1.1集合的概念
1_集合
1.1.2集合的表示-枚举法
例1.1 下面是枚举法给出集合的例子
① A= {1,3,5,7,…} ② B= {2,4,6,8,…,100} ③ P= {a+1,a+2,a+3,…,a+999} ④ Q= {a,A,b,B,c,C,…,Z}
解释 ① 集合A由所有正奇数组成,是一个无限集; ② 集合B由2到100之间的50个偶数组成,是一个有限集,集合的基 数为card(B)=50; ③ 集合P由a+1到a+999的表达式组成,是一个有限集; ④ 集合Q由大、小写英文字母组成,是一个有限集,集合的基数为 card(Q)=52。
离散数学
第一篇
第1章:集合 第2章:关系 第3章:函数
集合论
1.1 集合的概念及表示
集合(set)作为数学中的基本概念,如同几何中的点、线、面 等概念一样,是不能用其他概念精确定义的原始概念,集合 是什么呢?下面是由康托尔首先给出的经典定义。
定义1.1 集合:集合就是由人们直观上或思想上能够明确区分的一 些对象所构成的一个整体。
, a , , a, a, a
,{a},{{a}}
练习
P() = ? P(P()) = ? P(P(P())) = ? ……
A
补集合
定义1.10 :对于任意集合A和全集U,由所有属于全集U但 不属于集合A的元素组成的集合称为集合A的补集合( complement),简称为补集,记作为A。 显然,全集的补集是空集,空集的补集是全集,即 U = , = U。
1.1.2集合的表示-图形法
(3)图形 法:利用平面上点的对应元素的封闭区域对集合进行 图解标示,一般通过平面上的方形或圆形表示一个集合, 又称为文氏图(Venn Diagrams)法。 例如:图1.1就是集合A、B、C和D的图形表示。
高中数学:1.1.1集合的概念
1.1 集合与集合的表示方法1.1.1 集合的概念1.了解集合的概念. 2.理解元素与集合的关系. 3.掌握集合中元素的特性的应用.1.集合的概念(1)集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).通常用英语大写字母A ,B ,C ,…表示.(2)元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用英语小写字母a ,b ,c ,…表示.2.元素与集合的关系 知识点关系 概念记法 读法 元素与集合的关系属于如果a 是集合A 的元素,就说a 属于Aa ∈A“a 属于A ” 不属于 如果a 不是集合A 的元素,就说a 不属于Aa ∉A“a 不属于A ”元素 意义确定性元素与集合的关系是确定的,即给定元素a 和集合A ,a ∈A 与a ∉A 必居其一互异性 集合中的元素互不相同,即a ∈A 且b ∈A 时,必有a ≠b无序性集合中的元素可以任意排列顺序4集合⎩⎨⎧空集:不含任何元素,记作∅非空集合:按含有元素的个数分为⎩⎪⎨⎪⎧有限集:含有有限个元素无限集:含有无限个元素5.常用数集的意义及表示意义名称记法非负整数全体构成的集合自然数集N在自然数集内排除0的集合正整数集N+或N*整数全体构成的集合整数集Z有理数全体构成的集合有理数集Q实数全体构成的集合实数集R1.下列各组对象不能构成集合的是()A.著名的中国数学家B.所有的负数C.清华大学招收的2016届本科生D.满足3x-2>x+3的全体实数答案:A2.设M是所有偶数组成的集合,下列选项正确的是()A.3∈M B.1∈MC.2∈M D.2∉M答案:C3.方程x2-2x+1=0的解集中有________个元素.答案:14.指出下列集合是有限集还是无限集.(1)满足2 011≤x≤2 013的整数构成的集合;(2)平面α内所有直线构成的集合.答案:(1)有限集(2)无限集集合概念的理解判断下列各组对象能否构成一个集合:(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)直角坐标平面内第一象限的一些点.【解】(1)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(2)类似于(1),也能构成集合.(3)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.判断一组对象构成集合的依据判断一组对象能否构成集合的关键是看是否有明确的判断标准,给定的对象是“确定无疑”的还是“模棱两可”的,如果是“确定无疑”的,就可构成集合;如果是“模棱两可”的,就不能构成集合.下列各组对象能构成集合的有________(填序号).①中国农业银行的所有员工; ②我国的大河流; ③不大于3的所有自然数;④在平面直角坐标系中,和原点距离等于1的点; ⑤未来世界的高科技产品; ⑥所有的好心人.解析:①能,①中的对象是确定的;②不能,“大”无明确标准;③能,不大于3的所有自然数有0、1、2、3,其对象是确定的;④能,在平面直角坐标系中任给一点,可明确地判断是不是“和原点的距离等于1”,故能组成一个集合;⑤不能,“高科技”的标准不能确定;⑥不能,没有一个确定的标准来判断某个人是否是“好心人”.答案:①③④元素与集合的关系(1)下列关系中,正确的有( ) ①12∈R ;②2∉Q ;③|-3|∈N ;④|-3|∈Q . A .1个B .2个C .3个D .4个(2)满足“a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ”,有且只有2个元素的集合A 的个数是( )A .0B .1C .2D .3扫一扫 进入91导学网(www .91daoxue .com )元素与集合的关系【解析】 (1)12是实数,2是无理数,|-3|=3是非负整数,|-3|=3是无理数.因此,①②③正确,④错误.(2)因为a ∈A 且4-a ∈A ,a ∈N 且4-a ∈N ,若a =0,则4-a =4,此时A 满足要求;若a =1,则4-a =3,此时A 满足要求;若a =2,则4-a =2,此时A 含1个元素不满足要求.故有且只有2个元素的集合A 有2个,故选C .【答案】 (1)C (2)C判断元素和集合关系的两种方法(1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否给出即可. 此时应首先明确集合是由哪些元素构成的.(2)推理法:对于某些不便直接表示的集合,判断元素与集合的关系时,只要判断该元素是否满足集合中元素所具有的特征即可.此时应首先明确已知集合的元素具有什么属性,即该集合中元素要符合哪种表达式或满足哪些条件.已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A ,2∈A ,则( )A .a >-4B .a ≤-2C .-4<a <-2D .-4<a ≤-2解析:选D .因为1∉A ,2∈A ,所以⎩⎪⎨⎪⎧2×1+a ≤0,2×2+a >0即-4<a ≤-2.集合中元素的特性已知集合P 中有三个元素a -3,2a -1,a 2+4,且-3∈P ,求实数a 的值. 【解】 因为-3∈P ,a 2+4≥4, 所以a -3=-3或2a -1=-3, 解得a =0或a =-1.经检验a =0时,P 中三个元素为-3,-1,4,满足集合中元素的互异性; a =-1时,P 中三个元素为-4,-3,5,也满足集合中元素的互异性. 综上可知,a 的值为0或-1.由集合中元素的特性求解字母取值(范围)的步骤已知集合A 含有两个元素a 和a 2,若1∈A ,求实数a 的值.解:若1∈A ,则a =1或a 2=1, 即a =±1. 当a =1时,集合A 有重复元素,不符合互异性, 所以a ≠1; 当a =-1时,集合A 含有两个元素1,-1, 符合互异性. 所以a =-1.1.集合中的元素具有确定性、互异性、无序性三大特性.利用集合中元素的三个特性,一方面可以判断一些对象是否构成集合,另一方面可以解决与集合有关的问题.2.(1)符号“∈”“∉”是表示元素与集合之间的关系的,不能用来表示集合与集合之间的关系;(2)a ∈A 与a ∉A 取决于a 是不是集合A 中的元素.根据集合中元素的确定性,对任何a 与A ,在a ∈A 与a ∉A 这两种情况中必有一种且只有一种成立.初学者由于对集合中元素的特性把握不准,而容易忽视集合中元素的互异性致错.1.下列各组对象,能构成集合的是( ) A .平面直角坐标系内x 轴上方的y 轴附近的点 B .平面内两边之和小于第三边的三角形 C .新华书店中有意义的小说 D .π(π=3.141…)的近似值的全体解析:选B .选项A ,C ,D 中的对象不具有确定性,故不能构成集合;而选项B 为∅,故能构成集合.2.所给下列关系正确的个数是( ) ①-12∈R ;②2∉∅;③0∈N +;④-3∉N .A .1B .2C .3D .4解析:选C .①②④正确,③错误,故选C .3.由“book 中的字母”构成的集合中元素个数为( )A .1B .2C .3D .4解析:选C .“book 中的字母”构成的集合中有b ,o ,k 共3个元素.4.已知集合A 是由0,m ,m 2-3m +2三个元素构成的集合,且2∈A ,则实数m =________.解析:由题意知,m =2或m 2-3m +2=2, 解得m =2或m =0或m =3,经验证, 当m =0或m =2时, 不满足集合中元素的互异性, 当m =3时, 满足题意,故m =3. 答案:3[A 基础达标]1.下列各组对象中能构成集合的是( ) A .2017年中央电视台春节联欢晚会中好看的节目 B .某学校高一年级高个子的学生 C .2的近似值D .2016年全国经济百强县解析:选D .由于集合中的元素是确定的,所以D 中对象可构成集合.2.给出下列关系:(1)13∈R ;(2)5∈Q ;(3)-3∉Z ;(4)-3∉N ,其中正确的个数为( )A .1B .2C .3D .4解析:选B .13是实数,(1)正确;5是无理数,(2)错误;-3是整数,(3)错误;-3是无理数, (4)正确.故选B .3.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( ) A .矩形 B .平行四边形 C .菱形D .梯形解析:选D .因为a ,b ,c ,d 为集合A 中的四个元素,故a ,b ,c ,d 均不相同,故选D .4.已知A 中元素满足x =3k -1,k ∈Z ,则下列表示正确的是( )A .-1∉AB .-11∈AC .3k 2-1∈AD .-34∉A解析:选C .因为-1=3×0-1∈A ,故A 错; -11=3×(-4)+1=3×(-3)-2∉A ,故B 错; -34=3×(-11)-1∈A ,故D 错; 因为k ∈Z ,所以k 2∈Z , 所以3k 2-1∈A ,故C 正确.5.由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含有( ) A .2个元素 B .3个元素 C .4个元素D .5个元素解析:选A .x 2=|x |,-3x 3=-x . 当x =0时,它们均为0;当x >0时,它们分别为x ,-x ,x ,x ,-x ; 当x <0时,它们分别为x ,-x ,-x ,-x ,-x .通过以上分析,它们最多表示两个不同的数,故集合中元素最多含有2个.6.下列说法中①集合N 与集合N +是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的有________.解析:因为集合N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④7.已知集合A 含有三个元素3,4,6,且当a ∈A ,有8-a ∈A ,那么a =________. 解析:若a =3,则8-a =5∉A ,故a ≠3; 若a =4,则8-4=4∈A ,故a =4合适; 若a =6,则8-6=2∉A ,故a ≠6. 答案:48.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值所组成的集合中元素的个数为________.解析:当a >0且b >0时,|a |a +|b |b =2;当a ·b <0时,|a |a +|b |b =0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2. 即元素的个数为3. 答案:39.由三个数a ,ba ,1组成的集合与由a 2,a +b ,0组成的集合是同一个集合,求a 2 017+b 2 017的值.解:由a ,ba ,1组成一个集合,可知a ≠0,且a ≠1.由题意可得⎩⎪⎨⎪⎧a 2=1,a =a +b ,b a =0或⎩⎪⎨⎪⎧a 2=a ,a +b =1,b a =0,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去), 所以a 2 017+b 2 017=(-1)2 017+0=-1.10.已知集合A 含有两个元素a -3和2a -1,a ∈R . (1)若-3∈A ,试求实数a 的值; (2)若a ∈A ,试求实数a 的值. 解:(1)因为-3∈A ,所以-3=a -3或-3=2a -1.若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1.此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1. (2)因为a ∈A ,所以a =a -3或a =2a -1. 当a =a -3时, 有0=-3,不成立; 当a =2a -1时,有a =1, 此时A 中有两个元素-2,1, 符合题意.综上知a =1.[B 能力提升]11.集合A 的元素y 满足y =x 2+1,集合B 的元素(x ,y )满足y =x 2+1(A ,B 中x ∈R ,y ∈R ).则下列选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B解析:选C .集合A 中的元素为y ,是数集,又y =x 2+1≥1,故2∈A ,集合B 中的元素为点(x ,y ),且满足y =x 2+1,经验证,(3,10)∈B ,故选C .12.已知集合A 中的元素满足ax 2-bx +1=0,又集合A 中只有唯一的一个元素1,则实数a +b 的值为________.解析:当a ≠0时,由题意可知方程ax 2-bx +1=0有两个相等的实数根, 故⎩⎨⎧1+1=--ba,1×1=1a,解得a =1,b =2.故a +b =3.当a =0时,b =1,此时也满足条件, 所以a +b =1, 故a +b 的值为1或3. 答案:1或313.已知集合A 中含有1,0,x 这三个元素. (1)求实数x 的取值范围; (2)若x 2∈A ,求实数x 的值.解:(1)由集合中元素的互异性可知,x 的取值范围为x ≠1,x ≠0的实数.(2)若x 2=0,则x =0,此时三个元素为1,0,0,不符合集合中元素的互异性,舍去. 若x 2=1,则x =±1.当x =1时,集合中元素为1,0,1,舍去; 当x =-1时,集合中元素为1,0,-1,符合题意. 若x 2=x ,则x =0或x =1,不符合元素的互异性, 所以x =-1.14.(选做题)某研究性学习小组共有8位同学,记他们的学号分别为1,2,3,…,8.现指导老师决定派某些同学去市图书馆查询有关数据,分派的原则为:若x 号同学去,则8-x 号同学也去.请你根据老师的要求回答下列问题:(1)若只有一个名额,请问应该派谁去? (2)若有两个名额,则有多少种分派方法?解:(1)分派去图书馆查数据的所有同学构成一个集合,记作M ,则有x ∈M ,8-x ∈M . 若只有一个名额,即M 中只有一个元素,必须满足x =8-x ,故x =4,所以应该派学号为4的同学去.(2)若有两个名额,即M 中有且仅有两个不同的元素x 和8-x ,从而全部含有两个元素的集合M 应含有1,7或2,6或3,5.也就是两个名额的分派方法有3种.。
第一章 集合的概念及运算(集合论讲义)
(5) 德·摩根律 A ∪ B = A ∩ B , A ∩ B = A ∪ B
A − (B ∪ C) = (A − B) ∩ (A − C) , A − (B ∩ C) = (A − B) ∪ (A − C)
4
|
A1
|=
⎢ 250 ⎥ ⎢⎣ 2 ⎥⎦
=
125
,|
A2
|=
⎢ 250 ⎢⎣ 3
⎥ ⎥⎦
=
83
,|
A3
|=
⎢ 250 ⎥ ⎢⎣ 5 ⎥⎦
=
50
,|
A4
|=
⎢ ⎢⎣
250 ⎥ 7 ⎥⎦
=
35
,
|
A1
∩
A2
|=
⎢ ⎢⎣
250 ⎥ 2× 3⎥⎦
=
41
,|
A1
∩
A3
|=
⎢ 250 ⎥ ⎢⎣2× 5⎥⎦
=
(6) 吸收律 A ∪ ( A ∩ B) = A , A ∩ ( A ∪ B) = A (7) 零律 A ∪ E = E , A ∩ ∅ = ∅ (8) 同一律 A ∪ ∅ = A , A ∩ E = A (9) 排中律 A ∪ A = E
5
(10) 矛盾律 A ∩ A = ∅ (11) 全补律 ∅ = E , E = ∅ (12) 双重否定律 A = A (13) 补交转换律 A − B = A ∩ B
3
还可以将交,并运算推广到集族上。
∪ 定义 2.3 设 A 为一个集族,称由 A 中全体集合的元素组成的集合为 A 的广义并集,记作 A , ∪ 称 ∪ 为广义并运算符, A 可描述为
1.1集合的概念课件(人教版)
[跟踪训练 4] 用适当的方法表示下列集合. (1)由大于 5,且小于 9 的所有正整数组成的集合; (2)使 y= 2x-x有意义的实数 x 的集合; (3)抛物线 y=x2-2x 与 x 轴的公共点的集合; (4)直线 y=x 上去掉原点的点的集合. 解 (1)列举法:{6,7,8}. (2)描述法:{x|x≤2,且x≠0,x∈R}. (3)列举法:{(0,0),(2,0)}. (4)描述法:{(x,y)|y=x,x≠0}.
答案 D 解析
由题意可知22× ×12+ +aa≤ >00, , 解得-4<a≤-2.]
(2)设集合D是满足方程y=x2的有序数对(x,y)的集合,则-1____D,(- 1,1)____D.
解析 因为集合D中的元素是有序数对(x,y),而-1是数,所以-1∉D,(- 1,1)∈D.
答案 ∉ ∈
探究三 列举法表示集合
知识点2 元素与集合的关系及常用数集
(1)如果a是集合A的元素,就说a属于集合A,记作a_______∈_A;如果a不是集合A 中的元素,就说a不属于集合A,记作a_∉_______A.
(2)数学中一些常用的数集及其记法
名称 符号
自然数集 __N______
正整数集 N*或N+
整数集 __Z______
用列举法表示下列给定的集合. (1)不大于10的非负偶数组成的集合A; (2)小于8的质数组成的集合B; (3)方程2x2-x-3=0的实数根组成的集合C; (4)一次函数y=x+3与y=-2x+6的图象的交点组成的集合D.
解 (1)不大于 10 的非负偶数有 0,2,4,6,8,10,所以 A={0,2,4,6,8,10}. (2)小于 8 的质数有 2,3,5,7,所以 B={2,3,5,7}. (3)方程 2x2-x-3=0 的实数根为-1,32,所以 C=-1,32. (4)由yy==-x+23x+,6, 得yx==41., 所以一次函数 y=x+3 与 y=-2x+6 的交点为(1,4), 所以 D={(1,4)}.
集合的概念
集合A
集合中的元素有什么特征?
问题1:我班所有的“帅哥”能否构成一个集合?由此说明什么?
集合中元素必须是确定的(即确定性),也就是说,给定
一个集合,那么任何一个元素在不在这个集合中就确定了.
问题2:在一个给定的集合中能否有相同的元素?由此说明什么?
集合中的元素是互不相同的(即互异性),也就是说,
集合中的元素是不重复出现的.
2.初中的集合实例
数集:①自然数的集合;
②方程x2+5x+6=0的实数根集合;
③不等式x-7<3的解的集合.
点集:①平面内到一个定点的距离等于定长的点的集合(即圆).
②到一条线段的两个端点的距离相等的点的集合(即这条
线段的垂直平分线).
那么,在高中阶段我们又是怎样定义“集合”的呢?
一、探究新知
看下面的例子:
问题3:我班所有同学组成一个集合,调整座位后这个集合有没有
变化?由此说明什么?
集合中的元素是没有顺序的(即无序性),也就是说,
集合中的任何两个元素都可以交换位置.
二、集合的有关概念
知识点二
集合的特性
2.集合中元素的特性: 确定性、互异性、无序性.
如果构成两个集合的元素是一样的,我们就称这两
个集合是相等的.
{ 1 ,2 ,3 }
先用花括号
(表示整体)
用“,”隔开
①要把集合中的元素都列举出来,写在{ }内
注意
②元素之间用,隔开
③元素不重复且无顺序
例1 用列举法表示下列集合
(1)小于10的所有自然数的集合;
(2)方程x 2 = x的所有实数根组成的集合.
那同学们思考一下x-7<3的解集还能用列举法表示吗?
1.1集合的概念及表示
1.1集合的概念及表示【知识储备】1.集合的概念(1)含义:一般地,我们把所研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合相等:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.[知识点拨]集合中的元素必须满足如下性质:(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的,要么是该集合中的元素,要么不是,二者必居其一.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合中的元素是没有顺序的,比如集合{1,2,3}与{2,3,1}表示同一集合.2.元素与集合的关系关系概念记法读法属于如果a是集合A中的元素,就说a属于集合Aa∈A a属于集合A不属于如果a不是集合A中的元素,就说a不属于集合Aa∉A a不属于集合A[知识点拨]符号“∈”和“∉”只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.3.集合的表示法(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写拉丁字母表示集合,如A,B,C等,用小写拉丁字母表示元素,如a,b,c等.常用数集的表示:名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R(3)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.【题型精讲】【题型一集合概念的理解】必备技巧判断一组对象是否能构成集合的三个依据判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.例1下列对象中不能构成一个集合的是()A.某校比较出名的教师B.方程−2=0的根C.不小于3的自然数D.所有锐角三角形例2(多选)下列各组对象能构成集合的是()A.拥有手机的人B.2024年高考数学难题C.所有有理数D.小于π的正整数【题型精练】1.给出下列说法:①在一个集合中可以找到两个相同的元素;②好听的歌能组成一个集合;③高一(1)班所有姓氏能构成集合;④把1,2,3三个数排列,共有6种情况,因此由这三个数组成的集合有6个.其中正确的个数为()A.0B.1C.2D.32.下列各组对象中能构成集合的是()A.充分接近的实数的全体B.数学成绩比较好的同学C.小于20的所有自然数D.未来世界的高科技产品【题型二用列举法表示集合】例3用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(+1)(2−4)=0的所有实数根组成的集合;(3)一次函数=2与=+1的图象的交点组成的集合.【题型精练】1.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A;(2)方程2−9=0的实数根组成的集合B;(3)一次函数=+2与=−2+5的图象的交点组成的集合C.2.用列举法表示下列集合.(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程22−−3=0的实数根组成的集合C;(4)一次函数=+3与=−2+6的图象的交点组成的集合D.【题型三用描述法表示集合】必备技巧利用描述法表示集合的关注点(1)写清楚该集合代表元素的符号.(2)所有描述的内容都要写在花括号内.(3)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例4用适当的方法表示下列集合:(1)方程组2314,328x y x y -=⎧⎨+=⎩的解集;(2)方程2210x x -+=的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数2210y x x =+-的图象上所有的点组成的集合;(5)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.【题型精练】1.用描述法表示下列集合:(1)不等式3+2>5的解集;(2)平面直角坐标系中第二象限的点组成的集合;(3)二次函数=2−2+3图象上的点组成的集合.(4)平面直角坐标系中第四象限内的点组成的集合;(5)集合1,12,13,14(6)所有被3整除的整数组成的集合;(7)方程2++1=0的所有实数解组成的集合.2.试说明下列集合各表示什么?1|A y yx ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.【题型四元素与集合的关系】必备技巧判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.例5用符号“∈”或“∉”填空:(1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .例6(吉林长春市期中)已知集合M=6*,5a N a ⎧∈⎨-⎩且}a Z ∈,则M 等于()A .{2,3}B .{1,2,3,4}C .{1,2,3,6}D .{1-,2,3,4}【题型精练】1.(多选)(浙江高一期末)若集合{}22|,,A x x m n m n ==+∈Z ,则()A .1A∈B .2A∈C .3A∈D .4A∈2.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是()①1+;;A .4B .3C .2D .1【题型五确定集合中的元素】必备技巧确定集合中的元素(1)充分理解集合的描述法,(2)注意检验元素互异性.例7(1)(山东济南高一期末)已知集合(){},2,,A x y x y x y N =+≤∈,则A 中元素的个数为()A .1B .5C .6D .无数个(2)集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为()A .4B .6C .8D .12例8(1)(江苏苏州市期中)设集合{123}{45}}A C x B y x A y B ===+∈∈,,,,,,,则C 中元素的个数为()A .3B .4C .5D .6(2)(江苏南通市月考)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为()A .9B .10C .12D .13(3)(黑龙江大庆市期中)由实数2,,|,x x x -所组成的集合,最多可含有()个元素A .2B .3C .4D .51.若集合()(){}326A x N x x =∈--<,则A 中的元素个数为()A .3B .4C .5D .62.若集合{}0123A =,,,,()}{,,B x y x A y A x y A =∈∈-∈,,则B 中所含元素的个数为()A .4B .6C .7D .103.(青海高一月考)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为()A .3B .6C .8D .10【题型六元素特性中的求参问题】必备技巧利用集合中元素的确定性、互异性求参数的策略及注意点(1)策略:根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对求得的参数值进行检验.(2)注意点:利用集合中元素的互异性解题时,要注意分类讨论思想的应用.例9(上海市进才中学高一期末)已知集合22{2,(1),33}Aa a a =+++,且1A∈,则实数a 的值为________.例10(山东济南月考)已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.1.(吴起高级中学高一月考)若{}22111a a ∈++,,,则a =()A .2B .1或-1C .1D .-12.已知{}222,(1),33A a a a a =++++,若1A∈,则实数a 构成的集合B 的元素个数是()A .0B .1C .2D .33.(云南丽江市期末)若集合2{|210}A x kx x =++=中有且仅有一个元素,则k 的值为___________.。
1.1集合
1.1 集合的概念【知识必备】一、集合的概念1. 对象:我们把各种各样的事物或一些抽象的符号都可以看作对象.2. 集合:一般的,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).3. 元素:构成集合的每个对象叫做这个集合的元素.一般地,研究对象统称为元素(element ),一些元素组成的总体叫集合(set ),也简称集.二、元素与集合的关系1. 元素与集合的关系:集合通常用英语大写字母A ,B , C 来表示,它们的元素通常用英语小写字母a ,b , c 来表示.如果a 是集合A 的元素,就说a 属于A ,记作:A a ∈读作“a 属于A ”.如果a 不是集合A 的元素,就说a 不属于A ,记作:A a ∉读作“a 不属于A ”.2. 空集:我们考虑方程21+=+x x 的解的全体构成的集合,显然这个集合不含有任何元素. 一般的,我们把不含任何元素的集合叫做空集,记作φ.三、集合的性质1. 集合元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则x 或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写.2. 常用数集及其记法非负整数全体构成的集合,叫做自然数集,记作N ;在自然数集内排除0的集合叫做正整数集,记作N *或N +;整数全体构成的集合,叫做整数集,记作Z ;有理数全体构成的集合,叫做有理数集,记作Q ;实数全体构成的集合,叫做实数集,记作R.另外,集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集.【题型分析】题型一:判断能否确定集合1. 下列语句是否能确定一个集合(1)你所在的班级中,体重超过75kg 的学生的全体;(2)大于五的自然数的全体;(3)某校高一(1)班性格开朗的女生全体;(4)质数的全体;(5)平方后值等于-1的实数的全体;(6)与1接近的实数的全体;(7)英语字母的全体;(8)小于99,且个位与十位上的数字之和是9的所有自然数;(9)平面直角坐标系内以原点为圆心,以1为半径的圆内所有的点(不包括圆上的点);(10)一元二次方程0432=-+x x 的根;(11)2,1,222++x x x ; (12)书店中有意思的小说的全体.2. 下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体. 其中能构成集合的组数是( )A. 2B. 3C. 4D. 5 题型二:确定集合的元素指出下列集合中的元素是什么?1. 方程12=x 的解的全体构成一个集合;2. 平行四边形的全体构成一个集合;3. 平面上与一个定点O 的距离等于定长r 的点的全体构成一个集合.题型三:判断元素与集合之间的关系用符号∈或∉填空:1. 设集合A 是正整数的集合,则0________A ,2________A ,()01- _______A ; 2. 设集合B 是小于11的所有实数的集合,则 23______B ,1+2______B ;-3_______N ; 3.14_______Q ;31_______Z ; 0_______φ; 3_______Q ; 21-_______R ; 1_______+N ; π_______R ; 题型四:判断有限集和无限集1. 判断下列语句是否正确:(1)1995年末世界上的人构成一个无限集;(2)某一时刻,地球的所有卫星构成的集合是无限集;(3)所有三角形构成的集合是无限集;(4)周长为20cm 的三角形构成的集合是有限集.2. 下列集合中,哪些是非空的有限集?哪些是无限集?哪些是空集?(1)小于10000的质数全体构成的集合;(2)⊙O 内点的全体构成的集合;(3)线段AB 内包含AB 中点M 的所有线段构成的集合;(4)大于0,并且小于1的自然数全体构成的集合;(5)中国古代四大发明的集合;(6)坐标平面上第二象限的点的集合.1.2 集合的表示方法【知识必备】集合的表示方法1. 列举法: .如:{1,2,3,4,5},2222{,32,5,}x x y x x y +-+,…;列举法使用条件:集合中元素个数是__________________.练习:由方程012=-x 的所有解组成的集合,可以表示为 .2. 特征性质描述法: . 如:{}{}22,,10,x R x n n N x R x ∈=∈∈-= 格式:{x ∈A| P (x )} 含义:在集合A 中满足条件P (x )的x 的集合.注:(1)不等式23>-x 的解集可以表示为:}23{>-∈x R x 或}23{>-x x .(2)在不混淆,不引起误解情况下,集合的代表元素也可省略.① 所有直角三角形的集合可以表示为:{x x 是直角三角形}⇒{直角三角形}. ② 所有整数的集合可以表示成:{}{}x R x ∈⇒是整数整数.③ 这里的{ }已包含“所有”的意思,所以不必写{全体整数}.实数集表示成R ,不可以表示成 {}{}R ,实数集。
第一章 集合1.1.1集合的概念
• 用一条封闭的曲线的内部来表示一个集合 的办法,叫文氏图。
多用于解题些指定的对象集在一起就形成一个集合。 • 集合的表示以及元素与集合间关系表示方 法。 • 集合表示方法: 列举法、描述法、文氏图法。 D:\高一PPT\集合的表示方法.doc D:\高一PPT\集合概念与表示方法练习题.doc
如何表示一个集合呢?
1.1.2集合的表示方法
1.1.2 集合的表示方法
• 列举法 如果一个集合是有限集,元素又不太多,常 常把集合的所有元素都列举出来,写在话 括号“{ }”内表示这个集合。例如,由两 个元素0,1构成的集合可表示为 {0,1}. 又如,24的所有正因数1,2,3,4,6,8,12,24构成 的集合可以表示为 {1,2,3,4,6,8,12,24}.
• 大括号内竖线左边的x表示这个集合的任意 一个元素,元素x从实数集合中取值,在竖 线集合右边写出只有集合内的元素x才具有 的性质
• 一般地,如果在集合I中,属于集合A的任意一 个元素x都具有性质p(x),而不属于集合A的 元素都不具有性质p(x),则性质p(x)叫做集合A的 一个特征性质。于是,集合A可以用它的特征性 质p(x)描述为
例题:
• 下列各组对象能确定一个集合吗? (1)所以很大的实数; (2)市四中高一(二)班的高个子同学; (3)1,1,2,3,4,5.
上面我们用自然的语言来描述集合的几个例 子,下面我们来看下集合的表示方法。
• 集合通常用英语大写字母A,B,C,...来表示,它们的元 素通常用英语小写字母a,b,c,...来表示。 • 如果a是集合A的元素,就说a属于A,记作 读作“a属于A”. 如果a不是集合A的元素,就说a不属于A,记作
例题:
• 由方程 x 2 − 1 = 0 的所有解组成的集合,可 以表示为{-1,1}
1、高中数学必修一 第一章集合 【集合的概念】
1.1 集合的概念
三、集合的表示方法: 1、列举法:将所有元素一一列举出来,并用大括号“= ”括起来 例如:小于10的所有自然数组成的集合 解:设小于10的所有自然数组成的集合为A,那么:
A= 0,1,2,3,4,5,6,7,8,9 2、描述法:设A是一个集合,我们把集合A中所有的具有共同特征P(x) 的元素x所组成的集合表示为:
1.1 集合的概念
一、基本概念 1、元素:我们把研究的对象统称为元素; 2、集合:由一些元素组成的总体叫做集合,简称集; 3、集合中元素的特点:(1)确定性 ,记作a∈A;如果a不是集合 A中的元素,那么就说a不属于集合A,记作a ∉A。
1.1 集合的概念
x∈A P(x) 例如:由大于10小于20的所有整数组成的集合B。 解:B= x∈Z 10<x<20
1.1 集合的概念
1.1 集合的概念
1.1 集合的概念
正整数
整数 0
有理数
负整数
实
分数
数
无理数
1.1 集合的概念
1.1.1集合的概念
集合中的元素是没有顺序的
4.集合元素的性质: ⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一. ⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}. ⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
6.集合的表示方法:列举法、描述法和图示法. ⑴ 列举法:就是把集合中的元素一一列举出来,写在
大括号内表示集合的方法.
例如上述⑴、⑷组成的集合可分别表示为
{1,2,3,4,5}与{ x2,3x+2,5y3-x,x2+y2}. 注意:1.用列举法表示集合时,不管元素的排列顺序如
何,只要所列的元素完全相同,它们表达的 就是同一个集合. 2.集合中的元素是没有重复现象的,即任何两个 相同的对象在同一个集合中时,只能算作这个 集合的一个元素.
2.集合的表示:
集合通常用大括号或大写的拉丁字母表示 如{1,2,3,4,5}与{练市中学的高一学生}; 又如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示, 如a、b、c、p、q……
3.集合与元素的关系:
元素对于集合的从属关系
(1)属于(belong to):如果a是集合A的元素,就说a 属于A,记作a∈A (2)不属于(not belong to ):如果a不是集合A的元 素,就说a不属于A,记作aA 说明:“∈”的开口方向,不能把a∈A颠倒过来写
4.集合元素的性质: ⑴确定性: 集合中的元素必须是确定的. 如: x∈A与xA必居其一. ⑵互异性: 集合的元素必须是互异不相同 的. 如:方程 x2-x+=0的解集为{1} 而非{1,1}. ⑶无序性: 集合中的元素是无先后顺序的. 如:{1,2},{2,1}为同一集合.
高一数学课件:1.1 集合的含义与表示(新人教版必修1)
6.如果在集合I中,属于集合A的任意一个元素x都具有性质p(x), 而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合 特征性质 A的 . 7.描述法的表示形式为 {x∈I|p(x)} .
返回
学点一 集合的概念 下列各组对象能否组成集合. (1)小于10的自然数:0,1,2,3,…,9; (2)满足3x-2>x+3的全体实数; (3)所有直角三角形;
所以x∈R且x≠±1且x≠0.
【评析】解决这类问题的主要依据是集合元素的性质特征—
互异性,列出两两元素的关系式求解,通常要用到分类讨论.
返回
集合{3,x,x2-2x}中,x应满足的条件是 【解析】 x≠3且x≠0且x≠-1根据构成集合的元素的 互异性,x应满足
.
x3 2 x 2x 3 x 2 2x x
(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成
的集合.
返回
(1)由
2 x 3 y 14 3x 2 y 8
得
x4 y 2
方程组的解集为{(4,-2)}. (2)1 000以内被3除余2的正整数可以表示为x=3k+2,k∈N的 形式. 故所求的集合为{x|x=3k+2,k∈N,且x<1 000}.
③因为N中最小元素为0,故当a∈N,b∈N时,a+b的最小值为0,故 错误.
返回
学点三
集合中元素的性质
已知由1,x,x2三个实数构成一个集合,求x应满足的条件. 【分析】1,x,x2是集合中的三个元素,则它们是互不相等的. 【解析】根据集合中元素的互异性,得
x 1 2 x 1 x x 2
1 1 1 1 a
人教版新教材高中数学第一册1.1集合的概念
1.集合 {(x, y) | y = x2 + 1}与集合 {y | y = x2 + 1} 是同一集合吗?
答:不是.集合 {(x, y) | y = x2 + 1}
是点集,集合{y | y = x2 +1} = {y | y 1}
是数集.
2.若{x | x2 ax 1 0} {1},求a. 3.若{x | x2 ax 1 0}中只有一个元素,求a.
归纳总结
一般地, 我们把研究对象统称为元素(element). 通常用小写拉丁字母a,b,c,...来表示.
我们把一些元素组成的总体叫做集合(set)(简称为集). 通常用大写拉丁字母A,B,C,...来表示. 问题: 组成集合的元素一定是数吗?
组成集合的元素可以是物、数、图、 人等,它具备怎样的性质呢?
Q {x R x q , p, q z, p 0} p
集合的表示方法三:
描述法:用确定的条件表示某些对象是否属于这个集 合的方法.
具体方法:
在花括号内先写上表示这个集合元素的一般符 号及取值范围,在画一条竖线,在竖线后写出这个 集合中的元素所具有的共同特征.
{x| P(x)}或{x∈A| P(x)} 含义:在集合A中满足条件P(x)的x的集合.
(2)方程 x 2=x 的解;
注意
(1)大括号不能缺失. (2)有些集合元素个数较多,元素又呈现出一定的规 律,在不至于发生误解的情况下,亦可如下表示:从1 到100的所有整数组成的集合:{1,2,3,…,100} 自然数集N:{1,2,3,4,…,n,…} (3)区分a与{a}:{a}表示一个集合,该集合只有一个 元素.a表示这个集合的一个元素. (4)用列举法表示集合时不必考虑元素的前后次序.相 同的元素不能出现两次.
1.1 集合的概念及其基本运算
探究拓展 解此类问题的关键是理解并掌握题目给出的新定
义(或新运算).思路是找到与此新知识有关的所学知识帮助
理解.同时,找出新知识与所学相关知识的不同之处,通过对
比加深对新知识的认识.
21
方法与技巧 1.解题时要特别关注集合元素的三个特性,特别是互异性, 要进行解题后的检验.注意将数学语言与集合语言进行相互 转化. 2.空集在解题时有特殊地位,它是任何集合的子集,是任何 ∅ 非空集合的真子集,时刻关注对空集的讨论,防止漏掉. 3.解题时注意区分两大关系:一是元素与集合的从属关系;二 是集合与集合的包含关系.
对于含参数的集合的运算,首先解出不含参
数的集合,而后根据已知条件求参数.
15
解 由x2-3x+2=0得x=1或x=2,故集合A={1,2}. (1)∵A∩B={2},∴2∈B,代入B中的方程, 得a2+4a+3=0,∴a=-1或a=-3. 当a=-1时,B={x|x2-4=0}={-2,2},满足条件; 当a=-3时,B={x|x2-4x+4=0}={2},满足条件; 综上,a的值为-1或-3. 3分
A ∉ ,则
若A含有n个元素,则A的子集有 2n-1 ,A的非空真子集有 2n-2 个. 7.集合相等 若A ⊆B且B ⊆A,则A=B.
2n 个,A 的非空子集有
2
8.集合的并、交、补运算 并集:A∪B={x|x∈A,或x∈B}; 交集:A∩B={x|x∈A,且x∈B}; 补集: UA={x|x∈U,且x ∉ A}. U为全集,U A表示A相对于全集 U 的补集. 9.集合的运算性质 并集的性质: AU ∅ =A;A A=A;A U B=B A; U U U A B=A A. ⇔ ⊆ B 交集的性质: A I∅ ∅ = ;A A=A;A I B=B A;A ⊆ B=A ⇔ I I I A B. 补集的性质: ∅ A∪( UA)=U;A∩( UA)= ;U ( UA)=A; U(A∩B)=( UA) ∪ ( UB);U(A∪B)=( UA)∩( UB)
1.1集合的概念(教师用)
集合的概念讲义知能点全解:知能点一:集合与元素的概念1、定义:一般地,一定范围内某些确定的,不同的对象的全体构成一个集合,简称集。
集合中每一个对象称为该集合的元素,简称元。
2、集合通常用大写的字母表示,如……;元素通常用小写的字母表知能点二:集合中元素的特性1、确定性:设是一个给定的集合,是某一具体的对象,则或者是的元素,或者不是的元素,二者必居其一,不能模棱两可.例1:能够组成集合的是( C )A.与2非常接近的全体实数; B.很著名的科学家的全体;C.某教室内的全体桌子; D.与无理数相差很2、互异性: 对于一个给定的集合,它的任意两个元素是不能相同的。
集合中相同的元素只能算是一个。
如方程有两个重根,其解集只能记为,而不能记为。
例 2:已知,且,求。
解:∵ ∴或 解得:或又∵时,且 与集合中元素的互异性矛盾知能点三:元素与集合的关系一般地,如果是集合的元素,就说属于,记作;如果不是集合的元知能点四:集合的分类:1、按照集合中元素的个数是有限还是无限,集合可分为:有限集和无限集。
(1)有限集:含有有限个元素的集合;(2)无限集:含有无限个元素的集合(3)空集:特别地,不含任何元素的集合叫做空集,记作.空集是个特殊的集合,空集归入有限集。
如:。
2、按照集合中元素的形式,性质及属性,集合可分为:(1)单元素集:只含一个元素的集合;如,。
(2)数集:有一些数字组成的集合;(3)点集:由符合某一条件的点,组成的集合;(4)解集:由方程或方程组,不等式或不等式组的解组成的解的集合,简称解集。
如:方程的解集是:。
知能点五:常用数集及记法1、回顾初中关于数的关系:2、常用数集及记法:(1)非负整数集(自然数集):全体非负整数的集合。
记作:(2)正整数集:非负整数集内排除0的集。
记作:或(3)整数集:全体整数的集合。
记作:(4)有理数集:全体有理数的集合。
记作:(5)实数集:全体实数的集合。
记作:例 3:用符号和填空:1、 , , , , , 。
人教版高中数学必修一1.1.1_集合的含义与表示ppt课件
A,记作属于 . A,记不作属于
高一(1)班的学生组成集合A,a是高一(1)班的学生,b不是高一(1)班的学生 a与A,b与A之间有何关系? 提示:a∈A b∉A
Hale Waihona Puke 3.几种常用的数集及记法N
N*或N+
Z
Q
用“∈”或“∉”填空. 2________N; 2________Q;12________R; -3________Z;0________N*;5________Z. 提示:∈ ∉ ∈ ∈ ∉ ∈
[解] ∵1∈A,∴a+2,(a+1)2,a2+3a+3都可能等于1. ①若a+2=1,则a=-1,此时A中的元素为1,0,1与集合中元素的互异性矛盾 故舍去; ②若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3}适合题意, 当a=-2时,A中的元素为0,1,1与集合中元素的互异性矛盾,舍去, ③若a2+3a+3=1,则a=-1或a=-2,由①②知都不合题意,舍去. 综上所述,a=0.
的、 确定 的.互不相同
(1)“高一(2)班1.78米以上的同学”、“16岁的少年”、 “大于1的数”能构成一个集合吗? 提示:能构成集合.
(2)“高一(2)班的高个子同学”、“年轻人”、“帅哥”、 “接近0的数”能构成集合吗? 提示:不能构成集合.
2.元素与集合的关系 (1)如果a是集合A中的元素,就说a (2)如果a不是集合A中的元素,就说a
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1集合的概念
学习目标:
1、初步理解集合的含义,知道常用数集及其记法
2、通过实例,初步体会元素与集合的“属于”“不属于”关的关系.
3、掌握集合的表示方法。
学习重点:集合的基本概念与表示方法
学习难点:选择适当的方法正确表示一些简单的集合
学习过程:
(一)自主学习
一.阅读课本p2思考,完成下列问题:
1、例(3)到例(6)能否构成集合,如果能,他们的元素是什么?
2、一般地,我们把研究对象称为,把一些元素组成的总体叫
做。
3、集合的元素必须具备,,。
(性质)
4、集合相等: .
练习:下列元素全体是否构成集合,并说明理由
(1)大于3 小于11的偶数( 2)我国的小河流
(3)第15届世界田径锦标赛我国取得优秀成绩的运动员
(4)第15届世界田径锦标赛我国参加的所有运动项目。
二.阅读课本p2最后两个自然段到P3前两个自然段,完成下列问题:
5、集合通常用大写的拉丁字母表示,如。
元素通常用小写的拉丁字母表示,如。
6、如果 a是集合A 的元素,就说 a属于A ,记作 ,
如果 a不是集合 A的元素,就说 a不属于A ,记作。
7、常用数集及记法:非负整数集(或自然数集),正整数集,
整数集,有理数集,实数集。
练习: P5: 练习题: 2题。
8、集合的表示方法有:,。
(1)列举法:把列举出来,写在内,用逗号隔开
思考:P3思考题:
(2)描述法:,具体方法是:在大括号内先写上表示这个集合元素的,再画一条竖线,在竖线后写出这个集合中元素所具有的。
例如:D={ x∈R | x<10}
(二)合作探究1、用列举法表示下列集合:
1)小于10的所有自然数组成的集合;
2)方程x
x=
2的所有实数根组成的集合。
2、试分别用列举法和描述法表示下列集合:
(1)方程x2-2=0的所有实数根组成的集合A;
(2)由大于10且小于20的所有整数组成的集合B.
3、试选择适当的方法表示下列集合:
(1) 不等式x-5<0的解集; (2) 不等式x-5<0的自然数解集
(3)一次函数y=2x+1图象上所有点组成的集合。
(4)所有奇数的集合
(三)当堂检测
1、课本P5练习题:1题,3题。
2、(1)、{ x | x=3}与{ y | y=3}是否是同一集合?
(2)、{y | y=x2}与{(x,y)| y=x2 }是否是同一集合?
(3)、已知A={x∣x=3k-1,k∈Z},用“∈”或“∉”符号填空:
(1 ) 5 A, (2 ) 7 A , (3 ) -10 A. (四)学习收获:
(五)课后作业
课本P5习题1.1第1至4题.。