马尔科夫链遍历性和极限分布详解共16页

合集下载

第三章 马尔可夫链

第三章 马尔可夫链

第三章 马尔可夫链 一、马尔可夫链的概念马尔可夫过程是一类有重要应用意义的随机过程,它具有如下特征:随机过程‘将来’所处的状态仅与‘现在’所处的状态有关,而与‘过去’曾处于什么状态无关。

马尔可夫过程按其状态和时间参数是离散还是连续的可以分成三类 (1) 时间和状态都是离散的马尔可夫过程,称为马尔可夫链。

(2) 时间连续、状态离散的马尔可夫过程,称为连续时间的马尔可夫链。

(3) 时间和状态都连续的马尔可夫过程。

本章介绍马尔可夫链定义1 设}0,{≥n X n 为随机序列,其状态空间为},,,{210 i i i I =,如果对任意正整数n 及任意n+2个状态I i i i i n ∈+1210,,,, ,有},,,{110011n n n n i X i X i X i X P ====++}{11n n n n i X i X P ===++则称此随机序列}0,{≥n X n 为马尔可夫链。

若将时刻n 称为‘现在’,将时刻n+1称为‘将来’,而把0,1,2,……,n-1称为‘过去’。

定义中的等式便可通俗解释为:在已知}0,{≥n X n ‘现在’所处的状态条件下,‘将来’所要达到的状态与‘过去’所经历的状态无关,这一特性常称为马尔可夫的无后效性。

例1.一个n 级数字传输系统,每一级的输入和输出信号只取0或1两个值,每一级的输出是下一级的输入;并假定当一级输入为0时,其输出为0和为1的概率分别为p 和1-p;当输入为1时,其输出为1和0的概率分别为p 和1-p (见图)令Xn 表示第n 级输出,则{ Xn,n ≥0}便为一个马尔可夫链。

例2.从1,2,……,N 数字中任取一个数,记为X0;再从1,2,……,X0数字中任取一个数,记为X1;再从1,2,……,X1中任取一个数,记为X2;依此类推,在1,2,……,Xn-1中任取一个数,记为Xn 。

可以证明{ Xn,n ≥0}为马尔可夫链。

事实上,{ Xn,n ≥0}的状态空间为I={1,2,……,N},对任意正整数n ,取n+1个状态I i i i i n ,,,,210 ,由题意可知故{ Xn,n ≥0}为马尔可夫链。

演示文稿第六章马尔可夫链

演示文稿第六章马尔可夫链

(n)
p(m) lj
(n
k
),
n, m, k 0,i, j S
l
或矩阵形式 P(km) (n) P(k) (n)P(m) (n k)
证明
p(km) ij
(n)
P{X
nk m
j
Xn
i)
第十三页,共123页。
P{( X nk l), X nkm j X n i)
l
P{ ( X nk l, X nkm j) X n i)
l
或矩阵形式 P(km) (n) P(k) (n)P(m) (n k)
证明 P( X nk l, X nkm j) X n i)
l
P( X nk l X n i) P( X nkm j X n i, X nk l) l
第十四页,共123页。
P( X nk l X n i) P( X nkm j X nk l)
第二十七页,共123页。
qa
a-1
a
ra
第一节 基本概念
5.马尔可夫链举例 例2(有限制随机游动问题)

P
(k
)
(n)
(
p(k ij
)
(n))
为系统{X n , n 0}在 n时的k步转移概率矩阵.
第十页,共123页。
第一节 基本概念
1. 转移概率
特别 当k=1时,
p (1) ij
(n
)为



n时

一步




,
记为 pij (n)
P
(1)
(n)
(
p (1) ij
(n))为系统的一步转移概率矩阵

5马尔可夫链(精品PPT)

5马尔可夫链(精品PPT)
所以{Xn,n≥0}是马尔可夫链,且
pij P( X n 1 j X n i ) P( f i, Yn 1 j ) P( f i, Y1 j )
二、切普曼-柯尔莫哥洛夫方程
1,随机矩阵 定义:称矩阵A=(aij)S×S为随机矩阵,若aij ≥0,且
i S , 有 aij 1
例5 Polya(波利亚)模型
罐中有b只黑球及r只红球,每次随机地取出一只后 把原球放回,并加入与抽出球同色的球c只,再第二次 随机地取球重复上面步骤进行下去,{Xn=i}表示第n回 摸球放回操作完成后,罐中有i只黑球这一事件,所以
i b r nc , i P X n 1 j X n i 1 , b r nc 0,
x
j i 1
( j i 1)!
dG x ,
j i 1, i 1 其它
Pij 0,
例3 G / M /1排队系统 来到时间间隔分布为G,服务时间分布为指数分布,参 数为 ,且与顾客到达过程独立。 Xn-----第n个顾客来到时见到系统中的顾客数(包括 该顾客),则{Xn,n≥1}是马尔可夫链。记
jS
显然马尔可夫链{Xn,n≥0}的一步转移概率矩阵P为 随机矩阵。 2,n步转移概率 定义:设{Xn,n≥0}是一马尔可夫链,称
n pij P X n m j X m i ,
n 0, i, j 0
为马尔可夫链{Xn,n≥0}的n步转移概率。记
i (n) P X n i ,
j ic j i else
这是一个非齐次的马尔可夫链,在传染病研究中有用。
下面的定理提供了一个非常有用的获得马尔可夫链的方 法,并可用于检验一随机过程是否为马尔可夫链。

第四章 马尔可夫链

第四章 马尔可夫链

股市预测
预测股票价格变化 基于历史数据建立模型 考虑股票之间的相关性 用于投资决策和风险管理
05
马尔可夫链的算法
状态转移矩阵算法
定义:状态转移 矩阵算法是马尔 可夫链中用于描 述状态转移概率 的算法
计算方法:根据 历史数据和当前 状态计算未来的 状态转移概率
应用场景:广泛 应用于自然语言 处理、语音识别、 机器翻译等领域
类问题等。
可扩展性强: 马尔可夫链可 以通过增加状 态和转移概率 来扩展模型, 以处理更复杂
的问题。
缺点
状态转移概率矩 阵必须已知
无法处理连续时 间或非齐次过程
无法处理多维或 多状态过程
无法处理非马尔 可夫过程
YOUR LOGO
THANK YOU
汇报人:儿
特点:隐马尔可夫链的状态转移和观测概率是参数化的,需要通过训练数据来估计。
应用:隐马尔可夫链在语音识别、自然语言处理、机器翻译等领域有广泛应用。
算法:隐马尔可夫链的算法包括前向-后向算法、Viterbi算法和Baum-Welch算法等。
04
马尔可夫链的应用
自然语言处理
文本分类:利 用马尔可夫链 对文本进行分 类,如垃圾邮 件过滤、情感
01
添加章节标题
02
马尔可夫链的定义
状态转移
定义:马尔可夫链的状态转移概率是描述状态之间转移的规则
特性:状态转移具有无记忆性,即下一个状态只与当前状态有关,与过去状态无关
转移矩阵:描述状态转移概率的矩阵
稳态分布:在长期状态下,马尔可夫链将趋于一个稳态分布,该分布描述
YOUR LOGO
马尔可夫链
,a click to unlimited possibilities

马尔可夫链课件

马尔可夫链课件
1的概率向左或向右移动一 3
格,或以
Q现在处于1(或5)这 1的概率留在原处;如果 3
一点上,则下一时刻就以概率1移动到2(或4)这点上,1 和5这两点称为反射壁,这种游动称为带有两个反射壁的
随机游动。以Xn表示时刻n时Q的位置,说明{Xn,n =
0,1,2 …}是一齐次马氏链,并写出它的一步转移概率矩 阵。
二、转移概率
定义3 设 { X n,n 0} 是齐次马尔可夫链,其一步 矩阵的每一行都 转移概率为 pij (i, j S ),记 是一条件分布律
p00 p10 P ( pij ) p 20 pi 0
.
p 01 p 02 p11 p12 p 21 p 22 pi1 pi 2
1 2 3 4 5
三、马氏链的例子
解:它的一步转移概率矩阵为: 0 1 0 0 0
1 3 P 0 0 0
1 3 1 3 1 3 1 3 1 3
0
1 3 1 3
0 0
0
1
0 0 1 3 0
如果把1这点改为吸收壁,即Q一旦到达1这一点,则永远 留在点1时,此时的转移概率矩阵为:
• 第一节 基本概念 • 第二节 状态的分类及性质 • 第三节 极限性态及平稳分布
• 第四节 Markov链的应用
第一节
基本概念
一、Markov链的定义 二、转移概率 三、Markov链的例子 四、n步转移概率,C-K方程
第一节
基本概念
一、Markov链的定义
马尔可夫性(无后效性 )过程(或系统)在时刻t 所处的状态为已知的条件下,过程在时
1 1 3 P 0 0 0 0
1 3 1 3
0

马尔可夫链

马尔可夫链

P{ X k n = ik n | X k n−1 = ikn−1 , ⋯ , X k1 = ik1 }
= P{ X k n = i k n | X k n −1 = i k n −1 }
表明 马氏链的子链也是马氏链
13
4.1 马尔可夫链与转移概率
• 马尔可夫链的性质 P{X0=i0,X1=i1,…,Xn=in} … =P{Xn=in|X0=i0,X1=i1,…,Xn-1=in-1} … P{X0=i0,X1=i1,…,Xn-1=in-1} … = P{Xn=in|Xn-1=in-1} P{Xn-1=in-1 |X0=i0,X1=i1,…,Xn-2=in-2} … P{X0=i0,X1=i1,…,Xn-2=in-2} … =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1 |Xn-2=in-2} P{X0=i0,X1=i1,…,Xn-2=in-2} … -
P称为一步转移概率矩阵 称为一步转移概率 称为一步转移概率矩阵
j∈I
8
4.1 马尔可夫链与转移概率
二、基本性质 性质1 性质
设{ X n , n ≥ 0 }为马氏链,其状态空间为 I,则
P{ X 0 = i, X 1 = i1 , ⋯, X n = in } = P{X 0 = i} P{X1 = i1 | X 0 = i} × P{X2 = i2 | X1 = i1}…P{Xn = in | Xn−1 = in−1}
P{ X n + m = in + m | X n = in , ⋯ , X 0 = i0 }
= P{Xn+m = in+m | Xn = in}
12
4.1 马尔可夫链与转移概率
性质5 性质 则

马尔可夫链

马尔可夫链
2020年5月21日星期四
例7 设马氏链{Xn}的状态空间为 I={1, 2, 3, 4, 5}, 转移概率矩阵为
1 2
1
2
0 0
0
1 2
1 2
0
0
0
P 0 0 1 0 0
3 / 16 . 1/ 4
于是: (1) P{X0 0, X2 1}
P{ X0 0}P{ X2 1 | X0 0} 1 5 5 ;
3 16 48
2020年5月21日星期四
(2)P{X2 1}
P{X0 0}P{X2 1 | X0 0} P{X0 1}P{X2 1 | X0 1}
显然有
p(n) 11
p(n) 21
P(n)
p(n j1
)
L
p(n) 12
p(n) 22
p(n) 1j
L
p(n) 2j
L
p(n) j2
p(n) jj
L
LL
L
(1)
0
p(n) ij
1
(2)
p(n) ij
1,
i
1,
2,L
j
2020年5月21日星期四
切普曼-柯尔莫哥洛夫方程(C-K方程): 对任意的m,n≥0,有
的矩阵
p11 p21
P
L
pj1 L
p12 L p22 L LL pj2 L LL
p1 j L
p2 j L
L
L
p jj L
L L
称为一步转移概率矩阵. 显然有
(1) 0 pij 1
(2)
pij 1, i 1, 2,L
j
2020年5月21日星期四
3、马尔可夫链举例

10第四章马尔可夫链精品PPT课件

10第四章马尔可夫链精品PPT课件

P(4) 00
0.5749
定义: 称 pj(n )P {X nj}(,j I)为n时刻马尔 可夫链的绝对概率;
称 P T (n ) { p 1 (n ),p 2 (n ), } , n 0为n时刻的 绝对概率向量。
定义: 称 pj(0 )P {X 0j} ,(j I)为马尔可夫链的 初始概率;简记为 p j
j i 1,i-1, i 1
1 0 0 0 0 . .
q
0
p
0
0
.
.
0 q 0 p 0 . .
P
0
0
q
0
p
.
.
0 0 0 q 0 . . . . . . . . .
例题:带2个吸收壁的随机游动
质点在数轴上移动,规律同上例。随机游动的状态 空间I={0,1,2…a}, 其中0和a为吸收态 。求一步转移 概率。
解:
P(2) 00
P{Xm2
0|
Xm
0}
P{Xm2 0, Xm P{Xm 0}
0}
P{Xm2 0, Xm1 0,Xm 0} P{Xm2 0, Xm1 1,Xm 0}
P{Xm 0}
P{Xm 0}
P{Xm2 0, Xm1 0,Xm 0}P{Xm1 0,Xm 0} P{Xm1 0,Xm 0}P{Xm 0}
p(n) 21
p(n) 12
p(n) 22
p(n) 1m
p(n) 2m
为马尔可夫链的n步转移矩阵。规定
p(0) ij
0, 1,
i j i j
例题
设马尔可夫链{Xn,n∈T}有状态空间I={0,1}, 其一步转移概率矩阵为
P
p00 p10

人教版A版高中数学选修4-9:马尔可夫性与马尔可夫链_课件1

人教版A版高中数学选修4-9:马尔可夫性与马尔可夫链_课件1

pN ,1 p,
p1,N q,
我们可以用通俗的语言来描述马尔可夫性:
我们把“n”看成“现在”,则“n+1”则是“未 来”,小于n的整数看成是“过去”。那么,在 已知现在状态的情况下,将来的随机变化规律和 过去的状态无关。
在现实生活中,有很多随机变量序列都具有马尔 可夫性。一般地,我们将这种具有马尔可夫性的 随机变量序列为马尔可夫链,并把序列中的随机 变量的所有可能取值的集合称该马尔可夫链的状 态空间。
N
j 0, j 1的唯一解.
j1
在现实生活中,我们所探讨的问题的状态可能会 随时改变。一台旧摆钟,它时而准时,时而不准 时。随着时间的变化,它会从“不准时”变成 “准时”状态,经过人为调整后,摆钟又可以从 “不准时”变成“准时”状态。像这种状态随时 间的推移而改变的决策问题就会变得复杂。
马尔可夫性与 马尔可夫链
重点与难点
1.重点
马氏链n步转移概率的确定
2.难点
有限维分布律的计算方法 遍历性问题
马尔可夫过程
具有马尔可夫性的随机过程称为马尔可夫过程。
马尔可夫性(无后效性) 过程或(系统)在时刻t0所处的状态为已知的
条件下,过程在时刻t t0所处状态的条件分布与 与过程在时刻t0之前所处的状态无关的特性称为 马尔可夫性或无后效性。
当状态随着时间的推移而转化时,我们采用马尔 可夫链处理这一类问题。
典型例题
例1 艾伦非斯特(Ehrenfest )模型
设一个坛子装有c个球,它们或是红色的,或 是黑色的.从坛中随机地摸出一个球,并装入一个 另一种颜色的的球, 经过n次摸换, 研究坛中的黑 球数. 解 以Xn,n 1表示第n次摸球后坛中的黑球数.
3 16 2 16 24

北大随机过程课件:第 2 章 第 2 讲 马尔可夫链

北大随机过程课件:第 2 章 第 2 讲 马尔可夫链
则称这类随机过程是马尔可夫链。它具有无后效性。 性质 1,马尔可夫链的有限维概率密度可以用转移概率来表示,即
P{ξ (0) = i0,ξ (1) = i1,Lξ (n) = in ,ξ (n +1) = j} = P{ξ (n +1) = j / ξ (0) = i0,ξ (1) = i1,Lξ (n) = in} P{ξ (0) = i0,ξ (1) = i1,Lξ (n) = in} = P{ξ (n +1) = j / ξ (n) = in}⋅ P{ξ (0) = i0,ξ (1) = i1,Lξ (n) = in}
(n)
=
P(m) ik
(n)
⋅Pk(jr
)
(n
+
m)
k
证明 1
按照全概率公式,
P (m+r ) ij
(n)
=
P{ξ (n + m + r) =
பைடு நூலகம்
j /ξ (n) = i}
= ∑ P{ξ (n + m + r) = j,ξ (n + m) = k /ξ (n) = i} k
= ∑ P{ξ (n + m + r) = j /ξ (n + m) = k,ξ (n) = i} k P{ξ (n + m) = k /ξ (n) = i}
1.3 切普曼-柯尔莫哥洛夫方程
切普曼-柯尔莫哥洛夫方程,是用 m 步和 r 步转移概率来表示 m+r 步转移概率。
m
步转移概率:
P (m) ij
(k
)
=
P{ξ (k
+ m)
=
j /ξ (k)

《马尔可夫链讲》课件

《马尔可夫链讲》课件
平稳分布的概率分布函数与时间无关,只与系统的状态空间和转移概率矩阵有关。
在平稳分布下,系统的各个状态之间转移的次数趋于平衡,每个状态的平均逗留时 的 马尔可夫链,都存在至少一个平
稳分布。
存在性定理的证明基于遍历理论 ,即如果马尔可夫链是遍历的,
那么它必然存在平稳分布。
根据接受概率判断是否接受样本的技 术,可以提高样本的质量和效率。
接受-拒绝抽样技术
接受概率
根据目标分布和当前状态计算出的概率,用于判断是否接受当前状态 转移为下一个状态。
拒绝概率
根据当前状态和接受概率计算出的概率,用于判断是否拒绝当前状态 转移为下一个状态。
接受-拒绝抽样过程
根据当前状态和接受概率计算出接受该状态的概率,如果该概率大于 随机数,则接受该状态作为下一个状态,否则拒绝并重新抽样。
详细描述
马尔可夫链定义为一个随机过程,其 中每个状态只与前一个状态有关,当 前状态只依赖于前一时刻的状态,不 受到过去状态的影响。
马尔可夫链的应用场景
总结词
马尔可夫链在多个领域有广泛应用。
详细描述
在自然语言处理中,马尔可夫链可以用于生成文本、语言模型等;在金融领域 ,马尔可夫链可以用于股票价格预测、风险评估等;在物理学中,马尔可夫链 可以用于描述粒子运动、化学反应等。
模型训练与预测
模型选择
根据数据特点和业务需求选择合适的马尔可 夫链模型。
模型训练
使用历史数据训练马尔可夫链模型。
参数设置
根据经验和业务理解设置模型参数。
预测与推断
基于训练好的模型对未来或未知数据进行预 测和推断。
结果评估与优化
评估指标
选择合适的评估指标(如准确率、召回率、F1值等)对预测结果进行评估。

马尔可夫链的正则性和遍历性

马尔可夫链的正则性和遍历性

马尔可夫链的正则性和遍历性
马尔可夫链的正则性和遍历性
马尔可夫链是一种随机进程,它描述了随机变量的统计转移模型,它可以提供一种有效的方法来评估时间序列的潜在模式。

它的行为类似于一系列随机moves,它通过简单的但紧密的过程,预测相关变量之间的行为。

因此,马尔可夫链,被称为马尔可夫链,不仅是一种随机过程,也可以被用来描述关于下一个事件或状态的统计关系。

首先,马尔可夫链具有正则定律。

正则性,正如其名,指转移概率从一个状态到另一个状态是一致的,也就是说,系统舍弃了一个状态,该状态和它的一些邻居之间的转移概率是相同的。

这意味着,无论节点的领域是初始的,在某种意义上来说,它们都具有相同的信息。

其次,马尔可夫链有遍历性。

它意味着整个系统是可遍历的,即它的每个节点都能从另一个节点找到,因此我们可以从头开始将系统节点当做红白球一样运动,从一个节点跳到另一个节点,直到系统全部探索。

马尔可夫链的正则性和遍历性是许多算法和技术的基础,如改进概率模型中的马尔可夫链变分法,贝叶斯网络等。

这些算法的目的就是使用马尔可夫链的正则性和遍历性来学习系统模型并对其进行预测。

另外,马尔可夫链的正则性和遍历性可以用来推断网络中节点之间的关系、估计潜在概率分布、确定网络中的社区结构等内容。

总之,马尔可夫链的正则性和遍历性是一种有效的模型,是处理大量时间序列数据和模型的理想要求。

它可以不断地帮助我们探索并理解复杂的系统,促进我们思考和改进算法的性能,帮助我们建立系统的数据模型。

马尔可夫链精品PPT课件

马尔可夫链精品PPT课件
1,i=j .
例2.1 (一维随机游动)
12345
设一随机游动的质点, 在如右上图所示的
直线点集I={1,2,3,4,5}作随机游动,并且仅仅在1秒,2秒
…等时刻发生游动.游动的概率规则是:如果Q现在位于点
i(1<i<5), 则下一时刻各以1/3的概率向左或向右移动
一格,或以1/3的概率留在原处; 如果Q现在位于点1(或5)
式.
利用积事件的概率及上述定义知: P{X0=i0,X1=i1,…,Xn=in} =P{Xn=in|X0=i0,X1=i1,…,Xn-1=in-1}P{X0=i0,X1=i1,…, Xn-1=in-1} =P{Xn=in|Xn-1=in-1}P{X0=i0,X1=i1,…,Xn-1=in-1} =… =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1|Xn-2=in-2}…P{X1=i1| X0=i0}P{X0=i0}.
即马尔可夫链的统计特性完全由条件概率
P{Xn+1=in+1|Xn=in} 所决定. 如何确定这个条件概率,是马尔可夫链理论和应
用中的重要问题之一.
2.转移概率 条件概率P{Xn+1=j|Xn=i}的直观含义是:系统在时刻n处
于状态i的条件下,在时刻n+1系统处于状态j的概率.这相 当于随机游动的质点在时刻n处于状态i的条件下,下一步 转移到状态j的概率.
pij(n)为pij. 下面只讨论齐次马尔可夫链,并将齐次两字省略.
设I=P{为1,一2,步转移概率pij所组成的矩阵,状态空间
…},则 P=
p11 p12 … p1n … p21 p22 … p2n … … … … ……
pi1 pi2 … pin … …… … … …

第十八讲马氏链

第十八讲马氏链

1
2
3
4
5
• 解:因为第n个时刻所处的位置只取决于前一个时 刻的位置,所以,Xn是马氏链。而且一步转移概率 矩阵为 1 2 3 4 5 1 1 0 0 0 0 2 p 0 q 0 0 P= 3 0 p 0 q 0 4 0 0 p 0 q 0 0 0 0 1 5
只取决于t1时刻的分布和多步转移概率
总结
• 对于齐次马氏链,只要知道初始分布和多 步转移概率矩阵,所有的分布就完全清楚 了。
作业P333
1、3、4、
= (0.61,0.39)
马氏链的n维分布
对于任意n个时刻,t1 < t 2 < ... < t n , 任意n个状态ai1 , ai2 ,...ain
P{ X t1 = ai1 , X t2 = ai2 ,..., X tn = ain }
= P{ X t1 = ai1 } ⋅ P{ X t2 = at2 | X t1 = ai1 } ⋅ P{ X t3 = ai3 | X t1 = ai1 , X t2 = ai2 } ...P{ X tn = ain | X t1 = at1 ,...X tn−1 = ain−1 }(乘积公式)
1
2
3
4
5
例2、(Random walk)带吸收壁的随机游动 一随机点Q在直线点集{1,2,3,4,5}作随机游动, 且仅在1秒,2秒,…,等时刻发生游动。若Q位于 2、3、4位置时,下一时刻左移一格的概率为 p,右移一格的概率为q=1-p;当Q位于1或5, 则下一时刻停留在原地. 设{Xn}表示n时刻Q的位置,试说明它是齐次 马氏链并求一步转移概率矩阵。
P{ X (0) = 3, X (1) = 2, X (2) = 1}

10 马尔科夫链

10 马尔科夫链

ai1 , ai2 , , ain I , 有
P{ X t1 ai1 , X t2 ai2 , , X tn ain }
pi (0) pii1 (t1 ) pi1i2 (t2 t1 ) i 1
pin1in (tn tn1 )
P
r 1
X
(m
k
)
ar
,
X
(m
n)
a
j
|
X
(m
)
ai
P{X (m k) ar | X (m) ai } r 1
P{X (m n) aj | X (m k) ar , X (m) ai }
P{X (m k) ar | X (m) ai } r 1
P{X(m n) aj | X(m k) ar }
如果把点 0 改为吸收壁,4改为反射壁相应链的 转移概率矩阵只须把P 中第1行改为(1,0,0,0,0)。

01 2 3 4

0 1 0 0 0 0
转 移
1
1
/
3
0
2/3
0
0
概 P 2 0 1/3 0 2/3 0
率 矩 阵
3
0
4 0
0
1/ 3
0
2
/
3
0 0 1 0
第十章 马尔科夫链
第十章 马尔科夫链
第10章 马尔可夫链
10.1 马尔可夫链及其转移概率 10.2 多步转移概率的确定 10.3 马氏链的有限维分布 10.4 遍历性
第十章 马尔科夫链
10.1 马尔可夫链及转移概率
10.1.1 马尔可夫链的定义 10.1.2 马尔可夫链的转移概率 10.1.3 一步转移概率及其矩阵

第5章 马尔可夫链 PPT

第5章 马尔可夫链 PPT
如果Xn=i,那么称随机过程在时刻n在状态i. 设只要过程在状态i, 就有一个固定的概率pij,使它在 下一个时刻在状态j. 我们有 定义5.1.1若对于一切状态i0,i1,…,in-1,i,j与一切n≥0, 有 P{Xn+1=j|Xn=i,Xn-1=in-1,…,X1=i1,X0=i0}
=P{Xn+1=j|Xn=i} =pij 则称 这样的随机过程称为马尔可夫链.并称由此式刻画的马尔
0000…q0p
0000…001
(n+1)×(n+1)
例5.6(带反射壁的随机游动)在例5.5中当A输光时将获得
赞助1让他继续赌下去, 就如同一个在直线上做随机游
动的球在到达左侧0点处就立即反弹回1一样,这就是一
个一侧带有反射壁的随机游动.此时
0100…000
P=
q0p0…000 0q0p…000
……… ………
如果这个参保人一年中有k次理赔要求的概率是对于表中表示的好坏系统参保人相继的状态的转移概率矩阵为52ckchapmankolmogorov方程上节讨论了一步转移概率pij本节首先来定义n步转移概率它是状态处于i的过程在n次转移后处于状态j的概率即称条件概率为markov链的n步转移概率相应地称pn步转移概率指的就是系统从状态i经过n步后转移到j的概率它对中间的n1步转移经过的状态无限制
那么明天下雨的概率为α; 若今天没下雨,明天下雨的概
率为β.
如果下雨,记过程在状态0;如果不下雨,记过程在状态1.
如此,本例是一个两状态{0,1}的马尔可夫链,其转移概率
矩阵是: P=(pij)=
pp01=00
p01 p11
α 1-α β 1-β
马尔可夫链
例5.2(一个通讯系统)

马尔可夫链课件

马尔可夫链课件

p12 p22 0 0
p13 p23 1 0
p14 p24 0 1
三、马氏链的例子
例2 (0-1传输系统或简单信号模型)
X0 1 X1 2 X2 Xn-1 Xn

n

如图所示,只传输数字0和1的串联系统中,设每一级的传真率为p, 误码率为q=1-p。并设一个单位时间传输一级,X0是第一级的输入,Xn
n
P P X i |X ik k 1 和 1 P{ X n j | X n 1 i} 确定. {kX i} 分布 条件概率 0 k P X 0 i0,X 1 i1, ,X k 2 ik 2 马氏性
P X k 1 ik 1 | X 0 i0, ,X k 2 ik 2 P X k ik |X k 1 ik 1
则称 { X n,n 0}为齐次马尔可夫链,称 pij 为从状态 i
转移到状态 j 的一步转移概率. 若马尔科夫链 { X n,n 0}的状态空间是有限集,则
称 { X n,n 0}为有限状态的马尔科夫链;
若马尔科夫链 { X n,n 0}的状态空间是可列集,则 称 { X n,n 0} 为可列状态的马尔科夫链.

P X 0 i0 P X 1 i1 | X 0 i0 P X k ik |X k 1 ik 1
二、转移概率
定义1 设 { X n,n 0}是马尔可夫链,记
Байду номын сангаас
pij (n) P{X n 1 j | X n i}
称 pij 为马尔可夫链 { X n,n 0} 在时刻 n 时的一步转 移概率。 当 i,n 固定时,一步转移概率 pij (n) 实质上就是 在 X n i 的条件下,随机变量 X n 1的条件分布律,所以 条件分布律满足:

马尔科夫链-遍历性与极限分布详解

马尔科夫链-遍历性与极限分布详解

pi(0) lim pij (n) pi(0) p j p j
i n i

lim p
n
(n) j
pj
即:绝对概率的极限与转移概率的极限相同
平稳分布
定义 若有限或无限数列q j , j 1.2,... 满足
(1)q j 0, (2)
q
j
j
1
则称它是概率分布
i
又,由绝对分布与初始分布的关系,可得
p = qi pij (n)=q j
i

绝对分布为平稳分布
定理 对有限马尔科夫链,如果存在正整数k,使 pij (k ) 0, i, j 1, 2,...N
则此链是遍历的
且极限分布
lim pij ( n) p j
n
j
p ,j 1, 2,...N
k k r
lim pir (k ) prj pr prj
r k r

p j pr prj
r
成立
有限马尔科夫链转移概率的极限分布一定是平稳分布 无限马尔科夫链转移概率的极限分布不一定是平稳分布
若初始概率是平稳分布,则任意时刻的绝对概 率分布等于初始分布,也即为平稳分布 (0) 证 设初始分布: pi qi , i 1, 2,...,
其中,qi,i 1,2,... 是平稳分布
又,对于平稳分布 q j,j 1, 2,... , 有 q j = qi pij qk pki pij i i k qk pki pij qk pkj (2) k i k
1
p j , j E 为转移概率的极限分布
遍历性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档