线性方程组求解matlab实现

合集下载

MATLAB计算方法3解线性方程组计算解法

MATLAB计算方法3解线性方程组计算解法

直到(n-1) 原方程组化为
a11 x1 a12 x2 a1n xn a1,n1 a22 x2 a2 n xn a2 ,n1

ann xn an ,n1
(上三角方程组) (3.2) 以上为消元过程。
(n) 回代求解公式
a n ,n1 xn a nn n x k 1 [a k ,n1 a kj x j ] a kk j k 1 ( k n 1, n 2,...,1)
由矩阵乘法 (1) 1) l11 a11 l11
umj 1 ukj a kj ukj a kj l km umj
m 1
k 1
2 求L的第k列:用L的第i行 u的第k列
(i k 1, , n),即 ( l i 1 , , l ik , l kk , 0 0) ( u1k , u2 k , , ukk , 0 0)' a ik
( 2) 1)求u的第2行:用L的第2行 u的第j列 (j 2, , n) l 21 u1 j 1 u2 j a 2 j u2 j a 2 j l 21u1 j 2)求L的第2列:用L的第i行 u的第2列 (i 3,4, , n) l i 1 u12 l i 2 u22 a i 2 l i 2 (a i 2 l i 1 u12 ) / u22
m 1
l
k 1
im
umk l ik ukk a ik
k 1
l ik a ik l im umk ukk m 1
LU分解式: u1 j a1 j ( j 1,2, n) l i 1 a i 1 u11 ( i 2,3, , n) k 1 ukj a kj l km umj a kj m 1 ( j k , k 1, , n) k 1 l ik a ik l im umk ukk a ik m 1 ( i k 1, , n) ( k 2, 3, , n )

MATLAB计算方法3解线性方程组计算解法

MATLAB计算方法3解线性方程组计算解法

MATLAB计算方法3解线性方程组计算解法线性方程组是数学中的一个重要问题,解线性方程组是计算数学中的一个基本计算,有着广泛的应用。

MATLAB是一种功能强大的数学软件,提供了多种解线性方程组的计算方法。

本文将介绍MATLAB中的三种解线性方程组的计算方法。

第一种方法是用MATLAB函数“linsolve”解线性方程组。

该函数使用高斯消元法和LU分解法求解线性方程组,可以处理单个方程组以及多个方程组的情况。

使用该函数的语法如下:X = linsolve(A, B)其中A是系数矩阵,B是常数向量,X是解向量。

该函数会根据A的形式自动选择求解方法,返回解向量X。

下面是一个使用“linsolve”函数解线性方程组的例子:A=[12;34];B=[5;6];X = linsolve(A, B);上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。

运行代码后,X的值为[-4.0000;4.5000]。

第二种方法是用MATLAB函数“inv”求解逆矩阵来解线性方程组。

当系数矩阵A非奇异(可逆)时,可以使用逆矩阵求解线性方程组。

使用“inv”函数的语法如下:X = inv(A) * B其中A是系数矩阵,B是常数向量,X是解向量。

该方法先计算A的逆矩阵,然后将逆矩阵与B相乘得到解向量X。

下面是一个使用“inv”函数解线性方程组的例子:A=[12;34];B=[5;6];X = inv(A) * B;上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。

运行代码后,X的值为[-4.0000;4.5000]。

第三种方法是用MATLAB函数“mldivide”(或“\”)求解线性方程组。

该函数使用最小二乘法求解非方阵的线性方程组。

使用“mldivide”函数的语法如下:X=A\B其中A是系数矩阵,B是常数向量,X是解向量。

求线性方程组AX=b通解的Matlab实现程序

求线性方程组AX=b通解的Matlab实现程序
而得 到 齐次线 性 方 程组 A X= 0 的所有 解 所构 成 的空 间 ,也就 是齐次 线性方 程组 的一 个基础解 系 。 对齐 次 线性 方 程 组Ax = 0 ,Ma t l a b 命 令 如下 :( 1 )  ̄ l f 果 A
[ n 1 】 [ 2 n 2 】
的通解加 上其 自身 的一个 特解 。在理 论基础 上 ,我们 利用下 面 的例子说 明Ma t 1 a b 实现 程序 。
解 :Ma t l a b 实现程序如下:
> > A = [ 1 1 0— 3 - 1 ; 1— 1 2— 1

7 ] ;
> > f o r ma t r a t

下面是 其简化形 式
[一 n l +7 n 2 ]
[n 1 +5 n 2 ]
C1 1 +C2 ( z 2+… +C


0 【

, ,
在这里 C , C 2 , …, C ~ 设为任 意 的常数 。 利用Ma t l a b ,我 们要 求零 空 间 ,可 以调用 函数n u l l ,从
%限定 输 出格式 为有理 式
I 2 十 X 2 一 x 3 + x 4 = 1 I 3 一 2 + 2 一 3 = 2
> >P=n u l l ( A , ' r ’ ) % 求线性方程组的解空间的有理形式
的基
> > s y ms n l ,n 2
例 2 求 方 程 组 : 1 5 + 一 X 3 + 2 X 4 : 一 1 的 通 解。
关键 词 :齐次线性 方程 组 ;非齐次线性 方程组 ;通解
引 言
求 解 线性 方 程 组 的 问题 是 数 值线 性 代 数 的三 大 问 题之

matlab 方程组 解

matlab 方程组 解

matlab 方程组解一、概述Matlab是一种强大的数学计算软件,它可以用来解决各种数学问题,包括解方程组。

在Matlab中,求解方程组是一个非常重要的功能,因为很多实际问题都可以转化为方程组的形式。

本文将详细介绍如何使用Matlab求解线性方程组和非线性方程组。

二、线性方程组1. 线性方程组的定义线性方程组是指各个未知量的次数都不超过1次的代数方程组。

例如:2x + 3y = 54x - 5y = 6就是一个包含两个未知量x和y的线性方程组。

2. Matlab中求解线性方程组方法在Matlab中,可以使用“\”或者“inv()”函数来求解线性方程组。

其中,“\”表示矩阵左除,即Ax=b时,求解x=A\b;“inv()”函数表示矩阵求逆,即Ax=b时,求解x=inv(A)*b。

例如,在Matlab中求解以下线性方程组:2x + 3y = 54x - 5y = 6可以使用以下代码:A=[2,3;4,-5];b=[5;6];x=A\b输出结果为:x =1.00001.0000其中,“A”为系数矩阵,“b”为常数矩阵,“x”为未知量的解。

三、非线性方程组1. 非线性方程组的定义非线性方程组是指各个未知量的次数超过1次或者存在乘积项、幂项等非线性因素的代数方程组。

例如:x^2 + y^2 = 25x*y - 3 = 0就是一个包含两个未知量x和y的非线性方程组。

2. Matlab中求解非线性方程组方法在Matlab中,可以使用“fsolve()”函数来求解非线性方程组。

该函数需要输入一个函数句柄和初始值向量,输出未知量的解向量。

例如,在Matlab中求解以下非线性方程组:x^2 + y^2 = 25x*y - 3 = 0可以使用以下代码:fun=@(x)[x(1)^2+x(2)^2-25;x(1)*x(2)-3];x0=[1;1];[x,fval]=fsolve(fun,x0)输出结果为:Local minimum found.Optimization completed because the size of the gradient is less thanthe default value of the function tolerance.<stopping criteria details>ans =1.60561.8708其中,“fun”为函数句柄,表示要求解的非线性方程组,“x0”为初始值向量,“[x,fval]”为输出结果,其中“x”表示未知量的解向量,“fval”为函数值。

利用Matlab进行线性代数问题求解的方法与案例

利用Matlab进行线性代数问题求解的方法与案例

利用Matlab进行线性代数问题求解的方法与案例引言线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。

而Matlab作为一种功能强大的数值计算软件,提供了各种实用的工具和函数,可以方便地解决线性代数问题。

本文将介绍一些常用的线性代数问题求解方法,并通过具体的案例来展示Matlab在实际应用中的效果。

一、线性方程组的求解线性方程组是线性代数中最基础的问题之一。

Matlab提供了多种求解线性方程组的函数,如“backslash”操作符(\)和“linsolve”函数等。

下面通过一个实例来说明Matlab的线性方程组求解功能。

案例:假设有以下线性方程组需要求解:2x + 3y - 4z = 53x - 2y + z = 8x + 5y - 3z = 7在Matlab中输入以下代码:A = [2 3 -4; 3 -2 1; 1 5 -3];b = [5; 8; 7];x = A\b;通过以上代码,我们可以得到线性方程组的解x=[1; -2; 3]。

这表明在满足以上方程组的条件下,x=1,y=-2,z=3。

可以看出,Matlab在求解线性方程组时,使用简单且高效。

二、矩阵的特征值和特征向量求解矩阵的特征值和特征向量也是线性代数中的重要概念。

利用特征值和特征向量可以得到矩阵的许多性质和信息。

在Matlab中,我们可以通过“eig”函数来求解矩阵的特征值和特征向量。

案例:假设有一个2x2矩阵A,需要求解其特征值和特征向量。

在Matlab中输入以下代码:A = [2 3; 1 4];[V, D] = eig(A);通过以上代码,我们可以得到矩阵A的特征向量矩阵V和特征值矩阵D。

具体结果如下:特征向量矩阵V = [0.8507 -0.5257; 0.5257 0.8507]特征值矩阵D = [1.5858 0; 0 4.4142]由结果可知,矩阵A的特征向量矩阵V和特征值矩阵D可以提供有关该矩阵的很多信息,如相关线性变换、对称性等。

基于Matlab的解线性方程组的几种迭代法的实现及比较

基于Matlab的解线性方程组的几种迭代法的实现及比较

基于Matlab的解线性方程组的几种迭代法的实现及比较线性方程组的解法有很多种,其中一类常用的方法是迭代法。

迭代法根据一个初值逐步逼近方程组的解,在每一次迭代中利用现有的信息产生新的近似值,并不断地修正。

下面介绍基于Matlab的三种迭代法:雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法,并进行比较。

1. 雅可比迭代法雅可比迭代法是迭代法中最简单的一种方法。

对于线性方程组Ax=b,雅可比迭代法的迭代公式为:x_{i+1}(j)=1/a_{jj}(b_j-\\sum_{k=1,k\eq j}^n a_{jk}x_i(k))其中,i表示迭代次数,j表示未知数的下标,x_i表示第i次迭代的近似解,a_{jk}表示系数矩阵A的第j行第k列元素,b_j 表示方程组的常数项第j项。

在Matlab中,可以使用以下代码实现雅可比迭代:function [x,flag]=jacobi(A,b,X0,tol,kmax)n=length(b);x=X0;for k=1:kmaxfor i=1:nx(i)=(b(i)-A(i,:)*x+A(i,i)*x(i))/A(i,i);endif norm(A*x-b)<tolflag=1;returnendendflag=0;return其中,参数A为系数矩阵,b为常数项列向量,X0为初值列向量,tol为迭代误差容许值(默认为1e-6),kmax为最大迭代次数(默认为1000)。

函数返回值x为近似解列向量,flag表示是否满足容许误差要求。

2. 高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进。

其基本思想是,每次迭代时,利用已经求出的新解中的信息来更新其他未知数的值。

迭代公式为:x_{i+1}(j)=(1/a_{jj})(b_j-\\sum_{k=1}^{j-1}a_{jk}x_{i+1}(k)-\\sum_{k=j+1}^n a_{jk}x_i(k))与雅可比迭代法相比,高斯-赛德尔迭代法的每一次迭代都利用了前面已求得的近似解,因此可以更快地收敛。

matlab中快速求解xa=b的方法

matlab中快速求解xa=b的方法

matlab中快速求解xa=b的方法在Matlab中,要快速求解线性方程组xa=b,可以使用以下几种方法:1. 直接求解法(\):直接使用斜杠操作符(\)可以求解线性方程组。

例如,对于方程组xa=b,可以直接使用x = A\b来解决,其中A是系数矩阵,b是常数向量。

这种方法使用了高效的LU分解算法,并且能够自动适应方程组的类型(如稀疏矩阵或密集矩阵),因此是一种快速求解线性方程组的常用方法。

2. QR分解法:QR分解是一种将矩阵分解为正交矩阵和上三角矩阵的方法。

在Matlab中,可以使用qr函数对系数矩阵进行QR分解,然后使用这个分解求解线性方程组。

具体而言,可以使用[q,r] = qr(A)将系数矩阵A分解为正交矩阵q和上三角矩阵r,然后使用x = r\(q'*b)求解方程组。

这种方法通常适用于方程组的系数矩阵具有较大的条件数或者方程组数目较多的情况。

3. Cholesky分解法:如果线性方程组的系数矩阵是对称正定的,那么可以使用Cholesky分解来求解方程组。

在Matlab中,可以使用chol函数对系数矩阵进行Cholesky分解,然后使用这个分解求解线性方程组。

具体而言,可以使用R = chol(A)将系数矩阵A分解为上三角矩阵R,然后使用x = R'\(R\b)求解方程组。

Cholesky分解法通常适用于系数矩阵具有良好的性质(如对称正定)的情况。

4. 迭代法:如果线性方程组的系数矩阵是稀疏的,那么可以使用迭代法来求解方程组。

迭代法的基本思想是通过迭代改进解的逼近值。

在Matlab中,可以使用pcg函数(预处理共轭梯度法)或者bicg函数(双共轭梯度法)来求解稀疏线性方程组。

这些函数需要提供一个预处理矩阵,用于加速迭代过程。

预处理矩阵可以根据具体问题进行选择,常见的预处理方法包括不完全LU分解(ilu)和代数多重网格(amg)等。

通过使用上述方法,可以在Matlab中快速求解线性方程组xa=b。

利用matlab解线性方程组

利用matlab解线性方程组

数值计算实验——解线性方程组西南交通大学2012级茅7班20123257 陈鼎摘要本报告主要介绍了基于求解线性方程组的高斯消元法和列主消元法两种数值分析方法的算法原理及实现方法。

运用matlab数学软件辅助求解。

实验内容1.编写用高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证。

2.编写用列主消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证。

给定方程组如下:①0.325x1+2.564x2+3.888x3+5x4=1.521②-1.548x1+3.648x2+4.214x3-4.214x4=2.614③-2.154x1+1.647x2+5.364x3+x4=3.978④0x1+2.141x2-2.354x3-2x4=4.214A.高斯消元法一、算法介绍高斯消元法是一种规则化的加减消元法。

基本思想是通过逐次消元计算把需要求解的线性方程组转化成为上三角方程组,即把现形方程组的系数矩阵转化为上三角矩阵,从而使一般线性方程组的求解转化为等价的上三角方程组的求解。

二、matlab程序function [RA,RB,n,X]=gaus(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp(‘因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp(‘因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1for k=p+1:nm= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp(‘因为RA=RB<n,所以此方程组有无穷多解.')endend三、实验过程与结果输入的量:系数矩阵A和常系数向量b;输出的量:系数矩阵A和增广矩阵B的秩RA、RB,方程中未知量的个数n和有关方程组解X及其解的信息。

matlab超松弛迭代法求方程组

matlab超松弛迭代法求方程组

一、介绍MATLAB(Matrix Laboratory)是一种用于数值计算和数据可视化的专业软件。

在MATLAB中,超松弛迭代法是解决线性方程组的一种有效算法。

本文将介绍MATLAB中超松弛迭代法的基本原理和实现方法,并给出一个具体的例子进行演示。

二、超松弛迭代法的基本原理超松弛迭代法是一种逐步迭代的算法,用于求解线性方程组。

它的基本原理是通过不断迭代更新方程组的解,直到达到满足精度要求的解。

超松弛迭代法的公式如下:X(k+1) = (1-w)X(k) + w*(D-L)⁻¹*(b+U*X(k))其中,X(k)代表第k次迭代的解向量,X(k+1)代表第k+1次迭代的解向量,D、L和U分别代表方程组的对角线元素、下三角元素和上三角元素构成的矩阵,b代表方程组的右端向量,w代表松弛因子。

超松弛迭代法的关键在于选择合适的松弛因子w,一般情况下,可以通过试验选取一个合适的值。

在MATLAB中,可以使用sor函数来实现超松弛迭代法。

三、MATLAB中超松弛迭代法的实现方法在MATLAB中,可以通过调用sor函数来实现超松弛迭代法。

sor 函数的语法格式如下:[X,flag,relres,iter,resvec] = sor(A,b,w,tol,maxit)其中,A代表线性方程组的系数矩阵,b代表右端向量,w代表松弛因子,tol代表迭代的精度要求,maxit代表最大迭代次数,X代表迭代求解得到的解向量,flag代表迭代的结果标志,relres代表相对残差的大小,iter代表迭代次数,resvec代表迭代过程中的残差向量。

以下是一个使用sor函数求解线性方程组的示例:A = [4 -1 0 -1 0 0; -1 4 -1 0 -1 0; 0 -1 4 0 0 -1; -1 0 0 4 -1 0; 0 -1 0 -1 4 -1; 0 0 -1 0 -1 4];b = [1; 0; -1; 0; 1; 0];w = 1.25;tol = 1e-6;maxit = 100;[X,flag,relres,iter,resvec] = sor(A,b,w,tol,maxit);通过调用sor函数,可以得到方程组的解向量X,迭代的结果标志flag,相对残余resrel和迭代次数iter。

线性代数的MATLAB软件实验报告

线性代数的MATLAB软件实验报告

线性代数的MATLAB 软件实验一、实验目的1.熟悉矩阵代数主要MATLAB 指令。

2.掌握矩阵的转置、加、减、乘、除、乘方、除法等MATLAB 运算。

3.掌握特殊矩阵的MATLAB 生成。

4.掌握MATLAB 的矩阵处理方法。

5.掌握MATLAB 的矩阵分析方法。

6.掌握矩阵的特征值与标准形的MATLAB 验算。

7.掌握线性方程组的MATLAB 求解算法。

二、实验原理1.线性方程组 【基本观点】自然科学和工程实践很多问题的解决都涉及线性代数方程组的求解和矩阵运算.一方面,许多问题的数学模型本身就是一个线性方程组,例如结构应力分析问题、电子传输网分析问题和投入产出分析问题;另一方面,有些数值计算方法导致线性方程组求解,如数据拟合,非线性方程组求解和偏微分方程组数值解等.n 个未知量m 个方程的线性方程组一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212111212111m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a (3.1) 令,,,2121212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=m n mn m m n n b b b b x x x x a a a a a aa a a A则得矩阵形式Ax=b. (3.2)若右端b=0,即Ax=0, (3.3)则称方程组为齐次的.方程组(3.1)可能有唯一解,可能有无穷多解,也可能无解,主要取决于系数矩阵A 及增广矩阵(A,b )的秩.若秩(A )=秩(A,b )=n,存在唯一解,其解理论上用Cramer 法则求出,但由于这种方法要计算n+1个n 阶行列式,计算量太大通常并不采用;若秩(A )=秩(A,b )<n,存在无穷多解,其通解可表示为对应齐次方程组(3.3)的一个基础解系与(3.2)的一个特解的叠加;若秩(A )≠秩(A,b ),则无解,这时一般寻求最小二乘近似解,即求x 使向量Ax-b 模最小.P50矩阵左除的数学思维:恒等变形Ax=b 方程两边的左边同时除以A ,得:b AAx A11=,即:b A b Ax 11-==MATLAB 的实现(左除):x=A\b 2.逆矩阵 【基本观点】方阵A 称为可逆的,如果存在方阵B ,使 AB=BA=E,这里E 表示单位阵.并称B 为A 的逆矩阵,记B=1-A .方阵A 可逆的充分必要条件是A 的行列式det A ≠0.求逆矩阵理论上的公式为*1det 1A AA =-, (3.4)这里*A 为A 的伴随矩阵.利用逆矩阵,当A 可逆时,(3.2)的解可表示为b A x 1-=.由于公式(3.4)涉及大量行列式计算,数值计算不采用.求逆矩阵的数值算法一般是基于矩阵分解的方法.3.特征值与特征向量 【基本观点】对于方阵A ,若存在数λ和非零向量x ,使,x Ax λ= (3.5) 则称λ为A 的一个特征值,x 为A 的一个对应于特征值λ的特征向量.特征值计算归结为特征多项式的求根.对于n 阶实数方阵,特征多项式在复数范围内总有n 个根。

matlab线性方程组求解

matlab线性方程组求解

0.9739 -0.0047 1.0010
n= 5 Jacobi 迭代法: function [x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps= 1.0e-6; M = 200; elseif nargin<3 error return elseif nargin ==5 M = varargin{1}; end D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); B=D/(L+U); f=D/b; x=B*x0+f; n=1; % 迭代次数 % 求 A 的对角矩阵 % 求 A 的上三角阵
n= 5 Gauss-Seidel 迭代法: function [x,n]=gauseidel(A,b,x0,eps,M) if nargin==3 eps= 1.0e-6; M = 200; elseif nargin == 4 M = 200; elseif nargin<3 error return; end D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)/U; f=(D-L)/b; % 求 A 的对角矩阵 % 求 A 的上三角阵 % 求 A 的下三角阵
批注本地保存成功开通会员云端永久保存去开通
线性方程组求解 1. 直接法 Gauss 消元法: function x=DelGauss(a,b) % Gauss 消去法 [n,m]=size(a); nb=length(b); det=1;% 存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); end det=det*a(n,n);

线性方程组及MATLAB应用

线性方程组及MATLAB应用

数值实验 线性方程组与MATLAB 应用王1.实验目的:理解矩阵的范数与条件数。

实验内容:已知矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=1111111111111111A 求1A ,2A ,∞A 和)(2A cond 。

解:编写了一个M 文件来求矩阵A 的范数与条件数:test3_1.m 如下:A=[1 1 1 1;-1 1 -1 1;-1 -1 1 1;1 -1 -1 1]; norm(A,1) norm(A,2) norm(A,inf) cond(A,2)计算结果依次是: 4 2 4 1.00002.实验目的:研究高斯消去法的数值稳定性(出现小主元)。

实验内容:设方程组b Ax =,其中两个矩阵如下,分别对以上两个方程组(1)⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--⨯=-11212592.1121130.6291.51314.59103.0151A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2178.4617.591b (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=201015152699990999999999.23107102A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1500019000000000.582b (1)计算矩阵的条件数,判断系数矩阵是良态的还是病态的?解: 本题编写了一个test3_21的M 文件如下:A1=[0.3*1e-15 59.14 3 1;5.291 -6.130 -1 2;11.2 9 5 2;1 2 1 1]; A2=[10 -7 0 1;-3 2.099999999999999 6 2;5 -1 5 -1;0 1 0 2]; cond(A1) cond(A2)求得两个矩阵的条件数分别为68.4296和8.9939,易知这矩阵A1的条件数远远大于1,而矩阵A2的条件数刚大于1,故这,矩阵A1为病态矩阵,矩阵A2为良态矩阵。

(2)用列主元消去法求得L 和U 及解向量412,∈R x x ;解:本题利用Matlab 的列主元三角分解函数lu();具体求解如下: >> A1=[0.3*1e-15 59.14 3 1;5.291 -6.130 -1 2;11.2 9 5 2;1 2 1 1]; >> A2=[10 -7 0 1;-3 2.099999999999999 6 2;5 -1 5 -1;0 1 0 2];>> b1=[59.17;46.78;1;2];>> b2=[8;5.0000000000001;5;1];>> [L1,U1]=lu(A1)L1 = 0.0000 1.0000 0 00.4724 -0.1755 1.0000 01.0000 0 0 00.0893 0.0202 -0.1738 1.0000 U1 = 11.2000 9.0000 5.0000 2.00000 59.1400 3.0000 1.00000 0 -2.8354 1.23070 0 0 1.0151 >> [L2,U2]=lu(A2)L2 =1.0000 0 0 0 -0.3000 -0.0000 1.0000 00.5000 1.0000 0 00 0.4000 -0.3333 1.0000 U2 =10.0000 -7.0000 0 1.00000 2.5000 5.0000 -1.50000 0 6.0000 2.30000 0 0 3.3667 >> y1=L1\b1;>> x1=U1\y1x1 =3.84571.6095-15.476110.4113>> y2=L2\b2;>> x2=U2\y2x2 =0.1337-0.82180.88420.9109用不选主元的高斯消去法求得L和U及解向量412, Rx x;解:编写一个LU_Fact的M文件储存不选主元的LU分解法然后调用求解。

matlab求线性方程组的解

matlab求线性方程组的解

matlab求线性方程组的解求解线性方程分为两种方法–直接法和迭代法常见的方法一共有8种直接法Gauss消去法Cholesky分解法迭代法Jacobi迭代法Gauss-Seidel迭代法超松弛迭代法共轭梯度法Bicg迭代法Bicgstab迭代法这里我从计算代码的角度来解释一下,代码按以下顺序给出。

把方程组直接带入已知条件,就可以得到答案。

适用条件Gauss消去法:求解中小规模线性方程(阶数不过1000),一般用于求系数矩阵稠密而且没有任何特殊结构的线性方程组Cholesky分解法:对称正定方程优先使用,系数矩阵A是n 阶对称正定矩阵Jacobi迭代法非奇异线性方程组,分量的计算顺序没有关系Gauss-Seidel迭代法与Jacobi迭代法相似,但计算的分量不能改变超松弛迭代法Jacobi迭代法和Gauss-Seidel迭代法的加速版,由Gauss-Seidel迭代法改进而来,速度较快共轭梯度法需要确定松弛参数w,只有系数矩阵具有较好的性质时才可以找到最佳松弛因子。

但好处是不用确定任何参数,他是对称正定线性方程组的方法也是求解大型稀疏线性方程组最热门的方法Bicg迭代法本质是用双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Bicgstab迭代法本质是用稳定双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Gauss消去法第一、二个函数ltri、utri是一定要掌握的,后面的几乎每个函数都要用到ltri简单来说,当Ly=bb,L(非奇异下三角矩阵)已知求yfunction y =ltri(L,b)n=size(b,1);y=zeros(n,1);for j =1:n-1y(j)=b(j)/L(j,j);b(j+1:n)=b(j+1:n)-y(j)*L(j+1:n,j); endy(n)=b(n)/L(n,n);utri简单来说,当Ux=yy,U(非奇异上三角矩阵)已知求xfunction x =utri(U,y)n=size(y,1);x=zeros(n,1);for j = n:-1:2x(j)=y(j)/U(j,j);y(1:j-1)=y(1:j-1)-x(j)*U(1:j-1,j);endx(1)=y(1)/U(1,1);gauss算法,计算时粘贴过去就好function[L,U]=gauss(A)n=size(A,1);for k =1:n-1A(k+1:n,k)=A(k+1:n,k)/A(k,k);A(k+1:n,k+1:n)=A(k+1:n,k +1:n)-A(k+1:n,k)*A(k,k+1:n);endL=tril(A,-1)+eye(n);U=triu(A);使用例子已经知道一个线性方程组,这里我就不写出数学形式了,A是系数矩阵,直接把上面写好的函数复制过来在运算就可以。

MATLAB实验一 解线性方程组的直接法

MATLAB实验一 解线性方程组的直接法

输出 Ax b 中系数 A LU 分解的矩阵 L 和 U ,解向量 x 和 det(A) ;用列主元法 的行交换次序解向量 x 和求 det(A) ;比较两种方法所得结果。
2、用列主高斯消元法解线性方程组 Ax b 。
3.01 6.03 1.99 x1 1 4.16 1.23 x 2 1 (1) 、 1.27 0.987 4.81 9.34 x 1 3 3.00 6.03 1.99 x1 1 4.16 1.23 x 2 1 (2) 、 1.27 0.990 4.81 9.34 x 1 3
index = 1 3、在 MATLAB 窗口:
A=[10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10]; b=[32 23 33 31]'; x=A\b b1=[32.1 22.9 33.1 30.9]'; x1=A\b1 A1=[10 7 8.1 7.2;7.08 5.04 6 5;8 5.98 9.89 9;6.99 5 9 9.98]; x2=A1\b delta_b=norm(b-b1)/norm(b) delta_A=norm(A-A1)/norm(A) delta_x1=norm(x-x1)/norm(x) delta_x2=norm(x-x2)/norm(x)
二. 实验要求 1、按照题目要求完成实验内容; 2、写出相应的 Matlab 程序; 3、给出实验结果(可以用表格展示实验结果); 4、分析和讨论实验结果并提出可能的优化实验。 5、写出实验报告。 三. 实验步骤 1、用 LU 分解及列主元高斯消去法解线性方程组
7 10 3 2.099999 a) 5 1 2 1 1 x1 8 6 2 x 2 5.900001 , 5 1 x3 5 0 2 1 x 4 0

利用Matlab解决常见数学问题的案例分析

利用Matlab解决常见数学问题的案例分析

利用Matlab解决常见数学问题的案例分析概述:Matlab是一款流行的科学软件,广泛应用于数学建模、数据分析、图像处理等领域。

本文将通过几个实际案例,介绍如何利用Matlab解决常见的数学问题,并分析其解决方法和效果。

案例一:线性方程组的求解线性方程组是数学中常见的问题之一。

假设有如下线性方程组:3x + 2y = 14x - 3y = 5可以使用Matlab中的线性方程组求解函数`linsolve`来求解。

首先,定义系数矩阵A和常数矩阵b,并调用`linsolve`函数求解方程组:```matlabA = [3 2; 4 -3];b = [1; 5];x = linsolve(A, b);```运行上述代码后,可以得到方程组的解x为:x = 3y = -2案例二:函数曲线绘制Matlab具有强大的绘图功能,可以绘制各种函数曲线。

例如,我们可以绘制正弦函数sin(x)在区间[-2π,2π]上的曲线。

首先,定义x的取值范围,并计算对应的y 值:```matlabx = -2*pi:0.1:2*pi;y = sin(x);```接下来,使用`plot`函数将曲线绘制出来:```matlabplot(x, y);```运行代码后,可以得到正弦函数的曲线图。

案例三:最小二乘拟合最小二乘拟合是一种常见的曲线拟合方法,用于将一组数据拟合成一条曲线。

假设有一组离散的数据点,我们希望找到一个曲线来拟合这些数据。

在Matlab中,可以使用`polyfit`函数进行最小二乘拟合。

例如,假设有一组数据:x = [1 2 3 4 5];y = [0.5 2.5 2 4 3.5];可以使用`polyfit`函数进行线性拟合:```matlabp = polyfit(x, y, 1);```其中,第一个参数x是自变量的取值,第二个参数y是因变量的取值,第三个参数1表示进行一次多项式拟合。

拟合的结果保存在向量p中,p(1)为拟合曲线的斜率,p(2)为截距。

Matlab求解线性方程组、非线性方程组

Matlab求解线性方程组、非线性方程组

求解线性方程组solve,linsolve例:A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1];%矩阵的行之间用分号隔开,元素之间用逗号或空格B=[3;1;1;0]X=zeros<4,1>;%建立一个4元列向量X=linsolve<A,B>diff〔fun,var,n〕:对表达式fun中的变量var求n阶导数.例如:F=sym〔'u<x,y>*v<x,y>'〕; %sym〔〕用来定义一个符号表达式diff<F>; %matlab区分大小写pretty<ans> %pretty〔〕:用习惯书写方式显示变量;ans是答案表达式非线性方程求解fsolve<fun,x0,options>其中fun为待解方程或方程组的文件名;x0位求解方程的初始向量或矩阵;option为设置命令参数建立文件fun.m:function y=fun<x>y=[x<1>-0.5*sin<x<1>>-0.3*cos<x<2>>, ...x<2> - 0.5*cos<x<1>>+0.3*sin<x<2>>];>>clear;x0=[0.1,0.1];fsolve<fun,x0,optimset<'fsolve'>>注:...为续行符m文件必须以function为文件头,调用符为;文件名必须与定义的函数名相同;fsolve〔〕主要求解复杂非线性方程和方程组,求解过程是一个逼近过程.Matlab求解线性方程组AX=B或XA=B在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符"/"和"\".如:X=A\B表示求矩阵方程AX=B的解;X=B/A表示矩阵方程XA=B的解.对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理.如果矩阵A不是方阵,其维数是m×n,则有:m=n 恰定方程,求解精确解;m>n 超定方程,寻求最小二乘解;m<n 不定方程,寻求基本解,其中至多有m个非零元素.针对不同的情况,MATLAB将采用不同的算法来求解.一.恰定方程组恰定方程组由n个未知数的n个方程构成,方程有唯一的一组解,其一般形式可用矩阵,向量写成如下形式:Ax=b 其中A是方阵,b是一个列向量;在线性代数教科书中,最常用的方程组解法有:〔1〕利用cramer公式来求解法;〔2〕利用矩阵求逆解法,即x=A-1b;〔3〕利用gaussian消去法;〔4〕利用lu法求解.一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大.前三种解法的真正意义是在其理论上,而不是实际的数值计算.MATLAB中,出于对算法稳定性的考虑,行列式与逆的计算大都在lu分解的基础上进行.在MATLAB中,求解这类方程组的命令十分简单,直接采用表达式:x=A\b.在MATLAB的指令解释器在确认变量A非奇异后,就对它进行lu分解,并最终给出解x;若矩阵A的条件数很大,MATLAB会提醒用户注意所得解的可靠性.如果矩阵A是奇异的,则Ax=b的解不存在,或者存在但不唯一;如果矩阵A接近奇异时,MATLAB将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵A是病态矩阵,也会给出警告信息.注意:在求解方程时,尽量不要用inv<A>*b命令,而应采用A\b的解法.因为后者的计算速度比前者快、精度高,尤其当矩阵A的维数比较大时.另外,除法命令的适用行较强,对于非方阵A,也能给出最小二乘解.二.超定方程组对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m.则方程组没有精确解,此时称方程组为超定方程组.线性超定方程组经常遇到的问题是数据的曲线拟合.对于超定方程,在MATLAB中,利用左除命令〔x=A\b〕来寻求它的最小二乘解;还可以用广义逆来求,即x=pinv<A>,所得的解不一定满足Ax=b,x只是最小二乘意义上的解.左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;[例7]求解超定方程组A=[2 -1 3;3 1 -5;4 -1 1;1 3 -13]A=2 -1 33 1 -54 -1 11 3 -13b=[3 0 3 -6]’;rank<A>ans=3x1=A\bx1=1.00002.00001.0000x2=pinv<A>*bx2=1.00002.00001.0000A*x1-bans=1.0e-014-0.0888-0.0888-0.1332可见x1并不是方程Ax=b的精确解,用x2=pinv<A>*b所得的解与x1相同.三.欠定方程组欠定方程组未知量个数多于方程个数,但理论上有无穷个解.MATLAB将寻求一个基本解,其中最多只能有m个非零元素.特解由列主元qr分解求得.[例8]解欠定方程组A=[1 -2 1 1;1 -2 1 -1;1 -2 1 5]A=1 -2 1 11 -2 1 -11 -2 1 -11 -2 1 5b=[1 -1 5]’x1=A\bWarning:Rank deficient,rank=2 tol=4.6151e-015x1=-0.00001.0000x2=pinv<A>*bx2=-0.00000.00001.0000四.方程组的非负最小二乘解在某些条件下,所求的线性方程组的解出现负数是没有意义的.虽然方程组可以得到精确解,但却不能取负值解.在这种情况下,其非负最小二乘解比方程的精确解更有意义.在MATLAB中,求非负最小二乘解常用函数nnls,其调用格式为:〔1〕X=nnls<A,b>返回方程Ax=b的最小二乘解,方程的求解过程被限制在x 的条件下;〔2〕X=nnls<A,b,TOL>指定误差TOL来求解,TOL的默认值为TOL=max<size<A>>*norm<A,1>*eps,矩阵的-1范数越大,求解的误差越大;〔3〕[X,W]=nnls<A,b> 当x<i>=0时,w<i><0;当下x<i>>0时,w<i>0,同时返回一个双向量w.[例9]求方程组的非负最小二乘解A=[3.4336 -0.5238 0.6710-0.5238 3.2833 -0.73020.6710 -0.7302 4.0261];b=[-1.000 1.5000 2.5000];[X,W]=nnls<A,b>X=0.6563 0.6998 W=-3.6820 -0.0000 -0.0000 x1=A\bx1=-0.3569 0.5744 0.7846A*X-b ans=1.1258 0.1437 -0.1616 A*x1-b ans=1.0e-0.15 -0.2220 0.4441。

1、克劳特(Crout)(LU)分解法求解线性方程组的matlab实现

1、克劳特(Crout)(LU)分解法求解线性方程组的matlab实现

1、克劳特(Crout)(LU)分解法求解线性方程组的matlab实现1、克劳特(Crout)(LU)分解法求解线性方程组function [x,L,U]=Crout(A,b)%Crout分解法求解线性方程组%系数矩阵:AN=size(A);n=N(1);L=zeros(n,n); %下三角矩阵U=eye(n,n); %上三角矩阵L(1:n,1)=A(1:n,1); %L的第一列U(1,1:n)=A(1,1:n)/L(1,1); %U的第一行?for k=2:nfor i=k:nL(i,k)=A(i,k)-L(i,1:(k-1))*U(1:(k-1),k);%L的第k列endfor j=(k+1):nU(k,j)=(A(k,j)-L(k,1:(k-1))*U(1:(k-1),j))/(L(k,k));%U的第k行endend%y=inv(L)*b;%x=inv(U)*y;y=SolveDownTriangle(L,b);x=SolveUpTriangle(U,y); %求解线性方程组的解x%x=U\(L\b);function x=SolveUpTriangle(A,b)%求解上三角矩阵Ax=b的解N=size(A);n=N(1);for i=n:-1:1if(i<n)< p="">s=A(i,(i+1):n)*x((i+1):n,1);elses=0;endx(i,1)=(b(i)-s)/A(i,i);endfunction x=SolveDownTriangle(A,b) %求解下三角矩阵Ax=b的解N=size(A);n=N(1);for i=1:nif(i>n)s=A(i,1:(i-1))*x(1:(i-1),1);elses=0;endx(i,1)=(b(i)-s)/A(i,i);end%求解线性方程组的解clcclearA=[12 -3 3;-16 3 -1;1 1 1];b=[15;-13;6];%x=A\b[x,L,U]=Crout(A,b)解:123L =12.0000 0 0-16.0000 -1.0000 01.0000 1.2500 4.5000U =1.0000 -0.2500 0.25000 1.0000 -3.00000 0 1.0000列主元LU分解function [L,U,x]=lux(A,b)%LU 分解法解线性方程组(列主元LU分解)[n,n]=size(A);p=eye(n);%p记录了选择主元时候所进行的行变换for k=1:n-1[r,m]=max(abs(A(k:n,k))); %选列主元m=m+k-1;if(A(m,k)~=0)if(m~=k)A([k m],:)=A([m k],:);p([k m])=p([m k]);endfor i=k+1:nA(i,k)=A(i,k)/A(k,k);j=k+1:n;A(i,j)=A(i,j)-A(i,k)*A(k,j); endendL=tril(A,-1)+eye(n,n);U=triu(A);%解下三角矩阵 Ly=bnewb=p*b;y=zeros(n,1);for k=1:nj=1:k-1;y(k)=(newb(k)-L(k,j)*y(j))/L(k,k); end %解上三角方程组 Ux=yx=zeros(n,1);for k=n:-1:1j=k+1:n;x(k)=(y(k)-U(k,j)*x(j))/U(k,k);end</n)<>。

雅克比迭代法介绍以及matlab代码实现-线性方程组求解

雅克比迭代法介绍以及matlab代码实现-线性方程组求解

雅克⽐迭代法介绍以及matlab代码实现-线性⽅程组求解1).前沿谈到雅克⽐迭代法,⾸先就谈下迭代法的基本原理设线性⽅程组Ax = b系数矩阵A为n阶⾮奇异矩阵(|A|≠0,且右端常数项向量b≠0,则将上式改写为x = Bx +f采⽤迭代的思想: x^{k+1} = B*x^{k+1} +f k=0,1,2...,n其基本思想是将A拆分成如下A = M-N此时 B=M^(-1)*N = M^(-1) = I - M^(-1)*A ,f = M^(-1)*b .(注:I 是单位矩阵)则X^(K+1) = I - M^(-1)*A + M^(-1)*b2).雅克⽐迭代法就上拆分的思想,将n阶线性⽅程组 Ax =b 的拆分成(A = (a ij)nxn ,且a ij≠0)A = D + L +U其中,,则根据a ij≠0,则D^(-1) 存在,则将线性⽅程组 AX=B 改为x=-D^(-1)*(L+U)*x + D^(-1)*b由此得到迭代公式x^(k+1)=-D^(-1)*(L+U)*x^(k+1) + D^(-1)*b证明:标注为粉红的公式由 Ax = b ,将A=D+L+U代如得,(D+L+U)x = bDx+(L+U)x = bDx = -(L+U)x + bx = D^(-1)*(L+U)*x + D^(-1)*b证毕。

将 x=-D^(-1)*(L+U)*x + D^(-1)*b 展开...最终结果为:3).Matlab 雅克⽐迭代程序具体程序如下所⽰:clear;A=input('请输⼊线性⽅程组的系数矩阵:');b=input('请输⼊线性⽅程组的常向量:');x1=input('请输⼊解向量的初始值:');n=numel(b);e_max=1e6; %%前⼀次和后⼀次之差while e_max>=1e-6e_max=0;for i=1:ns=0; %%初始化变量for j=1:nif j~=is=s+A(i,j)*x1(j);endendx2(i) = (b(i)-s)/A(i,i);e = abs(x2(i)-x1(i));if e > e_maxe_max = e;endendx1=x2 %%不带分号,观察每步迭代结果end测试矩阵A = [10 -1 -2;-1 10 -2;-1 -1 5]; b= [72 83 42];迭代初值x(0) = [0 0 0];调试结果。

matlab共轭梯度法求解方程组

matlab共轭梯度法求解方程组

主题:matlab共轭梯度法求解方程组近年来,随着科学技术的不断发展,数学建模和计算机仿真成为科学研究和工程技术领域的重要手段。

在实际应用中,我们常常需要解决线性方程组的求解问题,而共轭梯度法作为一种高效的迭代求解方法,广泛应用于信号处理、图像处理、地球物理勘探和优化问题等领域。

本文将介绍如何利用matlab中的共轭梯度法求解线性方程组的基本原理和实际操作方法。

1. 共轭梯度法的基本原理共轭梯度法是一种迭代法,用于求解对称正定线性方程组Ax=b。

该方法的核心思想是通过一系列的迭代操作,逐步逼近方程组的解,直到满足一定的精度要求。

在每一步迭代中,共轭梯度法利用残差和方向向量的共轭性质,不断寻找最优的步长,从而实现方程组的求解。

2. matlab中共轭梯度法的基本调用方法在matlab中,调用共轭梯度法求解线性方程组非常简单。

需要将方程组的系数矩阵A和右端向量b输入到matlab中,然后利用内置函数conjugateGradient进行求解。

具体的调用方法如下:x = conjugateGradient(A, b, x0, maxIter, tol)其中,A为系数矩阵,b为右端向量,x0为初始解向量,maxIter为最大迭代次数,tol为精度要求。

调用完毕后,matlab将返回方程组的近似解x。

3. 共轭梯度法在实际工程中的应用共轭梯度法作为一种高效的求解方法,在工程技术领域得到了广泛的应用。

以图像处理为例,图像处理中经常需要解决大规模的线性方程组,而共轭梯度法能够高效地求解这类问题,提高了图像处理算法的效率和稳定性。

另外,在地球物理勘探中,共轭梯度法也被广泛应用于三维数据的快速处理和解释。

可以说,共轭梯度法在实际工程中发挥着重要的作用。

4. 共轭梯度法的优缺点分析尽管共轭梯度法具有非常高的效率和稳定性,但是该方法也存在一些缺点。

该方法只适用于对称正定的线性方程组,对于一般的线性方程组并不适用。

共轭梯度法的收敛速度受到方程条件数的影响,对于病态问题,可能收敛速度较慢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 方程组的逆矩阵解法及其MATLAB 程序3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ⨯b X =是否有解的MATLAB 程序function [RA,RB,n]=jiepb(A,b)B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.') return endif RA==RB if RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') elsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.') end end例3.1.4 判断下列线性方程组解的情况.如果有唯一解,则用表 3-2方法求解.(1) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+;0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x (3) ⎪⎩⎪⎨⎧=+=+-=-+;8311,1023,22421321321x x x x x x x x (4) ⎪⎩⎪⎨⎧=--+=+-+=+-+.12,2224,12w z y x w z y x w z y x解 在MATLAB 工作窗口输入程序>> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b)运行后输出结果为请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入>>X=A\b,运行后输出结果为 X =(0 0 0 0)’.(2) 在MATLAB 工作窗口输入程序>> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0];[RA,RB,n]=jiepb(A,b)运行后输出结果请注意:因为RA=RB<n ,所以此方程组有无穷多解. RA =2,RB =2,n =4(3) 在MATLAB 工作窗口输入程序>> A=[4 2 -1;3 -1 2;11 3 0]; b=[2;10;8]; [RA,RB,n]=jiepb(A,B)运行后输出结果请注意:因为RA~=RB ,所以此方程组无解. RA =2,RB =3,n =3(4)在MATLAB 工作窗口输入程序>> A=[2 1 -1 1;4 2 -2 1;2 1 -1 -1]; b=[1; 2; 1]; [RA,RB,n]=jiepb(A,b)运行后输出结果请注意:因为RA=RB<n ,所以此方程组有无穷多解. RA =2,RB =2,n =33.2 三角形方程组的解法及其MATLAB 程序3.2.2 解三角形方程组的MATLAB 程序 解上三角形线性方程组b AX =的MATLAB 程序function [RA,RB,n,X]=shangsan(A,b)B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.') return endif RA==RB if RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') X=zeros(n,1); X(n)=b(n)/A(n,n); for k=n-1:-1:1X(k)=(b(k)-sum(A(k,k+1:n)*X(k+1:n)))/A(k,k);end elsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.')end end例3.2.2 用解上三角形线性方程组的MATLAB 程序解方程组⎪⎪⎩⎪⎪⎨⎧==+-=-+-=++-.63,456,7472,203254434324321x x x x x x x x x x . 解 在MATLAB 工作窗口输入程序>>A=[5 -1 2 3;0 -2 7 -4;0 0 6 5;0 0 0 3]; b=[20; -7; 4;6];[RA,RB,n,X]=shangsan(A,b)运行后输出结果请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = RB =4, 4, n =4,X =[2.4 -4.0 -1.0 2.0]’3.3 高斯(Gauss )消元法和列主元消元法及其MATLAB 程序3.3.1 高斯消元法及其MATLAB 程序用高斯消元法解线性方程组b AX =的MATLAB 程序f unction [RA,RB,n,X]=gaus(A,b)B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.') return endif RA==RB if RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1); end endb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); endelsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.') end end例3.3.2 用高斯消元法和MATLAB 程序求解下面的非齐次线性方程组,并且用逆矩阵解方程组的方法验证.⎪⎪⎩⎪⎪⎨⎧-=+---=+--=+--=-+-.142,16422,0,13432143214324321x x x x x x x x x x x x x x x 解 在MATLAB 工作窗口输入程序>> A=[1 -1 1 -3; 0 -1 -1 1;2 -2 -4 6;1 -2 -4 1]; b=[1;0; -1;-1]; [RA,RB,n,X] =gaus (A,b)运行后输出结果请注意:因为RA=RB=n ,所以此方程组有唯一解. RA =4RB =4n =43.3.2 列主元消元法及其MATLAB 程序用列主元消元法解线性方程组b AX =的MATLAB 程序function [RA,RB,n,X]=liezhu(A,b)B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.') return endif RA==RB if RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1X = 0 -0.5000 0.5000 0[Y,j]=max(abs(B(p:n,p))); C=B(p,:); B(p,:)= B(j+p-1,:); B(j+p-1,:)=C; for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1); end endb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); endelsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.') end end例3.3.3 用列主元消元法解线性方程组的MATLAB 程序解方程组⎪⎪⎩⎪⎪⎨⎧-=+---=+--=-+-=+--.142,16422,13,0432143214321432x x x x x x x x x x x x x x x . 解 在MATLAB 工作窗口输入程序>> A=[0 -1 -1 1;1 -1 1 -3;2 -2 -4 6;1 -2 -4 1]; b=[0;1;-1;-1]; [RA,RB,n,X]=liezhu(A,b)运行后输出结果请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB = 4,n = 4,X =[0 -0.5 0.5 0]’3.4 LU 分解法及其MATLAB 程序3.4.1判断矩阵LU 分解的充要条件及其MATLAB 程序 判断矩阵A 能否进行LU 分解的MATLAB 程序function hl=pdLUfj(A)[n n] =size(A); RA=rank(A); if RA~=ndisp('请注意:因为A 的n 阶行列式hl 等于零,所以A 不能进行LU 分解.A 的秩RA 如下:'), RA,hl=det(A); returnendif RA==nfor p=1:n,h(p)=det(A(1:p, 1:p));, endhl=h(1:n); for i=1:nif h(1,i)==0disp('请注意:因为A 的r 阶主子式等于零,所以A 不能进行LU 分解.A的秩RA 和各阶顺序主子式值hl 依次如下:'),hl;RA,returnend endif h(1,i)~=0disp('请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A的秩RA 和各阶顺序主子式值hl 依次如下:')hl;RA end end例3.4.1 判断下列矩阵能否进行LU 分解,并求矩阵的秩.(1)⎪⎪⎪⎭⎫ ⎝⎛6547121321;(2)⎪⎪⎪⎭⎫ ⎝⎛654721321;(3)⎪⎪⎪⎭⎫⎝⎛654321321. 解 (1)在MATLAB 工作窗口输入程序>> A=[1 2 3;1 12 7;4 5 6];hl=pdLUfj(A)运行后输出结果为请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A 的秩RA 和各阶顺序主子式值hl 依次如下:RA = 3, hl = 1 10 -48(2)在MATLAB 工作窗口输入程序>> A=[1 2 3;1 2 7;4 5 6];hl=pdLUfj(A)运行后输出结果为请注意:因为A 的r 阶主子式等于零,所以A 不能进行LU 分解.A 的秩RA 和各阶顺序主子式值hl 依次如下:RA = 3, hl =1 0 12(3)在MATLAB 工作窗口输入程序>> A=[1 2 3;1 2 3;4 5 6];hl=pdLUfj(A)运行后输出结果为请注意:因为A 的n 阶行列式hl 等于零,所以A 不能进行LU 分解.A 的秩RA 如下RA = 2, hl = 03.4.2 直接LU 分解法及其MATLAB 程序 将矩阵A 进行直接LU 分解的MATLAB 程序function hl=zhjLU(A)[n n] =size(A); RA=rank(A); if RA~=ndisp('请注意:因为A 的n 阶行列式hl 等于零,所以A 不能进行LU 分解.A的秩RA 如下:'), RA,hl=det(A);return endif RA==n for p=1:nh(p)=det(A(1:p, 1:p)); endhl=h(1:n); for i=1:nif h(1,i)==0disp('请注意:因为A 的r 阶主子式等于零,所以A 不能进行LU 分解.A的秩RA 和各阶顺序主子式值hl 依次如下:'), hl;RAreturn end endif h(1,i)~=0disp('请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A 的秩RA 和各阶顺序主子式值hl 依次如下:')for j=1:nU(1,j)=A(1,j); endfor k=2:n for i=2:n for j=2:nL(1,1)=1;L(i,i)=1; if i>jL(1,1)=1;L(2,1)=A(2,1)/U(1,1);L(i,1)=A(i,1)/U(1,1);L(i,k)=(A(i,k)- L(i,1:k-1)*U(1:k-1,k))/U(k,k); elseU(k,j)=A(k,j)-L(k,1:k-1)*U(1:k-1,j); end end end endhl;RA,U,L end end例3.4.3 用矩阵进行直接LU 分解的MA TLAB 程序分解矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=3010342110100201A . 解 在MATLAB 工作窗口输入程序>> A=[1 0 2 0;0 1 0 1;1 2 4 3;0 1 0 3]; hl=zhjLU(A)运行后输出结果请注意:因为A 的各阶主子式都不等于零,所以A 能进行LU 分解.A 的秩RA和各阶顺序主子式值hl 依次如下:RA = 4U = 1 0 2 00 1 0 10 0 2 10 0 0 2 3.4.4 判断正定对称矩阵的方法及其MATLAB 程序 判断矩阵A 是否是正定对称矩阵的MATLAB 程序function hl=zddc(A) [n n] =size(A); for p=1:nh(p)=det(A(1:p, 1:p)); endhl=h(1:n);zA=A'; for i=1:nif h(1,i)<=0disp('请注意:因为A 的各阶顺序主子式hl 不全大于零,所以A 不是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:'), hl;zA,returnend endif h(1,i)>0disp('请注意:因为A 的各阶顺序主子式hl 都大于零,所以A 是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:')hl;zA end例3.4.5 判断下列矩阵是否是正定对称矩阵:L = 1 0 0 0 0 1 0 0 1 2 1 0 0 1 0 1 hl = 1 1 2 4(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--98754113211143214321.0;(2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------19631690230311211; (3) ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----212100212100002121002121;(4)⎪⎪⎪⎭⎫⎝⎛---401061112. 解 (1)在MATLAB 工作窗口输入程序>> A=[0.1 2 3 4;-1 2 -3 4;11 21 13 41;5 7 8 9];hl=zddc (A)运行后输出结果请注意: A 不是对称矩阵请注意:因为A 的各阶顺序主子式hl 不全大于零,所以A 不是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:zA = 1/10 -1 11 5 2 2 21 7 3 -3 13 8 4 4 41 9 hl = 1/10 11/5 -1601/10 3696/5因此,A 即不是正定矩阵,也不是对称矩阵.(2)在MATLAB 工作窗口输入程序>> A=[1 -1 2 1;-1 3 0 -3;2 0 9 -6;1 -3 -6 19],hl=zddc(A)运行后输出结果A = 1 -1 2 1 -1 3 0 -3 2 0 9 -6 1 -3 -6 19 请注意: A 是对称矩阵请注意:因为A 的各阶顺序主子式hl 都大于零,所以A 是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:zA = 1 -1 2 1 -1 3 0 -3 2 0 9 -6 1 -3 -6 19 hl = 1 2 6 24 (3)在MATLAB 工作窗口输入程序>> A=[1/sqrt(2) -1/sqrt(2) 0 0; -1/sqrt(2) 1/sqrt(2) 0 0; 0 01/sqrt(2) -1/sqrt(2); 0 0 -1/sqrt(2) 1/sqrt(2)], hl=zddc (A) 运行后输出结果A= 985/1393 -985/1393 0 0 -985/1393 985/1393 0 0 0 0 985/1393 -985/1393 0 0 -985/1393 985/1393 请注意: A 是对称矩阵请注意:因为A 的各阶顺序主子式hl 不全大于零,所以A 不是正定的.A 的转置矩阵zA 和各阶顺序主子式值hl 依次如下:zA = 985/1393 -985/1393 0 0 -985/1393 985/1393 0 0 0 0 985/1393 -985/1393 0 0 -985/1393 985/1393 hl = 985/1393 0 0 0可见,A 不是正定矩阵,是半正定矩阵;因为A = A T因此,A 是对称矩阵.(4)在MATLAB 工作窗口输入程序>> A=[-2 1 1;1 -6 0;1 0 -4];hl=zddc (A)运行后输出结果A = -2 1 11 -6 01 0 -4请注意:A是对称矩阵请注意:因为A的各阶顺序主子式hl不全大于零,所以A不是正定的.A的转置矩阵zA和各阶顺序主子式值hl依次如下:zA = -2 1 1 hl = -2 11 -381 -6 01 0 -4可见A不是正定矩阵,是负定矩阵;因为A= A T因此,A是对称矩阵.。

相关文档
最新文档