初中平面几何的60个定理
平面几何基本定理
.一.平面几何1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥高线长:C b B c A abcc p b p a p p a h a sin sin sin ))()((2===---=5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理)角平分线长:2cos 2)(2Ac b bc a p bcp c b t a +=-+=(其中p 为周长一半)6. 正弦定理:R CcB b A a 2sin sin sin ===,(其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a ccos 2222-+=8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC.于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKHCA FP BC DE AB KH CA FP BC DE (4)设G 为△ABC 的重心,则222222333GC AB GB CA GA BC +=+=+)(31222222CA BC AB GC GB GA ++=++22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C cy B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等),(cb a cy by ayc b a cx bx ax I CB AC B A ++++++++内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然 (2)设I为△ABC的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC于D ,交△ABC 外接圆于点K ,则acb KD IK KI AK ID AI +=== (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (B A By AyC B A Cx Bx Ax O BA CB A +++++++外心性质:(1)外心到三角形各顶点距离相等(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子) (2))(21C A I I I C B A ∠+∠=∠ (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论)(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式C B A R Rabc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的.高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=29. 三角形中内切圆,旁切圆和外接圆半径的相互关系;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4CB A R rC B A R r C B A R r C B A R r c b a ====.1111;2tan2tan ,2tan 2tan ,2tan 2tan rr r r B A r r C A r r C B r r c b a c b a =++===30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RBARQA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CYYA=1 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则AS 一定过边BC 的中点M35. 塞瓦定理的逆定理:(略)36. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点37. 塞瓦定理的逆定理的应用定理2:设△ABC 的内切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT 交于一点.38. 西摩松(Simson )定理:从△ABC 的外接圆上任意一点P向三边BC 、CA 、AB 或其延长线作垂线,设其垂足分别是D 、E 、R ,则D 、E 、R 共线,(这条直线叫西摩松线Simson line )39. 西摩松定理的逆定理:(略)40. 关于西摩松线的定理1:△ABC 的外接圆的两个端点P 、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上 41. 关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点42. 史坦纳定理:设△ABC 的垂心为H ,其外接圆的任意点P ,这时关于△ABC 的点P 的西摩松线通过线段PH 的中心. 43. 史坦纳定理的应用定理:△ABC 的外接圆上的一点P 的关于边BC 、CA 、AB 的对称点和△ABC 的垂心H 同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC 的镜象线.44. 牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45. 牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线. 46. 笛沙格定理1:平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 47. 笛沙格定理2:相异平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 48. 波朗杰、腾下定理:设△ABC 的外接圆上的三点为P 、Q 、R ,则P 、Q 、R 关于△ABC 交于一点的充要条件是:弧AP +弧BQ +弧CR =0(mod2π) .49. 波朗杰、腾下定理推论1:设P 、Q 、R 为△ABC 的外接圆上的三点,若P 、Q 、R 关于△ABC 的西摩松线交于一点,则A 、B 、C 三点关于△PQR 的的西摩松线交于与前相同的一点.50. 波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A 、B 、C 、P 、Q 、R 六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点. 51. 波朗杰、腾下定理推论3:考查△ABC 的外接圆上的一点P的关于△ABC 的西摩松线,如设QR 为垂直于这条西摩松线该外接圆的弦,则三点P 、Q 、R 的关于△ABC 的西摩松线交于一点.52. 波朗杰、腾下定理推论4:从△ABC 的顶点向边BC 、CA 、AB 引垂线,设垂足分别是D 、E 、F ,且设边BC 、CA 、AB的中点分别是L 、M 、N ,则D 、E 、F 、L 、M 、N 六点在同一个圆上,这时L 、M 、N 点关于关于△ABC 的西摩松线交于一点53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线. 54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,.如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心 59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点 60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线. 62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切. 65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线. 68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF -=∆∆.二.集合1.元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B==3.包含关系A B A A B B=⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个. 5.集合A 中有M 个元素,集合B 中有N 个元素,则可以构造M*N 个从集合A 到集合B 的映射;6.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.三.二次函数,二次方程1·二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠;(3)零点式12()()()(0)f x a x x x x a =--≠. 2·解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 3·方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条.件.特别地, 方程)0(02≠=++a c bx ax有且只有一个实根在),(21k k ,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 4·闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a =-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.5·一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q pm ⎧-≥⎪⎨->⎪⎩; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q pm ⎧-≥⎪⎨-<⎪⎩ . 6·定区间上含参数的二次不等式恒成立的条件依据 (1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3))(24>++=c bx ax x f 恒成立的充要条件是00a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.四.简易逻辑1·真值表234·充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要.条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.五.函数1· 函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.2·如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.3·奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;在对称区间上,奇函数的单调性相同,欧函数相反;,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数,如果一个奇函数的定义域包括0,则必有f(0)=0;4若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+. 5· 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 6·若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.7 多项式函数110()n n n n P x a x a xa --=+++的奇偶性 多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 8函数()y f x =的图象的对称性 (1)函数()y f x =的图象关于直线x a=对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.9两个函数图象的对称性 (1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.10 若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.11 互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.12若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数.13 几个常见的函数方程 (1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠. (3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,0()(0)1,lim 1x g x f x→==.14 几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;.(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.六 指数与对数1·分数指数幂(1)m na=(0,,am n N *>∈,且1n >).(2)1mnm naa-=(0,,a m n N *>∈,且1n >).2·根式的性质(1)n a =.(2)当na =;当n 为,0||,0a a a a a ≥⎧==⎨-<⎩. 3·有理指数幂的运算性质(1) (0,,)r s r s a a a a r s Q +⋅=>∈.(2)()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)rr r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用. 4·指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.5·对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠,0N >).推论log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >).6·对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N=+;(2)log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈. 7·设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.8·对数换底不等式及其推广若0a>,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n++<.(2)2log log log 2a a a m nm n +<. 9·平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).七 数列1·等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 2·等比数列的通项公式1*11()n nna a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.3·等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩..八 三角函数1·常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<. (2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.2·同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.3·正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).5·半角正余切公式:sin sin tan ,cot 21cos 1cos αααααα==+- 6·二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 7·最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈cos (||1)(2arccos ,2arccos ),x a a x k a k a k Zππ>≤⇔∈-+∈cos (||1)(2arccos ,22arccos ),x a a x k a k a k Zπππ<≤⇔∈++-∈tan ()(arctan ,),2x a a R x k a k k Zπππ>∈⇒∈++∈tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈角的变形:2()()2()()()ααβαββαβαβααββ=-++=+--=+-8·三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-9·三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.10·正弦定理 2sin sin sin a b cR A B C===.11余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.12·面积定理(1)111222a b c Sah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222Sab C bc A ca B ===. (3)OABS ∆=.13·在三角形中有下列恒等式:①sin()sin A B C +=② tan tan tan tan .tan .tan A B C A B C ++=.14·简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.15·三角形内角和定理在△ABC 中,有()A B CC A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+八 向量1·实数与向量的积的运算律设λ、μ为实数,那么 (1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa;(3)第二分配律:λ(a +b )=λa +λb .2·向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b=λ(a ·b )=λa ·b =a ·(λb );(3)(a +b )·c= a ·c +b ·c.3·平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2. 不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 4·向量平行的坐标表示 设a =11(,)x y ,b =22(,)x y ,且b≠0,则a b(b ≠0)12210x y x y ⇔-=.5·a 与b 的数量积(或内积)a ·b =|a ||b |cos θ.6·a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.7·平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A11(,)x y ,B22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.8·两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).9·平面两点间的距离公式,A Bd =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).10·向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则A ||b ⇔b =λa12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.11·线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 12·三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.13·点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)Px y ,且'PP 的坐标为(,)h k .14·“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-. (4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .15·三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==.(2)O 为ABC ∆的重心0OA OB OC ⇔++=. (3)O 为ABC ∆的垂心.OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOAbOB cOC ⇔=+.九 不等式1·常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).ab c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-.2·极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大.3·一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2axbx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.4·含有绝对值的不等式当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (2)2()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.5·指数不等式与对数不等式(1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩十 直线方程1·斜率公式①2121y y kx x -=-(111(,)P x y 、222(,)P x y ).② k=tan α(α为直线倾斜角)2·直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).5·两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②两直线垂直的充要条件是12120A A B B +=;即:12l l ⊥⇔12120A A B B +=.6·夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 7·1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.8·四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.9·点到直线的距离d =(点00(,)P x y ,直线l:0Ax By C ++=).10·0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,若A>0,则在坐标平面内从左至右的区域依次表示Ax By C ++<,0Ax By C ++>,若A<0,则在坐标平面内从左至右的区域依次表示 0Ax By C ++>,0Ax By C ++<,可记为“x 为正开口对,X 为负背靠背“。
初中中平面几何重要定理汇总
8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL
9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上。
29、塞瓦定理的逆定理:在△ABC的边BC,CA,AB上分别取点D,E,F,如果(AF:FB)(BD:DC)(CE:EA)=1那么直线AD,BE,CF相交于同一点。
30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
24、梅涅劳斯定理的逆定理:(略)
25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接ቤተ መጻሕፍቲ ባይዱ的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线
初中几何证明的所有公理和定理
初中几何证明的所有公理和定理几何学是数学的一个分支,研究平面和空间中的图形、形状、大小以及它们之间的关系。
在几何学中,有一些基本的公理和定理被广泛应用于证明其他几何结论。
以下是初中几何中常用的公理和定理。
一、公理1.尺规公理:任意两点可以用直尺连接,任意一点可以用剪刀间距来复原。
2.同位角公理:同位角互等。
3.平行公理:通过点外一条直线的直线,与这条直线平行的直线只有唯一一条。
4.直线偏转公理:过直线和不在直线上的一点,有且只有一条直线与该直线相交。
二、定理1.垂直平分线定理:平分一条线段的直线必垂直于该线段。
2.三角形内角和定理:三角形内角的和为180°。
3.直角三角形定理:在直角三角形中,两个直角三角形的边长和斜边相等。
4.点到直线的距离定理:点到直线的距离等于点到该直线上垂线的距离。
5.等腰三角形定理:等腰三角形的底边中点到顶点的距离等于底边的一半。
6.等边三角形定理:等边三角形的三条边相等。
7.三角形外角定理:三角形外角等于其对应内角的和。
8.直角三角形的勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
9.海伦公式:已知三角形的三边长,可以通过海伦公式求解其面积。
10.等周定理:等周的两角相等,反之亦成立。
11.三角形中位线定理:三角形两边中点连线中位线,且平分第三边。
12.周长定理:四边形周长等于各边长的和。
13.三角形周长定理:三角形的周长等于三边长的和。
14.三角形中线定理:三角形中线等分中位线,且平分第三边。
15.三角形终边定理:一个角的终边上的点,到另一个角所在的直线的距离永远相等。
16.五边形内角和定理:五边形的内角和是540°。
17.钝角三角形的边长关系:钝角三角形两边长的平方和小于斜边长的平方。
18.三角形的相似性定理:对应角等价、对应边成比例的两个三角形为相似三角形。
19.平行线的性质定理:平行条边分别过枚角且长度成正比,则连线为平行线。
20.重叠三角形定理:如果两个角和一个边分别相等,则两个三角形相等。
初中平面几何定理全套
直线、角、平行、垂直(直线公理)经过两点有一条直线,并且只有一条直线。
注:简称“两点确定一条直线”。
(距离公理)在所有联结两点的线中,线段最短。
注:简称“两点之间线段最短”。
两条直线相交,只有一个交点。
同角(或等角)的余角相等。
同角(或等角)的补角相等。
对顶角相等。
经过一点有一条而且只有一条直线垂直于已知直线。
直线外一点与直线上各点联结的所有线段中,垂线段最短。
平行公理经过直线外一点,有一条而且只有一条直线和这条直线平行。
如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
(平行线判定)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
注:简称“同位角相等,两直线平行”。
课本作为公理。
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
注:简称“内错角相等,两直线平行”。
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
注:简称“同旁内角互补,两直线平行”。
(平行线性质)两条平行线被第三条直线所截,同位角相等。
注:简称“两直线平行,同位角相等”。
两条平行线被第三条直线所截,内错角相等。
注:简称“两直线平行,内错角相等”。
两条平行线被第三条直线所截,同旁内角互补。
注:简称“两直线平行,同旁内角互补”。
如果一个角的两边分别平行于另一个角的两边,则那么这两个角相等或互补。
定理如果两条直线都和第三条直线垂直,那么这两条直线平行。
定理如果一条直线和两条平行线中的一条垂直,那么,这条直线也和另一条垂直。
三角形定理(三角形不等式)三角形任何两边的和大于第三边。
推论三角形任何两边的差小于第三边。
三角形内角和定理三角形三个内角的和等于180°。
推论1 三角形的一个外角等于和它不相邻的两个内角的和。
注:有书上称之“外角定理”。
推论2 三角形的一个外角大于任何一个和它不相邻的内角。
推论三角形的三个外角的和等于360°。
(三角形全等判定法则)边角边公理有两边和它们的夹角对应相等的两个三角形全等。
初中数学平面几何基本定理
1. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=2. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理) 3. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径) 4. 余弦定理:C ab b a c cos 2222-+=5. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边6. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD7. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,则有:MP =QM .8. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .重心性质:①设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ; ②设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31③设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKH CA FP BC DE AB KH CA FP BC DE ④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).11. 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心, HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,12. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,219013. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;外心性质:(1)外心到三角形各顶点距离相等(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360(3)∆=S abcR 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和14.其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++= 1920·两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.21·点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).。
中考数学平面几何六十个定理大全
中考数学平面几何六十个定理大全1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形得三条中线交于一点,并且,各中线被这个点分成2:1得两部分4、四边形两边中心得连线得两条对角线中心得连线交于一点5、间隔得连接六边形得边得中心所作出得两个三角形得重心就是重合得。
6、三角形各边得垂直一平分线交于一点。
7、三角形得三条高线交于一点8、设三角形ABC得外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL9、三角形得外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线得垂足,以及垂心与各顶点连线得中点,这九个点在同一个圆上,11、欧拉定理:三角形得外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形得九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形得九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心得圆叫做圆内接四边形得九点圆。
13、(内心)三角形得三条内角平分线交于一点,内切圆得半径公式:r=(s—a)(s—b)(s-c)s,s为三角形周长得一半14、(旁心)三角形得一个内角平分线与另外两个顶点处得外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC得边BC得中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC得边BC内分成m:n,则有n×AB2+m×AC 2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD得对角线互相垂直时,连接AB中点M与对角线交点E得直线垂直于CD18、阿波罗尼斯定理:到两定点A、B得距离之比为定比m:n(值不为1)得点P,位于将线段AB分成m:n得内分点C与外分点D为直径两端点得定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC得边BC、CA、AB为底边,分别向外作底角都就是30度得等腰△BDC、△CEA、△AFB,则△DEF就是正三角形,21、爱尔可斯定理1:若△ABC与△DEF都就是正三角形,则由线段AD、BE、CF得中心构成得三角形也就是正三角形。
认识平面几何的61个著名定理
【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】★1、勾股定理(毕达哥拉斯定理)★2、射影定理(欧几里得定理)★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线和两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
★6、三角形各边的垂直平分线交于一点。
★7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC分成m和n两段,则有n×AB2+m×AC2=BC×(AP2+mn)17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E 的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上★19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD★20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
平面几何基本定理
一.平面几何1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+;中线长:222222a c b m a -+=4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥高线长:C b B c A abcc p b p a p p a h a sin sin sin ))()((2===---=5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理)角平分线长:2cos 2)(2Ac b bc a p bcp c b t a +=-+=(其中p 为周长一半)6. 正弦定理:R CcB b A a 2sin sin sin ===,(其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a ccos 2222-+=8. 角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆接四边形ABCD中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一角都小于120°时,在三角形必存在一点,它对三条边所的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一角不小于120°时,此角的顶点即为费马点18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点(3)三角形的九点圆与三角形的切圆,三个旁切圆均相切〔费尔巴哈定理〕20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,切圆半径为r ,外心与心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G为△ABC的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31(3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKHCA FP BC DE AB KH CA FP BC DE (4)设G 为△ABC 的重心,则222222333GC AB GB CA GA BC +=+=+)(31222222CA BC AB GC GB GA ++=++22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H CB AC B A ++++++++垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,25. 心:三角形的三条角分线的交点—接圆圆心,即心到三角形各边距离相等),(cb a cy by ayc b a cx bx ax I CB AC B A ++++++++心性质:(1)设I 为△ABC 的心,则I 到△ABC 三边的距离相等,反之亦然 (2)设I为△ABC的心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190(3)三角形一角平分线与其外接圆的交点到另两顶点的距离与到心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的心(4)设I 为△ABC 的心,,,,c AB b AC a BC ===A∠平分线交BC 于D ,交△ABC 外接圆于点K ,则acb KD IK KI AK ID AI +=== (5)设I 为△ABC 的心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,切圆半径为r ,令)(21c b a p ++=①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (B A By AyC B A Cx Bx Ax O BA CB A +++++++外心性质:(1)外心到三角形各顶点距离相等(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其切圆与外接圆半径之和27. 旁心:一角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子) (2))(21C A I I I C B A ∠+∠=∠ (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论)(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R . 28. 三角形面积公式C B A R Rabc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为切圆半径,)(21c b a p ++=29. 三角形中切圆,旁切圆和外接圆半径的相互关系;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4CB A R rC B A R r C B A R r C B A R r c b a ====.1111;2tan2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++===30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RBARQA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CY Y A=1 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D 、E ,又设BE 和CD 交于S ,则AS 一定过边BC 的中点M 35. 塞瓦定理的逆定理:(略)36. 塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点37. 塞瓦定理的逆定理的应用定理2:设△ABC 的切圆和边BC 、CA 、AB 分别相切于点R 、S 、T ,则AR 、BS 、CT 交于一点. 38. 西摩松(Simson )定理:从△ABC 的外接圆上任意一点P向三边BC 、CA 、AB 或其延长线作垂线,设其垂足分别是D 、E 、R ,则D 、E 、R 共线,(这条直线叫西摩松线Simson line ) 39. 西摩松定理的逆定理:(略)40. 关于西摩松线的定理1:△ABC 的外接圆的两个端点P 、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上 41. 关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点42. 史坦纳定理:设△ABC 的垂心为H ,其外接圆的任意点P ,这时关于△ABC 的点P 的西摩松线通过线段PH 的中心. 43. 史坦纳定理的应用定理:△ABC 的外接圆上的一点P 的关于边BC 、CA 、AB 的对称点和△ABC 的垂心H 同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC 的镜象线.44. 牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线. 45. 牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线. 46. 笛沙格定理1:平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 47. 笛沙格定理2:相异平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F )的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线. 48. 波朗杰、腾下定理:设△ABC 的外接圆上的三点为P 、Q 、R ,则P 、Q 、R 关于△ABC 交于一点的充要条件是:弧AP +弧BQ +弧CR =0(mod2π) .49. 波朗杰、腾下定理推论1:设P 、Q 、R 为△ABC 的外接圆上的三点,若P 、Q 、R 关于△ABC 的西摩松线交于一点,则A 、B 、C 三点关于△PQR 的的西摩松线交于与前相同的一点. 50. 波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A 、B 、C 、P 、Q 、R 六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点. 51. 波朗杰、腾下定理推论3:考查△ABC 的外接圆上的一点P的关于△ABC 的西摩松线,如设QR 为垂直于这条西摩松线该外接圆的弦,则三点P 、Q 、R 的关于△ABC 的西摩松线交于一点.52. 波朗杰、腾下定理推论4:从△ABC 的顶点向边BC 、CA 、AB 引垂线,设垂足分别是D 、E 、F ,且设边BC 、CA 、AB 的中点分别是L 、M 、N ,则D 、E 、F 、L 、M 、N 六点在同一个圆上,这时L 、M 、N 点关于关于△ABC 的西摩松线交于一点 53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线. 54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心 59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点 60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线. 62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线. 64. 费尔巴赫定理:三角形的九点圆与切圆和旁切圆相切. 65. 莫利定理:将三角形的三个角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆接六边形ABCDEF 相对的边AB和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线. 68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 尔刚(Gergonne )点:△ABC 的切圆分别切边AB 、BC 、CA于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF -=∆∆.二.集合1.元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B==3.包含关系A B A A B B=⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n–2个.5.集合A 中有M 个元素,集合B 中有N 个元素,则可以构造M*N 个从集合A 到集合B 的映射;6.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.三.二次函数,二次方程 1·二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠;(3)零点式12()()()(0)f x a x x x x a =--≠. 2·解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 3·方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根.在),(21k k ,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a bk +<-<,或0)(2=k f 且22122k abk k <-<+. 4·闭区间上的二次函数的最值 二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a =-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.5·一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 有根的充要条件为0)(=m f 或2402p q pm ⎧-≥⎪⎨->⎪⎩; (2)方程0)(=x f 在区间(,)m n 有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n>⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .6·定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3))(24>++=c bx ax x f 恒成立的充要条件是00a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.四.简易逻辑1·真值表234·充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.五.函数1· 函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.2·如果函数)(x f 和)(x g 都是减函数,则在公共定义域,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.3·奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;在对称区间上,奇函数的单调性相同,欧函数相反;,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数,如果一个奇函数的定义域包括0,则必有f(0)=0;4若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+. 5· 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 6·若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.7 多项式函数110()n n n n P x a x a xa --=+++的奇偶性 多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 8函数()y f x =的图象的对称性 (1)函数()y f x =的图象关于直线x a=对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.9两个函数图象的对称性 (1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.10 若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.11 互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.12若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数.13 几个常见的函数方程 (1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠. (3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,0()(0)1,lim 1x g x f x→==.14 几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.六 指数与对数1·分数指数幂(1)m na=(0,,a m n N*>∈,且1n >).(2)1m nm naa-=(0,,am n N *>∈,且1n >).2·根式的性质(1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.3·有理指数幂的运算性质(1) (0,,)r s r s a a a a r s Q +⋅=>∈.(2)()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)rr r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用. 4·指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.5·对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠,0N >).推论 log log m na anb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).6·对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N=+;(2)log log log a a a M M N N=-;(3)log log ()na a M n M n R =∈.7·设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.8·对数换底不等式及其推广若0a>,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n++<.(2)2log log log 2a a a m nm n +<. 9·平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).七 数列1·等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 2·等比数列的通项公式1*11()n nna a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.3·等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩.八 三角函数1·常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.2·同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.3·正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).5·半角正余切公式:sin sin tan ,cot 21cos 1cos αααααα==+- 6·二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 7·最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈cos (||1)(2arccos ,2arccos ),x a a x k a k a k Zππ>≤⇔∈-+∈cos (||1)(2arccos ,22arccos ),x a a x k a k a k Zπππ<≤⇔∈++-∈tan ()(arctan ,),2x a a R x k a k k Zπππ>∈⇒∈++∈tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈角的变形:2()()2()()()ααβαββαβαβααββ=-++=+--=+-8·三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-9·三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=.10·正弦定理 2sin sin sin a b cR A B C===.11余弦定理2222cos a b c bc A =+-;2222cos b c a ca B=+-;2222cos c a b ab C =+-.12·面积定理(1)111222a b c Sah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222Sab C bc A ca B ===. (3)OABS ∆=.13·在三角形中有下列恒等式:①sin()sin A B C +=② tan tan tan tan .tan .tan A B C A B C ++=14·简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.15·三角形角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+八 向量1·实数与向量的积的运算律设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa;(3)第二分配律:λ(a +b )=λa +λb .2·向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b=λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c= a ·c +b ·c. 3·平面向量基本定理如果e 1、e 2是同一平面的两个不共线向量,那么对于这一平面的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面所有向量的一组基底. 4·向量平行的坐标表示 设a =11(,)x y ,b =22(,)x y ,且b≠0,则a b(b ≠0)12210x y x y ⇔-=.5·a 与b 的数量积(或积)a ·b =|a ||b |cos θ. 6·a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.7·平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A11(,)x y ,B22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.8·两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).9·平面两点间的距离公式,A Bd =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).10·向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则A ||b ⇔b =λa12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.11·线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 12·三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.13·点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)Px y ,且'PP 的坐标为(,)h k .14·“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-. (4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .15·三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==.(2)O 为ABC ∆的重心0OA OB OC ⇔++=. (3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.九 不等式1·常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).ab c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-.2·极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大.3·一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2axbx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.4·含有绝对值的不等式当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(2)2()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或.(32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 5·指数不等式与对数不等式(1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩十 直线方程1·斜率公式①2121y y kx x -=-(111(,)P x y 、222(,)P x y ).② k=tanα(α为直线倾斜角)2·直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).5·两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②两直线垂直的充要条件是12120A A B B +=;即:12l l ⊥⇔12120A A B B +=6·夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 7·1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.8·四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.9·点到直线的距离d =(点00(,)P x y ,直线l:0Ax By C ++=).10·0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,若A>0,则在坐标平面从左至右的区域依次表示 0Ax By C ++<,0Ax By C ++>,若A<0,则在坐标平面从左至右的区域依次表示0Ax By C ++>,0Ax By C ++<,可记为“x 为正开口对,X 为负背靠背“。
关于平面几何的60条著名定理
关于平面几何的 60 条著名定理些平面几何的著名定理1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1 的两部分4、四边形两边中心的连线的两条对角线中心的连线交于5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点&设三角形ABC的外心为0,垂心为H 从0向BC边引垂线,设垂足为L,则AH=20L9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s , s 为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点中线定理:(巴布斯定理)设三角形ABC的边BC的中点15、为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,贝U有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD勺对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B 的距离之比为定比m:n (值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC 的边BC CA AB为底边,分别向外作底角都是30度的等腰^ BDC △ CEA △ AFB则^ DEF是正三角形,21、爱尔可斯定理1:若^ ABC和^ DEF都是正三角形,则由线段AD BE、CF的中心构成的三角形也是正三角形。
初中几何公式定理大全146条
一、直线和角度1. 直线的性质2. 同位角、内错角、同旁内角、同旁外角、相交线性质3. 平行线性质4. 角的度量5. 角的性质6. 垂直角与互补角7. 角平分线的性质8. 三角形内角和为180°9. 三角形外角和等于对应的内角和二、平行四边形10. 平行四边形的性质11. 平行四边形对角线的性质12. 平行四边形的判定定理13. 等腰平行四边形性质三、三角形14. 三角形的定义15. 三角形的分类16. 三角形的内角和17. 三角形的外角和18. 等腰三角形的性质19. 等边三角形的性质20. 直角三角形的性质21. 斜角三角形的性质22. 三角形内心、外心、重心、垂心23. 三角形中位线定理24. 三角形的中线定理25. 三角形的高定理26. 三角形的中线定理27. 三角形的角平分线定理28. 三角形的正弦定理29. 三角形的余弦定理30. 三角形的海伦公式四、全等三角形31. 全等三角形的性质32. 三角形全等条件33. 全等三角形的判定定理五、相似三角形34. 相似三角形的性质35. 相似三角形的判定定理36. 相似三角形的应用六、勾股定理和勾股数37. 勾股定理的条件38. 勾股定理的应用39. 勾股数的构造和性质40. 勾股数的判定定理七、平面图形41. 正方形的性质42. 长方形的性质43. 菱形的性质44. 梯形的性质45. 正多边形的性质46. 圆的性质47. 圆的切线定理48. 圆的切割定理49. 圆的弦理论50. 圆的扇形面积八、平行线与比例51. 平行线分线段52. 线段比例定理53. 平行线的中位线定理54. 平行线的高度定理九、数学建模55. 数学建模的概念56. 数学建模的解题步骤57. 数学建模的应用实例十、平面几何命题证明58. 角平分线的性质证明59. 平行线性质证明60. 直角三角形的性质证明61. 狄尼茨定理证明62. 三等分角定理证明63. 正多边形内角和公式证明十一、解决几何问题64. 几何问题的解决方法65. 几何问题的三步走解题法66. 几何问题的类比辅助法67. 几何问题的逆向方法十二、空间图形68. 空间图形的概念69. 空间图形的分类70. 空间图形的性质71. 空间图形的体积公式十三、平面与立体坐标系72. 平面直角坐标系73. 立体坐标系74. 坐标变换定理十四、等差数列和等比数列75. 等差数列的性质76. 等差数列的应用77. 等比数列的性质78. 等比数列的应用十五、向量79. 向量的概念80. 向量的性质81. 向量的加法和减法82. 向量的数量积83. 向量的叉积84. 向量的应用十六、向量的平面几何应用85. 向量的平移86. 向量的夹角87. 向量的垂直和平行88. 向量作为平行四边形的对角线十七、圆锥曲线的方程89. 圆的方程90. 椭圆的方程91. 双曲线的方程92. 抛物线的方程十八、解析几何命题证明93. 直线的方程证明94. 圆的方程证明95. 椭圆的方程证明96. 双曲线的方程证明97. 抛物线的方程证明十九、三角函数98. 三角函数的概念99. 三角函数的正弦、余弦、正切、余切100. 三角函数的性质101. 三角函数的定义域和值域102. 三角函数图像二十、三角函数的一般式103. 三角函数的和差化积104. 三角函数的倍角公式105. 三角函数的半角公式106. 三角函数的和角公式107. 三角函数的差角公式108. 三角函数的积化和差二十一、三角函数的应用109. 三角函数的变量代换110. 三角函数的方程解法111. 三角函数的不等式解法112. 三角函数的应用实例二十二、立体几何113. 立体几何的基本概念114. 立体几何的三视图115. 立体几何的截面图116. 立体几何的投影图二十三、立体几何命题证明117. 立体几何的平行轴定理证明118. 立体几何的旋转定理证明119. 立体几何的平移定理证明120. 立体几何的镜像对称定理证明二十四、空间向量121. 空间向量的概念122. 空间向量的性质123. 空间向量的共线124. 空间向量的垂直125. 空间向量的平行二十五、空间向量运算126. 空间向量的和127. 空间向量的差128. 空间向量的数量积129. 空间向量的叉积二十六、立体几何和向量130. 空间平面的方程131. 空间直线的方程132. 空间平面和直线的位置关系133. 空间立体几何和向量的应用二十七、立体图形的几何性质134. 立体图形的视图和截面135. 立体图形的平面和直线位置关系136. 立体图形的边和面的关系137. 立体图形的三视图和投影图二十八、三视图的绘制138. 正交三视图的绘制139. 斜投影三视图的绘制140. 立体图形的三视图应用二十九、空间几何建模141. 空间几何建模的概念142. 空间几何建模的三步走解题法143. 空间几何建模的应用实例三十、空间曲面的方程144. 圆锥曲线的方程证明145. 曲面的方程证明146. 空间曲面的方程应用在初中阶段,学习几何公式定理是非常重要的,因为它为理解和解决各种几何问题打下了坚实的基础。
平面几何的重要定理
2、塞瓦(Ceva)定理: 塞瓦(Ceva)定理 (Ceva)定理
A B C 别 ∆ B 的 设 ′、 ′、 ′分 是 A C 三 B 、A A 上 点 边C C 、B 的 . 则 A ′、 B、 C′交 ,A B ′ C 于 点 充 条 是 一 的 要 件
A ′ B′ C ′ C A B ⋅ ⋅ =1. ′ ′ C′B AC BA
N
C
5、欧拉(Euler)定理: 欧拉(Euler)定理 (Euler)定理
1
(1)欧 定 : ∆ B 的 心 重 、 拉 理 设A C 外 、 心 垂 分 为、 、 , O G H 心 别 O G H 则、、 1 H 三 共 , O = O . 点 线 且G 3
(2)欧 公 : ∆ B 的 接 半 拉 式 设A C 外 圆 径 为, 切 半 为 两 心 间 R 内 圆 径 r, 圆 之 的 离 d 则 r 距 为 , d = R −2R .
C′
M
B′
C
3、托勒密(Ptolemy)定理: 托勒密(Ptolemy)定理 (Ptolemy)定理
(1)定 : A C 为 内 四 形 理 设B D 圆 接 边 , 则 B⋅ C + B ⋅ A = A ⋅ B . A D C D C D (2)逆 理 若 边 A C 满 : 定 : 四 形B D 足 A ⋅C + B ⋅ A = A ⋅ B , B D C D C D A A B C D 点 圆 则、、、四 共 .
11、莫莱定理 11、莫莱定理:
课后思考: 课后思考:
1 已 ∆ B 中 ∠ = 2∠ = 4∠ ,A 、 知A C , C B 1 1 1 1 1 . = 求 : + 证 A B A C B D
初中几何定理大全
初中⼏何定理⼤全初中⼏何概念、定理平⾯⼏何1.两点之间的所有连线中,线段最短。
2.两点之间线段的长度叫做这两点之间的距离。
3.经过两点有⼀条直线,并且只有⼀条直线。
4.将⼀个⾓分成相等的两部分的射线叫做这个⾓的⾓平分线。
5.如果两个⾓的和是⼀个直⾓,这两个⾓叫做互为余⾓。
简称互余,其中的⼀个⾓叫做另⼀个⾓的余⾓。
6.如果两个⾓的和是⼀个平⾓,这两个⾓叫做互为补⾓。
简称互补,其中的⼀个⾓叫做另⼀个⾓的补⾓。
7.同⾓(或等⾓)的余⾓相等。
8.同⾓(或等⾓)的补⾓相等。
9.对顶⾓相等。
10.在同⼀平⾯内,不相交的两条直线叫做平⾏线。
11.经过直线外⼀点,有且只有⼀条直线与已知直线平⾏。
12.如果两条直线都与第三条直线平⾏,那么这两条直线相互平⾏。
13.如果两条直线相交成直⾓,那么这两条直线互相垂直。
互相垂直的两条直线的交点叫做垂⾜。
14.当两条直线互相处置时,其中⼀条直线叫做另⼀条直线的垂线。
15.经过⼀点有且只有⼀条直线与已知直线垂直。
16.直线外⼀点到直线上各点连接的所有线段中,垂线段最短。
17.直线外⼀点到这条直线的垂线段的长度,叫做点到直线的距离。
18.同位⾓相等,两直线平⾏。
19.内错⾓相等,两直线平⾏。
20.同旁内⾓互补,两直线平⾏。
21.两直线平⾏,同位⾓相等。
22.两直线平⾏,内错⾓相等。
23.两直线平⾏,同旁内⾓互补。
24.在平⾯内,将⼀个图形沿着某个⽅向移动⼀定的距离,这样的图形运动叫做图形的平移。
平移不改变图形的形状、⼤⼩。
25.如果两条直线互相平⾏,那么其中⼀条直线上任意两点到另⼀直线的距离相等,这个距离称为平⾏线之间的距离。
26.三⾓形的任意两边之和⼤于第三边。
27.在三⾓形中,从⼀个顶点向它的对边所在直线作垂线,顶点和垂⾜之间的线段叫做三⾓形的⾼线,简称三⾓形的⾼。
28.在三⾓形中,⼀个内⾓的平分线与它的对边相交,这个⾓的顶点与交点之间的线段叫做三⾓形的⾓平分线。
29.在三⾓形中链接⼀个顶点与它对边中点的线段,叫做三⾓形的中线。
初中几何定理大全
目录一、点、线、角 (4)1.1 点 (4)1.2 线 (4)1.3 角 (4)1.4 平行线 (5)二、三角形 (6)1.三角形定义 (6)2三角形分类 (6)2.1 按角分 (6)2.1.2 判断方法 (6)2.2 按边分 (6)3.三角形的面积 (7)4.重要线段 (7)3.1中线 (7)3.2高 (8)3.3角平分线 (8)3.4中位线 (8)3.5边角关系 (8)5.性质 (8)5.1 角 (8)5.2 边 (9)5.2 其它 (10)6.全等 (10)6.1 定义 (10)6.1 性质 (10)6.1 判定 (10)7.相似 (11)7.1 定义 (11)7.2 性质 (11)7.3 判定 (11)8.特殊点 (12)9.稳定性 (12)9.1 证明 (12)10.作用 (13)11.有关定理 (13)三、四边形 (15)1.四边形定义 (15)2.简介 (15)凸四边形 (15)凹四边形 (15)折四边形 (15)3.四边形定理及推论 (16)4.1 平行四边形定义 (16)4.2 平行四边形性质 (16)4.3 平行四边形判定 (17)4.4 平行四边形面积 (17)4.5 平行四边形周长 (18)5.矩形3 (18)5.1 矩形定义 (18)5.2 矩形性质 (18)5.3 矩形判定 (18)5.4 矩形面积 (19)5.5 矩形周长 (19)6.菱形 (19)6.1菱形定义 (19)6.2 菱形性质 (19)6.3 菱形判定 (19)6.4 菱形面积 (20)6.5 菱形周长 (20)7.正方形 (20)7.1 正方形定义 (20)7.2 正方形性质 (20)7.3 正方形判定 (20)7.4 正方形面积 (21)7.5 正方形周长 (21)8.梯形 (21)8.1 梯形定义 (21)8.2 等腰梯形性质 (21)8.3 等腰梯形判定 (22)8.4 梯形面积 (22)8.5 梯形周长 (22)四、圆 (22)1.相关概念 (23)3.计算公式 (24)4位置关系 (25)4.1 点和圆位置关系 (25)4.2 直线和圆位置关系 (25)4.3 圆和圆位置关系 (26)5、圆的相关性质和定理 (27)⑵有关圆周角和圆心角的性质和定理 (27)⑶有关外接圆和内切圆的性质和定理 (28)(9)与切线有关的性质和定理 (28)5圆内接三角形 (31)1.定义: (31)在同圆或等圆内,三角形的三个顶点均在同一个圆上的三角形叫做圆内接三角形。
2019精选教育关于平面几何的60条著名定理.doc
关于平面几何的60条著名定理一些平面几何的著名定理1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n (值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
2020中考数学复习资料之32条平面几何定理
2020中考数学复习资料之32条平面几何定理一些平面几何的著名定理1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、勾股定理(毕达哥拉斯定理)小学都应该掌握的重要定理2、射影定理(欧几里得定理)重要3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1 的两部分重要4、四边形两边中心的连线的两条对角线中心的连线交于一点学习中位线时的一个常见问题,中考不需要,初中竞赛需要5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
完全没有意义,学习解析几何后显然的结论,不用知道6、三角形各边的垂直一平分线交于一点。
重要7、从三角形的各顶点向其对边所作的三条垂线交于一点重要8设三角形ABC的外心为0,垂心为H,从0向BC边引垂线,设垂足不L ,则AH=20L中考不需要,竞赛中很显然的结论9、三角形的外心,垂心,重心在同一条直线上。
高中竞赛中非常重要的定理,称为欧拉线10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,高中竞赛中的常用定理11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线( 欧拉线) 上高中竞赛中会用,不常用12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
高中竞赛的题目,不用掌握13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半重要14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点重要15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P,则有AB2+AC2=2(AP2+BP2)初中竞赛需要,重要16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n >AB2+m< AC2=(m+n)AP2+mnm+nBC2高中竞赛需要,重要17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点 E 的直线垂直于CD 显然的结论,不需要掌握18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D 为直径两端点的定圆周上高中竞赛需要,重要19 、托勒密定理:设四边形ABCD 内接于圆,则有ABXCD+AD< BC=AC初中竞赛需要,重要20、以任意三角形ABC 的边BC、CA、AB 为底边,分别向外作底角都是30度的等腰厶BDC、△ CEA、△ AFB,则△ DEF是正三角形,学习复数后是显然的结论,不需要掌握21、爱尔可斯定理1:若厶ABC和三角形△都是正三角形,则由线段AD 、BE、CF 的重心构成的三角形也是正三角形。
不需要掌握22、爱尔可斯定理2:若厶ABC、△ DEF、△ GHI都是正三角形,则由三角形△ ADG、△ BEH、△ CFI的重心构成的三角形是正三角形。
不需要掌握23、梅涅劳斯定理:设△ ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R 则有BPPCXCQQ Y ARRB=1初中竞赛需要,重要24、梅涅劳斯定理的逆定理:(略)初中竞赛需要,重要25、梅涅劳斯定理的应用定理1:设厶ABC的/ A的外角平分线交边CA于Q、/ C的平分线交边AB于R,、/ B的平分线交边CA于Q、贝U P、Q、R三点共线。
不用掌握26、梅涅劳斯定理的应用定理2:过任意△ ABC的三个顶点A、B、C 作它的外接圆的切线、分别和BC、CA、AB 的延长线交于点P、Q、R、则P、Q、R三点共线不用掌握27、塞瓦定理:设△ ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S 连接面成的三条直线、分别与边BC 、CA 、AB 或它们的延长线交于点P、Q 、R 、贝BPPCXCQQ Y ARRB()=1.初中竞赛需要、重要28、塞瓦定理的应用定理:设平行于厶ABC的边BC的直线与两边AB、AC的交点分别是D、E、又设BE和CD交于S、则AS 一定过边BC 的中心M不用掌握29、塞瓦定理的逆定理:(略)初中竞赛需要,重要30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点八、、这个定理用塞瓦定理来证明将毫无几何美感,应该用中位线证明才漂亮31、塞瓦定理的逆定理的应用定理2:设厶ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,贝U AR、BS、CT交于一点。
不用掌握32、西摩松定理:从厶ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,贝U D、E、R 共线,(这条直线叫西摩松线)初中竞赛的常用定理33、西摩松定理的逆定理:(略)初中竞赛的常用定理34、史坦纳定理:设厶ABC的垂心为H,其外接圆的任意点P, 这时关于厶ABC的点P的西摩松线通过线段PH的中心。
不用掌握35、史坦纳定理的应用定理:△ ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ ABC的垂心H同在一条(与西摩松线平行的)直线上。
这条直线被叫做点P关于△ ABC的镜象线。
不用掌握36、波朗杰、腾下定理:设厶ABC的外接圆上的三点为P、Q、R,贝U P、Q、R关于△ ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2n).不用掌握37、波朗杰、腾下定理推论1 :设P、Q、R ABC的外接圆上的三点,若P、Q、R关于△ ABC的西摩松线交于一点,则A、B、C三点关于厶PQR的的西摩松线交于与前相同的一点不用掌握38、波朗杰、腾下定理推论2:在推论1 中,三条西摩松线的交点是A、B、C、P、Q、R 六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。
不用掌握39、波朗杰、腾下定理推论3 :考查△ ABC的外接圆上的一点P 的关于△ ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ ABC的西摩松线交于一点不用掌握40、波朗杰、腾下定理推论4 :从△ ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,贝U D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ ABC的西摩松线交于一点。
不用掌握41、关于西摩松线的定理ABC的外接圆的两个端点P、Q 关于该三角形的西摩松线互相垂直,其交点在九点圆上。
不用掌握42、关于西摩松线的定理2(安宁定理):在一个圆周上有4 点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。
不用掌握43、卡诺定理:通过厶ABC的外接圆的一点P,引与△ ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,贝U D、E、F三点共线。
不用掌握44、奥倍尔定理:通过△ ABC的三个顶点引互相平行的三条直线,设它们与厶ABC的外接圆的交点分别是L、M、N ,在厶ABC 的外接圆取一点P,贝U PL、PM、PN与厶ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线不用掌握45、清宫定理:设P、Q ABC的外接圆的异于A、B、C的两点,P 点的关于三边BC、CA、AB 的对称点分别是U、V、W,这时,QU、QV、QW 和边BC、CA、AB 或其延长线的交点分别是D、E、F,则D、E、F三点共线不用掌握46、他拿定理:设P、Q为关于△ ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW 与边BC、CA、AB 或其延长线的交点分别为ED、E、F,贝U D、E、F三点共线。
(反点:P、Q分别为圆0 的半径0C和其延长线的两点,如果0C2=0® OP则称P、Q两点关于圆0互为反点)不用掌握47、朗古来定理:在同一圆同上有A1B1C1D14 点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P 向这 4 条西摩松线引垂线,则四个垂足在同一条直线上。
不用掌握48、九点圆定理:三角形三边的中点,三高的垂足和三个欧拉点[连结三角形各顶点与垂心所得三线段的中点]九点共圆[通常称这个圆为九点圆[nine-point circle], 或欧拉圆,费尔巴哈圆. 上面已经有了49、一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。
不用掌握50、康托尔定理1:一个圆周上有n 个点,从其中任意n-2 个点的重心向余下两点的连线所引的垂线共点。
不用掌握51、康托尔定理2:一个圆周上有A、B、C、D 四点及M 、N 两点,贝V M和N点关于四个三角形△ BCD、△ CDA、△ DAB、△ ABC 中的每一个的两条西摩松的交点在同一直线上。
这条直线叫做M、N 两点关于四边形ABCD 的康托尔线。
不用掌握52、康托尔定理3:一个圆周上有A、B、C、D 四点及M 、N、L 三点,贝M、N 两点的关于四边形ABCD 的康托尔线、L、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点。
这个点叫做M 、N、L 三点关于四边形ABCD 的康托尔点。
不用掌握53、康托尔定理4:一个圆周上有A、B、C、D、E 五点及M、N、L 三点,贝M、N、L 三点关于四边形BCDE、CDEA、DEAB 、EABC 中的每一个康托尔点在一条直线上。
这条直线叫做M、N、L 三点关于五边形A、B、C、D、E 的康托尔线。
不用掌握54、费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。
不用掌握55、莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,贝这样的三个交点可以构成一个正三角形。
这个三角形常被称作莫利正三角形。
这是我认为的平面几何中最漂亮最神奇的几个定理之一,但不用掌握56、牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。
这条直线叫做这个四边形的牛顿线。
高中竞赛中常用57、牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。
不用掌握58、笛沙格定理1:平面上有两个三角形△ ABC、△ DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
高中竞赛中偶尔会用59、笛沙格定理2:相异平面上有两个三角形△ ABC >△ DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。