人教版数学七年级上册第二章-整式的加减练习题及答案
完整版人教版七年级上册数学第二章 整式的加减含答案(含解析)
人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列判断错误的是()A.1-a-2ab是二次三项式B.-a 2b 2c与2ca 2b 2是同类项C.是多项式 D. πa 2的系数是π2、一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为()A.x﹣1B.x+1C.x﹣3D.x+33、下列运算正确的是()A. B. C. D.4、多项式3x3﹣2x2﹣15的次数为()A.2B.3C.4D.55、下列说法正确的是()A.单项式的系数是-5,次数是2B.单项式a的系数为1,次数是0 C. 是二次单项式 D.单项式-ab的系数为-,次数是26、若﹣x2y n与3yx2是同类项,则n的值是()A.﹣1B.3C.1D.27、下列计算正确的是()A.2x+3y=5xyB.x 2•x 3=x 6C.(a 3)2=a 6D.(ab)3=ab 38、下列计算正确的是()A.2x+3y=5xyB.5a 2﹣3a 2=2C.(﹣7)÷ =﹣7D.(﹣2)﹣(﹣3)=19、去括号后结果错误的是()A.2(a+2b)=2a+4bB.3(2m﹣n)=6m﹣3nC.﹣[c﹣(a﹣b)]=﹣c ﹣a+bD.﹣(x﹣y+z)=﹣x+y﹣z10、在一张某月的日历上,任意圈出同一列上的三个数的和不可能是( )A.14B.33C.51D.2711、在﹣3x,6﹣a=2,4ab2, 0,,,>,x中,是代数式的共有()A.7个B.6个C.5个D.4个12、下列说法中正确的是( )A.若,则B.若,则C. 的系数是D.若,则13、下列叙述①单项式- 的系数是- ,次数是3次;②用一个平面去截一个圆锥,截面的形状可能是一个三角形;③在数轴上,点A、B分别表示有理数a、b,若a >b,则A到原点的距离比B到原点的距离大;④从八边形的一个顶点出发,最多可以画五条对角线;⑤六棱柱有八个面,18条棱.其中正确的有()A.2个B.3个C.4个D.5个14、下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子(x+2)0有意义的x的取值范围是x≠0D.若分式的值等于0,则a=±115、下列结论正确的是()A.2 ﹣1=﹣2B.单项式﹣x 2的系数是﹣1C.使式子有意义的x的取值范围是x<2D.若分式的值等于0,则a=﹣1二、填空题(共10题,共计30分)16、体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为;乙班:全班同学“引体向上”总次数为.(注:两班人数均超过30人)请比较一下两班学生“引体向上”总次数,________班的次数多,多________次.17、写出一个单项式,使它的系数是,次数是,________.18、某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为________.19、若5x3y n和﹣x m y2是同类项,则3m﹣7n=________.20、观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请用上述规律计算:1+3+5+…+2003+2005=________.21、﹣πa2b的系数是________,次数是________.22、单项式﹣πa3bc的次数是________,系数是________.23、若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是________.24、已知a、b、c是△ABC的三边,化简|a﹣b﹣c|+|b+c﹣a|+|c+a+b|得________.25、有理数,,在数轴上的位置如图所示,试化简________.三、解答题(共6题,共计25分)26、下列代数式中,哪些是整式?①x2+y2;②﹣x;③;④6xy+1;⑤;⑥0;⑦.27、已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.28、先化简,再求值:已知,求代数式2xy2-[6x-4(2x-1)-2xy2]+9的值。
2023-2024学年人教版七年级数学上册《第二章 整式的加减》同步练习题带答案
2023-2024学年人教版七年级数学上册《第二章整式的加减》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列运算正确的是()A.B.C.D.2.多项式2a4+4a3b4﹣5a2b+2a是()A.按a的升幂排列B.按a的降幂排列C.按b的升幂排列D.按b的降幂排列3.解方程时,下列去括号正确的是()A.B.C.D.4.下列各组中,不是同类项的是()A.与B.与C.与D.与5.当代数式x2+4kxy﹣3y2﹣6xy+7中不含xy项,则k的值为()A.0 B.C.﹣D.26.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是()A.3a2﹣a﹣6 B.3a2+3a+8 C.3a2+3a﹣6 D.﹣3a2﹣3a+6 7.设A=3x2﹣3x+5,B=2x2﹣3x﹣2,若x取任意实数,则A与B的大小关系为()A.A>B B.A<B C.A=B D.无法比较8.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()。
A.(4a+2b)米B.(5a+2b)米C.(6a+2b)米D.(a2+ab)米二、填空题:(本题共5小题,每小题3分,共15分.)9.去括号: -(x-1)= .10.代数式与是同类项,则a+b= 。
11.减去后,等于的多项式是.12.若多项式与多项式的差不含二次项,则m= .13.若代数式M=5x2﹣2x﹣1,N=4x2﹣2x﹣3,则M,N的大小关系是M N(填“>”“<”或“=”)三、解答题:(本题共5题,共45分)14.计算:(1) [ ];(2) .15.先化简,再求值:,其中. 16.有理数在数轴上的位置如图,化简: .17.先化简,再求值:已知和(1)化简.(2)当,时,求的值.18.某同学做一道数学题,已知两个多项式A、B,试求.这位同学把误看成,结果求出的答案为.(1)请你替这位同学求出的正确答案;(2)当x取任意数值,的值是一个定值时,求y的值.参考答案:1.D 2.B 3.D 4.B 5.B 6.C 7.A 8.B9.1-x10.311.12.-413.>14.(1)解:原式;(2)解:原式.15.解:原式===∵∴x=-3,y=2∴原式= = =-10. 16.解:由图可知:原式17.(1)解:(2)解:把,代入得:18.(1)解:∵,∴;(2)解:∵当x取任意数值,的值是一个定值∴∴。
人教版数学七年级上册第二章整式的加减单元综合测试题(含答案)
人教版数学七年级上学期第二章整式的加减测试一.选择题(共10小题)1.下列各式﹣12mn,m,8,1a,x2+2x+6,25x y-,24x yπ+,1y中,整式有()A. 3 个B. 4 个C. 6 个D. 7 个2.单项式﹣12πx2y的系数与次数分别是( )A. -12,3 B. -12,4 C. -12π,3 D. -12π,43.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若x m y+3x3y2+5x2y n+y5是齐次多项式,则m n等于( )A. 32B. 64C. 81D. 1254.下列各组单项式中,同类项一组的是( )A. x3y与xy3B. 2a2b与﹣3a2bC. a2与b2D. ﹣2xy与3y5.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得( )A. 7(x﹣y)2B. ﹣3(x﹣y)2C. ﹣3(x+y)2+6(x﹣y)D. (y﹣x)26.与a﹣b﹣c的值不相等的是( )A. a﹣(b﹣c)B. a﹣(b+c)C. (a﹣b)+(﹣c)D. (﹣b)+(a﹣c)7.一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是( )A. a2﹣7a+4B. a2﹣3a+2C. a2﹣7a+2D. a2﹣3a+48.下列运算正确的是().A. 2a2-3a2=-a2B. 4m-m=3C. a2b-ab2=0D. x-(y-x)=-y9.规定一种新运算,a*b=a+b,a#b=a﹣b,其中a、b为有理数,化简a2b*3ab+5a2b#4ab的结果为( )A 6a2b+ab B. ﹣4a2b+7ab C. 4a2b﹣7ab D. 6a2b﹣ab10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)值与x的取值无关,则﹣a+b的值为( )A. 3B. 1C. ﹣2D. 2二.填空题(共8小题)11.单项式12πx 2yz 的系数是_____. 12.下面是按一定规律排列的代数式:a 2,3a 4,5a 6,7a 8,则第8个代数式是__.13.若(k ﹣5)x |k ﹣2|y 是关于x ,y 的六次单项式,则k =_____.14.多项式﹣xy 2+2x -2x 3y 次数是_____. 15.若关于x 的多项式(a ﹣4)x 3﹣x 2+x ﹣2是二次三项式,则a =_____.16.化简﹣5ab +4ab 结果是_____.17.如果3x 2m ﹣2y n 与﹣5x m y 3是同类项,则m n 的值为_____.18.若关于a 、b 的多项式(a 2+2a 2b ﹣b )﹣(ma 2b ﹣2a 2﹣b )中不含a 2b 项,则m =_____三.解答题(共7小题)19.化简:(1)a 2﹣3a +8﹣3a 2+4a ﹣6;(2)a +(2a ﹣5b )﹣2(a ﹣2b ).20.先化简,再求值:3a 2+b 3﹣2(21﹣5b 3)﹣(3﹣a 2﹣2b 3),其中a =﹣3,b =﹣2.21.某同学在一次测验中计算A +B 时,不小心看成A ﹣B ,结果为2xy +6yz ﹣4xz .已知A =5xy ﹣3yz +2xz ,试求出原题目的正确答案.22.如果关于字母x 的二次多项式﹣3x 2+mx +nx 2﹣x +3的值与x 的取值无关,求2m ﹣3n 的值.23.若多项式(a +2)x 6+x b y +8是四次二项式,求a 2+b 2的值.24.已知A =2x 2﹣1,B =3﹣2x 2,求A ﹣2B 的值.25.(1)一个两位正整数,a 表示十位上的数字,b 表示个位上的数字(a ≠b ,ab ≠0),则这个两位数用多项式表示为 (含a 、b 的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被 整除,这两个两位数的差一定能被 整除.(2)一个三位正整数F ,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F 为“友好数”,例如:132是“友好数”.一个三位正整数P ,各个数位上数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P 为“和平数”;①直接判断123是不是“友好数”?②直接写出共有 个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.答案与解析一.选择题(共10小题)1.下列各式﹣12mn,m,8,1a,x2+2x+6,25x y-,24x yπ+,1y中,整式有()A. 3 个B. 4 个C. 6 个D. 7 个【答案】C【解析】分析】根据整式的定义,结合题意即可得出答案【详解】整式有﹣12mn,m,8,x2+2x+6,25x y-,24x yπ+故选C【点睛】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.2.单项式﹣12πx2y的系数与次数分别是( )A. -12,3 B. -12,4 C. -12π,3 D. -12π,4【答案】C【解析】【分析】根据单项式的概念即可求出答案【详解】系数为:-1 2π次数为:3故选C【点睛】本题考查单项式的概念,解题的关键是正确理解单项式的概念3.如果一个多项式的次数都相等,则称该多项式为齐次多项式,例如:x3+2x2y+y3是三次齐次多项式,若x m y+3x3y2+5x2y n+y5是齐次多项式,则m n等于( )A. 32B. 64C. 81D. 125【答案】B【解析】【分析】根据多项式是齐次多项式,先判断该多项式的次数,再求出m、n的值,代入计算即可【详解】∵x m y+3x3y2+5x2y n+y5是齐次多项式,∴它是齐五次多项式,所以m+1=5,2+n=5,解得m=4,n=3.所以m n=43=64.故选B【点睛】本题考查了多项式的次数、乘方运算,解决本题的关键是理解齐次多项式的定义.4.下列各组单项式中,同类项一组的是( )A. x3y与xy3B. 2a2b与﹣3a2bC. a2与b2D. ﹣2xy与3y【答案】B【解析】【分析】根据同类项定义即可求出答案【详解】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选B【点睛】本题考查同类项的定义,解题的关键是正确理解同类项的定义5.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得( )A. 7(x﹣y)2B. ﹣3(x﹣y)2C. ﹣3(x+y)2+6(x﹣y)D. (y﹣x)2【答案】A【解析】【分析】把x-y看作整体,根据合并同类项的法则,系数相加字母和字母的指数不变,进行选择.【详解】解:2(x-y)2+3(x-y)+5(y-x)2+3(y-x),=[2(x-y)2+5(y-x)2]+[3(y-x)+3(x-y)],=7(x-y)2.故选A.【点睛】本题考查合并同类项的法则,是基础知识比较简单.6.与a﹣b﹣c的值不相等的是( )A. a﹣(b﹣c)B. a﹣(b+c)C. (a﹣b)+(﹣c)D. (﹣b)+(a﹣c)【答案】A【解析】【分析】根据去括号方法逐一计算即可【详解】A、a﹣(b﹣c)=a﹣b+c.故本选项正确;B、a﹣(b+c)=a﹣b﹣c,故本选项错误;C、(a﹣b)+(﹣c)=a﹣b﹣c,故本选项错误;D、(﹣b)+(a﹣c)=﹣c﹣b+a,故本选项错误.故选A【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号7.一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是( )A. a2﹣7a+4B. a2﹣3a+2C. a2﹣7a+2D. a2﹣3a+4【答案】A【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:根据题意得:(6a2﹣5a+3)﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4,故选A.【点睛】此题考查整式的加减,解题关键是熟练掌握运算法则.8.下列运算正确的是().A. 2a2-3a2=-a2B. 4m-m=3C. a2b-ab2=0D. x-(y-x)=-y【答案】A【解析】【分析】根据整式加减法的运算方法,逐一判断即可.【详解】解:∵2a2-3a2=-a2,∴选项A 正确;∵4m-m=3m,∴选项B 不正确;∵a 2b-ab 2≠0,∴选项C 不正确;∵x-(y-x)=2x-y,∴选项D 不正确.故选A .【点睛】此题主要考查了整式的加减法,要熟练掌握,解答此题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.9.规定一种新运算,a *b =a +b ,a #b =a ﹣b ,其中a 、b 为有理数,化简a 2b *3ab +5a 2b #4ab 的结果为( )A. 6a 2b +abB. ﹣4a 2b +7abC. 4a 2b ﹣7abD. 6a 2b ﹣ab【答案】D【解析】【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得:原式=a 2b +3ab +5a 2b ﹣4ab =6a 2b ﹣ab ,故选D .【点睛】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键10.x 2+ax ﹣2y +7﹣(bx 2﹣2x +9y ﹣1)的值与x 的取值无关,则﹣a +b 的值为( )A. 3B. 1C. ﹣2D. 2 【答案】A【解析】【详解】试题分析:先把代数式化简合并同类项,值与x 的取值无关所以含x 项的系数为0.x 2 +ax -2y+7- (bx 2 -2x+9y -1)=22227291(1)(2)118+-+-+-+-++-+x ax y bx x y b x a x y 所以20a +=,10b -=解得2,1a b =-=,所以3-+=a b ,所以选A.考点:整式化简求值. 二.填空题(共8小题)11.单项式12πx 2yz 的系数是_____.【答案】12π 【解析】【分析】 根据单项式系数的概念即可求出答案 【详解】该单项式为12π 故答案为12π 【点睛】本题考查单项式的系数,解题的关键是正确理解单项式的系数12.下面是按一定规律排列的代数式:a 2,3a 4,5a 6,7a 8,则第8个代数式是__.【答案】15a 16【解析】【分析】根据单项式的系数与次数的规律即可求出答案【详解】系数的规律为:1、3、5、7……、2n ﹣1,次数的规律为:2、4、6、8……、2n ,∴第8个代数式为:15a 16,故答案为15a 16【点睛】考查数字规律,解题的关键是找出题意给出的规律13.若(k ﹣5)x |k ﹣2|y 是关于x ,y 的六次单项式,则k =_____.【答案】﹣3或7【解析】【分析】利用一个单项式中所有字母的指数的和叫做单项式的次数求解即可【详解】∵(k ﹣5)x |k ﹣2|y 是关于x ,y 的六次单项式∴|k ﹣2|=5,k ﹣5≠0解得k =﹣3,k =7∴k =﹣3或7故答案为﹣3或7【点睛】本题主要考查了单项式,解题的关键是熟记单项式的次数定义14.多项式﹣xy 2+2x -2x 3y 的次数是_____.【解析】【分析】多项式中,次数最高的单项式的次数即为多项式的次数.【详解】解:该多项式中,次数最高的单项式的次数为3+1=4,故该多项式的次数为:4.【点睛】本题考查了多项式的定义.15.若关于x多项式(a﹣4)x3﹣x2+x﹣2是二次三项式,则a=_____.【答案】4【解析】【分析】根据多项式的项和次数的定义来解题.要先找到题中的等量关系,然后列出方程.【详解】因为关于x的多项式(a﹣4)x3﹣x2+x﹣2是二次三项式可得:a﹣4=0解得:a=4故答案为4【点睛】本题考查了多项式.解此类题目时要明确以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数;(3)多项式中不含字母的项叫常数项.16.化简﹣5ab+4ab的结果是_____.【答案】﹣ab【解析】【分析】根据合并同类项的法则把系数相加即可【详解】原式=(﹣5+4)ab=﹣ab故答案是:﹣ab【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变17.如果3x2m﹣2y n与﹣5x m y3是同类项,则m n的值为_____.【答案】8【解析】根据同类项的定义即可求出答案【详解】由题意可知:2m﹣2=m,n=3∴m=2,n=3∴原式=23=8故答案为8【点睛】本题考查同类项的定义,解题的关键是熟练运用同类项的定义18.若关于a、b的多项式(a2+2a2b﹣b)﹣(ma2b﹣2a2﹣b)中不含a2b项,则m=_____【答案】2【解析】【分析】原式去括号合并得到最简结果,根据结果不含a2b项,求出m的值即可【详解】原式=a2+2a2b﹣b﹣ma2b+2a2+b=3a2+(2﹣m)a2b,由结果不含a2b项,得到2﹣m=0解得:m=2故答案为2【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键三.解答题(共7小题)19.化简:(1)a2﹣3a+8﹣3a2+4a﹣6;(2)a+(2a﹣5b)﹣2(a﹣2b).【答案】(1)﹣2a2+a+2;(2) a﹣b.【解析】【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果【详解】(1)原式=﹣2a2+a+2;(2)原式=a+2a﹣5b﹣2a+4b=a﹣b.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键20.先化简,再求值:3a2+b3﹣2(21﹣5b3)﹣(3﹣a2﹣2b3),其中a=﹣3,b=﹣2.【答案】﹣113.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=3a2+b3﹣42+10b3﹣3+a2+2b3=4a2+13b3﹣45,当a=﹣3,b=﹣2时,原式=36﹣104﹣45=﹣113.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.某同学在一次测验中计算A+B时,不小心看成A﹣B,结果为2xy+6yz﹣4xz.已知A=5xy﹣3yz+2xz,试求出原题目的正确答案.【答案】8xy﹣12yz+8xz.【解析】【分析】根据题意列出关系式,去括号合并即可得到结果【详解】解:根据题意得:A+B=2(5xy﹣3yz+2xz)﹣(2xy+6yz﹣4xz)=10xy﹣6yz+4xz﹣2xy﹣6yz+4xz=8xy﹣12yz+8xz.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键22.如果关于字母x的二次多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,求2m﹣3n的值.【答案】-7.【解析】【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n计算它们的和即可.【详解】合并同类项得(n−3)x2+(m−1)x+3,根据题意得n−3=0,m−1=0,解得m=1,n=3,所以2m−3n=2−9=−7.【点睛】本题考查了多项式,解题的关键是先合并同类项化简再代值进行计算.23.若多项式(a+2)x6+x b y+8是四次二项式,求a2+b2的值.【答案】13.【解析】【分析】由(a+2)x6+x b y+8是四次二项式,得出a+2=0,b=3进一步代入求得答案即可【详解】依题意得:a+2=0,b=3解得a=﹣2,b=3,所以a2+b2=(﹣2)2+32=13.【点睛】此题考查多项式,代数式求值,掌握多项式的意义是解决问题的关键24.已知A=2x2﹣1,B=3﹣2x2,求A﹣2B的值.【答案】6x2-7【解析】【分析】根据整体思想,利用合并同类项法则进行整式的化简即可.【详解】因为A=2x2-1,B=3-2x2所以A-2B=2x2-1-2(3-2x2)=2x2-1-6+4x2=6x2-7【点睛】此题主要考查了整式的加减,关键是利用去括号法则和合并同类项法则进行化简.25.(1)一个两位正整数,a表示十位上数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1) 10a+b,11,9;(2) ①123不是“友好数”,理由见解析;②32;③既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可得到结论;(2)①根据“友好数”的定义判断即可;②根据“和平数”的定义列举出所有的“和平数”即可;③设三位数xyz既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x﹣21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.【详解】(1)这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为11,9;(2)①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数xyz既是“和平数”又是“友好数”,∵三位数xyz是“和平数”,∴y=x+z.∵xyz是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【点睛】本题考查了整式的加减的实际运用,阅读理解能力以及知识的迁移能力,解题的关键是理解“友好数”与“和平数”的定义.。
人教版初中七年级数学上册第二单元《整式的加减》经典习题(含答案解析)
一、选择题1.下面用数学语言叙述代数式1a﹣b ,其中表达正确的是( ) A .a 与b 差的倒数 B .b 与a 的倒数的差 C .a 的倒数与b 的差 D .1除以a 与b 的差2.代数式x 2﹣1y的正确解释是( ) A .x 与y 的倒数的差的平方 B .x 的平方与y 的倒数的差 C .x 的平方与y 的差的倒数 D .x 与y 的差的平方的倒数 3.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a)D .(-b)-(+a)4.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( ) A .21-B .12-C .36D .125.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .856.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 7.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .58.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .559.下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯C .126p - D .2y z ÷10.下列式子中,是整式的是( ) A .1x +B .11x + C .1÷x D .1x x+ 11.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n+ B .mnm n+ C .2mnm n+ D .m nnm + 12.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D .13.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( ) A .1个B .2个C .3个D .4个15.多项式33x y xy +-是( ) A .三次三项式B .四次二项式C .三次二项式D .四次三项式二、填空题16.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.17.已知等式:222 2233+=⨯,233 3388+=⨯,244441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___. 18.请观察下列等式的规律: 111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______. 19.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.20.将连续正整数按以下规律排列,则位于第 7 行第 7 列的数 x 是________________.? 13 6 1015 2128 2 5 9 1420 27 ? 48 131926? ?71218 25 ? ? 1117 24? ? 1623 ??22? ? ? ? ? x?21.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★.22.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____; (2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .23.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.24.在括号内填上恰当的项:22222x xy y -+-=-(_____________________). 25.多项式223324573x x y x y y --+-按x 的降幂排列是______。
人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)
1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)
一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。
人教版七年级上册数学第二章《整式的加减》计算题训练(含答案)
3.计算
(1) 2 x 5y 43x 4 y
(2) 4x2 y 3xy 23xy 2 2x2 y
4.计算:
(1) 3a2b 5 5b2 6a2b 7 5b2 4a3 ;
(2) 3ab2 2 2ab2 a2b 3 1 4a2b 10ab2 . 2
5.化简:
8.化简并求值: 2 ab2 2a2b 3 ab2 a2b 1 ,其中 a 2,b 1.
9.先化简,再求值: x2 y2 2xy 3x2 4xy y2 5xy ,其中, x= 1, Nhomakorabeay 2.
10.先化简,再求值 2
ab 3a2
5a2
4ab a2
14.已知 A 3a2 ab , B 5ab a2 (1)求 2A B 的值;
(2)若 2A 与 B C 互为相反数,a、b 满足 a 22 + b+1=0 ,求 C 的值.
15.已知 A 4x2 2xy 3y2, B 4x2 3y2 . (1)求 A B ; (2)当 x 3, y 1 时,求 A B 的值.
18.已知代数式 A 2x2 5xy 7 y 3 , B x2 xy 2
(1)求 3A 2A 3B 的值;
(2)若 A 2B 值与 x 的取值无关,求 y 的值.
1.(1) 1 x2 - 3x + 2 5
(2) 1 a2b 4
2.(1) 2x2 x 1 (2) 3a2 33a 18
3.(1) 6 y 10x (2) 2x2 y 3xy 4
4.(1) 3a2b 4a3 2 (2) 4ab2 6
5.(1) a2b 8ab2 (2) x2 4x
6.(1) 2a2 7b2 ab (2)12a 10b
7. 3x2 4xy 12 , 24 8. ab2 a2b 3 , 5 9. 4x2 xy ;6 10. 2ab ;1 11. 3x2 y 5xy , 2 12. 5x2 xy ,18 13. a2b 6ab2 3 , 89 14.(1) 5a2 3ab (2) 14
人教版七年级上册数学第二章《 整式的加减》试题带答案
七年级数学上册第二章《整式的加减》试题 姓名: 学号: 分数:一、 选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中,正确的是( )A .24m n 不是整式B .32abc-的系数是﹣3,次数是3 C .3是单项式D .多项式2x 2y ﹣xy 是五次二项式2.下列说法中,正确的个数有( ) ①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数; ④倒数等于本身的数有﹣1. A .1个B .2个C .3个D .4个3.下列运算正确的是( ) A .2325a a a += B .333a b ab += C .533-=a a a D .2222-=a bc a bc a bc4.()2ab 2ab 3a b --的计算结果是( )A .23a b 3ab +B .23a b ab --C .23a b ab -D .23a b 3ab -+5.已知:关于x 、y 的多项式mx 3+3nxy 2﹣2x 3﹣xy 2+y 中不含三次项,则代数式2m+3n 值是( ) A .2B .3C .4D .56.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长 为acm ,宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A .4acmB .4bcmC .2(a+b )cmD .4(a-b )cm7.2351a a -+与2234a a ---的和为 ( ) A .2523a a --B .283a a --C .235a a ---D .285a a -+8.如果单项式33m x y 和5n xy -是同类项,则m 和n 的值是( ) A .1-,3 B .3,1C .1,3D .1,3-9.已知622x y 和312m nx y -是同类项,那么2m+n 的值( ) A .3B .4C .5D .610.已知221,a ab -= 212ab b -=-,则代数式222a ab b -+的值是( ) A .9 ;B .33;C .7;D .3011.若要使多项式()222352x x x mx -+-+化简后不含x 的二次项,则m 等于( )A .1B .1-C .5D .5-12.如图,图中的三角形是有规律地从里到外逐层排列的,设N 为第n 层(n 为自然数)三角形的个数,则下列函数表达式中正确的是( )A .44N n =-B .4N n =C .44N n =+D .2N n =二、 填空题(本大题共6小题,每小题3分,共18分) 13.观察一列数:32,74,118,1516,…,按此规律,这列数的第n 个数是________.14.若23x y -=,则412x y +-的值是_____.15.若式子()2222351x ax y b bx x y +-+--+-的值不含2x 和x ,则2a b +的值为__________.16.已知229x xy +=,23216xy y +=,则225251x xy y ++-=_________. 17.若a 、b 互为相反数,则()2a b --的值为______. 18.多项式112m x -﹣3x 2-7是关于x 的四次三项式,则m 的值是________. 三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.如图所示,把一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形,已知正方形的边长为a ,三角形的高为h .(1)用含a ,h 的式子表示阴影部分的面积; (2)当10a =,3h =时,求阴影部分的面积.20.若关于,x y 的多项式23m x nx y x --是一个三次三项式,且最高次项的系数是3-,求m n -的值.21.(1)若3x 3y m 与﹣2x n y 2是同类项,求m n 的值;(2)若﹣x a y 4与4x 4y 4b 的和单项式,求(﹣1)a b 2012的值.22.合并同类项:(1)222p p p --- (2)4523x y y x -+-(3)23233542x x x x x ---++ (4)224()2()5()3()a b a b a b a b ---+-+-23.有理数a ,b ,c 在数轴上的位置如图所示.若|||1|||n b c c b a =+----,|1||1|||m a b a b =-+----,化简:n ,m .24.(1)试说明代数式(23)(32)6(3)516x x x x x ++-+++的值与x 的值无关.(2)若()()233nx x x m +-+的展开式中不含2x 项和x 项,求m 、n 的值分别是多少?答案三、选择题(本大题共12小题,每小题3分,共36分。
人教版七年级数学上册第二章《整式的加减》测试题(含答案)
人教版七年级数学上册第二章《整式的加减》测试题(含答案)(考试时间:90分钟,赋分:100分)姓名:________ 班级:________ 分数:________一、选择题(本大题共10小题,每小题3分,满分30分)1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同; ③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.20.观察下列等式:13+23=1×22×32;4×32×42;13+23+33=14×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=;(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是,S2-S1的值为;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.参考答案一、选择题(本大题共10小题,每小题3分,满分30分)题 号 1 2345678910答 案 CBADBCCADB1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 -2a .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 (12a +25) 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 4b .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = -4 .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = b 2-b . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 18 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值. 解:原式=2(2x 2-2xy +y 2)-3(3x 2+xy -2y 2) =4x 2-4xy +2y 2-9x 2-3xy +6y 2 =-5x 2-7xy +8y 2.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?解:由题可知a -(13a+1)-{23[a -(13a+1)]-2}=a -13a -1-[23(23a -1)-2]=a -13a -1-49a +23+2=(29a+53)米.答:最后还剩(29a+53)米.19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.解:(1)因为该多项式为六次四项式,所以2+m+1=6,所以m=3.因为单项式3x2n y5-m的次数也是6,所以2n+5-m=6,所以n=2.(2)该多项式为-5x2y4+xy2-3x3-6,常数项为-6,各项系数为-5,1,-3,-6,故系数和为-5+1-3-6=-13.20.观察下列等式:×22×32;13+23=1413+23+33=1×32×42;4×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=1n2(n+1)2;4(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.×1002×1012=502×1012=50502.解:(2)根据(1)可知13+23+33+…+1003=14因为50502<50552,所以13+23+33+…+1003<50552.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是630,S2-S1的值为-63;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.解:(2)因为S1=4b(40-a),S2=a(40-3b),所以S2-S1=a(40-3b)-4b(40-a)=40a-160b+ab.(3)S2-S1=a(AD-3b)-4b(AD-a),整理,得S2-S1=(a-4b)AD+ab.因为若AB的长度不变,AD变长,而S2-S1的值总保持不变, 所以a-4b=0,即a=4b,所以a,b满足的关系是a=4b.。
七年级数学上册第二章《整式的加减》测试卷-人教版(含答案)
七年级数学上册第二章《整式的加减》测试卷-人教版(含答案)一、选择题1.若数m增加它的x%后得到数n,则n等于( )A.m·x%B.m(1+x%)C.m+x%D.m(1+x)%2.对于a2+b2解释不恰当的是( )A.a,b两数的平方和B.边长分别是a,b的两正方形的面积和C.买a支单价为a元的铅笔和买b支单价为b元的铅笔所花的总钱数D.边长是a+b的正方形的面积3.下列式子,不是整式的是( )A.x﹣12y B.37x C.1x+1D.04.单项式- 25πx2y 的系数与次数分别是()A.- 25π,3 B.25π,3 C.-25π,2 D.-25,45.多项式2a2b﹣ab2﹣ab的项数及次数分别是( )A.3,3B.3,2C.2,3D.2,26.已知a2+3a=1,那么代数式2a2+6a-1的值是( )A.0B.1C.2D.37.如果2x2y3与x2y n+1是同类项,那么n的值是( )A.1B.2C.3D.48.下列各式计算正确的是( )A.3x+x=3x2B.-2a+5b=3abC.4m2n+2mn2=6mnD.3ab2-5b2a=-2ab29.下面计算正确的是( )A.6a-5a=1B.a+2a2=3a2C.-(a-b)=-a+bD.2(a+b)=2a+b10.如果一个多项式的次数是5,那么这个多项式的任何一项的次数满足( )A.都小于5B.都大于5C.都不小于5D.都不大于511.一个多项式A与多项式B=2x2-3xy-y2的和是多项式C=x2+xy+y2,则A 等于( )A.x2-4xy-2y2B.-x2+4xy+2y2C.3x2-2xy-2y2D.3x2-2xy12.某商家在甲批发市场以每包a元的价格购进了40包茶叶,又在乙批发市场以每包b元(a>b)的价格购进了同样的茶叶60包,如果商家以每包a+b2元的价格卖出这种茶叶,那么卖完后,该商家( )A.盈利了B.亏损了C.不盈不亏D.盈亏不能确定二、填空题13.若-5ab n-1与a m-1b3是同类项,则m+2n=_______.14.化简3x﹣2(x﹣3y)的结果是 .15.在多项式3x2+πxy2+9中,次数最高的项的系数是 .16.若x=1时,2ax2+bx=3,则当x=2时,ax2+bx=_______.7.已知a2+2ab=﹣8,b2+2ab=14,则a2+4ab+b2= .18.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2026个格子中的整数是 .3 a b c -1 -2 …19.化简:3a2+5b-2a2-2a+3a-8b;20.化简:(8x-7y)-2(4x-5y);21.化简:-3a2b-(2ab2-a2b)-(2a2b+4ab2),22.化简:-3a2b-(2ab2-a2b)-(2a2b+4ab2).23.化简:-3a2b+(-4ab2+2a2b)-3(a2b-ab2).24.化简:- 13(x2y2-xy+3)+2[x2-12(xy-2x+y-1)]+3x-1.25.移动公司开设了两种通讯业务:①“全球通”用户先交10元月租费,然后每通话一分钟,付话费0.2元;②“快捷通”用户不交月租费,每通话一分钟付话费0.4元.(1)按一个月通话a分钟计算,请你写出两种收费方式中用户应付的费用?(2)某用户一个月内通话300分钟,你认为选择哪种移动通讯业务较合适?26.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式,那么a和b的值可能是多少?说明你的理由.27.老师在黑板上书写了一个正确的验算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若-x2+2x=1,求所捂二次三项式的值.28.某超市在春节期间实行打折促销活动,规定如下:一次性购物促销方法:少于200元不打折;低于500元但不低于200元打九折;500元或超过500元其中500元部分打九折,超过500元部分打八折.(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200元时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的式子表示)(3 )如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的式子表示两次购物王老师实际付款多少元?参考答案1.B.2.D3.C.4.A5.A6.B7.B8.D9.C10.D.11.B12.A.13.答案为:1014.答案为:x+6y.15.答案为:π.16.答案为:617.答案为:6.18.答案为:3.19.解:原式=3a2-2a2-2a+3a+5b-8b=a2+a-3b.20.解:原式=8x-7y-8x+10y=3y.21.解:原式=-4a2b-6ab222.解:原式=-4a2b-6ab223.解:原式=-3a2b-4ab2+2a2b-3a2b+3ab2=-3a2b+2a2b-3a2b-4ab2+3ab2=(-3+2-3)a2b+(-4+3)ab2=-4a2b-ab2.24.解:原式=- 13x2y2-23xy+2x2+5x-y-125.解:(1)①0.2a+10;②0.4a(2)当a=300时,0.2a+10=70(元);0.4a=120(元),因为70<100,所以选择“全球通”移动通讯业务较合适26.解:(1)若axy b与﹣5xy为同类项,则b=1.因为和为单项式,所以a=5,b=1.(2)若4xy2与axy b为同类项,则b=2.因为axy b+4xy2=0,所以a=﹣4.所以a=﹣4,b=2.27.解:(1)所捂的二次三项式为x2-2x+1.(2)若-x2+2x=1,则x2-2x+1=-(-x2+2x)+1=-1+1=0.28.解:(1)530.500×0.9+(600﹣500)×0.8=530(元).(2)0.9x0.8x+50.(3)因为200<a<300,所以第一次实际付款为0.9a元,第二次付款超过500元,超过500元部分为(820﹣a﹣500)元,所以两次购物王老师实际付款为0.9a+0.8(820﹣a﹣500)+450=0.1a+706(元).。
人教版初中七年级数学上册第二章《整式的加减》经典练习(含答案解析)
1.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意;故选:D .【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.2.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.4.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B 解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】 33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】 要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.7.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55C解析:C【分析】 观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-, ∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()()4424419892+-=,当m=45时,()()4524511342+-=, ∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A 【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.11.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- D 解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8.故选D .【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.13.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.15.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.1.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.2.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.4.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x .【解析】解:系数为-2,次数为4的单项式为:-2x 4.故答案为-2x 4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.6.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.7.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.8.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a 2,a 3,a 4,a 5,a 6,观察发现3次一个循环,所以a 2019=a 3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.9.多项式223324573x x y x y y --+-按x 的降幂排列是______。
2023-2024学年七年级数学上册《第二章 整式的加减》同步练习题有答案(人教版)
2023-2024学年七年级数学上册《第二章整式的加减》同步练习题有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题)1.下列式子为同类项的是( )A.abc与ab B.3x与3x2C.3xy2与4x2y D.x2y与−yx22.下列运算正确的是( )A.x+y=xy B.5x2y−4x2y=x2yC.x2+3x3=4x5D.5x3−2x3=33.下列单项式中,与−5x2y是同类项的是( )A.−5xy B.3x2y C.−5xy2D.−54.下列去(添)括号正确的是( )A.x−(y−z)=x−y−zB.−(x−y+z)=−x−y−zC.x+2y−2z=x−2(y−z)D.−a+c+d+b=−(a−b)+(c+d)5.已知一个多项式与3x2+9x的和等于5x2+4x−1,则这个多项式是( )A.2x2−5x−1B.−2x2+5x+1C.8x2−5x+1D.8x2+13x−16.若有理数a,b,c在数轴上的对应点A,B,C位置如图,化简∣c∣−∣c−b∣+∣a+b∣=( )A.a B.2b+a C.2c+a D.−a7.多项式4n−2n2+2+6n3减去3(n2+2n3−1+3n)(n为自然数)的差一定是( )A.奇数B.偶数C.5的倍数D.以上答案都不对8.如图,两个三角形的面积分别为16,9,若两阴影部分的面积分别为a,b(a>b)则(a−b)等于( )A.8B.7C.6D.5二、填空题(共5题)x a−2y3是同类项,那么(a−b)2015=.9.如果单项式−xy b+1与12x2y n与−2x m y3的和仍为单项式,则−m n的值为.10.若单项式2311.已知2a−3b2=5,则10−2a+3b2的值是.12.若代数式2x2+3x+7的值是5,则代数式4x2+6x+15的值是.13.已知多项式3x2+my−8与多项式−nx2+2y+7的差中,不含有x,y,则n m+mn=.三、解答题(共6题)14.先化简,后求值:3a2b+2(−ab2+2a2b)−(a2b−3ab2),其中a,b满足a=−1,b=2.15.已知代数式A=−6x2y+4xy2−2x−5,B=−3x2y+2xy2−x+2y−3.(1) 先化简A−B,再计算当x=1,y=−2时A−B的值;(2) 请问A−2B的值与x,y的取值是否有关系?试说明理由.16.已知∣x−3m+2n+1∣+(y−3mn)2=0.(1) 用含字母m,n的式子表示x,y;(2) 若2x+y的值与m取值无关,求出2x+y的值;(3) 若x+y=4,求5m+8mn+2与−m+2mn+4n的差的值.17.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3因为x=y,所以1423是“和平数”.(1) 直接写出最小的“和平数”是,最大的“和平数”是;(2) 如果一个“和平数”的个位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是12,请求出所有的这种“和平数”.18.在计算代数式(2x3+ax−5y+b)−(2bx3−3x+5y−1)的值时,甲同学把“x=−23,y=35”误写为“x=23,y=35”,其计算结果也是正确的.请你通过计算写出一组满足题意的a,b的值.19.已知含字母x,y的多项式是:3[x2+2(y2+xy−2)]−3(x2+2y2)−4(xy−x−1).(1) 化简此多项式;(2) 小红取x,y互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y的值等于多少?(3) 聪明的小刚从化简的多项式中发现,只要字母y取一个固定的数,无论字母x取何数,代数式的值恒为一个不变的数,请你通过计算求出小刚所取的字母y的值.参考答案1. D2. B3. B4. D5. A6. D7. C8. B9. 110. −811. 512. 1113. 314. 原式=3a 2b −2ab 2+4a 2b −a 2b +3ab 2=6a 2b +ab 2.当 a =−1,b =2 时原式=6×1×2−1×4=8.15. (1) A −B=(−6x 2y +4xy 2−2x −5)−(−3x 2y +2xy 2−x +2y −3)=−6x 2y +4xy 2−2x −5+3x 2y −2xy 2+x −2y +3=(−6+3)x 2y +(4−2)xy 2+(−2+1)x −2y −5+3=−3x 2y +2xy 2−x −2y −2.当 x =1,y =−2 时A −B=−3×12×(−2)+2×1×(−2)2−1−2×(−2)−2=6+8−1+4−2=15.(2) A −2B=(−6x 2y +4xy 2−2x −5)−2(−3x 2y +2xy 2−x +2y −3)=−6x 2y +4xy 2−2x −5+6x 2y −4xy 2+2x −4y +6=(−6+6)x 2y +(4−4)xy 2+(−2+2)x −4y −5+6=−4y +1.由化简结果可知,A −2B 的值与 x 的取值没有关系,与 y 的取值有关系.16. (1) 由题意得:x −3m +2n +1=0,y −3mn =0所以x=3m−2n−1,y=3mn.(2)2x+y=2(3m−2n−1)+3mn =6m−4n−2+3mn=(6+3n)m−4n−2,因为2x+y的值与m取值无关所以6+3n=0所以n=−2所以2x+y=−4×(−2)−2=8−2=6.(3) 因为x+y=3m−2n−1+3mn=4所以3mn+3m−2n=5所以5m+8mn+2−(−m+2mn+4n)=5m+8mn+2+m−2mn−4n=6mn+6m−4n+2=2(3mn+3m−2n)+2=2×5+2=12.17. (1) 1001;9999(2) 设这个“和平数”为abcd则d=2a,a+b=c+d,b+c=12k∴2c+a=12k即a=2,4,6,8,d=4,8,12(舍去),16(舍去)①当a=2,d=4时2(c+1)=12k可知c+1=6k且a+b=c+d∴c=5,则b=7②当a=4,d=8时2(c+2)=12k可知c+2=6k且a+b=c+d∴c=4,则b=8.综上所述,这个数为2754和4848.18. (2x 3+ax −5y +b )−(2bx 3−3x +5y −1)=2x 3+ax −5y +b −2bx 3+3x −5y +1=(2−2b )x 3+(a +3)x −10y +(1+b ).由题意知计算结果也是正确的∴ 计算结果与 x 无关∴2−2b =0,a +3=0.∴a =−3,b =1(不唯一).19. (1) 原式=3x 2+6y 2+6xy −12−3x 2−6y 2−4xy +4x +4=2xy +4x −8.(2) ∵x ,y 互为倒数∴xy =1∴2+4x −8=0解得:x =1.5,y =23.(3) 由(1)得:原式=2xy +4x −8=(2y +4)x −8,由结果与 x 的值无关,得到 2y +4=0解得:y =−2.。
【【专项训练】】人教七上数学 第二章 整式的加减-专项练习100题(含答案)
整式的加减专项练习1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn) 10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab] 14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y); 22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5); 24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2); 26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]1+3x)-4(x 27、(8xy-x2+y2)+(-y2+x2-8xy); 28、(2x2-21);-x2+229、3x2-[7x-(4x-3)-2x2]. 30、5a+(4b-3a)-(-3a+b);31、(3a2-3ab+2b2)+(a2+2ab-2b2); 32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a2-1+2a)-3(a-1+a2); 34、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)].35、 -32ab +43a 2b +ab +(-43a 2b )-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x -(3x -2y +3)-(5y -2); 38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3) 40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b ) 44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4) 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ). 48、4a 2+2(3ab-2a 2)-(7ab-1).49、 21xy+(-41xy )-2xy 2-(-3y 2x ) 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p 52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy] 54、 3x 2-[5x-4( 21x 2-1)]+5x 255、2a 3b- 21a 3b-a 2b+ 21a 2b-ab 2;56、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ).57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2;58、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2; 59、(7y-3z )-(8y-5z);60、-3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2; 63、3(a2-2ab)-2(-3ab+b2);64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m)-2(m2-3m)].66、-[2m-3(m-n+1)-2]-1. 67、31a-( 21a-4b-6c)+3(-2c+2b)68、 -5a n -a n -(-7a n )+(-3a n ) 69、x 2y-3xy 2+2yx 2-y 2x70、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-3275、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52n=-13177、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.79、化简,求值:5x2-[3x-2(2x-3)+7x2],其中x=-2.80、若两个多项式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.81、若2a2-4ab+b2与一个多项式的差是-3a2+2ab-5b2,试求这个多项式.82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、 求3x 2+x -5与4-x +7x 2的差.84、计算 5y+3x+5z 2与12y+7x-3z 2的和85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a2b-[3abc-(4ab2-a2b)]-2ab2},其中a=-2,1b=3,c=-489、已知A=a2-2ab+b2,B=a2+2ab+b21(B-A);(1)求A+B;(2)求490、小明同学做一道题,已知两个多项式A,B,计算A+B,他误将A+B看作A-B,求得9x2-2x+7,若B=x2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x2+2x-1,N=-x2-2+3x,求M-2N.92、已知2222=-+=+-,求3A-B44,5A x xy yB x xy y93、已知A=x2+xy+y2,B=-3xy-x2,求2A-3B.94、已知2a+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值.-95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.96、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.整式的加减专项练习答案:1、3(a+5b)-2(b-a)=5a+13b2、3a-(2b-a)+b=4a-b.3、2(2a2+9b)+3(-5a2-4b)=—11a2+6b24、(x3-2y3-3x2y)-(3x3-3y3-7x2y)= -2x3+y3+4x2y5、3x2-[7x-(4x-3)-2x2] = 5x2 -3x-36、(2xy-y)-(-y+yx)= xy7、5(a22b-3ab2)-2(a2b-7ab) = -a2b+11ab8、(-2ab+3a)-2(2a-b)+2ab= -2a+b9、(7m2n-5mn)-(4m2n-5mn)= 3m2n10、(5a2+2a-1)-4(3-8a+2a2)= -3a2+34a-1311、-3x2y+3xy2+2x2y-2xy2= -x2y+xy212、2(a-1)-(2a-3)+3.=413、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]= 7a2+ab-2b214、(x2-xy+y)-3(x2+xy-2y)= -2x2-4xy+7y15、3x 2-[7x-(4x-3)-2x 2]=5x 2-3x-316、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c 17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y 18、2(2x-3y )-(3x+2y+1)=2x-8y-1 19、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2-4a 20、5m-7n-8p+5n-9m-p = -4m-2n-9p 21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2 +7a+2 23、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+10 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 2 25、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+126、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a 2+ab-2b 2 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=0 28、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-2529、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -3 30、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab 32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -1 33、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+4 39、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+441、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+2 43、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 2 44、()[]{}y x x y x --+--32332 = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-1 47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 2 48、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、 21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 2 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a 51、5m-7n-8p+5n-9m+8p=-4m-2n52、(5x 2y-7xy 2)-(xy 2-3x 2y )=8x 2y-6xy 2 53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]=-2x 2y+7xy54、 3x 2-[5x-4( 21x 2-1)]+5x 2 = 10x 2-5x-4 55、2a 3b- 21a 3b-a 2b+ 21a 2b-ab 2 = 23a 3b- 21a 2b-ab 2 56、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab )=-2a 2+11ab-14b 2 57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2 = -3a 3+4a 258、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2=8ab+8ab 2-a 2b59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-2461、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 2 65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m 66、-[2m-3(m-n+1)-2]-1=m-3n+467、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b 68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 271、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2 = -41a 2b71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34原式=2x 2+21y 2-2 =69874、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131 原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3. 原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2. 原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 2 82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y 83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -9 84、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+186、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M M=-21x 2+4xy —23y 87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.原式=-8xy+y= —1588、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=3689、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ;(2)求41(B-A); A+B=2a 2+2b 2 41(B-A)=ab90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得 9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .M-2N=5x 2-4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .2A-3B= 5x2+11xy+2y294、已知2a+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值.原式=9ab2-4a2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-3296、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值. B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小. A=2a2-4a+1 B=2a2-4a+3 所以A<B。
人教版数学七年级上册第二章整式的加减单元测试题(含答案)
人教版数学七年级上学期第二章整式的加减测试一、选择题:1.单项式22r π的系数是( ) A. 12 B. π C. 2 D. 2π 2.若232n x y 与2m -5xy 是同类项,则m n -值是( )A. 0B. 1C. 7D. -13.关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A. 这个多项式是五次四项式B. 四次项的系数是7C. 常数项是1D. 按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.m,n 都是正数,多项式x m +x n +3x m+n 的次数是( )A. 2m+2nB. m 或nC. m+nD. m,n 中的较大数 5.不改变代数式a 2﹣(2a+b+c )的值,把它括号前的符号变为相反的符号,应为( )A. a 2+(﹣2a+b+c)B. a 2+(﹣2a ﹣b ﹣c)C. a 2+(﹣2a)+b+cD. a 2﹣(﹣2a ﹣b ﹣c) 6.下列计算正确的是( )A. 3a+2a=5a 2B. 3a -a=3C. 2a 3+3a 2=5a 5D. -a 2b+2a 2b=a 2b 7.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( )A. ﹣5x ﹣1B. 5x+1C. ﹣13x ﹣1D. 13x+1 8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm ,宽为ncm )的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A. 4m cmB. 4n cmC. 2(m +n) cmD. 4(m -n) cm9.当a=﹣1,b=1时,(a 3﹣b 3)﹣(a 3﹣3a 2b+3ab 2﹣b 3)的值是( )A. 0B. 6C. ﹣6D. 910.已知密文和明文的对应规则为:明文a 、b 对应的密文为ma-nb 、na+mb.例如,明文1、2对应的密文是-3,4.若密文是1,7时,则对应的明文是( )A. -1,1B. 1,3C. 3,1D. 1,l11.如图,为做一个试管架,在acm 长的木条上钻4个圆孔,每个孔的直径为2cm ,则x 等于( )A. 85a +cmB. 165a cm -C. 45a cm -D. 85a cm - 12.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( )A 2n+1 B. n 2﹣1 C. n 2+2n D. 5n ﹣2二、填空题:13.单项式358ab -系数是__,次数是__. 14.2xy 2+x 2y 2﹣7x 3y +7按x 的降幂排列:__________________________________.15.爸爸给小强买了一个足球花了a 元,买一个乒乓球花了b 元,则买x 个足球和y 个乒乓球共花了____元. 16.已知24m m n x y +与623x y 是同类项,则m -n=___________.17.已知当x =1时,代数式ax 3+bx +5的值为-9,那么当x =-1时,代数式ax 3+bx +5的值为_______ . 18 观察下列算式:222222222210101;21213;32325;43437;54549;-=+=-=+=-=+=-=+=-=+= 若字母表示自然数,请把你观察到的规律用含有的式子表示出来:三、计算题:19.化简:﹣3a 2+2ab ﹣4ab+2a 220.化简:(3x 2﹣xy ﹣2y 2)﹣2(x 2+xy ﹣2y 2)21.化简:(8x ﹣7y)﹣2(4x ﹣5y)22.化简:﹣(3a 2﹣4ab)+[a 2﹣2(2a 2+2ab)].四、解答题:23.已知多项式x 4﹣y +3xy ﹣2xy 2﹣5x 3y 3﹣1,按要求解答下列问题:(1)指出该多项式的项;(2)该多项式的次数是______,三次项的系数是______.(3)按y 的降幂排列为:______.(4)若|x+1|+|y-2|=0,试求该多项式的值.24.已知:A =3a 2﹣4ab ,B =a 2+2ab .(1)求A ﹣2B ;(2)若|2a +1|+(2﹣b )2=0,求A ﹣2B 的值.25.化简求值:2222233224()(4)2a b ab ab a b ab ab a b ⎡⎤---++-⎢⎥⎣⎦,其中,a b 使得关于的多项式3213(1)()32x a x b x +++--不含2x 项和项. 26.小明、小强从同一地点A 同时反向(小明按逆时针方向,小强按顺时针方向)绕环形跑道跑步,小明的速度为4a 米/秒,小强的速度为5a 米/秒(a >0),经过t 秒两人第一次相遇.⑴ 这条环形跑道的周长为多少米?⑵ 两人第一次相遇后,小明、小强继续按原方向绕跑道跑步. ① 小明又经过几秒再次到达A 点?② 在①中当小明到达A 点时,小强否已经过A 点?如果已经过,则小强经过A 点后又走了多少米?如果没有经过,请说明理由.答案与解析一、选择题:1.单项式22r π的系数是( ) A. 12 B. π C. 2 D. 2π 【答案】D【解析】 【详解】单项式22r π的系数是:2π.故选D .2.若232n x y 与2m -5xy 是同类项,则m n -的值是( )A. 0B. 1C. 7D. -1 【答案】B【解析】【分析】直接利用同类项的概念得出n ,m 的值,再利用绝对值的性质求出答案.【详解】∵232n x y 与2m -5xy 是同类项,∴2n =1,2m =3,解得:m =32,n =12,∴|m−n|=|32−12|=1.故选:B .【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键.3.关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A. 这个多项式是五次四项式B. 四次项的系数是7C. 常数项是1D. 按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+1【答案】B【解析】【分析】根据多项式的概念即可求出答案.【详解】多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,有四项分别为:0.3x 2y ,﹣2x 3y 2,﹣7xy 3,+1,最高次为5次,是五次四项式,故A 正确;四次项的系数是-7,故B 错误;常数项是1,故C 正确;按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+1,故D 正确,故符合题意的是B 选项,故选B.4.m,n 都是正数,多项式x m +x n +3x m+n 的次数是( )A. 2m+2nB. m 或nC. m+nD. m,n 中的较大数 【答案】C【解析】∵m,n 都是正数,∴m+n>m,m+n>n,∴m+n 最大,∴多项式x m +x n +3x m+n 次数是m+n,故选:C.5.不改变代数式a 2﹣(2a+b+c )的值,把它括号前的符号变为相反的符号,应为() A. a 2+(﹣2a+b+c) B. a 2+(﹣2a ﹣b ﹣c)C. a 2+(﹣2a)+b+cD. a 2﹣(﹣2a ﹣b ﹣c)【答案】B【解析】试题解析:原式2(2).a a b c =+---故选B.6.下列计算正确的是( )A. 3a+2a=5a 2B. 3a -a=3C. 2a 3+3a 2=5a 5D. -a 2b+2a 2b=a 2b 【答案】D【解析】【分析】根据合并同类项:系数相加字母部分不变,可得答案.【详解】A、3a+2a=5a≠5a2 ,故A错误;B、3a-a=2a≠3,故B错误;C、2a3与3a2不能合并,故C错误;D、-a2b+2a2b=a2b,故D正确;故选D.【点睛】本题考查了同类项,关键是利用合并同类项法则:系数相加字母及字母的指数不变.7.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A. ﹣5x﹣1B. 5x+1C. ﹣13x﹣1D. 13x+1【答案】A【解析】选A分析:本题涉及多项式的加减运算,解答时根据各个量之间的关系作出回答.解答:解:设这个多项式为M,则M=3x2+4x-1-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.故选A.8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm,宽为ncm)的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A. 4m cmB. 4n cmC. 2(m+n) cmD. 4(m-n) cm【答案】B【解析】【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到a+2b=m,代入计算即可得到结果.【详解】设小长方形的长为a,宽为b,上面的长方形周长:2(m﹣a+n﹣a),下面的长方形周长:2(m﹣2b+n﹣2b),两式联立,总周长为:2(m﹣a+n﹣a)+2(m﹣2b+n﹣2b)=4m+4n﹣4(a+2b),∵a+2b=m(由图可得),∴阴影部分总周长为4m+4n﹣4(a+2b)=4m+4n﹣4m=4n(厘米).故选:.【点睛】此题考查了整式的加减运算,熟练掌握运算法则以及根据题意结合图形得出答案是解题的关键.9.当a=﹣1,b=1时,(a3﹣b3)﹣(a3﹣3a2b+3ab2﹣b3)的值是( )A. 0B. 6C. ﹣6D. 9【答案】B【解析】【分析】本题考查了整式的加法运算,要先去括号,然后合并同类项,最后代入求值.【详解】原式=a3﹣b3﹣a3+3a2b﹣3ab2+b3=3a2b﹣3b2a当a=﹣1,b=1时,原式=3×(﹣1)2×1﹣3×12×(﹣1)=6.故选B.【点睛】解决此类题目的关键是熟练地去括号、合并同类项,这是各地中考的常考点.最后要化简求值.10.已知密文和明文的对应规则为:明文a、b对应的密文为ma-nb、na+mb.例如,明文1、2对应的密文是-3,4.若密文是1,7时,则对应的明文是( )A. -1,1B. 1,3C. 3,1D. 1,l【答案】C【解析】由题意得:23{24m nn m-=-+=,解得12mn=⎧⎨=⎩,∴若密文是1,7时,有21 {27 a ba b-=+=,解得:31 ab=⎧⎨=⎩,故选C11.如图,为做一个试管架,在acm长的木条上钻4个圆孔,每个孔的直径为2cm,则x等于()A.85a+cm B.165acm-C.45acm-D.85acm-【答案】D【解析】【分析】读图可得:5x+四个圆的直径=acm.由此列出方程,用含a的代数式表示x即可.【详解】由题意可得:5x=a﹣2×4,则x=85a-cm.故选D.【点睛】本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.12.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是( )A. 2n+1B. n2﹣1C. n2+2nD. 5n﹣2【答案】C【解析】试题分析:∵第1个图形中,小正方形的个数是:221-=3;第2个图形中,小正方形的个数是:231-=8;第3个图形中,小正方形的个数是:241-=15;…∴第n个图形中,小正方形的个数是:2(1)1n+-=22n n+;故选C.考点:规律型:图形的变化类.二、填空题:13.单项式358ab -的系数是__,次数是__. 【答案】 (1). 58- (2). 4 【解析】【分析】单项式就是数与字母的乘积,数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,据此即可求解. 【详解】单项式358ab -的系数是:58-,次数是:1+3=4. 故答案为58-;4.【点睛】本题主要考查了单项式系数与次数的定义,在写系数时,注意不要忘记前边的符号是解答此题的关键.14.2xy 2+x 2y 2﹣7x 3y +7按x 的降幂排列:__________________________________.【答案】3222727x y x y xy -+++【解析】因为按x 降幂排列即从左向右x 的次数从高到低依次递减, 故答案为:3222727x y x y xy -+++. 15.爸爸给小强买了一个足球花了a 元,买一个乒乓球花了b 元,则买x 个足球和y 个乒乓球共花了____元.【答案】ax+by【解析】【分析】根据买一个足球花a 元,得出买x 个足球共花ax 元,再根据买一个乒乓球花b 元,得出买y 个乒乓球共花by 元,两者相加即可得出答案.详解】根据题意得:买x 个足球和y 个乒乓球共花了:(ax +by )元.故答案为ax +by .【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的数量关系,列出代数式. 16.已知24m m n x y +与623xy 是同类项,则m -n=___________.【答案】4【解析】试题解析:∵4x 2m y m+n 与3x 6y 2是同类项,∴2m=6,m+n=2.第一个式子减去第二个式子得:m ﹣n=4.考点:1.同类项;2.解一元一次方程.17.已知当x =1时,代数式ax 3+bx +5的值为-9,那么当x =-1时,代数式ax 3+bx +5的值为_______ .【答案】19.【解析】试题分析:∵当x=1时,代数式ax 3+bx+5的值为-9,∴a×13+b×1+5=-9,即a+b=-14,把x=-1代入代数式ax 3+bx+5,得ax 3+bx+5=a×(-1)3+b×(-1)+5=-(a+b)+5=14+5=19.考点:代数式求值.18. 观察下列算式:222222222210101;21213;32325;43437;54549;-=+=-=+=-=+=-=+=-=+= 若字母表示自然数,请把你观察到的规律用含有的式子表示出来:【答案】()221121n n n n n +-=++=+【解析】【分析】根据题意,分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;…进而发现规律,用n 表示可得答案.【详解】根据题意,分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;… 若字母n 表示自然数,则有:(n+1)2-n 2=2n+1;故答案为(n+1)2-n 2=2n+1. 三、计算题:19.化简:﹣3a 2+2ab ﹣4ab+2a 2【答案】﹣a 2﹣2ab【解析】【分析】把各同类项进行合并即可.【详解】原式=(﹣3+2)a2+(2﹣4)ab=﹣a2﹣2ab【点睛】本题考查的是合并同类项.解题的关键是掌握合并同类项法则.20.化简:(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)【答案】x2﹣3xy+2y2.【解析】【分析】根据括号前是正号,去掉括号及正号,各项都不变,括号前是负号,去掉括号及负号,各项都变号,可去括号,再根据系数相加字母部分不变,合并同类项.【详解】原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=3x2﹣2x2﹣xy﹣2xy﹣2y2+4y2= x2﹣3xy+2y2.【点睛】本题考查了去括号与添括号,根据法则去括号添括号是解题的关键.21.化简:(8x﹣7y)﹣2(4x﹣5y)【答案】3y【解析】【分析】先去括号,然后合并同类项即可.【详解】原式=8x﹣7y﹣8x+10y=3y.【点睛】本题考查了去括号与添括号,根据法则去括号是解题的关键.22.化简:﹣(3a2﹣4ab)+[a2﹣2(2a2+2ab)].【答案】﹣6a2【解析】【分析】根据整式的加减即可求出答案.【详解】原式=﹣3a2+4ab+a2﹣4 a2﹣4ab=﹣6a2【点睛】本题考查了整式的加减,注意去括号的顺序.四、解答题:23.已知多项式x4﹣y+3xy﹣2xy2﹣5x3y3﹣1,按要求解答下列问题:(1)指出该多项式的项;(2)该多项式的次数是______,三次项的系数是______.(3)按y的降幂排列为:______.(4)若|x+1|+|y-2|=0,试求该多项式的值.【答案】(1)该多项式的项为:x4,-y,3xy,-2xy2,-5x3y3,-1; (2)该多项式的次数是6,三次项的系数是-2; (3)按y的降幂排列为:-5x3y3-2xy2-y+3xy+x4-1;(4)40【解析】【分析】(1)根据多项式的项的定义求解,(2)根据多项式的项的次数、单项式的系数的定义求解;(3)先分清多项式的各项,然后按y的降幂排列;(4)根据非负数的性质得到x,y的值,代入代数式即刻得到结果.【详解】(1)该多项式的项为:x4,-y,3xy,﹣2xy2,﹣5x3y3,﹣1;(2)该多项式的次数是6,三次项的系数是﹣2.故答案为6,﹣2;(3)按y的降幂排列为:﹣5x3y3﹣2xy2﹣y+3xy+x4﹣1.故答案为﹣5x3y3﹣2xy2﹣y+3xy+x4﹣1;(4)∵|x+1|+|y﹣2|=0,∴x=﹣1,y=2,∴x4﹣y+3xy﹣2xy2﹣5x3y3﹣1=(﹣1)4﹣2+3×(﹣1)×2﹣2(﹣1)×22﹣5(﹣1 )3×23﹣1=1﹣2﹣6+8+40﹣1=40.【点睛】本题考查的是与多项式有关的定义,比较简单.几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.24.已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|2a+1|+(2﹣b)2=0,求A﹣2B的值.【答案】(1)a2﹣8ab;(2)814.【解析】【分析】(1)直接利用去括号法则去括号,进而合并同类项得出答案.;(2)利用绝对值以及偶次方的非负性得出a,b的值,进而得出答案.【详解】(1)∵A=3a2﹣4ab,B=a2+2ab,∴A﹣2B=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab;(2)∵|2a+1|+(2﹣b)2=0,∴a=﹣12,b=2,则原式=14+8=814. 【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.25.化简求值:2222233224()(4)2a b ab ab a b ab ab a b ⎡⎤---++-⎢⎥⎣⎦,其中,a b 使得关于的多项式3213(1)()32x a x b x +++--不含2x 项和项. 【答案】原式=21068a b ab -+=-.【解析】试题分析:本题先将第一个整式按照先去小括号,再去中括号的依次顺序去掉括号,然后合并同类项化简,然后根据第二个整式中不含2x 项和项,可令式子中的2x 项和项的系数为0,从而计算出a ,b 的值,然后将a ,b 的值代入到第一个化简的式子中进行计算求值.试题解析:原式=22222322464a b ab ab a b ab ab a b ⎡⎤--+++-⎣⎦,=222223481224a b ab ab a b ab ab a b -+--+-,=2106a b ab -+,由题意知:10a +=,102b -=, ∴1a =-,12b =, 当1a =-,12b =时, 原式=()()2111016122-⨯-⨯+⨯-⨯, =()53-+-,=8-.26.小明、小强从同一地点A 同时反向(小明按逆时针方向,小强按顺时针方向)绕环形跑道跑步,小明的速度为4a 米/秒,小强的速度为5a 米/秒(a >0),经过t 秒两人第一次相遇.⑴ 这条环形跑道的周长为多少米?⑵ 两人第一次相遇后,小明、小强继续按原方向绕跑道跑步. ① 小明又经过几秒再次到达A 点?② 在①中当小明到达A 点时,小强是否已经过A 点?如果已经过,则小强经过A 点后又走了多少米?如果没有经过,请说明理由.【答案】⑴ 这条环形跑道的周长为9at 米;(2)①54t ;②小强已经经过A 点,经过A 点后又走了94at 米【解析】【分析】(1)小明、小强两人行走的距离和为环形跑道的周长;(2)①小明行的距离÷行驶速度=小明所用的时间;②小强行距离÷小强所用的时间=行驶速度.【详解】(1)依题意得:(5a+4a)t=9at,即这条环形跑道的周长为9at米;(2)①设经过x秒后,小明再次到达A点,依题意得:4ax+4at=9at.解得:x=54t.答:小明又经过54t秒再次到达A点;②当小明再一次到达A点时,5a×54t=254at,所以小强已经过A点.25 4at﹣4at=94at.则小强经过A点后又走了94at米.【点睛】考查了一元一次方程的应用.解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
人教版七年级上册数学第二章整式的加减试题及答案(精华两份)
整式的加减试题(一)及答案一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x +是多项式D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:;)()(,,0553212=+-m x y x m 满足 2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
七年级数学上册第二章《整式的加减》考试卷-人教版(含答案)
七年级数学上册第二章《整式的加减》考试卷-人教版(含答案)一、单选题(本大题共10小题,每小题3分,共30分)1.下列式子:① 0;②x2﹣2xy+1y;③1a;④2212x xx++-;⑤﹣23x+y;⑥5π;⑦12x+.中整式的个数为()个.A.2 B.3 C.4 D.52.下列运算中,正确的是()A.2a +3b= 5ab B.3a2b-3ba2=0C.2x3+3x2=5x5D.5y2-4y2=13.下列说法不正确的是()A.0不是单项式B.单项式a的系数是1C.7m2n2+3是四次二项式D.6m2+9mn+5n2是二次三项式4.下列各组式子中,是同类项的是()A.3a2b与-3ab2B.3a与3a2C.3a与-5b D.3 与 -55.(湖南长沙月考)一个多项式与5a2+2a﹣1的和是6a2﹣5a+3,则这个多项式是()A.a2﹣7a+4 B.a2﹣3a+2 C.a2﹣7a+2 D.a2﹣3a+46.(安顺单元测试)若 3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为 0,则mn 的值是()A.﹣2 B.﹣1 C.2 D.17.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b8.点O,A,B,C在数轴上的位置如图所示,其中O为原点,BC=2,OA=OB,若C点所表示的数为x,则A点所表示的数为()A.-x+2 B.-x-2 C.x=2 D.-29.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A .4,2,1B .2,1,4C .1,4,2D .2,4,110.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题(本大题共8小题,每小题3分,共24分) 11.单项式-2πX 2y 4的系数是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的加减练习题
一、填空题(每题3分,共36分)
1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 ,
化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+x
x ,则代数式51)1(2010-+++x x x x 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ΛΛ= 。
8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)
13、下列等式中正确的是( )
A 、)25(52x x --=-
B 、)3(737+=+a a
C 、-)(b a b a --=-
D 、)52(52--=-x x
14、下面的叙述错误的是( )
A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和
C 、3)2(b
a 的意义是a 的立方除以2
b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍
15、下列代数式书写正确的是( )
A 、48a
B 、y x ÷
C 、)(y x a +
D 、211
abc 16、-)(c b a +-变形后的结果是( )
A 、-c b a ++
B 、-c b a -+
C 、-c b a +-
D 、-c b a --
17、下列说法正确的是( )
A 、0不是单项式
B 、x 没有系数
C 、37x x
+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )
A 、c b a a c b a a +--=+--2)2(22
B 、)123(123-+-+=-+-y x a y x a
C 、1253)]12(5[3+--=---x x x x x x
D 、-)1()2(12-+--=+--a y x a y x
19、代数式,21a a + 43,21,2009,,3,42mn
bc a a b a xy -+中单项式的个数是(
)
A 、3
B 、4
C 、5
D 、6
20、若A 和B 都是4次多项式,则A+B 一定是( )
A 、8次多项式
B 、4次多项式
C 、次数不高于4次的整式
D 、次数不低于4次的整式
21、已知y x x n m n m 2652与-是同类项,则( )
A 、1,2==y x
B 、1,3==y x
C 、1,23
==y x D 、0,3==y x
22、下列计算中正确的是( )
A 、156=-a a
B 、x x x 1165=-
C 、m m m =-2
D 、33376x x x =+
三、化简下列各题(每题3分,共18分)
23、)31
2(65++-a a 24、b a b a +--)5(2
25、-32009)214(2)2(++
--y x y x 26、-[]12)1(32--+--n m m
27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x
四、化简求值(每题5分,共10分)
29、)]21(3)13(2[22222x x x x x x ------- 其中:2
1=
x
30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a
五、解答题(31、32题各6分,33、34题各7分,共20分)
31、已知:;)()(,,0553
212=+-m x y x m 满足 2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
32、已知:A=2244y xy x +- ,B=225y xy x -+,求(3A-2B )-(2A+B )的值。
33、试说明:不论x 取何值代数式)674()132()345(323223x x x x x x x x x +--+--+---++的值是不会改变的。
参考答案
一、填空题:1、]2)5(4[32222y x x y x x +-+---,y x x 2222+,2、-9, 9, 3、(答案不唯
一),4、-3 , 5、(0.3b-0.2a), 6、108-x , 14a-4b ,7、1005m , 8、bc a 2-, 3-π,-1 , 9、2, 10、-2, 5, 11、6, -22, 12、三, 四,37x -, 1,
二、选择题:13~17题:A 、C 、C 、B 、D 18~22题:B 、C 、C 、B 、D
三、23、3-14a 24、3a -4b 25、-14x +2y +2009 26、m -3n +4 27、2y 2+3x 2-5z 2 28、0
四、29、51262--x x -2
19 30、b a ab 223- -10 五、31、x =5 y =2 m =0 -47 32、22167y xy x +- 33、略
34、ab b ab ab b a a 515682435224+--+--=原式
543224658521ab b ab b a ab a --+-++-=
a =-2、
b =-1值为 80。