MatLab求解线性方程组

合集下载

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法

Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。

Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。

本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。

一、数值积分数值积分是通过数值方法来近似计算函数的定积分。

在Matlab中,常用的数值积分函数是'quad'和'quadl'。

'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。

下面是一个使用'quad'函数计算定积分的例子。

假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。

我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。

二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。

在科学研究和工程应用中,常常需要求解微分方程的数值解。

在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。

'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。

下面是一个使用'ode45'函数求解常微分方程的例子。

假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。

我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。

三、非线性方程求解非线性方程是指方程中包含非线性项的方程。

在很多实际问题中,我们需要求解非线性方程的根。

MATLAB计算方法3解线性方程组计算解法

MATLAB计算方法3解线性方程组计算解法

直到(n-1) 原方程组化为
a11 x1 a12 x2 a1n xn a1,n1 a22 x2 a2 n xn a2 ,n1

ann xn an ,n1
(上三角方程组) (3.2) 以上为消元过程。
(n) 回代求解公式
a n ,n1 xn a nn n x k 1 [a k ,n1 a kj x j ] a kk j k 1 ( k n 1, n 2,...,1)
由矩阵乘法 (1) 1) l11 a11 l11
umj 1 ukj a kj ukj a kj l km umj
m 1
k 1
2 求L的第k列:用L的第i行 u的第k列
(i k 1, , n),即 ( l i 1 , , l ik , l kk , 0 0) ( u1k , u2 k , , ukk , 0 0)' a ik
( 2) 1)求u的第2行:用L的第2行 u的第j列 (j 2, , n) l 21 u1 j 1 u2 j a 2 j u2 j a 2 j l 21u1 j 2)求L的第2列:用L的第i行 u的第2列 (i 3,4, , n) l i 1 u12 l i 2 u22 a i 2 l i 2 (a i 2 l i 1 u12 ) / u22
m 1
l
k 1
im
umk l ik ukk a ik
k 1
l ik a ik l im umk ukk m 1
LU分解式: u1 j a1 j ( j 1,2, n) l i 1 a i 1 u11 ( i 2,3, , n) k 1 ukj a kj l km umj a kj m 1 ( j k , k 1, , n) k 1 l ik a ik l im umk ukk a ik m 1 ( i k 1, , n) ( k 2, 3, , n )

matlab逐次超松弛迭代法

matlab逐次超松弛迭代法

matlab逐次超松弛迭代法
逐次超松弛迭代法(Gauss-Seidel迭代法)是一种用于解线性方程组的迭代方法,通常用于求解大型稀疏线性方程组。

在MATLAB 中,可以使用该方法来解决线性方程组的数值解。

首先,让我们来了解一下逐次超松弛迭代法的基本原理。

该方法是基于迭代的思想,通过不断迭代更新解向量的各个分量,直到满足一定的收敛条件为止。

具体步骤如下:
1. 首先,需要将线性方程组表示为矩阵形式 Ax = b,其中A 是系数矩阵,x是未知向量,b是常数向量。

2. 然后,将系数矩阵A分解为下三角矩阵L、对角矩阵D和上三角矩阵U,即A = L + D + U。

3. 接下来,可以根据逐次超松弛迭代法的迭代公式来更新解向量x的各个分量,直到满足一定的精度要求或者迭代次数达到指定的值为止。

在MATLAB中,可以通过编写相应的代码来实现逐次超松弛迭代
法。

具体步骤如下:
1. 首先,需要编写一个函数来实现逐次超松弛迭代法的迭代过程,可以使用for循环来进行迭代更新解向量的各个分量。

2. 其次,需要编写主程序来调用该函数,并传入系数矩阵A、常数向量b以及迭代的初始解向量作为输入参数。

3. 最后,可以设置迭代的终止条件,例如迭代次数的最大值或者解的精度要求,以及初始解向量的初值。

需要注意的是,在实际应用中,逐次超松弛迭代法的收敛性和稳定性需要进行分析和验证,以确保得到正确的数值解。

此外,还需要注意选择合适的松弛因子来加速收敛速度。

总的来说,逐次超松弛迭代法是一种常用的求解线性方程组的数值方法,在MATLAB中可以通过编写相应的代码来实现该方法,并得到线性方程组的数值解。

matlab期末考试题目及答案

matlab期末考试题目及答案

matlab期末考试题目及答案1. 题目:编写一个MATLAB函数,实现矩阵的转置操作。

答案:可以使用`transpose`函数或`.'`操作符来实现矩阵的转置。

例如,对于一个矩阵`A`,其转置可以通过`A'`或`transpose(A)`来获得。

2. 题目:使用MATLAB求解线性方程组Ax=b,其中A是一个3x3的矩阵,b是一个3x1的向量。

答案:可以使用MATLAB内置的`\`操作符来求解线性方程组。

例如,如果`A`和`b`已经定义,求解方程组的代码为`x = A\b`。

3. 题目:编写MATLAB代码,计算并绘制函数f(x) = sin(x)在区间[0, 2π]上的图像。

答案:首先定义x的范围,然后计算对应的函数值,并使用`plot`函数绘制图像。

代码示例如下:```matlabx = linspace(0, 2*pi, 100); % 定义x的范围y = sin(x); % 计算函数值plot(x, y); % 绘制图像xlabel('x'); % x轴标签ylabel('sin(x)'); % y轴标签title('Plot of sin(x)'); % 图像标题```4. 题目:使用MATLAB编写一个脚本,实现对一个给定的二维数组进行排序,并输出排序后的结果。

答案:可以使用`sort`函数对数组进行排序。

如果需要对整个数组进行排序,可以使用`sort`函数的两个输出参数来获取排序后的索引和值。

代码示例如下:```matlabA = [3, 1, 4; 1, 5, 9; 2, 6, 5]; % 给定的二维数组[sortedValues, sortedIndices] = sort(A(:)); % 对数组进行排序sortedMatrix = reshape(sortedValues, size(A)); % 将排序后的值重新构造成矩阵disp(sortedMatrix); % 显示排序后的结果```5. 题目:编写MATLAB代码,实现对一个字符串进行加密,加密规则为将每个字符的ASCII码值增加3。

利用MATLAB求线性方程组

利用MATLAB求线性方程组

《MATLAB语言》课成论文利用MATLAB求线性方程组姓名:郭亚兰学号:12010245331专业:通信工程班级:2010级通信工程一班指导老师:汤全武学院:物电学院完成日期:2011年12月17日利用MATLAB求解线性方程组(郭亚兰 12010245331 2010 级通信一班)【摘要】在高等数学及线性代数中涉及许多的数值问题,未知数的求解,微积分,不定积分,线性方程组的求解等对其手工求解都是比较复杂,而MATLAB语言正是处理线性方程组的求解的很好工具。

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。

因而,线性代数被广泛地应用于抽象代数和泛函分析中;由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。

因而,线性代数被广泛地应用于抽象代数和泛函分析中;由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。

【关键字】线性代数MATLAB语言秩矩阵解一、基本概念1、N级行列式A:A等于所有取自不同性不同列的n个元素的积的代数和。

2、矩阵B:矩阵的概念是很直观的,可以说是一张表。

3、线性无关:一向量组(a1,a2,…,an)不线性相关,既没有不全为零的数k1,k2,………kn使得:k1*a1+k2*a2+………+kn*an=04、秩:向量组的极在线性无关组所含向量的个数成为这个向量组的秩。

5、矩阵B的秩:行秩,指矩阵的行向量组的秩;列秩类似。

记:R(B)6、一般线性方程组是指形式:⎪⎪⎩⎪⎪⎨⎧=+++=+++=*+++ssn s s n n n n b a x a x a b x a x a x a b x a x a x n 22112222212111212111x ********a 二、基本理论三种基本变换:1,用一非零的数乘某一方程;2,把一个方程的倍数加到另一方程;3,互换两个方程的位置。

matlab中jacobi迭代法

matlab中jacobi迭代法

一、简介Matlab中jacobi迭代法是一种用于求解线性方程组的迭代方法,适用于系数矩阵为对称、正定矩阵的情况。

该迭代方法通过将系数矩阵分解为对角矩阵、上三角矩阵和下三角矩阵的形式,然后通过迭代计算得到方程组的解。

在Matlab中,可以利用矩阵运算和迭代循环来实现jacobi迭代法。

二、 jacobi迭代法原理1. 基本思想jacobi迭代法的基本思想是将系数矩阵分解为对角矩阵D、上三角矩阵U和下三角矩阵L的形式,即A=D+L+U,其中D为系数矩阵A 的对角线元素组成的对角矩阵,L为系数矩阵A的下三角部分,U为系数矩阵A的上三角部分。

令x为方程组的解向量,b为方程组的右端向量,则方程组可表示为Ax=b。

根据方程组的性质,可将方程组表示为(D+L+U)x=b,然后利用迭代的方式逐步逼近方程组的解。

2. 迭代公式假设迭代到第k次,方程组可表示为(D+L+U)x=b,将其转化为迭代形式x(k+1)=(D+L)^(-1)(b-Ux(k)),利用迭代公式可以逐步计算出方程组的解。

3. 收敛条件对于jacobi迭代法,收敛条件为系数矩阵A为对角占优矩阵或正定矩阵。

如果满足这一条件,迭代计算会逐步收敛于方程组的解。

三、 Matlab中jacobi迭代法实现在Matlab中,可以利用矩阵运算和迭代循环来实现jacobi迭代法。

具体步骤如下:1. 对系数矩阵进行分解将系数矩阵A分解为对角矩阵D、上三角矩阵U和下三角矩阵L的形式。

2. 初始化迭代变量初始化迭代的初始值x0、迭代次数k、逐次逼近解向量x(k+1)。

3. 迭代计算利用迭代公式x(k+1)=(D+L)^(-1)(b-Ux(k))来逐步计算出方程组的解。

4. 判断收敛条件在迭代计算过程中,需要实时判断迭代计算是否满足收敛条件,如果满足则停止迭代计算,得到方程组的解。

四、实例分析假设有如下方程组:2x1 + x2 + 4x3 = 103x1 + 4x2 - x3 = 10x1 + 2x2 + 3x3 = 0可以利用jacobi迭代法来求解该方程组,在Matlab中可以通过编程实现迭代计算过程。

MATLAB-平方根法和改进平方根法求解线性方程组例题与程序演示教学

MATLAB-平方根法和改进平方根法求解线性方程组例题与程序演示教学

M A T L A B-平方根法和改进平方根法求解线性方程组例题与程序(2)设对称正定阵系数阵线方程组12345678424024000221213206411418356200216143323218122410394334411142202531011421500633421945x x x x x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎢⎥⎢⎥⎢---⎢⎥⎢⎥⎢--⎢⎥⎢⎢⎥⎣⎦⎣⎦⎣⎦⎥⎥⎥⎥ (1,1,0,2,1,1,0,2)T x *=--二、数学原理 1、平方根法解n 阶线性方程组Ax=b 的choleskly 方法也叫做平方根法,这里对系数矩阵A 是有要求的,需要A 是对称正定矩阵,根据数值分析的相关理论,如果A 对称正定,那么系数矩阵就可以被分解为的T A=L L •形式,其中L 是下三角矩阵,将其代入Ax=b 中,可得:T LL x=b 进行如下分解:T L xL by y ⎧=⎨=⎩ 那么就可先计算y,再计算x ,由于L 是下三角矩阵,是T L 上三角矩阵,这样的计算比直接使用A 计算简便,同时你应该也发现了工作量就转移到了矩阵的分解上面,那么对于对称正定矩阵A 进行Cholesky 分解,我再描述一下过程吧: 如果你对原理很清楚那么这一段可以直接跳过的。

设T A=L L •,即1112111112112122221222221212....................................n n n n n n nn n n nn nn a a a l l l l aa a l l l l a a a l l l l ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦其中,,1,2,...,ij ji a a i j n ==第1步,由矩阵乘法,211111111,i i a l a l l ==g 故求得111111,2,3,...i i a l l i n a === 一般的,设矩阵L 的前k-1列元素已经求出 第k 步,由矩阵乘法得112211k k kk kmkkik im km ik kkm m a l l a l l l l --===+=+∑∑, 于是11(2,3,...,n)1(),1,2,...kk k ik ik im km m kk l k l a l l i k k n l -=⎧=⎪⎪=⎨⎪=-=++⎪⎩∑ 2、改进平方根法在平方根的基础上,为了避免开方运算,所以用TLDL A =计算;其中,11122.........n d D D D d ⎤⎤⎡⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎢⎢⎥⎣⎦⎣⎣;得1121212212111111n n n n n d l l l d l A l l d ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L L M MO O O M L按行计算的L 元素及D 对元素公式 对于n i ,,2,1Λ=11(1,21)j ij ij ik jk k t a t l j i -==-=-∑…,./(1,2,)ij ij j l t d j ==…,i-1.11i i ii ik ikk d a t l -==-∑计算出LD T =的第i 行元素(1,2,i-1)ij t j =…,后,存放在A 的第i 行相置,然后再计算L 的第i 行元素,存放在A 的第i 行.D 的对角元素存放在A 的相应位置.对称正定矩阵A 按T LDL 分解和按T LL 分解计算量差不多,但T LDL 分解不需要开放计算。

利用matlab解线性方程组

利用matlab解线性方程组

数值计算实验——解线性方程组西南交通大学2012级茅7班20123257 陈鼎摘要本报告主要介绍了基于求解线性方程组的高斯消元法和列主消元法两种数值分析方法的算法原理及实现方法。

运用matlab数学软件辅助求解。

实验内容1.编写用高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证。

2.编写用列主消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证。

给定方程组如下:①0.325x1+2.564x2+3.888x3+5x4=1.521②-1.548x1+3.648x2+4.214x3-4.214x4=2.614③-2.154x1+1.647x2+5.364x3+x4=3.978④0x1+2.141x2-2.354x3-2x4=4.214A.高斯消元法一、算法介绍高斯消元法是一种规则化的加减消元法。

基本思想是通过逐次消元计算把需要求解的线性方程组转化成为上三角方程组,即把现形方程组的系数矩阵转化为上三角矩阵,从而使一般线性方程组的求解转化为等价的上三角方程组的求解。

二、matlab程序function [RA,RB,n,X]=gaus(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp(‘因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp(‘因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1for k=p+1:nm= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp(‘因为RA=RB<n,所以此方程组有无穷多解.')endend三、实验过程与结果输入的量:系数矩阵A和常系数向量b;输出的量:系数矩阵A和增广矩阵B的秩RA、RB,方程中未知量的个数n和有关方程组解X及其解的信息。

matlab超松弛迭代法求方程组

matlab超松弛迭代法求方程组

一、介绍MATLAB(Matrix Laboratory)是一种用于数值计算和数据可视化的专业软件。

在MATLAB中,超松弛迭代法是解决线性方程组的一种有效算法。

本文将介绍MATLAB中超松弛迭代法的基本原理和实现方法,并给出一个具体的例子进行演示。

二、超松弛迭代法的基本原理超松弛迭代法是一种逐步迭代的算法,用于求解线性方程组。

它的基本原理是通过不断迭代更新方程组的解,直到达到满足精度要求的解。

超松弛迭代法的公式如下:X(k+1) = (1-w)X(k) + w*(D-L)⁻¹*(b+U*X(k))其中,X(k)代表第k次迭代的解向量,X(k+1)代表第k+1次迭代的解向量,D、L和U分别代表方程组的对角线元素、下三角元素和上三角元素构成的矩阵,b代表方程组的右端向量,w代表松弛因子。

超松弛迭代法的关键在于选择合适的松弛因子w,一般情况下,可以通过试验选取一个合适的值。

在MATLAB中,可以使用sor函数来实现超松弛迭代法。

三、MATLAB中超松弛迭代法的实现方法在MATLAB中,可以通过调用sor函数来实现超松弛迭代法。

sor 函数的语法格式如下:[X,flag,relres,iter,resvec] = sor(A,b,w,tol,maxit)其中,A代表线性方程组的系数矩阵,b代表右端向量,w代表松弛因子,tol代表迭代的精度要求,maxit代表最大迭代次数,X代表迭代求解得到的解向量,flag代表迭代的结果标志,relres代表相对残差的大小,iter代表迭代次数,resvec代表迭代过程中的残差向量。

以下是一个使用sor函数求解线性方程组的示例:A = [4 -1 0 -1 0 0; -1 4 -1 0 -1 0; 0 -1 4 0 0 -1; -1 0 0 4 -1 0; 0 -1 0 -1 4 -1; 0 0 -1 0 -1 4];b = [1; 0; -1; 0; 1; 0];w = 1.25;tol = 1e-6;maxit = 100;[X,flag,relres,iter,resvec] = sor(A,b,w,tol,maxit);通过调用sor函数,可以得到方程组的解向量X,迭代的结果标志flag,相对残余resrel和迭代次数iter。

matlab四阶龙格库塔法解方程组

matlab四阶龙格库塔法解方程组

matlab四阶龙格库塔法解方程组摘要:一、引言二、龙格库塔法介绍1.龙格库塔法的基本原理2.龙格库塔法的发展历程三、MATLAB 实现四阶龙格库塔法1.MATLAB 中龙格库塔法的函数2.四阶龙格库塔法的MATLAB 实现四、龙格库塔法解方程组的应用1.线性方程组的求解2.非线性方程组的求解五、结论正文:一、引言在数学领域,求解方程组是一项基本任务。

龙格库塔法作为高效数值求解线性方程组的方法,被广泛应用于各个领域。

MATLAB 作为一款强大的数学软件,可以方便地实现龙格库塔法求解方程组。

本文将介绍MATLAB 中四阶龙格库塔法解方程组的原理、实现与应用。

二、龙格库塔法介绍1.龙格库塔法的基本原理龙格库塔法(Runge-Kutta method)是一种求解常微分方程初值问题的数值方法。

它通过求解一组线性方程来逼近微分方程的解,具有较高的数值稳定性和精度。

龙格库塔法可以分为四阶、五阶等多种形式,其中四阶龙格库塔法是较为常用的一种。

2.龙格库塔法的发展历程龙格库塔法由德国数学家卡尔·龙格(Carl Runge)和英国数学家詹姆斯·库塔(James Kutta)分别在1900 年和1901 年独立发现。

自那时以来,龙格库塔法在数学、物理、工程等领域得到了广泛应用,并发展出了多种改进和扩展。

三、MATLAB 实现四阶龙格库塔法1.MATLAB 中龙格库塔法的函数在MATLAB 中,可以使用内置函数ode45、ode23、ode113 等实现龙格库塔法求解常微分方程。

这些函数分别对应四阶、五阶和三阶龙格库塔法。

2.四阶龙格库塔法的MATLAB 实现以下是一个使用MATLAB 实现四阶龙格库塔法求解方程组的示例:```matlabfunction [x, status] = solve_system_with_ode45(A, B, x0)% 定义方程组func = @(t, x) A * x + B;% 初始条件x0 = [1; 2];% 时间区间tspan = [0, 10];% 求解[x, status] = ode45(func, tspan, x0);end```四、龙格库塔法解方程组的应用1.线性方程组的求解线性方程组在数学、物理、工程等领域具有广泛应用。

matlab求线性方程组的解

matlab求线性方程组的解

matlab求线性方程组的解求解线性方程分为两种方法–直接法和迭代法常见的方法一共有8种直接法Gauss消去法Cholesky分解法迭代法Jacobi迭代法Gauss-Seidel迭代法超松弛迭代法共轭梯度法Bicg迭代法Bicgstab迭代法这里我从计算代码的角度来解释一下,代码按以下顺序给出。

把方程组直接带入已知条件,就可以得到答案。

适用条件Gauss消去法:求解中小规模线性方程(阶数不过1000),一般用于求系数矩阵稠密而且没有任何特殊结构的线性方程组Cholesky分解法:对称正定方程优先使用,系数矩阵A是n 阶对称正定矩阵Jacobi迭代法非奇异线性方程组,分量的计算顺序没有关系Gauss-Seidel迭代法与Jacobi迭代法相似,但计算的分量不能改变超松弛迭代法Jacobi迭代法和Gauss-Seidel迭代法的加速版,由Gauss-Seidel迭代法改进而来,速度较快共轭梯度法需要确定松弛参数w,只有系数矩阵具有较好的性质时才可以找到最佳松弛因子。

但好处是不用确定任何参数,他是对称正定线性方程组的方法也是求解大型稀疏线性方程组最热门的方法Bicg迭代法本质是用双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Bicgstab迭代法本质是用稳定双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Gauss消去法第一、二个函数ltri、utri是一定要掌握的,后面的几乎每个函数都要用到ltri简单来说,当Ly=bb,L(非奇异下三角矩阵)已知求yfunction y =ltri(L,b)n=size(b,1);y=zeros(n,1);for j =1:n-1y(j)=b(j)/L(j,j);b(j+1:n)=b(j+1:n)-y(j)*L(j+1:n,j); endy(n)=b(n)/L(n,n);utri简单来说,当Ux=yy,U(非奇异上三角矩阵)已知求xfunction x =utri(U,y)n=size(y,1);x=zeros(n,1);for j = n:-1:2x(j)=y(j)/U(j,j);y(1:j-1)=y(1:j-1)-x(j)*U(1:j-1,j);endx(1)=y(1)/U(1,1);gauss算法,计算时粘贴过去就好function[L,U]=gauss(A)n=size(A,1);for k =1:n-1A(k+1:n,k)=A(k+1:n,k)/A(k,k);A(k+1:n,k+1:n)=A(k+1:n,k +1:n)-A(k+1:n,k)*A(k,k+1:n);endL=tril(A,-1)+eye(n);U=triu(A);使用例子已经知道一个线性方程组,这里我就不写出数学形式了,A是系数矩阵,直接把上面写好的函数复制过来在运算就可以。

MATLAB实验一 解线性方程组的直接法

MATLAB实验一 解线性方程组的直接法

输出 Ax b 中系数 A LU 分解的矩阵 L 和 U ,解向量 x 和 det(A) ;用列主元法 的行交换次序解向量 x 和求 det(A) ;比较两种方法所得结果。
2、用列主高斯消元法解线性方程组 Ax b 。
3.01 6.03 1.99 x1 1 4.16 1.23 x 2 1 (1) 、 1.27 0.987 4.81 9.34 x 1 3 3.00 6.03 1.99 x1 1 4.16 1.23 x 2 1 (2) 、 1.27 0.990 4.81 9.34 x 1 3
index = 1 3、在 MATLAB 窗口:
A=[10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10]; b=[32 23 33 31]'; x=A\b b1=[32.1 22.9 33.1 30.9]'; x1=A\b1 A1=[10 7 8.1 7.2;7.08 5.04 6 5;8 5.98 9.89 9;6.99 5 9 9.98]; x2=A1\b delta_b=norm(b-b1)/norm(b) delta_A=norm(A-A1)/norm(A) delta_x1=norm(x-x1)/norm(x) delta_x2=norm(x-x2)/norm(x)
二. 实验要求 1、按照题目要求完成实验内容; 2、写出相应的 Matlab 程序; 3、给出实验结果(可以用表格展示实验结果); 4、分析和讨论实验结果并提出可能的优化实验。 5、写出实验报告。 三. 实验步骤 1、用 LU 分解及列主元高斯消去法解线性方程组
7 10 3 2.099999 a) 5 1 2 1 1 x1 8 6 2 x 2 5.900001 , 5 1 x3 5 0 2 1 x 4 0

matlablu分解法求解方程组

matlablu分解法求解方程组

matlablu分解法求解方程组Matlab中有多种方法可以用来求解线性方程组,其中matlablu分解法(LU decomposition)是一种常用的方法,它将方程组的系数矩阵分解为下三角矩阵L和上三角矩阵U的乘积,然后通过解两个三角方程求出未知量。

1. matlablu分解法的基本原理LU分解法的基本思想是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。

分解后的方程组为Lz=b和Ux=z,其中z和x分别表示中间变量和未知量,b为右端向量。

因为L和U都是三角矩阵,所以可以使用回代(back substitution)求解。

具体地,先用前向代入法(forward substitution)求解Lz=b,然后再用回代法求解Ux=z。

2. matlablu分解法的使用方法Matlab中提供了lu函数,可以直接使用matlablu分解法来求解方程组。

使用该函数时,需要输入系数矩阵A和右端向量b,输出下三角矩阵L、上三角矩阵U和置换矩阵P,满足PA=LU。

3. matlablu分解法的优缺点matlablu分解法的主要优点是计算量小,稳定性良好,对于系数矩阵比较稠密的情况下求解速度较快。

缺点是需要额外的空间存储L和U矩阵,当系数矩阵过于稠密时,存储和计算量会增加。

同时,如果系数矩阵A不是满秩矩阵,需要进行列主元素的选取,增加计算量。

4. matlablu分解法的应用场景matlablu分解法常常用于求解较小规模的方程组,尤其是系数矩阵稠密的情况。

同时,如果求解过程中需要对系数矩阵进行一定的修改,也可以使用matlablu分解法来快速地更新解。

总之,matlablu分解法是求解线性方程组的常用方法之一,它具有计算量小、稳定性好等优点。

在实际应用中,需要根据问题的具体情况选择合适的求解方法。

matlab共轭梯度法求解方程组

matlab共轭梯度法求解方程组

主题:matlab共轭梯度法求解方程组近年来,随着科学技术的不断发展,数学建模和计算机仿真成为科学研究和工程技术领域的重要手段。

在实际应用中,我们常常需要解决线性方程组的求解问题,而共轭梯度法作为一种高效的迭代求解方法,广泛应用于信号处理、图像处理、地球物理勘探和优化问题等领域。

本文将介绍如何利用matlab中的共轭梯度法求解线性方程组的基本原理和实际操作方法。

1. 共轭梯度法的基本原理共轭梯度法是一种迭代法,用于求解对称正定线性方程组Ax=b。

该方法的核心思想是通过一系列的迭代操作,逐步逼近方程组的解,直到满足一定的精度要求。

在每一步迭代中,共轭梯度法利用残差和方向向量的共轭性质,不断寻找最优的步长,从而实现方程组的求解。

2. matlab中共轭梯度法的基本调用方法在matlab中,调用共轭梯度法求解线性方程组非常简单。

需要将方程组的系数矩阵A和右端向量b输入到matlab中,然后利用内置函数conjugateGradient进行求解。

具体的调用方法如下:x = conjugateGradient(A, b, x0, maxIter, tol)其中,A为系数矩阵,b为右端向量,x0为初始解向量,maxIter为最大迭代次数,tol为精度要求。

调用完毕后,matlab将返回方程组的近似解x。

3. 共轭梯度法在实际工程中的应用共轭梯度法作为一种高效的求解方法,在工程技术领域得到了广泛的应用。

以图像处理为例,图像处理中经常需要解决大规模的线性方程组,而共轭梯度法能够高效地求解这类问题,提高了图像处理算法的效率和稳定性。

另外,在地球物理勘探中,共轭梯度法也被广泛应用于三维数据的快速处理和解释。

可以说,共轭梯度法在实际工程中发挥着重要的作用。

4. 共轭梯度法的优缺点分析尽管共轭梯度法具有非常高的效率和稳定性,但是该方法也存在一些缺点。

该方法只适用于对称正定的线性方程组,对于一般的线性方程组并不适用。

共轭梯度法的收敛速度受到方程条件数的影响,对于病态问题,可能收敛速度较慢。

求线性方程组AX=b通解的Matlab实现程序

求线性方程组AX=b通解的Matlab实现程序
而得 到 齐次线 性 方 程组 A X= 0 的所有 解 所构 成 的空 间 ,也就 是齐次 线性方 程组 的一 个基础解 系 。 对齐 次 线性 方 程 组Ax = 0 ,Ma t l a b 命 令 如下 :( 1 )  ̄ l f 果 A
[ n 1 】 [ 2 n 2 】
的通解加 上其 自身 的一个 特解 。在理 论基础 上 ,我们 利用下 面 的例子说 明Ma t 1 a b 实现 程序 。
解 :Ma t l a b 实现程序如下:
> > A = [ 1 1 0— 3 - 1 ; 1— 1 2— 1

7 ] ;
> > f o r ma t r a t

下面是 其简化形 式
[一 n l +7 n 2 ]
[n 1 +5 n 2 ]
C1 1 +C2 ( z 2+… +C


0 【

, ,
在这里 C , C 2 , …, C ~ 设为任 意 的常数 。 利用Ma t l a b ,我 们要 求零 空 间 ,可 以调用 函数n u l l ,从
%限定 输 出格式 为有理 式
I 2 十 X 2 一 x 3 + x 4 = 1 I 3 一 2 + 2 一 3 = 2
> >P=n u l l ( A , ' r ’ ) % 求线性方程组的解空间的有理形式
的基
> > s y ms n l ,n 2
例 2 求 方 程 组 : 1 5 + 一 X 3 + 2 X 4 : 一 1 的 通 解。
关键 词 :齐次线性 方程 组 ;非齐次线性 方程组 ;通解
引 言
求 解 线性 方 程 组 的 问题 是 数 值线 性 代 数 的三 大 问 题之

MATLAB求解非齐次线性方程组

MATLAB求解非齐次线性方程组

MATLAB 求解⾮齐次线性⽅程组根据线性代数中求解⽅程组的基本知识,⾸先应判断系数矩阵的秩是否和增⼴矩阵的秩相等,若不等,则⽆解;若有解,根据秩和未知量个数的关系,判断是唯⼀解还是⽆穷多解;若为⽆穷多解,其通解为齐次⽅程组的通解加⾮齐次⽅程组的特解。

求⾮齐次线性⽅程组Ax=b 的特解,可直接使⽤命令A\b ,求解齐次线性⽅程组的通解,可以使⽤函数null 或rref 来实现。

命令含义B = null(A,'r')求系数矩阵为A 的齐次线性⽅程组Ax=0的基础解系,结果为有理数,B 的列向量即基础解系的列向量Z = null(A)求出Ax=0的基础解系后,将基础解系的向量正交单位化,存储在Z 中C = rref(A)求出矩阵A 的⾏最简形矩阵(reduced row echelon form )function [S_H, S_P] = solveLS(A,b)% 输⼊参数A :系数矩阵% 输⼊参数b :Ax=b 的常数项列向量b% S_H :齐次线性⽅程组的基础解系% S_P :⾮齐次线性⽅程组的特解if size(A,1) ~= length(b) %size(A,1)求矩阵的⾏数error('输⼊数据错误,请重新输⼊!');return;elseB = [A,b]; %增⼴矩阵rank_A = rank(A); %求系数矩阵的秩rank_B = rank(B); %求增⼴矩阵的秩if rank_A ~= rank_B %⽆解情况disp('线性⽅程组⽆解!');S_H = [];S_P = [];else if rank_B == size(A,2) %若增⼴矩阵的秩 = 未知量个数%size(A,2)求矩阵的列数,相当于length(A)disp('线性⽅程组有唯⼀解!');S_P = A\b; %求唯⼀解S_H = [];elsedisp('线性⽅程组有⽆穷解!');S_H = null(A,'r');%求出齐次⽅程组的基础解系S_P = A\b; %求⾮齐次⽅程组的特解endendend例 使⽤Matlab 求解⽅程组A=[1 2 -2 3; 2 4 -3 4; 5 10 -8 11];b=[2 5 12]';format rat;[S_H, S_P]=solveLS(A,b)运⾏结果线性⽅程组有⽆穷解!S_H =-2 11 00 20 1S_P =7/4-1/2该线性⽅程组有⽆穷多解,通解为⎧⎩⎨+2−2+3=2x 1x 2x 3x 42+4−3+4=5x 1x 2x 3x 45+10−8+11=12x 1x 2x 3x 4x =++,,∈R k 1⎛⎝⎜⎜⎜−2100⎞⎠⎟⎟⎟k 2⎛⎝⎜⎜⎜1021⎞⎠⎟⎟⎟⎛⎝⎜⎜⎜07/40−1/2⎞⎠⎟⎟⎟k 1k 2。

MATLAB-平方根法和改进平方根法求解线性方程组例题与程序

MATLAB-平方根法和改进平方根法求解线性方程组例题与程序

(2)设对称正定阵系数阵线方程组12345678424024000221213206411418356200216143323218122410394334411142202531011421500633421945x x x x x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎢⎥⎢⎥⎢---⎢⎥⎢⎥⎢--⎢⎥⎢⎢⎥⎣⎦⎣⎦⎣⎦⎥⎥⎥⎥ (1,1,0,2,1,1,0,2)T x *=--二、数学原理 1、平方根法解n 阶线性方程组Ax=b 的choleskly 方法也叫做平方根法,这里对系数矩阵A 是有要求的,需要A 是对称正定矩阵,根据数值分析的相关理论,如果A 对称正定,那么系数矩阵就可以被分解为的T A=L L ∙形式,其中L 是下三角矩阵,将其代入Ax=b 中,可得:T LL x=b 进行如下分解:T L xL by y ⎧=⎨=⎩ 那么就可先计算y,再计算x ,由于L 是下三角矩阵,是T L 上三角矩阵,这样的计算比直接使用A 计算简便,同时你应该也发现了工作量就转移到了矩阵的分解上面,那么对于对称正定矩阵A 进行Cholesky 分解,我再描述一下过程吧: 如果你对原理很清楚那么这一段可以直接跳过的。

设T A=L L ∙,即1112111112112122221222221212....................................n n n n n n nn n n nn nn a a a l l l l aa a l l l l a a a l l l l ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦其中,,1,2,...,ij ji a a i j n ==第1步,由矩阵乘法,211111111,i i a l a l l == 故求得111111,2,3,...i i a l l i n a === 一般的,设矩阵L 的前k-1列元素已经求出 第k 步,由矩阵乘法得112211k k kk kmkkik im km ik kkm m a l l a l l l l --===+=+∑∑, 于是11(2,3,...,n)1(),1,2,...kk k ik ik im km m kk l k l a l l i k k n l -=⎧=⎪⎪=⎨⎪=-=++⎪⎩∑ 2、改进平方根法在平方根的基础上,为了避免开方运算,所以用TLDL A =计算;其中,11122.........n d D D D d ⎤⎤⎡⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎢⎢⎥⎣⎦⎣⎣;得1121212212111111n n n n n d l l l d l A l l d ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦按行计算的L 元素及D 对元素公式 对于n i ,,2,1 =11(1,21)j ij ij ik jk k t a t l j i -==-=-∑…,./(1,2,)ij ij j l t d j ==…,i-1.11i i ii ik ikk d a t l -==-∑计算出LD T =的第i 行元素(1,2,i-1)ij t j =…,后,存放在A 的第i 行相置,然后再计算L 的第i 行元素,存放在A 的第i 行.D 的对角元素存放在A 的相应位置.对称正定矩阵A 按T LDL 分解和按TLL 分解计算量差不多,但T LDL 分解不需要开放计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MatLab解线性方程组一文通
当齐次线性方程AX=0,rank(A)=r<n时,该方程有无穷多个解,怎样用MATLAB求它的一个基本解呢?
用matlab 中的命令x=null(A, r )即可.其中:r=rank(A)
A=[ 1 1 1 1 -3 -1 1
1 0 0 0 1 1 0
-2 0 0 -1 0 -1 -2]
用matlab 求解程序为:A=[1 1 1 1 -3 -1 1;1 0 0 0 1 1 0;-2 0 0 -1 0 -1 -2];
r=rank(A);
y=null(A, r )
得到解为:
y=[ 0 -1 -1 0
-1 2 1 1
1 0 0 0
0 2 1 -2
0 1 0 0
0 0 1 0
0 0 0 1]
其列向量为Ay=0的一个基本解
MatLab解线性方程组一文通!
-------------------作者:liguoy(2005-2-3)
写在阅读本文前的引子。

一:读者对线性代数与Matlab 要有基本的了解;
二:文中的通用exp.m文件,你须把具体的A和b代进去。

一:基本概念
1.N级行列式A:|A|等于所有取自不同行不同列的n个元素的积的代数和。

2.矩阵B:矩阵的概念是很直观的,可以说是一张表。

3.线性无关:一向量组(a ,a ,…. a )不线性相关,即没有不全为零的数k ,k ,……kn
使得:k1* a +k2* a +…..+kn*an=0
4. 秩:向量组的极在线性无关组所含向量的个数称为这个向量组的秩。

5.矩阵B的秩:行秩,指矩阵的行向量组的秩;列秩类似。

记:R(B)
6.一般线性方程组是指形式: (1)
其中x1,x2,…….xn为n个未知数,s为方程个数。

记:A*X=b
7.性方程组的增广矩阵:=
8. A*X=0 (2)
二:基本理论
三种基本变换:1,用一非零的数乘某一方程;2,把一个方程的倍数加到另一个方程;3互换两个方程的位置。

以上称初等变换。

消元法(理论上分析解的情况,一切矩阵计算的基础)
首先用初等变换化线性方程组为阶梯形方程组,把最后的一些恒等式”0=0”(如果出现的
话)去掉,1:如果剩下的方程当中最后的一个等式是零等于一非零数,那么方程组无解;
否则有解,在有解的情况下,2:如果阶梯形方程组中方程的个数r等于未知量的个数,那
么方程组有唯一的解,3:如果阶梯形方程组中方程的个数r小于是未知量的个数,那么方
程组就有无穷个解。

用初等变换化线性方程组为阶梯形方程组,相当于用初等行变换化增广矩阵成阶梯形矩阵。

化成阶梯形矩阵就可以判别方程组有解还是无解,在有解的情形下,回到阶梯形方程组
去解。

定理1:线性方程组有解的充要条件为:R(A)=R()
线性方程组解的结构:
1:对齐次线性方程组,a: 两个解的和还是方程组的解;b: 一个解的倍数还是方程组的解。

定义:齐次线性方程组的一组解u1,u2,….ui 称为齐次线性方程组的一个基础解系,如
果:齐次线性方程组的任一解都能表成u1,u2,….ui的线性组合,且u1,u2,….ui线性无关。

2:对非齐次线性方程组
(I)方程组(1)的两个解的差是(2)的解。

(II)方程组(1)的一个解与(2)的一个解之和还是(1)的解。

定理2 如果r0是方程组(1)的一个特解,那么方程组(1)的任一个解r都可以表成:
r=ro+v (3)
其中v是(2)的一个解,因此,对方程(1)的任一特解ro,当v取遍它的全部解时,(3) 就
给出了(1)的全部解。

三:基本思路
线性方程的求解分为两类:一类是方程组求唯一解或求特解;一类是方程组求无穷解即通解。

I)判断方程组解的情况。

1:当R(A)=R()时有解(R(A)=R()>=n唯一解,R(
A)=R()〈n,有无穷解〉;2:当R(A)+1=R()时无解。

II)求特解;
III)求通解(无穷解), 线性方程组的无穷解= 对应齐次方程组的通解+非齐次方程组的
一个特解;
注:以上针对非齐次线性方程组,对齐次线性方程组,主要是用到I)、III)步!
四:基本方法
基本思路将在解题的过程中得到体现。

1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠
密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。

1.1利用矩阵除法求线性方程组的特解(或一个解)
方程:AX=b,解法:X=A"b,(注意此处’"’不是’/’)
例1-1 求方程组的解。

解: A = ; = ;b=(1,0,0,0,1)’
由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。

>>X= A"b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。

1.2 利用矩阵的LU、QR和cholesky分解求方程组的解,这三种分解,在求解大型方程组时很有用。

其优点是运算速度快、可以节省磁盘空间、节省内存。

I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换
)和上三角矩阵的乘积。

即A=LU,L为下三角阵,U为上三角阵。

则:A*X=b 变成L*U*X=b
所以X=U"(L"b) 这样可以大大提高运算速度。

命令[L,U]=lu (A)
在matlab中可以编如下通用m 文件:
在Matlab中建立M文件如下
% exp1.m
A;b;
[L,U]=lu (A);
X=U"(L"b)
II)Cholesky分解
若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。

方程A*X=b 变成所以
在Matlab中建立M文件如下
% exp2.m
A;b;
[R’,R]=chol(A);
X=R"(R’"b)
III)QR分解
对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形式,即:A=QR
方程A*X=b 变形成 QRX=b
所以 X=R"(Q"b)
上例中[Q, R]=qr(A)
X=R"(Q"B)
在Matlab中建立M文件如下
% exp3.m
A;b;
[Q,R]=qr(A);
X=R"(Q"b)
2.求线性齐次方程组的通解(A*X=0)
在Matlab中,函数null用来求解零空间,即满足A•X=0的解空间,实际上是求出解空间的一组基(基础解系)。

在Matlab中建立M文件如下
% exp4.m
format rat %指定有理式格式输出
A;b=0;
r=rank(A);
bs=null(A,‘r’); %一组基含(n-r)个列向量
% k ,k ,……,k
% X= k *bs(:,1)+ k *bs(:,2)+……+ k *bs(:,n-r) 方程组的通解
pretty(X) %让通解表达式更加精美
3 求非齐次线性方程组的通解(A*X=b)
非齐次线性方程组需要先判断方程组是否有解,若有解,再去求通解。

因此,步骤为:
第一步:判断AX=b是否有解,(利用基本思路的第一条)
若有解则进行第二步
第二步:求AX=b的一个特解
第三步:求AX=0的通解
第四步:AX=b的通解为:AX=0的通解加上AX=b的一个特解。

在Matlab中建立M文件如下
% exp4.m
clear all
A;b; %输入矩阵A,b
[m,n]=size(A);
R=rank(A);
B=[A b];
Rr=rank(B);
format rat
if R==Rr&R==n % n为未知数的个数,判断是否有唯一解
x=A \b;
elseif R==Rr&R<n %判断是否有无穷解
x=A\b %求特解
C=null(A, r ) %求AX=0的基础解系,所得C为n-R列矩阵,这n-R列即为对%应的基础解系
% 这种情形方程组通解xx=k(p)*C(:,P)(p=1…n-R)
else X= No solution! % 判断是否无解
end。

相关文档
最新文档