大学物理电磁学练习题及答案..doc

合集下载

大学电磁学考试题及答案

大学电磁学考试题及答案

大学电磁学考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^5 m/sC. 3×10^6 m/sD. 3×10^9 m/s答案:A2. 法拉第电磁感应定律描述的是哪种现象?A. 电荷守恒定律B. 电荷的产生和消失C. 磁场变化产生电场D. 电场变化产生磁场答案:C3. 根据洛伦兹力公式,当一个带电粒子垂直于磁场运动时,其受到的力的方向是?A. 与磁场方向相同B. 与磁场方向相反C. 与带电粒子速度方向相同D. 与带电粒子速度方向垂直答案:D4. 麦克斯韦方程组中描述电荷分布与电场关系的是?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定理D. 洛伦兹力公式答案:A5. 一个闭合电路中的感应电动势与什么因素有关?A. 磁通量的变化率B. 磁通量的大小C. 电路的电阻D. 电流的大小答案:A6. 根据电磁波的性质,以下哪种波长与频率的关系是正确的?A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率成正比,但与速度无关答案:B7. 在电磁学中,磁感应强度的单位是什么?A. 库仑B. 特斯拉C. 安培D. 伏特答案:B8. 电磁波的传播不需要介质,这是因为电磁波具有哪种特性?A. 粒子性B. 波动性C. 传播性D. 能量性答案:B9. 根据电磁学理论,以下哪种情况下磁场强度最大?A. 导线电流较小B. 导线电流较大C. 导线电流为零D. 导线电流变化答案:B10. 电磁波的频率与波长的关系是什么?A. 频率越高,波长越长B. 频率越高,波长越短C. 频率与波长无关D. 频率与波长成正比答案:B二、填空题(每题2分,共20分)1. 电磁波的传播速度在真空中是______。

答案:3×10^8 m/s2. 根据法拉第电磁感应定律,当磁通量发生变化时,会在______产生感应电动势。

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。

金属棒的质量为m,棒的左端与导轨相接,右端自由。

设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。

2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。

答案】(1) v=B1d/2m。

I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。

ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。

金属棒始终与导轨相互垂直并接触良好。

问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。

解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。

根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。

因此,我们需要求出这段时间内的电流强度。

根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。

大学物理电磁试题及答案

大学物理电磁试题及答案

大学物理电磁试题及答案一、选择题(每题5分,共20分)1. 根据库仑定律,两个点电荷之间的静电力与它们电量的乘积成正比,与它们之间的距离的平方成反比。

下列关于库仑定律的描述中,正确的是:A. 静电力与电荷量成正比B. 静电力与电荷量成反比C. 静电力与距离的平方成正比D. 静电力与距离的平方成反比答案:D2. 电容器的电容与电容器的几何尺寸和介质有关。

下列关于电容器的描述中,正确的是:A. 电容器的电容与电容器的面积成正比B. 电容器的电容与电容器的面积成反比C. 电容器的电容与电容器的介质无关D. 电容器的电容与电容器的介质成正比答案:A3. 法拉第电磁感应定律指出,当磁场变化时,会在导体中产生感应电动势。

下列关于法拉第电磁感应定律的描述中,正确的是:A. 感应电动势与磁场变化率成正比B. 感应电动势与磁场变化率成反比C. 感应电动势与磁场变化率无关D. 感应电动势与磁场变化率成平方关系答案:A4. 麦克斯韦方程组是描述电磁场的基本方程。

下列关于麦克斯韦方程组的描述中,正确的是:A. 麦克斯韦方程组只描述了电场B. 麦克斯韦方程组只描述了磁场C. 麦克斯韦方程组描述了电场和磁场的关系D. 麦克斯韦方程组与电磁波无关答案:C二、填空题(每题5分,共20分)1. 根据高斯定律,通过任意闭合曲面的电通量等于_________。

答案:曲面内包围的净电荷量除以真空中的介电常数2. 两个相同电荷量的点电荷,相距为r,它们之间的库仑力为F,当它们相距变为2r时,它们之间的库仑力变为原来的_________。

答案:1/43. 一个电容器的电容为C,当它两端的电压为V时,它所储存的电荷量为_________。

答案:CV4. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,受到的力的大小为qvB,其中q是电荷量,v是速度,B是磁场强度。

当带电粒子的速度方向与磁场方向垂直时,洛伦兹力的大小为_________。

答案:qvB三、计算题(共60分)1. 一个半径为R的均匀带电球体,其总电荷量为Q,求球外距离球心r处的电场强度。

(完整版)大学物理电磁场练习题含答案

(完整版)大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案1-5 CADBC 6-8 CBC 三、稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ ]2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A) l I π420μ. (B) l Iπ220μ.(C)l Iπ02μ. (D) 以上均不对. [ ]3.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[ ]4.无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B ϖ的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]5.电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B ϖ、2B ϖ和3Bϖ表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B ϖϖ,但B 3≠ 0. [ ]6.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ及3Bϖ,则O 点的磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B ϖϖ,B 3= 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ] v7.电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ、3Bϖ,则圆心处磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B ϖϖ. [ ]8.a R r OO ′I在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A) 2202R a a I ⋅πμ (B)22202R r a a I -⋅πμ(C) 22202r R a a I-⋅πμ (D) )(222220a r Ra a I -πμ [ ]参考解:导体中电流密度)(/22r R I J -π=.设想在导体的挖空部分同时有电流密度为J 和-J 的流向相反的电流.这样,空心部分轴线上的磁感强度可以看成是电流密度为J 的实心圆柱体在挖空部分轴线上的磁感强度1B ϖ和占据挖空部分的电流密度-J 的实心圆柱在轴线上的磁感强度2B ϖ的矢量和.由安培环路定理可以求得02=B , )(222201r R a Ia B -π=μ 所以挖空部分轴线上一点的磁感强度的大小就等于)(22201r R IaB -π=μ 9. πR 2c3分10.221R B π-3分11. 6.67×10-7 T 3分7.20×10-7 A ·m 2 2分12. 减小 2分在2/R x <区域减小;在2/R x >区域增大.(x 为离圆心的距离) 3分13. 0 1分I 0μ- 2分14. 4×10-6 T 2分 5 A 2分15. I0μ 1分 0 2分2I0μ 2分16. 解:①电子绕原子核运动的向心力是库仑力提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电子单位时间绕原子核的周数即频率000142a m a e a ενππ=π=v 2分 由于电子的运动所形成的圆电流00214a m a e e i ενππ== 因为电子带负电,电流i 的流向与 v ϖ方向相反 2分 ③i 在圆心处产生的磁感强度002a i B μ=00202018a m a eεμππ= 其方向垂直纸面向外 2分17.1 234 R ROI a β2解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B ϖϖϖϖϖ+++= ∵ 1B ϖ、4B ϖ均为0,故32B B B ϖϖϖ+= 2分)2(4102R I B μ= 方向⊗ 2分 242)sin (sin 401203R I a I B π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β 2/2)4/sin(sin 1-=π-=β∴ R I R I B π+=2800μμ)141(20π+=R I μ 方向 ⊗ 2分 18. 解:电流元1d l I ϖ在O 点产生1d B ϖ的方向为↓(-z 方向) 电流元2d l I ϖ在O 点产生2d B ϖ的方向为⊗(-x 方向) 电流元3d l I ϖ在O 点产生3d B ϖ的方向为⊗ (-x 方向) 3分kR I i R IB ϖϖϖπ-+ππ-=4)1(400μμ 2分 19. 解:设x 为假想平面里面的一边与对称中心轴线距离,⎰⎰⎰++==Rx RRxrl B r l B S B d d d 21Φ, 2分d S = l d r2012R IrB π=μ (导线内) 2分r I B π=202μ (导线外) 2分)(42220x R R Il -π=μΦR R x Il +π+ln20μ 2分 令 d Φ / d x = 0, 得Φ 最大时 Rx )15(21-= 2分20. 解:洛伦兹力的大小 B q f v = 1分对质子:1211/R m B q v v = 1分 对电子: 2222/R m B q v v = 1分∵ 21q q = 1分 ∴ 2121//m m R R = 1分21.解:电子在磁场中作半径为)/(eB m R v =的圆周运动. 2分连接入射和出射点的线段将是圆周的一条弦,如图所示.所以入射和出射点间的距离为:)/(3360sin 2eB m R R l v ==︒= 3分2解:在任一根导线上(例如导线2)取一线元d l ,该线元距O 点为l .该处的磁感强度为θμsin 20l I B π=2分 方向垂直于纸面向里. 1分电流元I d l 受到的磁力为 B l I F ϖϖϖ⨯=d d 2分其大小θμsin 2d d d 20l lI l IB F π== 2分 方向垂直于导线2,如图所示.该力对O 点的力矩为 1分θμsin 2d d d 20π==lI F l M 2分 任一段单位长度导线所受磁力对O 点的力矩⎰⎰+π==120d sin 2d l l l I M M θμθμsin 220π=I 2分 导线2所受力矩方向垂直图面向上,导线1所受力矩方向与此相反.23. (C) 24. (B)25. 解: ===l NI nI H /200 A/m3分===H H B r μμμ0 1.06 T 2分26. 解: B = Φ /S=2.0×10-2 T 2分===l NI nI H /32 A/m 2分 ==H B /μ 6.25×10-4 T ·m/A 2分=-=1/0μμχm 496 2分9. 一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为____________Wb .10.任意曲面在匀强磁场B ϖ中,取一半径为R 的圆,圆面的法线n ϖ与B ϖ成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S B ϖϖd Φ_______________________.11. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)12. 载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R 有关,当圆线圈半径增大时,(1) 圆线圈中心点(即圆心)的磁场__________________________.(2) 圆线圈轴线上各点的磁场________如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B ϖ_____________.(2) 磁感强度B ϖ沿图中环路L 的线积分 =⎰⋅L l B ϖϖd ______________________.14. 一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为______________________.一条长直载流导线,在离它 1 cm 处产生的磁感强度是10-4 T ,它所载的电流为__________________________.两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅lB ϖϖd 等于:____________________________________(对环路a ).____________________________________(对环路b ).____________________________________(对环路c ).设氢原子基态的电子轨道半径为a 0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.17.一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.18.z y xR 1 321d l I ϖ2d l I ϖ3d l I ϖO如图,1、3为半无限长直载流导线,它们与半圆形载流导线2相连.导线1在xOy平面内,导线2、3在Oyz 平面内.试指出电流元1d l I ϖ、2d l I ϖ、3d l I ϖ在O 点产生的Bϖd 的方向,并写出此载流导线在O 点总磁感强度(包括大小与方向).19.一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

大学电磁学试题及答案

大学电磁学试题及答案

大学电磁学试题及答案一、选择题1. 下列哪个不是电磁场的性质?A. 磁场比电场强B. 磁场可以存储能量C. 磁场的形状与电流的形状无关D. 磁场可以做功2. 下列哪个不是电场的性质?A. 电场是矢量场B. 电场可以存储能量C. 电场的形状与电荷的分布有关D. 电场可以做功3. 以下哪个定理描述了电场的闭合性?A. 麦克斯韦方程组B. 电场强度叠加定理C. 安培环路定理D. 电场能量密度定理4. 以下哪个定理描述了磁场的无源性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理5. 在匀强电场中沿着电场方向移动电荷,电荷所受的力是:A. 垂直于电场方向的力B. 与电场方向相反的力C. 与电场方向相同的力D. 没有受力6. 以下哪个定理描述了磁场的涡旋性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理7. 当通过匀强磁场的导线以垂直于磁场方向的速度运动时,导线中将感应出电动势。

这个现象被称为:A. 法拉第现象B. 洛伦兹力C. 磁通量D. 磁感应强度8. 以下哪个定理描述了电磁感应现象?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 法拉第定律9. 高频交流电的传输会存在什么现象?A. 电流大于电压B. 电流和电压同相C. 电流小于电压D. 电流和电压反相10. 在电磁波中,电场和磁场之间的关系是:A. 电场和磁场互相作用B. 电场和磁场无关联C. 电场和磁场相互垂直D. 电场和磁场相互平行二、解答题1. 描述安培环路定理的表达式以及其含义。

安培环路定理的表达式是:$\oint \mathbf{B}\cdot d\mathbf{l} =\mu_0I_{\text{enc}}$。

该定理表示通过某一闭合回路的磁感应强度的环路积分等于该回路所围绕的电流的总和与真空中的磁导率的乘积。

即磁场的闭合性质。

2. 描述麦克斯韦方程组中法拉第电磁感应定律的表达式以及其含义。

大学物理复习题(电磁学)(DOC)

大学物理复习题(电磁学)(DOC)

【课后习题】 第12章 一、填空题1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。

2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。

3、真空环境中正电荷q 均匀地分布在半径为R 的细圆环上,在环环心O 处电场强度为____0________,环心的电势为__R q o πε4/_________。

4、高斯定理表明磁场是 无源 场,而静电场是有源场。

任意高斯面上的静电场强度通量积分结果仅仅取决于该高斯面内全部电荷的代数和。

现有图1-1所示的三个闭合曲面S 1、S 2、S 3,通过这些高斯面的电场强度通量计算结果分别为:⎰⎰⋅=Φ11S SE d ,⎰⎰⋅=Φ22S S E d ,⎰⎰⋅=Φ33S SE d ,则Φ1=___o q ε/_______;Φ2+Φ3=___o q ε/-_______。

5、静电场的场线只能相交于___电荷或无穷远________。

6、两个平行的无限大均匀带电平面,其电荷面密度分别如图所示,则A 、B 、C 三个区域的电场强度大小分别为:E A =_o εσ/4________;E B =_o εσ/________;E C =__o εσ/4_______。

7、由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =____0____________.8、初速度为零的正电荷在电场力的作用下,总是从__高____电势处向_低____电势处运动。

9、静电场中场强环流为零,这表明静电力是__保守力_________。

10、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,外力所作的功 W =___⎪⎪⎭⎫ ⎝⎛-12114r r Qq πε___________.11、真空中有一半径为R 的均匀带电半园环,带电量为Q ,设无穷远处为电势零点,则圆心O 处的电势为___R Q 04πε_________;若将一带电量为q 的点电荷从无穷远处移到O 点,电场力所作的功为__RqQ04πε__________。

大学物理电磁学练习题与答案

大学物理电磁学练习题与答案

大学物理电磁学练习题题号 1 2 3 答案 题号 4 5 6 答案球壳,半径为R 。

在腔离球心的距离为d 处(d R <),固定一点电荷q +,如图所示。

用导线把球壳接地后,再把地线撤去。

选无穷远处为电势零点,则球心O 处的电势为[ D ](A) 0 (B) 04πqd ε(C)04πq R ε-(D)011()4πq d R ε-2. 一个平行板电容器, 充电后与电源断开,当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:[ C ](A) 12U 减小,E 减小,W 减小;(B)12U 增大,E 增大,W 增大;(C) 12U 增大,E 不变,W 增大;(D)12U 减小,E 不变,W 不变.3.如图,在一圆形电流I 所在的平面,选一个同心圆形闭合回路L(A) ⎰=⋅L l B 0d ϖϖ,且环路上任意一点0B =r(B) ⎰=⋅Ll B 0d ϖϖ,且环路上 任意一点0B ≠r(C)⎰≠⋅Ll B 0d ϖϖ,且环路上任意一点0B ≠r(D)⎰≠⋅Ll B 0d ϖϖ,且环路上任意一点B =r常量. [ B ]4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感应强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。

现测得导体上下两面电势差为V ,则此导体的霍尔系数等于[ C ](A) IBVDS(B) BVSID (C) VDIB (D) IVSBD5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l 。

当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、c 两点间的电势差a c U U -为 [ B ](A)20,a c U U B l εω=-=(B)20,/2a c U U B l εω=-=- (C)22,/2a c B l U U B l εωω=-=(D)22,a c B l U U B l εωω=-=6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ A ](A) 位移电流是由变化的电场产生的;(B) 位移电流是由线性变化的磁场产生的; (C) 位移电流的热效应服从焦耳——楞次定律;(D) 位移电流的磁效应不服从安培环路定理.二、填空题(20分) 1.(本题5分)若静电场的某个区域电势等于恒量,则该区域的电场强度为 处处为零 ,若电势随空间坐标作线性变化,则该区域的电场强度分布为 均匀分布 . 2.(本题5分)一个绕有500匝导线的平均周长50cm 的细螺绕环,铁芯的相对磁导率为600,载有0.3A 电流时, 铁芯中的磁感应强度B 的大小为 0.226 T ;铁芯中的磁场强度H 的大小为300A/M 。

(完整版)大学物理电磁学练习题及答案

(完整版)大学物理电磁学练习题及答案
(A) (B)
(C) (D)
2.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板的距离拉大,则两极板间的电势差 、电场强度的大小 、电场能量 将发生如下变化:[C]
(A) 减小, 减小, 减小;
(B) 增大, 增大, 增大;
(C) 增大, 不变, 增大;
(D) 减小, 不变, 不变.
3.如图,在一圆形电流 所在的平面内,选一个同心圆形闭合回路
(A)
(B)
(C)
(D)
6.对位移电流,有下述四种说法,请指出哪一种说法正确[A]
(A)位移电流是由变化的电场产生的;
(B)位移电流是由线性变化的磁场产生的;
(C)位移电流的热效应服从焦耳——楞次定律;
(D)位移电流的磁效应不服从安培环路定理.
二、填空题(20分)
1.(本题5分)
若静电场的某个区域电势等于恒量,则该区域的电场强度为处处为零,若电势随空间坐标作线性变化,则该区域的电场强度分布为均匀分布.
4.(本题5分)
一长直导线旁有一长为 ,宽为 的矩形线圈,线圈与导线共面,如图所示.长直导线通有稳恒电流 ,则距长直导线为 处的 点的磁感应强度 为;线圈与导线的互感系数为.
三、计算题(30分)
1.(本题10分)
一半径为 、电荷量为 的均匀带电球体,设无穷远处为电势零点。
试求:(1)球体内外电场强度的分布;
答案
D
C
B
题号
4
5
6
答案
C
B
A
二、填空题
1.处处为零;均匀分布
2. 0.226T;300AБайду номын сангаасm;
3. ; ;
4.;
三、计算题

(完整版)大学物理电磁学考试试题及答案),推荐文档

(完整版)大学物理电磁学考试试题及答案),推荐文档

L1
H 的环流与沿 环路 L2 的磁 场强 度 H 的环流两者,必有:
(A) H d l H d l .
L2
L1 L2
(B) H d l H d l .
我去人(C也) L就1 H 有dl人 L2!H d为l .UR扼腕入站内信不存在向你偶同意调剖沙
L1
L2
-1-
(D)
R1 2 0 r r 2 0 r R1
解得
2 0 rU
3分
建议收藏下载本ln 文RR12 ,以便随时学习!
于是可求得A点的电场强度为
EA
U R ln(R2
/
R1 )
= 998 V/m
方向沿径向向外
2分
A 点与外筒间的电势差:
R2
U Edr
U
R2 d r
R
ln(R2 / R1 ) R r
U
ln R2 = 12.5 V
r
m
质子动能
EK
1 mv 2 2
3.08×10-13 J
9. 1∶16 3 分
参考解:
w
1 2
B2
/
0
B 0nI
我去人也就有人!为WU1R扼B22V腕0 入022n站20I 2l内(d4信12 ) 不存在向你偶同意调剖沙
-4-
W2
1 2
0
n
2
I
2l(d
2 2
/ 4)
W1
: W2
d12
:
d
2 2
I
I
电流 I.线圈 1 的电流所产生的通过线圈 2 的磁通用21 表
示,线圈 2 的电流所产生的通过线圈 1 的磁通用12 表示, S 1 2 S 2

大学物理(电磁学部分)试题库及答案解析

大学物理(电磁学部分)试题库及答案解析

大学物理(电磁学部分)试题库及答案解析一、 选择题1.库仑定律的适用范围是()A 真空中两个带电球体间的相互作用; ()B 真空中任意带电体间的相互作用; ()C 真空中两个正点电荷间的相互作用; ()D 真空中两个带电体的大小远小于它们之间的距离。

〔 D 〕2.在等量同种点电荷连线的中垂线上有A 、B 两点,如图所示,下列结论正确的是()A A B E E ,方向相同;()B A E 不可能等于B E ,但方向相同;()C A E 和B E 大小可能相等,方向相同;()D A E 和B E 大小可能相等,方向不相同。

〔 C 〕4.下列哪一种说法正确()A 电荷在电场中某点受到的电场力很大,该点的电场强度一定很大;()B 在某一点电荷附近的任一点,若没放试验电荷,则这点的电场强度为零;()C 若把质量为m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电场线运动;()D 电场线上任意一点的切线方向,代表点电荷q 在该点获得加速度的方向。

〔 D 〕5.带电粒子在电场中运动时()A 速度总沿着电场线的切线,加速度不一定沿电场线切线;()B 加速度总沿着电场线的切线,速度不一定沿电场线切线;()C 速度和加速度都沿着电场线的切线;()D 速度和加速度都不一定沿着电场线的切线。

〔 B 〕7.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是A.通过封闭曲面的电通量仅是面内电荷提供的B.封闭曲面上各点的场强是面内电荷激发的C.由高斯定理求得的场强仅由面内电荷所激发的D.由高斯定理求得的场强是空间所有电荷共同激发的〔 D 〕9、下面说法正确的是(A)等势面上各点场强的大小一定相等;(B)在电势高处,电势能也一定高;(C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处〔 D 〕10、已知一高斯面所包围的体积内电量代数和为零,则可肯定:(A )高斯面上各点场强均为零。

(B )穿过高斯面上每一面元的电通量均为零。

大学物理电磁考试题及答案

大学物理电磁考试题及答案

大学物理电磁考试题及答案一、选择题(每题2分,共10分)1. 电场强度的方向是:A. 正电荷所受电场力的方向B. 负电荷所受电场力的方向C. 正电荷所受电场力的反方向D. 与电荷的正负性有关答案:A2. 一个带正电的金属球,将其与一个不带电的小球接触后移开,小球的带电情况是:A. 带正电B. 带负电C. 不带电D. 无法确定答案:A3. 两个同种电荷的点电荷,距离越近,它们之间的库仑力:A. 越大B. 越小C. 不变D. 先增大后减小答案:A4. 电容器的电容与以下哪个因素无关?A. 两板之间的距离B. 两板的正对面积C. 两板之间的介质D. 电荷的大小答案:D5. 一个闭合电路中的电流为2A,电路的电动势为12V,若电路中的电阻为3Ω,则电路中的欧姆定律表达式为:A. I = E/RB. I = ERC. I = E + RD. I = E - R答案:A二、填空题(每题2分,共10分)6. 一个电路中的电阻为6Ω,通过的电流为0.5A,根据欧姆定律,该电路两端的电压为_______V。

答案:3V7. 电磁感应现象是由___________发现的。

答案:法拉第8. 在国际单位制中,磁感应强度的单位是___________。

答案:特斯拉(T)9. 一个导体的电阻为100Ω,通过它的电流为1A时,根据焦耳定律,该导体1分钟内产生的热量为_______J。

答案:6000J10. 电容器的电势能与它的电荷量和板间电压的关系为___________。

答案:E = QV/2三、计算题(共30分)11. 一个平行板电容器的电容为200μF,两板之间的电压为50V,求电容器存储的电荷量。

答案:Q = CV = 200 × 10^-6 F × 50 V = 10 × 10^-3 C12. 一个长为2m的导体棒,垂直于磁场方向放置,若导体棒在磁场中以3m/s的速度水平移动,求导体棒两端产生的感应电动势。

高考物理电磁学大题习题20题Word版含答案及解析

高考物理电磁学大题习题20题Word版含答案及解析
R
x
tan
,t2
x3m
,t2
vqB
过MO后粒子做类平抛运动,设运动的时间为t
3,则:3R
1
3
又:v
E3m
,t3
BqB
2
则速度最大的粒子自O进入磁场至重回水平线POQ所用的时间tt1t2t3
联立解得:t

qB
(3)由题知速度大小不同的粒子均要水平通过OM,其飞出磁场的位置均应在ON的连线上,故磁场范围的最小面积S是速度最大的粒子在磁场中的轨迹与ON所围成的面积。扇形
OON的面积S1R2
3
OO N的面积为:
又SSS
S
3
R2
4
联立解得
12
m2E2
q2B4
或(3)
3
m2E2
q2B4。
2.如图甲所示,两平行金属板接有如图乙所示随时间t变化的电压U,两板间电场可看作均匀的,且两金属板外无电场,两金属板长L=0.2m,两板间距离d=0.2m.在金属板右侧边界MN的区域有一足够大的匀强磁场,MN与两板中线OO′垂直,磁感应强度为B,方向垂直纸面向里.现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子速度v0
【答案】(1)。方向:斜向右上方或斜向右下方,与初速
度方向成45°夹角;(2)s,距离s与粒子在磁场中运行速度的大小无关,
s为定值。
【解析】
能射出电场,也可能只有部分粒子能射出电场,设偏转的电压为U0时,粒子刚好能经过极板的右边缘射出,则:
解得U0=100V
3.如图所示,在倾角θ=37°的光滑绝缘斜面内有两个质量分别为4m和m的正方形导线框a、
b电阻均为R,边长均为l;它们分别系在一跨过两个定滑轮的轻绳两端,在两导线框之间

大学电磁学试题及答案

大学电磁学试题及答案

大学电磁学试题及答案一、选择题(每题2分,共20分)1. 电场强度的定义式是()。

A. E = F/qB. E = FqC. E = qFD. E = F/Q答案:A2. 电势差的定义式是()。

A. U = W/qB. U = WqC. U = qWD. U = W/Q答案:A3. 电容器的电容与两极板间的距离成()。

A. 正比B. 反比C. 无关D. 无法确定答案:B4. 电容器的电容与两极板的面积成()。

A. 正比B. 反比C. 无关D. 无法确定答案:A5. 电容器的电容与两极板间介质的介电常数成()。

A. 正比B. 反比C. 无关D. 无法确定答案:A6. 电容器的储能公式是()。

A. W = 1/2CU^2B. W = 1/2CV^2C. W = 1/2CQ^2D. W = 1/2CVQ答案:B7. 电流强度的定义式是()。

A. I = dQ/dtB. I = Q/dtC. I = dQ/tD. I = Qd/t答案:A8. 欧姆定律的公式是()。

A. U = IRB. U = R/IC. U = I/RD. U = RI答案:A9. 电阻定律的公式是()。

A. R = ρL/AB. R = ρA/LC. R = L/ρAD. R = A/ρL答案:A10. 电感的定义式是()。

A. L = NΦ/IB. L = Φ/NIC. L = I/NΦD. L = N/IΦ答案:A二、填空题(每题2分,共20分)11. 电场强度的方向是________。

答案:电势降低最快的方向12. 电势差的方向是________。

答案:电势高的指向电势低的13. 电容器两极板间的电场强度是________。

答案:E = U/d14. 电容器两极板间的电势差是________。

答案:U = Ed15. 电容器的储能公式是________。

答案:W = 1/2CU^216. 电流强度的方向是________。

答案:正电荷定向移动的方向17. 欧姆定律的公式是________。

大学物理电磁学综合练习题(含答案)

大学物理电磁学综合练习题(含答案)

ev
1 R2

1 R1
,方向向下。
2.一长直导线通有电流 I1 = 20 A ,旁边放一直导线 AB ,通有电流 I 2 = 10 A 。两导线在
同一平面内,且相互垂直(如图),则导线 AB 受到的作用力为 9.21 10 −5 N 。
解: B
=
0 I1 2r
,d
f
=
I2
d
B
变化,在磁场中有
A

B
dt
×××
两点,其间可放直导线 AB 和弯曲的导线 AB ,则
(A) 电动势只在 AB 导线中产生; (B) AB 导线中的电动势小于 AB 导线中的电动势;
×× ×××
o•
×× A
×
× B×
× ××
5-3
(C)电动势在 AB 、 AB 中都产生,且两者大小相等;
(D)电动势只在 AB 导线中产生。
H
=
I 2r
,磁感应强度 B
=
I 2r
,磁场能量密度 wm
=
I 2 8 2r 2

解:由安培环路定理, 2rH = I , H = I 2r
B
=
H
=
I 2r

w
m
=
1 BH
2
=
I 2 8 2r 2
9.如图所示,半径为 R ,电荷线密度为 ( 0) 的均匀带电圆线圈,绕过圆心与动势 i
=
5 2
BR 2 ;
O 点电势高。
解:添 ob 后,整个线圈的感应电动势为零,所以
oacb
=
ob
=
ob(v

B) dl

(完整版)大学物理电磁场练习题含答案

(完整版)大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案1-5 CADBC 6-8 CBC 三、稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ ]2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A) l I π420μ. (B) l Iπ220μ.(C)l Iπ02μ. (D) 以上均不对. [ ]3.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[ ]4.无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B ϖ的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]5.电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B ϖ、2B ϖ和3Bϖ表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B ϖϖ,但B 3≠ 0. [ ]6.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ及3Bϖ,则O 点的磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B ϖϖ,B 3= 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ] v7.电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ、3Bϖ,则圆心处磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B ϖϖ. [ ]8.a R r OO ′I在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A) 2202R a a I ⋅πμ (B)22202R r a a I -⋅πμ(C) 22202r R a a I-⋅πμ (D) )(222220a r Ra a I -πμ [ ]参考解:导体中电流密度)(/22r R I J -π=.设想在导体的挖空部分同时有电流密度为J 和-J 的流向相反的电流.这样,空心部分轴线上的磁感强度可以看成是电流密度为J 的实心圆柱体在挖空部分轴线上的磁感强度1B ϖ和占据挖空部分的电流密度-J 的实心圆柱在轴线上的磁感强度2B ϖ的矢量和.由安培环路定理可以求得02=B , )(222201r R a Ia B -π=μ 所以挖空部分轴线上一点的磁感强度的大小就等于)(22201r R IaB -π=μ 9. πR 2c3分10.221R B π-3分11. 6.67×10-7 T 3分7.20×10-7 A ·m 2 2分12. 减小 2分在2/R x <区域减小;在2/R x >区域增大.(x 为离圆心的距离) 3分13. 0 1分I 0μ- 2分14. 4×10-6 T 2分 5 A 2分15. I0μ 1分 0 2分2I0μ 2分16. 解:①电子绕原子核运动的向心力是库仑力提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电子单位时间绕原子核的周数即频率000142a m a e a ενππ=π=v 2分 由于电子的运动所形成的圆电流00214a m a e e i ενππ== 因为电子带负电,电流i 的流向与 v ϖ方向相反 2分 ③i 在圆心处产生的磁感强度002a i B μ=00202018a m a eεμππ= 其方向垂直纸面向外 2分17.1 234 R ROI a β2解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B ϖϖϖϖϖ+++= ∵ 1B ϖ、4B ϖ均为0,故32B B B ϖϖϖ+= 2分)2(4102R I B μ= 方向⊗ 2分 242)sin (sin 401203R I a I B π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β 2/2)4/sin(sin 1-=π-=β∴ R I R I B π+=2800μμ)141(20π+=R I μ 方向 ⊗ 2分 18. 解:电流元1d l I ϖ在O 点产生1d B ϖ的方向为↓(-z 方向) 电流元2d l I ϖ在O 点产生2d B ϖ的方向为⊗(-x 方向) 电流元3d l I ϖ在O 点产生3d B ϖ的方向为⊗ (-x 方向) 3分kR I i R IB ϖϖϖπ-+ππ-=4)1(400μμ 2分 19. 解:设x 为假想平面里面的一边与对称中心轴线距离,⎰⎰⎰++==Rx RRxrl B r l B S B d d d 21Φ, 2分d S = l d r2012R IrB π=μ (导线内) 2分r I B π=202μ (导线外) 2分)(42220x R R Il -π=μΦR R x Il +π+ln20μ 2分 令 d Φ / d x = 0, 得Φ 最大时 Rx )15(21-= 2分20. 解:洛伦兹力的大小 B q f v = 1分对质子:1211/R m B q v v = 1分 对电子: 2222/R m B q v v = 1分∵ 21q q = 1分 ∴ 2121//m m R R = 1分21.解:电子在磁场中作半径为)/(eB m R v =的圆周运动. 2分连接入射和出射点的线段将是圆周的一条弦,如图所示.所以入射和出射点间的距离为:)/(3360sin 2eB m R R l v ==︒= 3分2解:在任一根导线上(例如导线2)取一线元d l ,该线元距O 点为l .该处的磁感强度为θμsin 20l I B π=2分 方向垂直于纸面向里. 1分电流元I d l 受到的磁力为 B l I F ϖϖϖ⨯=d d 2分其大小θμsin 2d d d 20l lI l IB F π== 2分 方向垂直于导线2,如图所示.该力对O 点的力矩为 1分θμsin 2d d d 20π==lI F l M 2分 任一段单位长度导线所受磁力对O 点的力矩⎰⎰+π==120d sin 2d l l l I M M θμθμsin 220π=I 2分 导线2所受力矩方向垂直图面向上,导线1所受力矩方向与此相反.23. (C) 24. (B)25. 解: ===l NI nI H /200 A/m3分===H H B r μμμ0 1.06 T 2分26. 解: B = Φ /S=2.0×10-2 T 2分===l NI nI H /32 A/m 2分 ==H B /μ 6.25×10-4 T ·m/A 2分=-=1/0μμχm 496 2分9. 一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为____________Wb .10.任意曲面在匀强磁场B ϖ中,取一半径为R 的圆,圆面的法线n ϖ与B ϖ成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S B ϖϖd Φ_______________________.11. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)12. 载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R 有关,当圆线圈半径增大时,(1) 圆线圈中心点(即圆心)的磁场__________________________.(2) 圆线圈轴线上各点的磁场________如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B ϖ_____________.(2) 磁感强度B ϖ沿图中环路L 的线积分 =⎰⋅L l B ϖϖd ______________________.14. 一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为______________________.一条长直载流导线,在离它 1 cm 处产生的磁感强度是10-4 T ,它所载的电流为__________________________.两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅lB ϖϖd 等于:____________________________________(对环路a ).____________________________________(对环路b ).____________________________________(对环路c ).设氢原子基态的电子轨道半径为a 0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.17.一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.18.z y xR 1 321d l I ϖ2d l I ϖ3d l I ϖO如图,1、3为半无限长直载流导线,它们与半圆形载流导线2相连.导线1在xOy平面内,导线2、3在Oyz 平面内.试指出电流元1d l I ϖ、2d l I ϖ、3d l I ϖ在O 点产生的Bϖd 的方向,并写出此载流导线在O 点总磁感强度(包括大小与方向).19.一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

大学物理电磁学考试试题及答案.doc

大学物理电磁学考试试题及答案.doc

大学电磁学习题1一.选择题(每题3 分)1.如图所示,半径为 R 的均匀带电球面,总电荷为 Q ,设无穷远处的电势为零,则球内距离球心为r 的 P 点处的电场强度的大小和电势为:(A) E=0, UQ4.0 R (B) E=0, UQ4.r(C)EQ , UQ 4 0r 2 4 .r(D)EQ, UQ4 0r 2 4R.[ ]2.一个静止的氢离子 (H +)在电场中被加速而获得的速率为一静止的氧离子 (O +2)在同一电场中且通过相同的路径被加速所获速率的:(A) 2 倍. (B) 2 2 倍.(C) 4 倍.(D) 42 倍.[ ]3.在磁感强度为 B 的均匀磁场中作一半径为 r 的半球面 S , S 边线所在平面的法线方向单位矢量 n 与 B 的夹角为 ,则通过半球面 S 的磁通量 (取弯面向外为正 )为(A)r 2B .. (B)2r 2 B .(C) - r 2Bsin .(D) - r 2Bcos .[ ]4.一个通有电流 I 的导体,厚度为 D ,横截面积为 S ,放置在磁感强度为 B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为 V ,则此导体的霍尔系数等于VDS (A)IBVS (C). (B).(D)IBVDS IVS..IBDBD(E)VD . []IB5.两根无限长载流直导线相互正交放置,如图所示. I 1 沿 y 轴的正方向, I 2 沿 z 轴负方向.若载流I 1 的导线不能动,载流 I 2 的导线可以自由运动,则载流I 2 的导线开始运动的趋势是(A) 绕 x 轴转动. (B) 沿 x 方向平动.(C)绕 y 轴转动.(D)无法判断.[]6.无限长直导线在P 处弯成半径为 R 的圆,当通以电流 I 时,则在圆心 O 点的磁感强度大小等于(A)I(B)I..2 RR(C)0.(D)I1(1) .2R(E)I1[](1).4R7.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕 10 匝.当导线中的电流 I 为2.0 A 时,测得铁环内的磁感应强度的大小 B 为 1.0 T ,则可求得铁环的相对磁导率r 为 (真空磁导率 0 =4 × 10-7T · m ·A - 1 )(A) 7.96× 102 (B) 3.98× 10 2(C) 1.99 × 102 (D) 63.3 []8.一根长度为 L 的铜棒,在均匀磁场 B 中以匀角速度绕通过其一端的定轴旋转着, B 的方向垂直铜棒转动的平面,如图所示.设t =0 时,铜棒与 Ob 成角 (b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势的大小为:(A) L2 B cos( t ) .(B) 1 L2 B cos t.L2 B cos( t 2L2B .(C) 2 ) .(D)(E) 1 L2B .[]29.面积为 S 和 2 S 的两圆线圈1、 2 如图放置,通有相同的电流I.线圈 1 的电流所产生的通过线圈2 的磁通用 21 表示,线圈 2 的电流所产生的通过线圈 1 的磁通用12表示,则21 和 12 的大小关系为:(A) 21 =2 12 .(B) 21 >12 .(C) 21 =12.1[](D) 21 = 12 .210. 如图,平板电容器 (忽略边缘效应 )充电时,沿环路 L1的磁场强度H 的环流与沿环路L2的磁场强度 H 的环流两者,必有:(A) H d l H d l .L1 L2(B) H d l H d l .L1 L2(C) H d l H d l .L1 L2(D) H d l 0 . []L1二.填空题(每题 3 分)1.由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为,则在正方形中心处的电场强度的大小E= _____________ .2.描述静电场性质的两个基本物理量是___________ ___;它们的定义式是 ____________ ____和 __________________________________________ .3.一个半径为 R 的薄金属球壳,带有电荷q,壳内充满相对介电常量为r 的各向同性均匀电介质,壳外为真空.设无穷远处为电势零点,则球壳的电势U = ________________________________ .4.一空气平行板电容器,电容为C,两极板间距离为d.充电后,两极板间相互作用力为 F .则两极板间的电势差为______________ ,极板上的电荷为______________ .5.真空中均匀带电的球面和球体,如果两者的半径和总电荷都相等,则带电球面的电场能量W1与带电球体的电场能量W2相比, W1________ W2 (填 <、=、>).6.若把氢原子的基态电子轨道看作是圆轨道,已知电子轨道半径r =0.53 10×-10 m,绕核运动速度大小 v =2.18 × 108 m/s, 则氢原子基态电子在原子核处产生的磁感强度 B 的大小为____________ . (e =1.6 × 10 -19 C,0 =4×10 -7 T ·m/A)7.如图所示.电荷 q (>0) 均匀地分布在一个半径为R 的薄球壳外表面上,若球壳以恒角速度0 绕z轴转动,则沿着 z 轴从-∞到+∞磁感强度的线积分等于____________________ .8.带电粒子穿过过饱和蒸汽时,在它走过的路径上,过饱和蒸汽便凝结成小液滴,从而显示出粒子的运动轨迹.这就是云室的原理.今在云室中有磁感强度大小为 B = 1 T 的均匀磁场,观测到一个质子的径迹是半径r = 20 cm 的圆弧.已知质子的电荷为q = 1.6 × 10-19 C,静止质量 m = 1.67 × 10-27 kg,则该质子的动能为 _____________ .9.真空中两只长直螺线管 1 和 2,长度相等,单层密绕匝数相同,直径之比d1 / d2 =1/4 .当它们通以相同电流时,两螺线管贮存的磁能之比为 W 1 / W 2 =___________ . -10. 平行板电容器的电容C 为 20.0 F ,两板上的电压变化率为1,则该平 dU/dt =1.50 × 105 V ·s 行板电容器中的位移电流为 ____________ .三.计算题(共计 40 分)1. (本题 10 分)一“无限长”圆柱面,其电荷面密度为:= 0cos ,式中为半径R 与 x 轴所夹的角,试求圆柱轴线上一点的场强.2. (本题 5 分)厚度为 d 的“无限大”均匀带电导体板两表面单位面积上电荷之和为 .试求图示离左板面距离为 a 的一点与离右板面距离为 b 的一点之间的电势差.3. (本题 10 分)一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R = 2 cm , R = 5 cm ,其12间充满相对介电常量为r的各向同性、均匀电介质.电容器接在电压U =32V的电源上, (如图所示 ),试求距离轴线 R = 3.5 cm 处的 A 点的电场强度和 A 点与外筒间的电势差.4. (本题 5 分)一无限长载有电流 I 的直导线在一处折成直角, P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求 P 点的磁感强度B .5. (本题 10 分)无限长直导线, 通以常定电流 I .有一与之共面的直角三角形线圈 ABC .已知 AC 边长为 b ,且与长直导线平行,BC 边长为 a .若线圈以垂直于导线方向的速度 v 向右平移,当 B 点与长直导线的距离为 d 时,求线圈 ABC 内的感应电动势的大小和感应电动势的方向.基础物理学 I 模拟试题参考答案一、选择题 (每题 3 分,共 30 分)1.[A]2.[B]3.[D]4.[E]5.[A]6.[D]7.[B]8.[E]9.[C]10.[C] 二、填空题 (每题 3 分,共 30 分)1. 03 分2. 电场强度和电势 1 分3. q / (4 0R)3 分EF / q 0 ,1 分0 U aW / q 0E dl(U 0=0) 1 分a4.2Fd / C 2 分 5. <3 分6. 12.4 T3 分2FdC1 分 7.q3 分2参考解:由安培环路定理B dlB d lI而Iq 0 ,故B d l 0 0q2=28.3.08 × 10 -13J3 分参考解∶qv Bm v 2vqBr 1.92× 107 m/srm质子动能E K 1 mv 23.08× 10 -13 J29.1∶ 16 3 分参考解:w1B 2/ 0210. 3 A 3 分三、计算题(共 40 分)1. (本题 10 分) 解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为= 0 cos Rd ,它在 O 点产生的场强为:d E0 R2co s d3 分2它沿 x 、y 轴上的二个分量为:dE x =-dEcos =cos 2 d1 分2ysin co s d1 分 dE =-dEsin = 2积分:E x20 co s 2d =2 分22 0E y2 0sin d(sin ) 02 分2∴E E x ii1 分2 02. (本题 5 分)解:选坐标如图.由高斯定理,平板内、外的场强分布为:E x/(2 0)(板外 )2 分21、 2 两点间电势差U 1 U 2E x d x12 (b a)3 分3. (本题 10 分)解:设内外圆筒沿轴向单位长度上分别带有电荷 +和 , 根据高斯定理可求得两圆筒间任一点的电场强度为E20 rr2 分R 2R 2d rR 2 则两圆筒的电势差为UE d rlnR 12 0 rr2R 1R 10 r解得2rU3 分lnR2R 1于是可求得A点的电场强度为E AUR ln( R 2 / R 1 )= 998 V/m方向沿径向向外 2 分A 点与外筒间的电势差:UR 2U R2d rE d rln( R 2 / R 1 ) R rRUR 2= 12.5 V3 分lnln( R 2 / R 1 ) R4. (本题 5 分)解:两折线在P 点产生的磁感强度分别为:B 10I(1 2 ) 方向为1 分4 a2B 20I (1 2 ) 方向为⊙2 分4 a2B B 1 B 22 0I /(4 a) 方向为各 1 分5. (本题 10 分)解:建立坐标系,长直导线为y 轴, BC 边为 x 轴,原点在长直导线上,则斜边的方程为 y (bx / a) br / a式中 r 是 t 时刻 B 点与长直导线的距离.三角形中磁通量Ia ry0 Ia rb brIbr a r 6 分d x2 r() d x (bln)2rxaax2 ard 0 Iba r ad r3 分d t2 (lnra)d ta r 当 r =d 时,Ib(lnad a )v2 ada d方向: ACBA (即顺时针 )1 分。

目前最全大学物理电磁学题库包含答案(共43页,千道题)

目前最全大学物理电磁学题库包含答案(共43页,千道题)

大学物理电磁学试题(1)一、选择题:(每题3分,共30分)1. 关于高斯定理的理解有下面几种说法,其中正确的是:(A)如果高斯面上E处处为零,则该面内必无电荷。

(B)如果高斯面内无电荷,则高斯面上E处处为零。

(C)如果高斯面上E处处不为零,则该面内必有电荷。

(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零(E )高斯定理仅适用于具有高度对称性的电场。

[ ]2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:(A)1P 和2P 两点的位置。

(B)1P 和2P 两点处的电场强度的大小和方向。

(C)试验电荷所带电荷的正负。

(D)试验电荷的电荷量。

[ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:(A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U <<(D)C B A E E E <<,C B A U U U >> [ ]4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:(A)场强不等,电位移相等。

(B)场强相等,电位移相等。

(C)场强相等,电位移不等。

(D)场强、电位移均不等。

[ ] 5. 图中,Ua-Ub 为:(A)IR -ε (B)ε+IR(C)IR +-ε (D)ε--IR [ ]6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于:(A)BI a 221 (B)BI a 2341 (C)BI a2 (D)0 [ ]7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是:(A)4; (B)2; (C)1; (D)1/2 [ ] 8. 在如图所示的电路中,自感线圈的电阻为Ω10,自感系数为H 4.0,电阻R 为Ω90,电源电动势为V 40,电源内阻可忽略。

《大学物理》练习题及详细解答-—电磁感应.docx

《大学物理》练习题及详细解答-—电磁感应.docx

法拉第电磁感应定律10-1如图10-1所示,一半径a=0.10m,电阻7?=1.OX1O 3Q 的圆形导体回路置于均匀磁场中,磁场方向与回路面积的法向之间的夹角为TT /3,若磁场变化的规律为3(f ) = (3" +8/ + 5)X 10-4T求:(1) f=2s 时回路的感应电动势和感应电流;(2)最初2s 内通过回路截面的电量。

解:(1) <t>^B S^BScosO图 10-1a —3 ? x 10 -5t = 2s, & =—3.2x107, I =_=------ =—2x10—2 AR -负号表示与方向与确定五的回路方向相反(2) / = ;(0 -Q )=;留(0)-8(2)]• S• cos 。

= 28x1" 1*0.1 - =4.4xl0-2 CR R 1x10 x210-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。

大回路中有电流/,小的回路在大 dx的回路上面距离X 处,X»R,即/在小线圈所围面积上产生的磁场可视为是均匀的。

若—=v 等速 dt 率变化,(1)试确定穿过小回路的磁通量e 和X 之间的关系;(2)当x=NR (N 为一正数),求小回 路内的感应电动势大小;(3)若v>0,确定小回路中感应电流方向。

解:(1)大回路电流/在轴线上x 处的磁感应强度大小B = cl" 2、3 2 '方向竖直向上。

2(舟+》2产x»R 时,® = B ・S = BS = B •兀尸=“祁:"2疽 2x3(2)=1. ju JR-TIP 2x 4 — , x = NR 时, dt 2dt (3)由楞次定律可知,小线圈中感应电流方向与/相同。

动生电动势10-3 一半径为R 的半圆形导线置于磁感应强度为W 的均匀磁场中,该导线以 速度v沿水平方向向右平动,如图10-3所不,分别采用(1)法拉第电磁 感应定律和(2)动生电动势公式求半圆导线中的电动势大小,哪一端电 势高?解:(1)假想半圆导线在宽为2R 的U 型导轨上滑动,设顺时针方向为回路方向,在x 处O…, = (2Rx+-兀R2 )B , s = 一^^ = -2RB — = -2RBv2 dt dt由于静止U 型导轨上电动势为零,所以半圈导线上电动势为 8 = -2RBv 负号表示电动势方向为逆时针,即上端电势高。

大学电磁学考试题及答案

大学电磁学考试题及答案

大学电磁学考试题及答案一、选择题(每题2分,共20分)1. 一个带正电的粒子在垂直于磁场方向运动时,会受到磁场力的作用。

这个力的方向是()A. 与磁场方向相反B. 与磁场方向相同C. 垂直于磁场方向D. 与粒子速度方向相反答案:C2. 根据法拉第电磁感应定律,当穿过闭合电路的磁通量发生变化时,电路中会产生感应电动势。

感应电动势的大小与()A. 磁通量的变化率成正比B. 磁通量的大小成正比C. 磁通量的变化量成正比D. 磁通量的变化方向成正比答案:A3. 两个点电荷之间的静电力与它们之间的距离成反比。

如果两个点电荷之间的距离增加到原来的两倍,静电力将变为原来的()A. 1/2B. 1/4C. 1/8D. 1/16答案:B4. 一个导体的电阻为R,将其长度增加到原来的两倍,同时横截面积减小到原来的一半,那么新的电阻是原来的()A. 2倍B. 4倍C. 8倍D. 16倍答案:C5. 根据麦克斯韦方程组,电场和磁场的相互作用可以产生()A. 电场B. 磁场C. 电荷D. 电流答案:B6. 一个电路中的电流为2A,电路的电阻为10Ω,根据欧姆定律,该电路两端的电压是()A. 20VB. 40VC. 100VD. 200V答案:A7. 在一个平行板电容器中,如果板间距离增加,而电荷量保持不变,那么电容器的电容将()A. 增加B. 减少C. 保持不变D. 无法确定答案:B8. 电磁波在真空中传播的速度等于()A. 光速B. 声速C. 电子速度D. 电流速度答案:A9. 一个线圈在磁场中以恒定速度旋转,产生的电流是()A. 直流电B. 交流电C. 脉冲电流D. 非周期性电流答案:B10. 根据安培环路定理,一个闭合回路中的总磁通量等于穿过该回路的电流的()A. 总和B. 代数和C. 几何平均D. 算术平均答案:B二、填空题(每题2分,共20分)11. 电磁波的传播不需要________,可以在真空中传播。

答案:介质12. 一个导体的电阻为5Ω,通过它的电流为0.5A,那么在1秒内导体消耗的电能是________焦耳。

大学电磁学测试题及答案

大学电磁学测试题及答案

大学电磁学测试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是麦克斯韦方程组中描述磁场变化产生电场的方程?A. ∇·E = ρ/ε₀B. ∇×E = -∂B/∂tC. ∇·B = 0D. ∇×B = μ₀J + ε₀μ₀∂E/∂t答案:B2. 在真空中,电磁波的传播速度是多少?A. 2.998×10^8 m/sB. 3.0×10^8 m/sC. 3.3×10^8 m/sD. 3.0×10^5 km/s答案:B3. 以下哪个物理量是标量?A. 电场强度B. 磁场强度C. 电荷D. 电流答案:C4. 根据洛伦兹力公式,当一个带电粒子垂直于磁场方向运动时,它受到的力的方向是?A. 与磁场方向相同B. 与磁场方向相反C. 与磁场方向垂直D. 与带电粒子运动方向相同答案:C5. 以下哪种情况会导致电磁波的偏振?A. 电磁波在真空中传播B. 电磁波在介质中传播C. 电磁波通过偏振片D. 电磁波通过非均匀介质答案:C6. 电磁感应定律表明,当磁场变化时,会在导体中产生什么?A. 电流B. 电压C. 电阻D. 电场答案:B7. 根据法拉第电磁感应定律,感应电动势与以下哪个因素成正比?A. 磁场强度B. 磁通量的变化率C. 导体长度D. 导体电阻答案:B8. 以下哪个选项不是电磁波的特性?A. 传播速度B. 波长C. 频率D. 质量答案:D9. 电磁波的波速、波长和频率之间的关系是什么?A. v = λfB. v = 1/(λf)C. v = λ/fD. v = f/λ答案:A10. 以下哪种介质对电磁波的传播速度影响最大?A. 真空B. 空气C. 水D. 玻璃答案:D二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。

答案:介质2. 根据麦克斯韦方程组,电场的散度等于电荷密度除以______。

答案:真空电容率3. 电磁波的波长、频率和波速之间的关系可以用公式______表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


[
]
q
(A
)
0(B) 4 兀£(0
q q J _1
(C )4 兀£°R
(D
)4兀%d
(C)
护dlO
EL环路上任意一点万。

0
(D)
护.d「且环路上任意一点万=常量.
IBV
(A)DS
BVS
ID
大学物理电磁学练习题
一、选择题(30分)
题号123
答案
题号456
答案
1.一个未带电的空腔导体
球壳,内半径为R。

在腔内离球
心的距离为d处(〃</?),固像卜/?;澎定一点电荷+们如图所示。


导线把球壳接地后,再把地线撤
去。

选无穷远处为电势零点,则球心。

处的电势
(C)02增大,E不变,W增大;
(D)”|2减小,E不变,W不变.
3.如图,在一圆形电流I所在的平面内,
选一个同心圆形闭合回路L
(A)押2'=。

,且环路上
任意一点万=0
c(B • df = 0 .. rI..
(B),且环路上
任意一点
[ ]
4.一个通有电流/的导体,厚度为。

,横截而
积为S ,放置在磁感应强度为B的匀强磁场中,磁
场方向垂直于导体的侧表面,如图
所示。

现测得导体上下两面电势
差为V,则此导体的霍尔系数等于[
]
/.所厂
A
! I
: -------- A s
////- -------------- 7
VD
(C)IB
IVS
(D)BD
5.如图所示,宜角三角
形金属框架。

be放在均匀磁场中,磁
场B平行于泌边,位的长度为
I。

当金属框架绕。

人边以匀角速度刃转动时,Q*回
路中的感应电动势£和。

、C、两点间的电势差
为[ ]
(A)£ = 0, U a-U c = Bcol2
(B)£ = 0, U a-U c =-Ba)l2/2
(C产=B以2, U a-U c = Bo)l2/2
2 一个平行板电容器,充电后与电源断开, 当
用绝缘手柄将电容器两极板的距离拉大,则两极板
间的电势差A、电场强度的大小正、电场能量W
将发生如卜.变化:[ ]
(A)"12减小,£■减小,W减小;
(B)“12增大,E增大,W增大;
3・(本题5分)
一个半径为R、血密度为b的均匀带电圆盘,以角
速度刃绕过圆心11 垂直盘面的轴线AA'旋
转;今将其放入磁感应强度为B的均匀外磁场中,
泼的方向垂直于轴线
A4'。

在距盘心为尸处取一宽度为眼的圆环,
则该带电国环相当的电流为,该
电流所受磁力矩的大小为 ,圆
(D)£ = Bco/, Ua -Uc = BcoF
6.对位移电流,有下述四种说法,请指出哪
一-种说法正确[ ]
(A)位移电流是由变化的电场产生的;
(B)位移电流是由线性变化的磁场产生的;
(C)位移电流的热效应服从焦耳——楞次定律;
(D)位移也流的磁效应不服从安培环路定理.
(2)
(3) 两极板间的电势差;
二、填空题(20分)
1.(本题5分)
若静电场的某个区域电势等于恒量,则该区域的电场强度为,若电势随空间坐标作线性变化,则该区域的电场强度分布为.
2.(本题5分)
一个绕有500匝导线的平均周长50cm的细螺绕环,铁芯的相对磁导率为600,载有0.3A电流时, 铁芯中的磁感应强度B的大小
为;铁芯中的磁场强度H的大小
盘所受合力知的大小为
4.(本题5分)
一长直导线旁有一长为。

,宽为》的矩形线圈, 线圈与导线共面,如图所示.长直导线通有稳恒电流/,则距长直导线为r处的P点
的磁感应强度B为:线圈与
导线的互感系数为.
三、计算题(30分)
1 .体题10分)
-半径为R、电荷量为。

的均匀带电球体,设无穷远处为电势零点。

试求:(1)球体内外电场强度的分布;
(2)球体内外电势的分布。

2 .体题10分)
如图所示,一•平行板电容器两极板相距为山面积
为S,在极板间平行地放一•面积与极板相等、厚度为
t的均匀电介质板,它的相对介电常数为
设两极板分别带有±。

的电荷,不计边缘效
应。

试求:
(1)电介质中电场强度和电位移的大小;
3.(本题10分)
如图所示,在半径R = 0』0m的区域内有均匀
磁场万,方向垂直•纸面向外,设磁场以
— = ioo e = -
山T/s的匀速率增加。

已知3,。

=沥=尸= 0.04m,试求:
(1)半径为厂的导体圆环中的感应电动势及F 点
处有旋电场强度的大小;
(2)等腰梯形导线^.abcd中的感应电动势,并
指出感应电流的方向
电容器的电容.
三、解答题1、
大学物理电磁学练习题参考答案
一、选择题 二、填空题
1.处处为零;均匀分布 r<R
u=(£ dr = f — rdr+ [ Q , dr
J 47i%R‘ * 4兀%广
=Q
.(3/?2
-r 2
) 871M = 100TTX 0.042 = 0.50 V ④
耳・2” =-坐”
v
dr
E v = -lN/C 1 2 dr ③
② 2.
2.0.226T; 300A/m;
3. 魏T&・甘黑甲遍斗剥;
4. 旬 kr
£. =-(-R 20--lIbh)
⑵’山2
2
TIOW R' B / 4 (1)
E 。


三、计算题
1. =(—7r-4V3)xW 2
6

感应电流沿顺时针方向。

(1)
4nr 2E = q(r)/
(2)
乙= --------r
r > R q(R) = Q 47ts:0r ③ r<R 相=斜 £ =
"=卫
(2) r> R 4"° 尸②
(3)
3.
U =Eo (d —t) + Et c 旦二斯阴s ②
"£「(S) +,②
(1)
dB 2
=——71厂
'At。

相关文档
最新文档