delta_x2=norm(x-x2)/norm(x)
二. 实验要求 1、按照题目要求完成实验内容; 2、写出相应的 Matlab 程序; 3、给出实验结果(可以用表格展示实验结果); 4、分析和讨论实验结果并提出可能的优化实验。 5、写出实验报告。 三. 实验步骤 1、用 LU 分解及列主元高斯消去法解线性方程组
7 10 3 2.099999 a) 5 1 2 1 1 x1 8 6 2 x 2 5.900001 , 5 1 x3 5 0 2 1 x 4 0

matlablu分解法求解方程组

matlablu分解法求解方程组

matlablu分解法求解方程组Matlab中有多种方法可以用来求解线性方程组,其中matlablu分解法(LU decomposition)是一种常用的方法,它将方程组的系数矩阵分解为下三角矩阵L和上三角矩阵U的乘积,然后通过解两个三角方程求出未知量。

1. matlablu分解法的基本原理LU分解法的基本思想是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。

分解后的方程组为Lz=b和Ux=z,其中z和x分别表示中间变量和未知量,b为右端向量。

因为L和U都是三角矩阵,所以可以使用回代(back substitution)求解。

具体地,先用前向代入法(forward substitution)求解Lz=b,然后再用回代法求解Ux=z。

2. matlablu分解法的使用方法Matlab中提供了lu函数,可以直接使用matlablu分解法来求解方程组。

使用该函数时,需要输入系数矩阵A和右端向量b,输出下三角矩阵L、上三角矩阵U和置换矩阵P,满足PA=LU。

3. matlablu分解法的优缺点matlablu分解法的主要优点是计算量小,稳定性良好,对于系数矩阵比较稠密的情况下求解速度较快。

缺点是需要额外的空间存储L和U矩阵,当系数矩阵过于稠密时,存储和计算量会增加。

同时,如果系数矩阵A不是满秩矩阵,需要进行列主元素的选取,增加计算量。

4. matlablu分解法的应用场景matlablu分解法常常用于求解较小规模的方程组,尤其是系数矩阵稠密的情况。

同时,如果求解过程中需要对系数矩阵进行一定的修改,也可以使用matlablu分解法来快速地更新解。

总之,matlablu分解法是求解线性方程组的常用方法之一,它具有计算量小、稳定性好等优点。

在实际应用中,需要根据问题的具体情况选择合适的求解方法。

MATLAB线性方程组求解方法

MATLAB线性方程组求解方法
下面把该线性方程组问题用矩阵形式来表达,从而方便 MATLAB 7.0 计算。首先把 x 和 y 用列向量来表示,具体代码如下: x=(0:0.1:1)’; y=([-0.01 0.045 0.12 0.2 0.33 0.52 0.67 0.95 1.2 1.45 1.78])’; 然后构造系数矩阵 A,具体代码如下: A(:,1)=x’; A(:,2)=x’.^2; 此时方程组可以写成:A*[c1 c2]’=y,然后用反斜杠’\’来求系数 c1 和 c2,具体代 码如下: c=A\y 由上述语句得到如下代码: c= 0.2420 1.5407 最后,拟合得到 y=0.242*x+1.5407*x 2 。具体代码如下: y_fit=c(1)*x+c(2)*x.^2; plot(x,y_fit,’-’,x,y,’o’) 由上述语句得到如图 3-1 所示的拟合结果和原始数据的对比图。 图 3-1 拟合结果和原始数据对比 由图 3-1 可见,虽然拟合得到的结果与原始数据并不严格重合,但其差别比原始数据
——GW318 物联网实验室学术活动
MATLAB 线性方程组求解方法
1.线性方程组的问题 在工程计算中,一个重要的问题是线性方程组的求解。在矩阵表示法中,上述问题可以 表述为给定两个矩阵 A 和 B,是否存在惟一的解 X 使得 AX=B 或 XA=B。 例如,求解方程 3x=6 就可以将矩阵 A 和 B 看成是标量的一种情况,最后得出该方 程的 解为 x=6/3=2。 尽管在标准的数学中并没有矩阵除法的概念,但 MATLAB 7.0 采用了与解标量方程中 类 似的约定,用除号来表示求解线性方程的解。MATLAB 7.0 采用第 2 章介绍过的运算 符斜杠 ’/’和运算符反斜杠’\ ’来表示求线性方程的解,其具体含义如下: • X=A\B 表示求矩阵方程 AX=B 的解; • X=B/A 表示求矩阵方程 XA=B 的解。 对于 X=A\B,要求矩阵 A 和矩阵 B 有相同的行数,X 和 B 有相同的列数,X 的行 数等于 矩阵 A 的列数。X=B\A 行和列的性质则与之相反。 在实际情况中,形式 AX=B 的线性方程组比形式 XA=B 的线性方程组要常见得多。 因此 反斜杠’\’用得更多。本小节的内容也主要针对反斜杠’\’除法进行介绍。斜杠’/’ 除法的性质可以 由恒等变换式得到(B/A)’=(A’\B’)。 系数矩阵 A 不一定要求是方阵,矩阵 A 可以是 m×n 的矩阵,有如下 3 种情况: • m=n 恰定方程组,MATLAB7.0 会寻求精确解; • m>n 超定方程组,MATLAB7.0 会寻求最小二乘解; • m<n 欠定方程组,MATLAB7.0 会寻求基本解,该解最多有 m 个非零元素。 值得注意的是用 MATLAB 7.0 求解这种问题时,并不采用计算矩阵的逆的方法。针对 不 同的情况,MATLAB7.0 会采用不同的算法来解线性方程组。 2.线性方程组的一般解 线性方程组 AX=B 的一般解给出了满足 AX=B 的所有解。线性方程组的一般解可以通 过 下面的步骤得到。 • 解相应的齐次方程组 AX=0, 求得基础解。 可以使用函数 null()来得到基础解。 语 句 null(A) 返回齐次方程组 AX=0 的一个基础解,其他基础解与 null(A)是线性关系。 • 求非齐次线性方程组 AX=B,得到一个特殊解。 • 非齐次线性方程组 AX=B 的一般解等于基础解的线性组合加上特殊解。 在后面的章节将介绍求非齐次线性方程组 AX=B 特殊解的方法。 3.恰定方程组的求解

数值分析中求解线性方程组的MATLAB程序(6种)

数值分析中求解线性方程组的MATLAB程序(6种)

数值分析中求解线性方程组的MATLAB程序(6种)1.回溯法(系数矩阵为上三角)function X=uptrbk(A,B)%求解方程组,首先化为上三角,再调用函数求解[N,N]=size(A);X=zeros(N,1);C=zeros(1,N+1);Aug=[A B];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A was singular.No unique solution.'break;endfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endendD=Aug;X=backsub(Aug(1:N,1:N),Aug(1:N,N+1));2.系数矩阵为下三角function x=matrix_down(A,b)%求解系数矩阵是下三角的方程组n=length(b);x=zeros(n,1);x(1)=b(1)/A(1,1);for k=2:1:nx(k)=(b(k)-A(k,1:k-1)*x(1:k-1))/A(k,k);end3.普通系数矩阵(先化为上三角,在用回溯法)function X=uptrbk(A,B)%求解方程组,首先化为上三角,再调用函数求解[N,N]=size(A);X=zeros(N,1);C=zeros(1,N+1);Aug=[A B];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A was singular.No unique solution.'break;endfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endendD=Aug;X=backsub(Aug(1:N,1:N),Aug(1:N,N+1));4.三角分解法function [X,L,U]=LU_matrix(A,B)%A是非奇异矩阵%AX=B化为LUX=B,L为下三角,U为上三角%程序中并没有真正解出L和U,全部存放在A中[N,N]=size(A);X=zeros(N,1);Y=zeros(N,1);C=zeros(1,N);R=1:N;for p=1:N-1[max1,j]=max(abs(A(p:N,p)));C=A(p,:);A(p,:)=A(j+p-1,:);A(j+p-1,:)=C;d=R(p);R(p)=R(j+p-1);R(j+p-1)=d;if A(p,p)==0'A is singular.No unique solution'break;endfor k=p+1:Nmult=A(k,p)/A(p,p);A(k,p)=mult;A(k,p+1:N)=A(k,p+1:N)-mult*A(p,p+1:N);endendY(1)=B(R(1));for k=2:NY(k)=B(R(k))-A(k,1:k-1)*Y(1:k-1);endX(N)=Y(N)/A(N,N);for k=N-1:-1:1X(k)=(Y(k)-A(k,k+1:N)*X(k+1:N))/A(k,k);endL=tril(A,-1)+eye(N)U=triu(A)5.雅克比迭代法function X=jacobi(A,B,P,delta,max1);%雅克比迭代求解方程组N=length(B);for k=1:max1for j=1:NX(j)=(B(j)-A(j,[1:j-1,j+1:N])*P([1:j-1,j+1:N]))/A(j,j);enderr=abs(norm(X'-P));relerr=err/(norm(X)+eps);P=X';if (err<delta)|(relerr<delta)breakendendX=X';k6.盖斯迭代法function X=gseid(A,B,P,delta,max1);%盖斯算法,求解赋初值的微分方程N=length(B);for k=1:max1for j=1:Nif j==1X(1)=(B(1)-A(1,2:N)*P(2:N))/A(1,1);elseif j==NX(N)=(B(N)-A(N,1:N-1)*(X(1:N-1))')/A(N,N);elseX(j)=(B(j)-A(j,1:j-1)*X(1:j-1)-A(j,j+1:N)*P(j+1:N))/A(j,j);endenderr=abs(norm(X'-P));relerr=err/(norm(X)+eps);P=X';if (err<delta)|(relerr<delta)break;endendX=X';k。

Matlab求解线性方程组、非线性方程组

Matlab求解线性方程组、非线性方程组

求解线性方程组solve,linsolve例:A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1];%矩阵的行之间用分号隔开,元素之间用逗号或空格B=[3;1;1;0]X=zeros<4,1>;%建立一个4元列向量X=linsolve<A,B>diff〔fun,var,n〕:对表达式fun中的变量var求n阶导数.例如:F=sym〔'u<x,y>*v<x,y>'〕; %sym〔〕用来定义一个符号表达式diff<F>; %matlab区分大小写pretty<ans> %pretty〔〕:用习惯书写方式显示变量;ans是答案表达式非线性方程求解fsolve<fun,x0,options>其中fun为待解方程或方程组的文件名;x0位求解方程的初始向量或矩阵;option为设置命令参数建立文件fun.m:function y=fun<x>y=[x<1>-0.5*sin<x<1>>-0.3*cos<x<2>>, ...x<2> - 0.5*cos<x<1>>+0.3*sin<x<2>>];>>clear;x0=[0.1,0.1];fsolve<fun,x0,optimset<'fsolve'>>注:...为续行符m文件必须以function为文件头,调用符为;文件名必须与定义的函数名相同;fsolve〔〕主要求解复杂非线性方程和方程组,求解过程是一个逼近过程.Matlab求解线性方程组AX=B或XA=B在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符"/"和"\".如:X=A\B表示求矩阵方程AX=B的解;X=B/A表示矩阵方程XA=B的解.对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理.如果矩阵A不是方阵,其维数是m×n,则有:m=n 恰定方程,求解精确解;m>n 超定方程,寻求最小二乘解;m<n 不定方程,寻求基本解,其中至多有m个非零元素.针对不同的情况,MATLAB将采用不同的算法来求解.一.恰定方程组恰定方程组由n个未知数的n个方程构成,方程有唯一的一组解,其一般形式可用矩阵,向量写成如下形式:Ax=b 其中A是方阵,b是一个列向量;在线性代数教科书中,最常用的方程组解法有:〔1〕利用cramer公式来求解法;〔2〕利用矩阵求逆解法,即x=A-1b;〔3〕利用gaussian消去法;〔4〕利用lu法求解.一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大.前三种解法的真正意义是在其理论上,而不是实际的数值计算.MATLAB中,出于对算法稳定性的考虑,行列式与逆的计算大都在lu分解的基础上进行.在MATLAB中,求解这类方程组的命令十分简单,直接采用表达式:x=A\b.在MATLAB的指令解释器在确认变量A非奇异后,就对它进行lu分解,并最终给出解x;若矩阵A的条件数很大,MATLAB会提醒用户注意所得解的可靠性.如果矩阵A是奇异的,则Ax=b的解不存在,或者存在但不唯一;如果矩阵A接近奇异时,MATLAB将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵A是病态矩阵,也会给出警告信息.注意:在求解方程时,尽量不要用inv<A>*b命令,而应采用A\b的解法.因为后者的计算速度比前者快、精度高,尤其当矩阵A的维数比较大时.另外,除法命令的适用行较强,对于非方阵A,也能给出最小二乘解.二.超定方程组对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m.则方程组没有精确解,此时称方程组为超定方程组.线性超定方程组经常遇到的问题是数据的曲线拟合.对于超定方程,在MATLAB中,利用左除命令〔x=A\b〕来寻求它的最小二乘解;还可以用广义逆来求,即x=pinv<A>,所得的解不一定满足Ax=b,x只是最小二乘意义上的解.左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;[例7]求解超定方程组A=[2 -1 3;3 1 -5;4 -1 1;1 3 -13]A=2 -1 33 1 -54 -1 11 3 -13b=[3 0 3 -6]’;rank<A>ans=3x1=A\bx1=1.00002.00001.0000x2=pinv<A>*bx2=1.00002.00001.0000A*x1-bans=1.0e-014-0.0888-0.0888-0.1332可见x1并不是方程Ax=b的精确解,用x2=pinv<A>*b所得的解与x1相同.三.欠定方程组欠定方程组未知量个数多于方程个数,但理论上有无穷个解.MATLAB将寻求一个基本解,其中最多只能有m个非零元素.特解由列主元qr分解求得.[例8]解欠定方程组A=[1 -2 1 1;1 -2 1 -1;1 -2 1 5]A=1 -2 1 11 -2 1 -11 -2 1 -11 -2 1 5b=[1 -1 5]’x1=A\bWarning:Rank deficient,rank=2 tol=4.6151e-015x1=-0.00001.0000x2=pinv<A>*bx2=-0.00000.00001.0000四.方程组的非负最小二乘解在某些条件下,所求的线性方程组的解出现负数是没有意义的.虽然方程组可以得到精确解,但却不能取负值解.在这种情况下,其非负最小二乘解比方程的精确解更有意义.在MATLAB中,求非负最小二乘解常用函数nnls,其调用格式为:〔1〕X=nnls<A,b>返回方程Ax=b的最小二乘解,方程的求解过程被限制在x 的条件下;〔2〕X=nnls<A,b,TOL>指定误差TOL来求解,TOL的默认值为TOL=max<size<A>>*norm<A,1>*eps,矩阵的-1范数越大,求解的误差越大;〔3〕[X,W]=nnls<A,b> 当x<i>=0时,w<i><0;当下x<i>>0时,w<i>0,同时返回一个双向量w.[例9]求方程组的非负最小二乘解A=[3.4336 -0.5238 0.6710-0.5238 3.2833 -0.73020.6710 -0.7302 4.0261];b=[-1.000 1.5000 2.5000];[X,W]=nnls<A,b>X=0.6563 0.6998 W=-3.6820 -0.0000 -0.0000 x1=A\bx1=-0.3569 0.5744 0.7846A*X-b ans=1.1258 0.1437 -0.1616 A*x1-b ans=1.0e-0.15 -0.2220 0.4441。

MATLAB解线性方程组的直接方法

MATLAB解线性方程组的直接方法

在这章中我们要学习线性方程组的直接法,特别是适合用数学软件在计算机上求解的方法.3.1 方程组的逆矩阵解法及其MATLAB 程序3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ⨯b X =是否有解的MATLAB 程序function [RA,RB,n]=jiepb(A,b)B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.') return endif RA==RB if RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') elsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.') end end例3.1.4 判断下列线性方程组解的情况.如果有唯一解,则用表 3-2方法求解.(1) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+;0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x (3) ⎪⎩⎪⎨⎧=+=+-=-+;8311,1023,22421321321x x x x x x x x (4) ⎪⎩⎪⎨⎧=--+=+-+=+-+.12,2224,12w z y x w z y x w z y x解 在MATLAB 工作窗口输入程序>> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b)运行后输出结果为请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入>>X=A\b,运行后输出结果为 X =(0 0 0 0)’.(2) 在MATLAB 工作窗口输入程序>> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0];[RA,RB,n]=jiepb(A,b)运行后输出结果请注意:因为RA=RB<n ,所以此方程组有无穷多解. RA =2,RB =2,n =4(3) 在MATLAB 工作窗口输入程序>> A=[4 2 -1;3 -1 2;11 3 0]; b=[2;10;8]; [RA,RB,n]=jiepb(A,B)运行后输出结果请注意:因为RA~=RB ,所以此方程组无解. RA =2,RB =3,n =3(4)在MATLAB 工作窗口输入程序>> A=[2 1 -1 1;4 2 -2 1;2 1 -1 -1]; b=[1; 2; 1]; [RA,RB,n]=jiepb(A,b)运行后输出结果请注意:因为RA=RB<n ,所以此方程组有无穷多解. RA =2,RB =2,n =33.2 三角形方程组的解法及其MATLAB 程序3.2.2 解三角形方程组的MATLAB 程序 解上三角形线性方程组b AX =的MATLAB 程序function [RA,RB,n,X]=shangsan(A,b)B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.') return endif RA==RB if RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') X=zeros(n,1); X(n)=b(n)/A(n,n); for k=n-1:-1:1X(k)=(b(k)-sum(A(k,k+1:n)*X(k+1:n)))/A(k,k);end elsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.')end end例3.2.2 用解上三角形线性方程组的MATLAB 程序解方程组⎪⎪⎩⎪⎪⎨⎧==+-=-+-=++-.63,456,7472,203254434324321x x x x x x x x x x . 解 在MATLAB 工作窗口输入程序>>A=[5 -1 2 3;0 -2 7 -4;0 0 6 5;0 0 0 3]; b=[20; -7; 4;6];[RA,RB,n,X]=shangsan(A,b)运行后输出结果请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = RB =4, 4, n =4,X =[2.4 -4.0 -1.0 2.0]’3.3 高斯(Gauss )消元法和列主元消元法及其MATLAB 程序3.3.1 高斯消元法及其MATLAB 程序用高斯消元法解线性方程组b AX =的MATLAB 程序function [RA,RB,n,X]=gaus(A,b)B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.') return endif RA==RB if RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1); end endb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); endelsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.') end end例3.3.2 用高斯消元法和MATLAB 程序求解下面的非齐次线性方程组,并且用逆矩阵解方程组的方法验证.⎪⎪⎩⎪⎪⎨⎧-=+---=+--=+--=-+-.142,16422,0,13432143214324321x x x x x x x x x x x x x x x 解 在MATLAB 工作窗口输入程序>> A=[1 -1 1 -3; 0 -1 -1 1;2 -2 -4 6;1 -2 -4 1]; b=[1;0; -1;-1]; [RA,RB,n,X] =gaus (A,b)运行后输出结果请注意:因为RA=RB=n ,所以此方程组有唯一解. RA =4 RB =X =0 -0.50004 n = 43.3.2 列主元消元法及其MATLAB 程序用列主元消元法解线性方程组b AX =的MATLAB 程序function [RA,RB,n,X]=liezhu(A,b) B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.') return endif RA==RB if RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1[Y,j]=max(abs(B(p:n,p))); C=B(p,:); B(p,:)= B(j+p-1,:); B(j+p-1,:)=C; for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1); end endb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); endelsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.') end end例3.3.3 用列主元消元法解线性方程组的MATLAB 程序解方程组⎪⎪⎩⎪⎪⎨⎧-=+---=+--=-+-=+--.142,16422,13,0432143214321432x x x x x x x x x x x x x x x . 解 在MATLAB 工作窗口输入程序>> A=[0 -1 -1 1;1 -1 1 -3;2 -2 -4 6;1 -2 -4 1]; b=[0;1;-1;-1]; [RA,RB,n,X]=liezhu(A,b)运行后输出结果请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB = 4,n = 4,X =[0 -0.5 0.5 0]’3.4 LU 分解法及其MATLAB 程序3.4.1判断矩阵LU 分解的充要条件及其MATLAB 程序 判断矩阵A 能否进行LU 分解的MATLAB 程序function hl=pdLUfj(A)[n n] =size(A); RA=rank(A); if RA~=ndisp('请注意:因为A 的n 阶行列式hl 等于零,所以A 不能进行LU 分解.A 的秩RA 如下:'), RA,hl=det(A); returnendif RA==nfor p=1:n,h(p)=det(A(1:p, 1:p));, endhl=h(1:n); for i=1:nif h(1,i)==0disp('请注意:因为A 的r 阶主子式等于零,所以A 不能进行LU 分解.A的秩RA 和各阶顺序主子式值hl 依次如下:'),hl;RA,returnend endif h(1,i)~=0disp('请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A的秩RA 和各阶顺序主子式值hl 依次如下:')hl;RA end end例3.4.1 判断下列矩阵能否进行LU 分解,并求矩阵的秩.(1)⎪⎪⎪⎭⎫ ⎝⎛6547121321;(2)⎪⎪⎪⎭⎫ ⎝⎛654721321;(3)⎪⎪⎪⎭⎫ ⎝⎛654321321. 解 (1)在MATLAB 工作窗口输入程序>> A=[1 2 3;1 12 7;4 5 6];hl=pdLUfj(A)运行后输出结果为请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A 的秩RA 和各阶顺序主子式值hl 依次如下:RA = 3, hl = 1 10 -48(2)在MATLAB 工作窗口输入程序>> A=[1 2 3;1 2 7;4 5 6];hl=pdLUfj(A)运行后输出结果为请注意:因为A 的r 阶主子式等于零,所以A 不能进行LU 分解.A 的秩RA 和各阶顺序主子式值hl 依次如下:RA = 3, hl =1 0 12(3)在MATLAB 工作窗口输入程序>> A=[1 2 3;1 2 3;4 5 6];hl=pdLUfj(A)运行后输出结果为请注意:因为A 的n 阶行列式hl 等于零,所以A 不能进行LU 分解.A 的秩RA 如下RA = 2, hl = 03.4.2 直接LU 分解法及其MATLAB 程序 将矩阵A 进行直接LU 分解的MATLAB 程序function hl=zhjLU(A)[n n] =size(A); RA=rank(A); if RA~=ndisp('请注意:因为A 的n 阶行列式hl 等于零,所以A 不能进行LU 分解.A的秩RA 如下:'), RA,hl=det(A);return endif RA==n for p=1:nh(p)=det(A(1:p, 1:p)); endhl=h(1:n); for i=1:nif h(1,i)==0disp('请注意:因为A 的r 阶主子式等于零,所以A 不能进行LU 分解.A的秩RA 和各阶顺序主子式值hl 依次如下:'), hl;RAreturn end endif h(1,i)~=0disp('请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A 的秩RA 和各阶顺序主子式值hl 依次如下:')for j=1:nU(1,j)=A(1,j); endfor k=2:n for i=2:n for j=2:nL(1,1)=1;L(i,i)=1; if i>jL(1,1)=1;L(2,1)=A(2,1)/U(1,1); L(i,1)=A(i,1)/U(1,1); L(i,k)=(A(i,k)- L(i,1:k-1)*U(1:k-1,k))/U(k,k); elseU(k,j)=A(k,j)-L(k,1:k-1)*U(1:k-1,j); end end end endhl;RA,U,L end end例3.4.3 用矩阵进行直接LU 分解的MATLAB 程序分解矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=3010342110100201A . 解 在MATLAB 工作窗口输入程序>> A=[1 0 2 0;0 1 0 1;1 2 4 3;0 1 0 3]; hl=zhjLU(A)运行后输出结果请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A 的秩RA和各阶顺序主子式值hl 依次如下:RA = 4U = 1 0 2 00 1 0 1 0 0 2 1 L = 1 0 0 0 0 1 0 0 1 2 1 00 1 0 1 hl = 1 1 2 40 0 0 23.4.4 判断正定对称矩阵的方法及其MATLAB 程序 判断矩阵A 是否是正定对称矩阵的MATLAB 程序function hl=zddc(A) [n n] =size(A); for p=1:nh(p)=det(A(1:p, 1:p)); endhl=h(1:n);zA=A'; for i=1:nif h(1,i)<=0disp('请注意:因为A 的各阶顺序主子式hl 不全大于零,所以A 不是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:'), hl;zA,returnend endif h(1,i)>0disp('请注意:因为A 的各阶顺序主子式hl 都大于零,所以A 是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:')hl;zA end例3.4.5 判断下列矩阵是否是正定对称矩阵:(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--98754113211143214321.0;(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------19631690230311211; (3) ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----212100212100002121002121;(4)⎪⎪⎪⎭⎫⎝⎛---401061112. 解 (1)在MATLAB 工作窗口输入程序>> A=[0.1 2 3 4;-1 2 -3 4;11 21 13 41;5 7 8 9];hl=zddc (A)运行后输出结果请注意: A 不是对称矩阵请注意:因为A 的各阶顺序主子式hl 不全大于零,所以A 不是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:zA = 1/10 -1 11 5 2 2 21 7 3 -3 13 8 4 4 41 9 hl = 1/10 11/5 -1601/10 3696/5因此,A 即不是正定矩阵,也不是对称矩阵.(2)在MATLAB 工作窗口输入程序>> A=[1 -1 2 1;-1 3 0 -3;2 0 9 -6;1 -3 -6 19],hl=zddc(A)运行后输出结果A = 1 -1 2 1 -1 3 0 -3 2 0 9 -6 1 -3 -6 19 请注意: A 是对称矩阵请注意:因为A 的各阶顺序主子式hl 都大于零,所以A 是正定的.A 的转置矩阵zA和各阶顺序主子式值hl 依次如下:zA = 1 -1 2 1 -1 3 0 -3 2 0 9 -6 1 -3 -6 19 hl = 1 2 6 24 (3)在MATLAB 工作窗口输入程序>> A=[1/sqrt(2) -1/sqrt(2) 0 0; -1/sqrt(2) 1/sqrt(2) 0 0; 0 0 1/sqrt(2)-1/sqrt(2); 0 0 -1/sqrt(2) 1/sqrt(2)], hl=zddc (A) 运行后输出结果A= 985/1393 -985/1393 0 0 -985/1393 985/1393 0 0 0 0 985/1393 -985/1393 0 0 -985/1393 985/1393 请注意: A 是对称矩阵请注意:因为A 的各阶顺序主子式hl 不全大于零,所以A 不是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:zA = 985/1393 -985/1393 0 0 -985/1393 985/1393 0 0 0 0 985/1393 -985/1393 0 0 -985/1393 985/1393 hl = 985/1393 0 0 0可见,A 不是正定矩阵,是半正定矩阵;因为A = A T因此,A 是对称矩阵.(4)在MATLAB 工作窗口输入程序>> A=[-2 1 1;1 -6 0;1 0 -4];hl=zddc (A)运行后输出结果A = -2 1 11 -6 0 1 0 -4 请注意: A 是对称矩阵请注意:因为A 的各阶顺序主子式hl 不全大于零,所以A 不是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:zA = -2 1 1 hl = -2 11 -38 1 -6 0 1 0 -4可见A 不是正定矩阵,是负定矩阵;因为A = A T因此,A 是对称矩阵.3.5 求解线性方程组的LU 方法及其MATLAB 程序3.5.1 解线性方程组的楚列斯基(Cholesky )分解法及其MATLAB 程序例3.5.1 先将矩阵A 进行楚列斯基分解,然后解矩阵方程b AX =,并用其他方法验证.⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=7531,19631690230311211b A . 解 在工作窗口输入>>A=[1 -1 2 1;-1 3 0 -3; 2 0 9 -6;1 -3 -6 19];b1=1:2:7; b=b1'; R=chol(A);C=A-R'*R,R1=inv(R);R2=R1';x=R1*R2*b,Rx=A\b-x运行后输出方程组的解和验证结果x = Rx = 1.0e-014 * C = 1.0e-015 * -8.0000 -0.7105 0 0 0 0 0.3333 -0.0833 0 -0.4441 0 0 3.6667 0.2220 0 0 0 0 2.0000 0.1332 0 0 0 03.5.2 解线性方程组的直接LU 分解法及其MATLAB 程序例3.5.2 首先将矩阵A 直接进行LU 分解,然后解矩阵方程b AX =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3010342110100201A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=5121b . 解 (1) 首先将矩阵A 直接进行LU 分解.在MATLAB 工作窗口输入程序>> A=[1 0 2 0;0 1 0 1;1 2 4 3;0 1 0 3];b=[1;2;-1;5]; hl=zhjLU(A),A-L*U运行后输出LU 分解请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A 的秩RA和各阶顺序主子式值hl 依次如下:RA = 4U = 1 0 2 0 0 1 0 1 0 0 2 1 0 0 0 2 A 分解为一个单位下三角形矩阵L 和一个上三角形矩阵U 的积 LU A =. (2)在工作窗口输入>> U=[1 0 2 0;0 1 0 1;0 0 2 1;0 0 0 2]; L=[1 0 0 0;0 1 0 0;1 2 1 0;0 10 1];b=[1;2;-1;5];U1=inv(U); L1=inv(L); X=U1*L1*b,x=A\b运行后输出方程组的解X = 8.50000000000000 0.50000000000000 -3.75000000000000 1.500000000000003.5.3 解线性方程组的选主元的LU 方法及其MATLAB 程序例3.5.3 先将矩阵A 进行LU 分解,然后解矩阵方程b AX = 其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=98754113211143214321.0A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=5121b . 解 方法1 根据(3.28)式编写MATLAB 程序,然后在工作窗口输入>> A=[0.1 2 3 4;-1 2 -3 4;11 21 13 41;5 7 8 9];b=[1;2;-1;5]; [L U P]=LU(A), U1=inv(U); L1=inv(L); X=U1* L1*P*b运行后输出结果L = 1.0000 0 0 0 -0.0909 1.0000 0 0L = 1 0 0 0 0 1 0 01 2 1 0 0 1 0 1 hl = 1 1 2 4P = 0 0 1 00 1 0 0 1 0 0 00.0091 0.4628 1.0000 0 0.4545 -0.6512 0.2436 1.0000 U =11.0000 21.0000 13.0000 41.0000 0 3.9091 -1.8182 7.7273 0 0 3.7233 0.0512 0 0 0 -4.6171方法2 根据(3.29)式编写MATLAB 程序,然后在工作窗口输入>> A=[0.1 2 3 4;-1 2 -3 4;11 21 13 41;5 7 8 9];b=[1;2;-1;5]; [F U]=LU(A), U1=inv(U); F1=inv(F); X=U1*F1*b运行后输出结果F=0.0091 0.4628 1.0000 0-0.0909 1.0000 0 01.0000 0 0 00.4545 -0.6512 0.2436 1.0000 X =[-1.2013 3.3677 0.0536 -1.4440]’用LU 分解法解线性方程组A n m ⨯b X =的MATLAB 程序 function [RA,RB,n,X,Y]=LUjfcz(A,b)[n n] =size(A);B=[A b]; RA=rank(A); RB=rank(B); for p=1:nh(p)=det(A(1:p, 1:p)); endhl=h(1:n); for i=1:nif h(1,i)==0disp('请注意:因为A 的r 阶主子式等于零,所以A 不能进行LU 分解.A 的秩RA 和各阶顺序主子式值hl 依次如下:')hl;RA return end endif h(1,i)~=0disp('请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A的秩RA 和各阶顺序主子式值hl 依次如下:')X=zeros(n,1); Y=zeros(n,1); C=zeros(1,n);r=1:1; for p=1:n-1[max1,j]=max(abs(A(p:n,p))); C=A(p,:); A(p,:)= A(j+P1,:); C= A(j+P1,:); g=r(p); r(p)= r(j+P1); r(j+P1)=g; for k=p+1:nH= A(k,p)/A(p,p); A(k,p) = H; A(k,p+1:n)=A(k,p+1:n)- H*A(p,p+1:n);end endY(1)=B(r(1)); for k=2:nY(k)= B(r(k))- A(k,1:k-1)* Y(1:k-1); endX(n)= Y(n)/ A(n,n); for i=n-1:-1:1X(i)= (Y(i)- A(i, i+1:n) * X (i+1:n))/ A(i,i); endU=11.0000 21.0000 13.0000 41.0000 0 3.9091 -1.8182 7.7273 0 0 3.7233 0.0512 0 0 0 -4.6171end[RA,RB,n,X,Y]’;3.6 误差分析及其两种MATLAB 程序3.6.1 用MATLAB 软件作误差分析例3.6.2 解下列矩阵方程b AX =,并比较方程(1)和(2)有何区别,它们的解有何变化.其中,13/112/111/110/19/18/17/112/111/110/19/18/17/16/111/110/19/18/17/16/15/110/19/18/17/16/15/14/19/18/17/16/15/14/13/18/17/16/15/14/13/12/17/16/15/14/13/12/11)1(⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A ;2222221⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=b ,13/112/111/110/19/18/17/112/111/110/19/18/17/16/111/110/19/18/17/16/15/110/19/18/17/16/15/14/19/18/17/16/15/14/13/18/17/16/15/14/13/12/17/16/15/14/13/12/1001.1)2(⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A .2222221⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=b 解 (1) 矩阵方程b AX =的系数矩阵A 为7阶希尔伯特(Hilbert )矩阵,我们可以用下列命令计算n 阶希尔伯特矩阵>>h=hilb(n) % 输出h 为n 阶Hilbert 矩阵在MATLAB 工作窗口输入程序>> A=hilb(7);b=[1;2;2;2;2;2;2];X=A\b运行后输出b AX =的解为 X =(-35 504 -1260 -4200 20790 -27720 12012T ).(2)在MATLAB 工作窗口输入程序>> B =[0.001,zeros(1,6);zeros(6,1),zeros(6,6)];A=(B+hilb(7)); b=[1;2;2;2;2;2;2];X=A\b运行后输出方程的解为 X=(-33 465 -966 -5181 22409 -29015 12413T ).在MATLAB 工作窗口输入程序>> X =[-33, 465,-966,-5181,22409,-29015,12413]';X1 =[-35,504,-1260,-4200,20790,-27720,12012]'; wu=X1'- X'运行后输出方程(1)和(2)的解的误差为=δX 401- 1295 1619- 981 294- 39 -2(T ).方程(1)和(2)的系数矩阵的差为⎪⎪⎭⎫ ⎝⎛=δ⨯⨯⨯661661001.0O O O A ,常数向量相同,则b Ax =的解的差为=δX 40112951619981294392(----T ).A 的微小变化,引起X 的很大变化,即X 对A 的扰动是敏感的.3.6.2 求P 条件数和讨论b AX =解的性态的MATLAB 程序求P 条件数和讨论b AX =解的性态的MATLAB 程序function Acp=zpjxpb(A)Acw = cond (A, inf);Ac1= cond (A,1);Ac2= cond (A,2);Acf = cond (A,'fro');dA=det(A);if (Acw>50)&(dA<0.1)disp('请注意:AX=b 是病态的,A 的∞条件数,1条件数,2条件数, 弗罗贝尼乌斯条件数和A 的行列式的值依次如下:')Acp=[Acw Ac1 Ac2 Acf dA]';elsedisp(' AX=b 是良态的,A 的∞条件数,1条件数,2条件数,弗罗贝尼乌斯条件数和A 的行列式的值依次如下:')Acp=[Acw Ac1 Ac2 Acf dA]';end例3.6.3 根据定理3.10,讨论线性方程组b AX =解的性态,并且求出A 的4种条件数.其中(1)A 为7阶希尔伯特矩阵;(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7421631472135132A . 解 (1)首先将求P 条件数和讨论b AX =解的性态的MATLAB 程序保存名为zpjxpb.m 的M 文件,然后在MATLAB 工作窗口输入程序>> Acp =zpjxpb(hilb(7)); Acp',det(hilb(7))运行后输出结果请注意:AX=b 是病态的,A 的∞条件数,1条件数,2条件数, 弗罗贝尼乌斯条件数和A 的行列式的值依次如下:ans = 1.0e+008 *9.8519 9.8519 4.7537 4.8175 0.0000ans = 4.8358e-025(2)在MATLAB 工作窗口输入程序>> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7];Acp=zpjxpb(A); Acp'运行后输出结果 AX=b 是良态的,A 的∞条件数,1条件数,2条件数, 弗罗贝尼乌斯条件数和A的行列式的值依次如下:ans =14.1713 19.4954 8.2085 11.4203 327.00003.6.3 用P 范数讨论b AX =解和A 的性态的MATLAB 程序用P 范数讨论b AX =解和A 的性态的MATLAB 程序function Acp=zpjwc(A,jA,b,jb,P)Acp = cond (A,P);dA=det(A); X=A\b;dertaA=A-jA;PndA=norm(dertaA, P);dertab=b-jb;Pndb=norm(dertab, P);if Pndb>0jX=A\jb; Pnb= norm(b, P);PnjX = norm(jX,P); dertaX=X-jX;PnjdX= norm(dertaX, P);jxX= PnjdX/PnjX; PnjX = norm(jX,P);PnX = norm(X,P); jxX= PnjdX/PnjX; xX= PnjdX/PnX;Pndb=norm(dertab,P);xAb=Pndb/Pnb;Pnbj=norm(jb,P); xAbj=Pndb/Pnbj;Xgxx= Acp*xAb;endif PndA>0jX=jA\b; dertaX=X-jX;PnX = norm(X,P);PnjdX= norm(dertaX, P);PnjX = norm(jX,P); jxX= PnjdX/PnjX;xX= PnjdX/PnX;PnjA=norm(jA,P); PnA=norm(A,P);PndA=norm(dertaA,P);xAbj= PndA/PnjA;xAb= PndA/PnA;Xgxx= Acp*xAb;endif (Acp >50)&(dA<0.1)disp('请注意:AX=b 是病态的,A 的P 条件数Acp,A 的行列式值dA ,解X ,近似解jX ,解的相对误差jxX ,解的相对误差估计值Xgxx ,b 或A 的相对误差xAb 依次如下:')Acp,dA,X',jX',xX',jxX',Xgxx',xAb',xAbj'elsedisp('请注意: AX=b 是良态的,A 的P 条件数Acp,A 的行列式值dA ,解X ,近似解jX ,解的相对误差jxX ,解的相对误差估计值Xgxx ,b 或A 的相对误差xAb 依次如下:')Acp,dA,X',jX',xX',jxX',Xgxx',xAb',xAbj'end例3.6.4 根据定理3.10,讨论线性方程组b AX =解的性态,并利用(3.32)式讨论当A 的每个元都取4位有效数字时,其解的相对误差.其中A 为7阶希尔伯特矩阵,()22224311=b T . 解 (1)取∞范数和∞条件数,线性方程组b AX =的b 不变时,取∞范数和∞条件数,系数矩阵A 为7阶希尔伯特矩阵,A 中的每个元素取4位有效数字.用P 范数讨论b AX =解和A 的性态的MATLAB 程序保存名为zpjwc.m 的文件,然后在工作窗口输入MATLAB 程序>> jA =[1.0000 0.5000 0.3333 0.2500 0.2000 0.1667 0.14290.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.12500.3333 0.2500 0.2000 0.1667 0.1429 0.1250 0.11110.2500 0.2000 0.1667 0.1429 0.1250 0.1111 0.10000.2000 0.1667 0.1429 0.1250 0.1111 0.1000 0.09090.1667 0.1429 0.1250 0.1111 0.1000 0.0909 0.08330.1429 0.1250 0.1111 0.1000 0.0909 0.0833 0.0769];A=hilb(7);b=[1;1/3;4;2;2;2;2];jb=[1;0.3333;4;2;2;2;2]; Acp=zpjwc(A,jA,b,jb,inf)运行后输出结果请注意:AX=b 是病态的,A 的P 条件数Acp,A 的行列式值dA ,解X ,近似解jX ,解的相对误差jxX ,解的相对误差估计值Xgxx ,b 或A 的相对误差xAb 依次如下:Acp = dA =9.8519e+008 4.8358e-025ans =1.0e+007 *0.0020 -0.0697 0.6243 -2.3054 4.0677 -3.4123 1.0943 ans =1.0e+004 *0.0349 -0.4807 2.1126 -5.1087 7.6557 -6.3239 2.1112 xX = jxX = Xgxx =0.9981 530.3248 4.9291e+004xAb = xAbj =5.0032e-005 5.0031e-005由此可见,因为∞条件数(Cond ≈∞)A 985 194 889.719 848 31>>,所以此方程组为病态的b AX =的解T932)94210320,12334-790,676380,402.305-300,2436 256,697- 565,19( =X,b X jA =)(的解为T )11221239,63-,55767087,51-126,21 079,48- ,493( =jX 解的相对误差120.998≈∞∞X Xδ,291.2749≤+∞∞X X X δδ , 530.32≈+∞∞X X X δδ,,1025.0035-∞∞⨯≈A A δ即相对误差放大了约985 194 889.72倍.(2) 如果取2范数和2条件数计算,在MATLAB 工作窗口输入程序>> Acp =zpjwc(A,jA,b,jb,2)运行后输出结果请注意:AX=b 是病态的,A 的P 条件数Acp,A 的行列式值dA ,解X ,近似解jX ,解的相对误差jxX ,解的相对误差估计值Xgxx ,b 或A 的相对误差xAb 依次如下:Acp = dA =4.7537e+008 4.8358e-025ans =1.0e+007 *0.0020 -0.0697 0.6243 -2.3054 4.0677 -3.4123 1.0943 ans =1.0e+004 *0.0349 -0.4807 2.1126 -5.1087 7.6557 -6.3239 2.1112 xX = jxX = Xgxx=0.9981 511.0640 2.9951e+004xAb = xAbj =6.3006e-005 6.3005e-005因为2条件数Cond ≈2)(A 475 367 356.591>>,所以此方程组为病态的.解的相对误差10.998 22≈X X δ,,105300.6522-⨯≈A A δ,06.51122≈+X X X δδ.85.9502922≤+A A A δδ 即相对误差放大了约475 367 356.59倍.欢迎您的下载,资料仅供参考!。

MatLab求解线性方程组

MatLab求解线性方程组

MatLab解线性方程组一文通当齐次线性方程AX=0,rank(A)=r<n时,该方程有无穷多个解,怎样用MATLAB求它的一个基本解呢?用matlab 中的命令x=null(A, r )即可.其中:r=rank(A)A=[ 1 1 1 1 -3 -1 11 0 0 0 1 1 0-2 0 0 -1 0 -1 -2]用matlab 求解程序为:A=[1 1 1 1 -3 -1 1;1 0 0 0 1 1 0;-2 0 0 -1 0 -1 -2];r=rank(A);y=null(A, r )得到解为:y=[ 0 -1 -1 0-1 2 1 11 0 0 00 2 1 -20 1 0 00 0 1 00 0 0 1]其列向量为Ay=0的一个基本解MatLab解线性方程组一文通!-------------------作者:liguoy(2005-2-3)写在阅读本文前的引子。

一:读者对线性代数与Matlab 要有基本的了解;二:文中的通用exp.m文件,你须把具体的A和b代进去。

一:基本概念1.N级行列式A:|A|等于所有取自不同行不同列的n个元素的积的代数和。

2.矩阵B:矩阵的概念是很直观的,可以说是一张表。

3.线性无关:一向量组(a ,a ,…. a )不线性相关,即没有不全为零的数k ,k ,……kn使得:k1* a +k2* a +…..+kn*an=04. 秩:向量组的极在线性无关组所含向量的个数称为这个向量组的秩。

5.矩阵B的秩:行秩,指矩阵的行向量组的秩;列秩类似。

记:R(B)6.一般线性方程组是指形式: (1)其中x1,x2,…….xn为n个未知数,s为方程个数。

记:A*X=b7.性方程组的增广矩阵:=8. A*X=0 (2)二:基本理论三种基本变换:1,用一非零的数乘某一方程;2,把一个方程的倍数加到另一个方程;3互换两个方程的位置。

以上称初等变换。

消元法(理论上分析解的情况,一切矩阵计算的基础)首先用初等变换化线性方程组为阶梯形方程组,把最后的一些恒等式”0=0”(如果出现的话)去掉,1:如果剩下的方程当中最后的一个等式是零等于一非零数,那么方程组无解;否则有解,在有解的情况下,2:如果阶梯形方程组中方程的个数r等于未知量的个数,那么方程组有唯一的解,3:如果阶梯形方程组中方程的个数r小于是未知量的个数,那么方程组就有无穷个解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在这章中我们要学习线性方程组的直接法,特别是适合用数学软件在计算机上求解的方法.3.1 方程组的逆矩阵解法及其MATLAB 程序3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ⨯b X =是否有解的MATLAB 程序function [RA,RB,n]=jiepb(A,b)B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.') return endif RA==RB if RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') elsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.') end end例3.1.4 判断下列线性方程组解的情况.如果有唯一解,则用表 3-2方法求解.(1) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+;0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x (3) ⎪⎩⎪⎨⎧=+=+-=-+;8311,1023,22421321321x x x x x x x x (4) ⎪⎩⎪⎨⎧=--+=+-+=+-+.12,2224,12w z y x w z y x w z y x解 在MATLAB 工作窗口输入程序>> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b)运行后输出结果为请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入>>X=A\b,运行后输出结果为 X =(0 0 0 0)’.(2) 在MATLAB 工作窗口输入程序>> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0];[RA,RB,n]=jiepb(A,b)运行后输出结果第三章 解线性方程组的直接方法请注意:因为RA=RB<n ,所以此方程组有无穷多解. RA =2,RB =2,n =4(3) 在MATLAB 工作窗口输入程序>> A=[4 2 -1;3 -1 2;11 3 0]; b=[2;10;8]; [RA,RB,n]=jiepb(A,B)运行后输出结果请注意:因为RA~=RB ,所以此方程组无解. RA =2,RB =3,n =3(4)在MATLAB 工作窗口输入程序>> A=[2 1 -1 1;4 2 -2 1;2 1 -1 -1]; b=[1; 2; 1]; [RA,RB,n]=jiepb(A,b)运行后输出结果请注意:因为RA=RB<n ,所以此方程组有无穷多解. RA =2,RB =2,n =33.2 三角形方程组的解法及其MATLAB 程序3.2.2 解三角形方程组的MATLAB 程序 解上三角形线性方程组b AX =的MATLAB 程序function [RA,RB,n,X]=shangsan(A,b)B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.') return endif RA==RB if RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') X=zeros(n,1); X(n)=b(n)/A(n,n); for k=n-1:-1:1X(k)=(b(k)-sum(A(k,k+1:n)*X(k+1:n)))/A(k,k);end elsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.')end end例3.2.2 用解上三角形线性方程组的MATLAB 程序解方程组⎪⎪⎩⎪⎪⎨⎧==+-=-+-=++-.63,456,7472,203254434324321x x x x x x x x x x . 解 在MATLAB 工作窗口输入程序>>A=[5 -1 2 3;0 -2 7 -4;0 0 6 5;0 0 0 3]; b=[20; -7; 4;6];[RA,RB,n,X]=shangsan(A,b)运行后输出结果请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = RB =4, 4, n =4,X =[2.4 -4.0 -1.0 2.0]’3.3 高斯(Gauss )消元法和列主元消元法及其MATLAB 程序3.3.1 高斯消元法及其MATLAB 程序用高斯消元法解线性方程组b AX =的MATLAB 程序f unction [RA,RB,n,X]=gaus(A,b)B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.') return endif RA==RB if RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1); end endb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); endelsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.') end end例3.3.2 用高斯消元法和MATLAB 程序求解下面的非齐次线性方程组,并且用逆矩阵解方程组的方法验证.⎪⎪⎩⎪⎪⎨⎧-=+---=+--=+--=-+-.142,16422,0,13432143214324321x x x x x x x x x x x x x x x 解 在MATLAB 工作窗口输入程序>> A=[1 -1 1 -3; 0 -1 -1 1;2 -2 -4 6;1 -2 -4 1]; b=[1;0; -1;-1]; [RA,RB,n,X] =gaus (A,b)运行后输出结果请注意:因为RA=RB=n ,所以此方程组有唯一解. RA =4RB =4n =43.3.2 列主元消元法及其MATLAB 程序用列主元消元法解线性方程组b AX =的MATLAB 程序function [RA,RB,n,X]=liezhu(A,b)B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA;X = 0 -0.5000 0.5000 0if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.') return endif RA==RB if RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1[Y,j]=max(abs(B(p:n,p))); C=B(p,:); B(p,:)= B(j+p-1,:); B(j+p-1,:)=C; for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1); end endb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); endelsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.') end end例3.3.3 用列主元消元法解线性方程组的MATLAB 程序解方程组⎪⎪⎩⎪⎪⎨⎧-=+---=+--=-+-=+--.142,16422,13,0432143214321432x x x x x x x x x x x x x x x . 解 在MATLAB 工作窗口输入程序>> A=[0 -1 -1 1;1 -1 1 -3;2 -2 -4 6;1 -2 -4 1]; b=[0;1;-1;-1]; [RA,RB,n,X]=liezhu(A,b)运行后输出结果请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB = 4,n = 4,X =[0 -0.5 0.5 0]’3.4 LU 分解法及其MATLAB 程序3.4.1判断矩阵LU 分解的充要条件及其MATLAB 程序 判断矩阵A 能否进行LU 分解的MATLAB 程序function hl=pdLUfj(A)[n n] =size(A); RA=rank(A); if RA~=ndisp('请注意:因为A 的n 阶行列式hl 等于零,所以A 不能进行LU 分解.A的秩RA 如下:'), RA,hl=det(A); returnendif RA==nfor p=1:n,h(p)=det(A(1:p, 1:p));, endhl=h(1:n); for i=1:nif h(1,i)==0disp('请注意:因为A 的r 阶主子式等于零,所以A 不能进行LU 分解.A 的秩RA 和各阶顺序主子式值hl 依次如下:'),hl;RA,returnendendif h(1,i)~=0disp('请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A 的秩RA 和各阶顺序主子式值hl 依次如下:')hl;RA end end例3.4.1 判断下列矩阵能否进行LU 分解,并求矩阵的秩.(1)⎪⎪⎪⎭⎫ ⎝⎛6547121321;(2)⎪⎪⎪⎭⎫ ⎝⎛654721321;(3)⎪⎪⎪⎭⎫ ⎝⎛654321321.解 (1)在MATLAB 工作窗口输入程序>> A=[1 2 3;1 12 7;4 5 6];hl=pdLUfj(A)运行后输出结果为请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A 的秩RA 和各阶顺序主子式值hl 依次如下:RA = 3, hl = 1 10 -48(2)在MATLAB 工作窗口输入程序>> A=[1 2 3;1 2 7;4 5 6];hl=pdLUfj(A)运行后输出结果为请注意:因为A 的r 阶主子式等于零,所以A 不能进行LU 分解.A 的秩RA 和各阶顺序主子式值hl 依次如下:RA = 3, hl =1 0 12(3)在MATLAB 工作窗口输入程序>> A=[1 2 3;1 2 3;4 5 6];hl=pdLUfj(A)运行后输出结果为请注意:因为A 的n 阶行列式hl 等于零,所以A 不能进行LU 分解.A 的秩RA 如下RA = 2, hl = 03.4.2 直接LU 分解法及其MATLAB 程序 将矩阵A 进行直接LU 分解的MATLAB 程序function hl=zhjLU(A)[n n] =size(A); RA=rank(A); if RA~=ndisp('请注意:因为A 的n 阶行列式hl 等于零,所以A 不能进行LU 分解.A的秩RA 如下:'), RA,hl=det(A);return endif RA==n for p=1:nh(p)=det(A(1:p, 1:p)); endhl=h(1:n); for i=1:nif h(1,i)==0disp('请注意:因为A 的r 阶主子式等于零,所以A 不能进行LU 分解.A的秩RA 和各阶顺序主子式值hl 依次如下:'), hl;RAreturn end endif h(1,i)~=0disp('请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A的秩RA 和各阶顺序主子式值hl 依次如下:')for j=1:nU(1,j)=A(1,j); endfor k=2:n for i=2:n for j=2:nL(1,1)=1;L(i,i)=1; if i>jL(1,1)=1;L(2,1)=A(2,1)/U(1,1);L(i,1)=A(i,1)/U(1,1);L(i,k)=(A(i,k)- L(i,1:k-1)*U(1:k-1,k))/U(k,k); elseU(k,j)=A(k,j)-L(k,1:k-1)*U(1:k-1,j); end end end endhl;RA,U,L end end例3.4.3 用矩阵进行直接LU 分解的MA TLAB 程序分解矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=3010342110100201A . 解 在MATLAB 工作窗口输入程序>> A=[1 0 2 0;0 1 0 1;1 2 4 3;0 1 0 3]; hl=zhjLU(A)运行后输出结果请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A 的秩RA和各阶顺序主子式值hl 依次如下:RA = 4U = 1 0 2 00 1 0 10 0 2 10 0 0 2 3.4.4 判断正定对称矩阵的方法及其MATLAB 程序 判断矩阵A 是否是正定对称矩阵的MATLAB 程序function hl=zddc(A) [n n] =size(A); for p=1:nh(p)=det(A(1:p, 1:p)); endhl=h(1:n);zA=A'; for i=1:nif h(1,i)<=0disp('请注意:因为A 的各阶顺序主子式hl 不全大于零,所以A 不是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:'), hl;zA,returnend endif h(1,i)>0disp('请注意:因为A 的各阶顺序主子式hl 都大于零,所以A 是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:')hl;zA end例3.4.5 判断下列矩阵是否是正定对称矩阵:L = 1 0 0 0 0 1 0 0 1 2 1 0 0 1 0 1 hl = 1 1 2 4(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--98754113211143214321.0;(2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------19631690230311211; (3) ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----212100212100002121002121;(4)⎪⎪⎪⎭⎫⎝⎛---401061112. 解 (1)在MATLAB 工作窗口输入程序>> A=[0.1 2 3 4;-1 2 -3 4;11 21 13 41;5 7 8 9];hl=zddc (A)运行后输出结果请注意: A 不是对称矩阵请注意:因为A 的各阶顺序主子式hl 不全大于零,所以A 不是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:zA = 1/10 -1 11 5 2 2 21 7 3 -3 13 8 4 4 41 9 hl = 1/10 11/5 -1601/10 3696/5因此,A 即不是正定矩阵,也不是对称矩阵.(2)在MATLAB 工作窗口输入程序>> A=[1 -1 2 1;-1 3 0 -3;2 0 9 -6;1 -3 -6 19],hl=zddc(A)运行后输出结果A = 1 -1 2 1 -1 3 0 -3 2 0 9 -6 1 -3 -6 19 请注意: A 是对称矩阵请注意:因为A 的各阶顺序主子式hl 都大于零,所以A 是正定的.A 的转置矩阵zA和各阶顺序主子式值hl 依次如下:zA = 1 -1 2 1 -1 3 0 -3 2 0 9 -6 1 -3 -6 19 hl = 1 2 6 24 (3)在MATLAB 工作窗口输入程序>> A=[1/sqrt(2) -1/sqrt(2) 0 0; -1/sqrt(2) 1/sqrt(2) 0 0; 00 1/sqrt(2) -1/sqrt(2); 0 0 -1/sqrt(2) 1/sqrt(2)], hl=zddc (A) 运行后输出结果A= 985/1393 -985/1393 0 0 -985/1393 985/1393 0 0 0 0 985/1393 -985/1393 0 0 -985/1393 985/1393 请注意: A 是对称矩阵请注意:因为A 的各阶顺序主子式hl 不全大于零,所以A 不是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:zA = 985/1393 -985/1393 0 0 -985/1393 985/1393 0 0 0 0 985/1393 -985/1393 0 0 -985/1393 985/1393 hl = 985/1393 0 0 0可见,A 不是正定矩阵,是半正定矩阵;因为A = A T因此,A 是对称矩阵.(4)在MATLAB 工作窗口输入程序>> A=[-2 1 1;1 -6 0;1 0 -4];hl=zddc (A)运行后输出结果A = -2 1 11 -6 01 0 -4 请注意: A 是对称矩阵请注意:因为A 的各阶顺序主子式hl 不全大于零,所以A 不是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:zA = -2 1 1 hl = -2 11 -38 1 -6 0 1 0 -4可见A 不是正定矩阵,是负定矩阵;因为A = A T因此,A 是对称矩阵.3.5 求解线性方程组的LU 方法及其MATLAB 程序3.5.1 解线性方程组的楚列斯基(Cholesky )分解法及其MATLAB 程序例3.5.1 先将矩阵A 进行楚列斯基分解,然后解矩阵方程b AX =,并用其他方法验证.⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=7531,19631690230311211b A . 解 在工作窗口输入>>A=[1 -1 2 1;-1 3 0 -3; 2 0 9 -6;1 -3 -6 19];b1=1:2:7; b=b1'; R=chol(A);C=A-R'*R,R1=inv(R);R2=R1'; x=R1*R2*b,Rx=A\b-x运行后输出方程组的解和验证结果x = Rx = 1.0e-014 * C = 1.0e-015 * -8.0000 -0.7105 0 0 0 0 0.3333 -0.0833 0 -0.4441 0 0 3.6667 0.2220 0 0 0 0 2.0000 0.1332 0 0 0 03.5.2 解线性方程组的直接LU 分解法及其MATLAB 程序例3.5.2 首先将矩阵A 直接进行LU 分解,然后解矩阵方程b AX =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3010342110100201A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=5121b . 解 (1) 首先将矩阵A 直接进行LU 分解.在MATLAB 工作窗口输入程序>> A=[1 0 2 0;0 1 0 1;1 2 4 3;0 1 0 3];b=[1;2;-1;5];hl=zhjLU(A),A-L*U 运行后输出LU 分解请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A 的秩RA和各阶顺序主子式值hl 依次如下:RA = 4U = 1 0 2 00 1 0 10 0 2 10 0 0 2A 分解为一个单位下三角形矩阵L 和一个上三角形矩阵U 的积 LU A =.(2)在工作窗口输入>> U=[1 0 2 0;0 1 0 1;0 0 2 1;0 0 0 2]; L=[1 0 0 0;0 1 0 0;12 1 0;0 1 0 1];L = 1 0 0 0 0 1 0 0 1 2 1 0 0 1 0 1 hl = 1 1 2 4b=[1;2;-1;5];U1=inv(U); L1=inv(L); X=U1*L1*b,x=A\b运行后输出方程组的解X = 8.50000000000000 0.50000000000000 -3.75000000000000 1.500000000000003.5.3 解线性方程组的选主元的LU 方法及其MATLAB 程序例3.5.3 先将矩阵A 进行LU 分解,然后解矩阵方程b AX = 其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=98754113211143214321.0A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=5121b . 解 方法1 根据(3.28)式编写MATLAB 程序,然后在工作窗口输入>> A=[0.1 2 3 4;-1 2 -3 4;11 21 13 41;5 7 8 9];b=[1;2;-1;5]; [L U P]=LU(A), U1=inv(U); L1=inv(L); X=U1*L1*P*b运行后输出结果L = 1.0000 0 0 0 -0.0909 1.0000 0 0 0.0091 0.4628 1.0000 0 0.4545 -0.6512 0.2436 1.0000 U =11.0000 21.0000 13.0000 41.0000 0 3.9091 -1.8182 7.72730 0 3.7233 0.05120 0 0 -4.6171方法2 根据(3.29)式编写MATLAB 程序,然后在工作窗口输入>> A=[0.1 2 3 4;-1 2 -3 4;11 21 13 41;5 7 8 9];b=[1;2;-1;5]; [F U]=LU(A), U1=inv(U); F1=inv(F); X=U1*F1*b运行后输出结果F=0.0091 0.4628 1.0000 0 -0.0909 1.0000 0 0 1.0000 0 0 0 0.4545 -0.6512 0.2436 1.0000 X =[-1.2013 3.3677 0.0536 -1.4440]’ 用LU 分解法解线性方程组A n m ⨯b X =的MATLAB 程序function [RA,RB,n,X,Y]=LUjfcz(A,b)[n n] =size(A);B=[A b]; RA=rank(A); RB=rank(B); for p=1:nh(p)=det(A(1:p, 1:p)); endhl=h(1:n); for i=1:nif h(1,i)==0disp('请注意:因为A 的r 阶主子式等于零,所以A 不能进行LU 分解.A的秩RA 和各阶顺序主子式值hl 依次如下:')hl;RA return end endif h(1,i)~=0disp('请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A 的秩RA 和各阶顺序主子式值hl 依次如下:')X=zeros(n,1); Y=zeros(n,1); C=zeros(1,n);r=1:1;P = 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 X =[-1.2013 3.3677 0.0536 -1.4440]’ U=11.0000 21.0000 13.0000 41.0000 0 3.9091 -1.8182 7.7273 0 0 3.7233 0.0512 0 0 0 -4.6171for p=1:n-1[max1,j]=max(abs(A(p:n,p))); C=A(p,:); A(p,:)= A(j+P1,:); C= A(j+P1,:); g=r(p); r(p)= r(j+P1); r(j+P1)=g; for k=p+1:nH= A(k,p)/A(p,p); A(k,p) = H; A(k,p+1:n)=A(k,p+1:n)-H* A(p,p+1:n);end endY(1)=B(r(1)); for k=2:nY(k)= B(r(k))- A(k,1:k-1)* Y(1:k-1); endX(n)= Y(n)/ A(n,n); for i=n-1:-1:1X(i)= (Y(i)- A(i, i+1:n) * X (i+1:n))/ A(i,i); end end[RA,RB,n,X,Y]’;3.6 误差分析及其两种MATLAB 程序3.6.1 用MATLAB 软件作误差分析例3.6.2 解下列矩阵方程b AX =,并比较方程(1)和(2)有何区别,它们的解有何变化.其中,13/112/111/110/19/18/17/112/111/110/19/18/17/16/111/110/19/18/17/16/15/110/19/18/17/16/15/14/19/18/17/16/15/14/13/18/17/16/15/14/13/12/17/16/15/14/13/12/11)1(⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=A ;2222221⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=b ,13/112/111/110/19/18/17/112/111/110/19/18/17/16/111/110/19/18/17/16/15/110/19/18/17/16/15/14/19/18/17/16/15/14/13/18/17/16/15/14/13/12/17/16/15/14/13/12/1001.1)2(⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A .2222221⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=b 解 (1) 矩阵方程b AX =的系数矩阵A 为7阶希尔伯特(Hilbert )矩阵,我们可以用下列命令计算n 阶希尔伯特矩阵>>h=hilb(n) % 输出h 为n 阶Hilbert 矩阵 在MATLAB 工作窗口输入程序>> A=hilb(7);b=[1;2;2;2;2;2;2];X=A\b 运行后输出b AX =的解为 X =(-35 504 -1260 -4200 20790 -27720 12012T).(2)在MATLAB 工作窗口输入程序>> B =[0.001,zeros(1,6);zeros(6,1),zeros(6,6)]; A=(B+hilb(7)); b=[1;2;2;2;2;2;2];X=A\b 运行后输出方程的解为 X=(-33 465 -966 -5181 22409 -29015 12413T).在MATLAB 工作窗口输入程序>> X =[-33, 465,-966,-5181,22409,-29015,12413]';X1 =[-35,504,-1260,-4200,20790,-27720,12012]'; wu=X1'- X' 运行后输出方程(1)和(2)的解的误差为=δX 401- 1295 1619- 981 294- 39 -2(T ).方程(1)和(2)的系数矩阵的差为⎪⎪⎭⎫ ⎝⎛=δ⨯⨯⨯661661001.0O O O A ,常数向量相同,则b Ax =的解的差为=δX 40112951619981294392(----T ).A 的微小变化,引起X 的很大变化,即X 对A 的扰动是敏感的.3.6.2 求P 条件数和讨论b AX =解的性态的MATLAB 程序求P 条件数和讨论b AX =解的性态的MATLAB 程序function Acp=zpjxpb(A)Acw = cond (A, inf);Ac1= cond (A,1);Ac2= cond (A,2);Acf = cond (A,'fro');dA=det(A);if (Acw>50)&(dA<0.1)disp('请注意:AX=b 是病态的,A 的∞条件数,1条件数,2条件数, 弗罗贝尼乌斯条件数和A 的行列式的值依次如下:')Acp=[Acw Ac1 Ac2 Acf dA]';elsedisp(' AX=b 是良态的,A 的∞条件数,1条件数,2条件数,弗罗贝尼乌斯条件数和A 的行列式的值依次如下:')Acp=[Acw Ac1 Ac2 Acf dA]';end例3.6.3 根据定理3.10,讨论线性方程组b AX =解的性态,并且求出A 的4种条件数.其中(1)A 为7阶希尔伯特矩阵;(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7421631472135132A . 解 (1)首先将求P 条件数和讨论b AX =解的性态的MATLAB 程序保存名为zpjxpb.m 的M 文件,然后在MATLAB 工作窗口输入程序>> Acp =zpjxpb(hilb(7)); Acp',det(hilb(7))运行后输出结果请注意:AX=b 是病态的,A 的∞条件数,1条件数,2条件数, 弗罗贝尼乌斯条件数和A 的行列式的值依次如下:ans = 1.0e+008 *9.8519 9.8519 4.7537 4.8175 0.0000ans = 4.8358e-025(2)在MATLAB 工作窗口输入程序>> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7];Acp=zpjxpb(A); Acp' 运行后输出结果 AX=b 是良态的,A 的∞条件数,1条件数,2条件数, 弗罗贝尼乌斯条件数和A 的行列式的值依次如下:ans =14.1713 19.4954 8.2085 11.4203 327.00003.6.3 用P 范数讨论b AX =解和A 的性态的MATLAB 程序用P 范数讨论b AX =解和A 的性态的MATLAB 程序function Acp=zpjwc(A,jA,b,jb,P)Acp = cond (A,P);dA=det(A); X=A\b;dertaA=A-jA;PndA=norm(dertaA, P);dertab=b-jb;Pndb=norm(dertab, P);if Pndb>0jX=A\jb; Pnb= norm(b, P);PnjX = norm(jX,P); dertaX=X-jX;PnjdX= norm(dertaX, P);jxX= PnjdX/PnjX; PnjX =norm(jX,P);PnX = norm(X,P); jxX= PnjdX/PnjX; xX= PnjdX/PnX;Pndb=norm(dertab,P);xAb=Pndb/Pnb;Pnbj=norm(jb,P); xAbj=Pndb/Pnbj;Xgxx= Acp*xAb;end if PndA>0jX=jA\b; dertaX=X-jX;PnX = norm(X,P);PnjdX= norm(dertaX, P);PnjX = norm(jX,P); jxX= PnjdX/PnjX;xX= PnjdX/PnX;PnjA=norm(jA,P); PnA=norm(A,P);PndA=norm(dertaA,P);xAbj= PndA/PnjA;xAb= PndA/PnA;Xgxx= Acp*xAb;endif (Acp >50)&(dA<0.1)disp('请注意:AX=b 是病态的,A 的P 条件数Acp,A 的行列式值dA ,解X ,近似解jX ,解的相对误差jxX ,解的相对误差估计值Xgxx ,b 或A 的相对误差xAb 依次如下:')Acp,dA,X',jX',xX',jxX',Xgxx',xAb',xAbj'elsedisp('请注意: AX=b 是良态的,A 的P 条件数Acp,A 的行列式值dA ,解X ,近似解jX ,解的相对误差jxX ,解的相对误差估计值Xgxx ,b 或A 的相对误差xAb 依次如下:')Acp,dA,X',jX',xX',jxX',Xgxx',xAb',xAbj'end例3.6.4 根据定理3.10,讨论线性方程组b AX =解的性态,并利用(3.32)式讨论当A 的每个元都取4位有效数字时,其解的相对误差.其中A 为7阶希尔伯特矩阵,()22224311=b T .解 (1)取∞范数和∞条件数,线性方程组b AX =的b 不变时,取∞范数和∞条件数,系数矩阵A 为7阶希尔伯特矩阵,A 中的每个元素取4位有效数字.用P 范数讨论b AX =解和A 的性态的MATLAB 程序保存名为zpjwc.m 的文件,然后在工作窗口输入MATLAB 程序>> jA =[1.0000 0.5000 0.3333 0.2500 0.2000 0.1667 0.14290.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.12500.3333 0.2500 0.2000 0.1667 0.1429 0.1250 0.11110.2500 0.2000 0.1667 0.1429 0.1250 0.1111 0.10000.2000 0.1667 0.1429 0.1250 0.1111 0.1000 0.09090.1667 0.1429 0.1250 0.1111 0.1000 0.0909 0.08330.1429 0.1250 0.1111 0.1000 0.0909 0.0833 0.0769];A=hilb(7);b=[1;1/3;4;2;2;2;2];jb=[1;0.3333;4;2;2;2;2]; Acp=zpjwc(A,jA,b,jb,inf)运行后输出结果请注意:AX=b 是病态的,A 的P 条件数Acp,A 的行列式值dA ,解X ,近似解jX ,解的相对误差jxX ,解的相对误差估计值Xgxx ,b 或A 的相对误差xAb 依次如下:Acp = dA =9.8519e+008 4.8358e-025ans =1.0e+007 *0.0020 -0.0697 0.6243 -2.3054 4.0677 -3.41231.0943ans =1.0e+004 *0.0349 -0.4807 2.1126 -5.1087 7.6557 -6.32392.1112 xX = jxX = Xgxx =0.9981 530.3248 4.9291e+004xAb = xAbj =5.0032e-005 5.0031e-005由此可见,因为∞条件数(Cond ≈∞)A 985 194 889.719 848 31>>,所以此方程组为病态的b AX =的解T 932)94210320,12334-790,676380,402.305-300,2436 256,697- 565,19( =X , b X jA =)(的解为T )11221239,63-,55767087,51-126,21 079,48- ,493( =jX 解的相对误差120.998≈∞∞X Xδ,291.2749≤+∞∞X X X δδ , 530.32≈+∞∞X X X δδ,,1025.0035-∞∞⨯≈A Aδ即相对误差放大了约985 194 889.72倍.(2) 如果取2范数和2条件数计算,在MATLAB 工作窗口输入程序>> Acp =zpjwc(A,jA,b,jb,2)运行后输出结果请注意:AX=b 是病态的,A 的P 条件数Acp,A 的行列式值dA ,解X ,近似解jX ,解的相对误差jxX ,解的相对误差估计值Xgxx ,b 或A 的相对误差xAb 依次如下:Acp = dA =4.7537e+008 4.8358e-025ans = 1.0e+007 *0.0020 -0.0697 0.6243 -2.3054 4.0677 -3.41231.0943ans =1.0e+004 *0.0349 -0.4807 2.1126 -5.1087 7.6557 -6.32392.1112xX = jxX = Xgxx=0.9981 511.0640 2.9951e+004xAb = xAbj =6.3006e-005 6.3005e-005因为2条件数Cond ≈2)(A 475 367 356.591>>,所以此方程组为病态的.解的相对误差10.998 22≈X X δ,,105300.6522-⨯≈A A δ,06.51122≈+X X X δδ.85.9502922≤+A A A δδ 即相对误差放大了约475 367 356.59倍.。

相关文档
最新文档