普通物理

合集下载

普通物理

普通物理

普通物理[单项选择题]1、一平面简谐波在弹性介质中传播,在介质元从最大位移处回到平衡位置的过程中()。

A.它的势能转换成动能B.它的动能转换成势能C.它从相邻的一段介质元中获得能量,其能量逐渐增大D.它把自己的能量传给相邻的一介质元,其能量逐渐减小参考答案:C[单项选择题]2、频率为4Hz沿x轴正向传播的平面简谐波,波线上有两点a和b,若它们开始振动的时间差为0.25s,则它们的相位差为()。

A.B.πC.D.2π参考答案:D[单项选择题]3、一束光垂直入射到一偏振片上,当偏振片以入射光方向为轴转动时,发现透射光的光强有变化,但无全暗情形,由此可知,其入射光是()。

A.自然光B.部分偏振光C.全偏振光D.不能确定其偏振状态的光参考答案:B[单项选择题]4、理想气体状态方程在不同过程中可以有不同的微分表达式,式表示()。

A.等温过程B.等压过程C.等体过程D.绝热过程参考答案:C[单项选择题]5、同一种气体的定压摩尔热容大于定容摩尔热容,其原因是()。

A.气体压强不同B.气体温度变化不同C.气体膨胀需要做功D.气体质量不同参考答案:C[单项选择题]6、一定质量的理想气体经历了下列哪一个状态变化过程后,它的内能是增大的?()A.等温压缩B.等体降压C.等压压缩D.等压膨胀参考答案:D[单项选择题]7、平面波表达式为y=0.03cos6π(t+0.01x)(SI)则()。

A.其振幅为3mB.其周期为1/3sC.其波速为10m/sD.波沿x正向传播参考答案:B[单项选择题]8、当机械波在介质中传播时,一介质元的最大形变发生在()。

A.介质质元离开其平衡位置的最大位移处B.介质质元离开平衡位置-A/2处C.介质元在其平衡位置处D.介质元离开平衡位置A/2处参考答案:C[单项选择题]9、一束单色光垂直入射于光栅上,在光栅常数a+b为()情况时(a代表每条透光缝的宽度,b代表不透光部分的宽度),k=3、6、9等级次的主极大不会出现?A.a+b=4aB.a+b=2aC.a+b=5aD.a+6=3a参考答案:D[单项选择题]10、一物质系统从外界吸收一定的热量,则()。

普通物理学(PDF)

普通物理学(PDF)

第5章 气体动理论本章提要1. 气体的微观图像与宏观性质·气体是由大量分子组成的,1mol 气体所包含的分子数为2310023.6⨯。

分子之间存在相互作用力。

分子在做永不停息的无规则的运动,其运动程度与温度有关。

·在分子层次上,理想气体满足如下条件:(1)分子本身的大小与分子之间平均距离相比可以忽略不计,分子可看作质点。

(2)除碰撞的瞬间以外,分子之间的相互作用力可以忽略不计,分子所受的重力也忽略不计。

(3)气体分子间的碰撞以及分子与器壁之间的碰撞为完全弹性碰撞。

2. 理想气体压强与温度·理想气体的压强公式εn v nm p 32312==其中, 221v m =ε,称分子平均平动动能,它表征了分子运动的剧烈程度。

·理想气体的温度公式32kT ε=温度公式表明,温度是大量分子热运动剧烈程度的标志。

3. 阿伏伽德罗定律在相同的温度和压强下,各种气体在相同体积内所包含的分子数相同。

4. 道尔顿分压定律混合气体的压强等于各种气体的分压强之和。

5. 麦克斯韦速率分布·在平衡态下,气体分子服从如下麦克斯韦速率分布规律23222d 4d 2mv kTN m ev v N kT ππ-⎛⎫= ⎪⎝⎭·麦克斯韦速率分布函数23222d ()4d 2mv kTN m f v ev N v kT ππ-⎛⎫== ⎪⎝⎭其表征了处于起点速率为v 的单位速率区间内的分子数占总分子数的百分比。

6. 分子速率的三种统计值从麦克斯韦速率分布规律可以导出分子速率的三种统计值 ·最概然速率P v =P v 表明气体分子速率并非从小到大平均分配,速率太大或太小的分子数很少,速率在P v 附近的分子数最多。

·平均速率v =平均速率v 是描述分子运动状况的重要参量,为所有分子的速率之和除以总分子数。

·方均根速率=7. 能量均分定理·描述一个物体空间位置所需的独立坐标数称该物体的自由度。

普通物理学公式

普通物理学公式

普通物理学公式
以下是部分普通物理学公式:
1. 动量公式:p=mv,其中p表示动量,m表示质量,v表示速度。

2. 冲量公式:I=Ft,其中I表示冲量,F表示恒力,t表示力的作用时间。

3. 动量定理公式:I=Δp或Ft=mvt–mvo,其中Δp表示动量变化,mvt和mvo分别表示末速度和初速度。

4. 动量守恒定律公式:p前总=p后总或p=p’′也可以是
m1v1+m2v2=m1v1′+m2v2′。

5. 弹性碰撞的能量公式:v1′=(m1-m2)v1/(m1+m2)和
v2′=2m1v1/(m1+m2)。

6. 机械能损失公式:E损=mvo2/2-(M+m)vt2/2=fs相对,其中vt表示共同速度,f表示阻力,s相对表示子弹相对长木块的位移。

7. 简谐振动公式:F=-kx,其中F表示回复力,k表示比例系数,x表示位移。

8. 单摆周期公式:T=2π(l/g)1/2,其中l表示摆长(m),g表示当地重力加速度值。

9. 波速公式:v=s/t=λf=λ/T,其中波速大小由介质本身所决定。

以上是部分普通物理学公式,仅供参考。

如需更多信息,建议查阅相关书籍或咨询专业人士。

普通物理试题及答案

普通物理试题及答案

普通物理试题及答案一、选择题(每题5分,共20分)1. 下列关于光速的描述,正确的是:A. 光在真空中的传播速度是3×10^8 m/sB. 光在所有介质中的传播速度都大于在真空中的速度C. 光在任何条件下的传播速度都是相同的D. 光速在不同介质中会发生变化答案:A2. 牛顿第二定律的表达式是:A. F=maB. F=mvC. F=m/aD. F=a*m答案:A3. 以下哪项不是电磁波的特点?A. 电磁波可以反射B. 电磁波可以折射C. 电磁波可以衍射D. 电磁波需要介质传播答案:D4. 根据热力学第一定律,下列说法正确的是:A. 能量可以在不同形式之间转换B. 能量可以在封闭系统中自发增加C. 能量可以在封闭系统中自发减少D. 能量可以在封闭系统中自发消失答案:A二、填空题(每题5分,共20分)1. 根据万有引力定律,两个物体之间的引力与它们的质量的乘积成正比,与它们之间的距离的平方成反比。

引力常数为 ________。

答案:G2. 光的波长、频率和速度之间的关系可以用公式 ________ 表示。

答案:c = λf3. 欧姆定律表明,电流I、电压V和电阻R之间的关系是 ________。

答案:V = IR4. 根据热力学第二定律,不可能从单一热源吸热使之完全转化为功而不引起其他变化。

这被称为 ________。

答案:开尔文-普朗克表述三、简答题(每题10分,共20分)1. 请简述电磁感应现象及其应用。

答案:电磁感应现象是指当导体在磁场中运动时,会在导体中产生电动势的现象。

其应用包括发电机、变压器和感应加热等。

2. 描述一下什么是量子力学,并举例说明其在现代科技中的应用。

答案:量子力学是研究微观粒子如电子、光子等行为的物理理论。

它的核心概念是粒子的波粒二象性和量子态的叠加原理。

量子力学在现代科技中的应用非常广泛,例如半导体技术、量子计算和量子通信等。

四、计算题(每题15分,共30分)1. 一个质量为5kg的物体从静止开始,以2m/s^2的加速度沿直线运动。

普通物理目录(程守洙第五版)

普通物理目录(程守洙第五版)

大学普通物理(第五版)目录(程守洙)第一篇力学第一章质点的运动§1.1质点参考系运动方程§1.2位移速度加速度§1.3圆周运动及其描述§1.4曲线运动方程的矢量形式§1.5运动描述的相对性伽利略坐标变换第二章牛顿运动定律第二章牛顿运动定律§2.1牛顿第一定律和第三定律§2.2常见力和基本力§2.3牛顿第二定律及其微分形式§2.4牛顿运动定律应用举例§2.5牛顿第二定律积分形式之一:动量定理§2.6牛顿第二定律积分形式之二:动能定理§2.7非惯性系惯性力阅读材料A 混沌和自组织现象第三章运动的守恒定律第三章运动的守恒定律§3.1保守力成对力作功势能§3.2功能原理§3.3机械能守恒定律能量守恒定律§3.4质心质心运动定理动量守恒定律火箭飞行§3.5碰撞§3.6质点的角动量和角动量守恒定律§3.7质点在有心力场中的运动§3.8对称性和守恒定律阅读材料B 宇宙的膨胀第四章刚体的转动第四章刚体的运动§4.1刚体的平动、转动和定轴转动§4.2刚体的角动量转动动能转动惯量§4.3 力矩刚体定轴转动定律§4.4定轴转动的动能定理§4.5刚体的自由度刚体的平面平行运动§4.6定轴转动刚体的角动量定理和角动量守恒定律§4.7进动第五章相对论基础第五章相对论基础§5.1伽利略相对性原理经典力学的时空观§5.2狭义相对论基本原理洛伦兹坐标变换式§5.3相对论速度变换公式§5.4狭义相对论时空观§5.5狭义相对论动力学基础§5.6广义相对论简介阅读材料C 超新星爆发和光速不变性第六章气体动理论第二篇热学第六章气体动理论§6.1 状态过程理想气体§6.2分子热运动和统计规律§6.3气体动理论的压强公式§6.4理想气体的温度公式§6.5能量均分定理理想气体的内能§6.6麦克斯韦速率分布律§6.7玻尔兹曼分布律重力场中粒子按高度的分布§6.8分子的平均碰撞次数及平均自由程§6.9气体内的迁移现象§6.10真实气体范德瓦耳斯方程§6.11物态和相变阅读材料D 非常温和非常压第七章热力学基础第七章热学基础§7.1热力学第一定律§7.2热力学第一定律对于理想气体等值过程的应用§7.3绝热过程多方过程§7.4焦耳-汤姆孙实验真实气体的内能§7.5循环过程卡诺循环§7.6热力学第二定律§7.7可逆过程与不可逆过程卡诺定理§7.8熵§7.9熵增加原理热力学第二定律的统计意义阅读材料E 熵与能源第三篇电场和磁场第八章真空中的静电场§8-1 电荷库仑定律§8-2 电场电场强度§8-3 高斯定理§8-4 静电场的环路定理电势§8-5 等势面电场强度与电势梯度的关系§8-6 带电粒子在静电场中的运动阅读材料F电子的发现和电子电荷量的测定第九章导体和电介质中的静电场§9-1 静电场中的导体§9-2 空腔导体内外的静电场§9-3 电容器的电容§9-4 电介质及其极化§9-5 电介质中的静电场§9-6 有电介质时的高斯定理电位移§9-7 电场的边值关系§9-8 电荷间的相互作用能静电场的能量§9-9 铁电体压电体永电体阅读材料G静电现象的应用第十章恒定电流和恒定电场§10-1 电流密度电流连续性方程§10-2 恒定电流和恒定电场电动势§10-3 欧姆定律焦耳一楞次定律§10-4 一段含源电路的欧姆定律。

普通物理(A)

普通物理(A)

普通物理(A)第一篇力学基础质点运动学矢径;运动方程;位移;平均速度;瞬时速度;平均加速度;瞬时加速度;速率;切向加速度;法向加速度;角位移;角速度;角加速度;位移和速度的相对性;质点动力学惯性参照系;牛顿运动定律;功;瞬时功率;质点动能定理;质点系动能定理;重力势能;弹性势能;保守力;功能原理;机械能守恒与转化定律;动量冲量动量定理;动量守恒定律刚体的转动角速度矢量;转动动能;转动惯量;力矩转动定律;力矩;力矩的功;定轴转动中的转动动能定律;角动量和冲量矩角动量守恒定律;质点的角动量;质点的角动量定理;刚体的角动量;冲量矩;角动量定理;角动量守恒定律第二篇机械振动和波机械振动简谐振动运动学特征;简谐振动动力学分析;简谐振动方程;简谐振动过程中的位移、速度、加速度,简谐振动过程中的振幅、角频率、频率、位相、初位相;相位差;同相和反相;旋转矢量表示法;谐振动的能量;谐振动的合成;同方向同频率谐振动的合成机械波机械波的产生与传播;面简谐波波动方程;波的能量能流密度;波的干涉现象;波的干涉条件;驻波;多普勒效应第三篇热学气体动理学理论理想气体的状态方程;理想气体的压强和温度公式;理想气体分子的平均平动动能;理想气体的温度公式;方均根速率;能量均分定理理想气体的内能;能量按自由度均分定理;麦克斯韦分子速率分布定律;最概然速率;平均速率;气体分子的平均碰撞频率和平均自由程;热力学基础准静态过程;准静态过程的功;热量;内能;热力学第一定律;摩尔热容量;气体定容摩尔热容量;气体定压摩尔热容量;热力学第一定律的应用;绝热过程;循环过程;循环效率;卡诺循环;卡诺循环效率;热力学第二定律第四篇电磁学真空中的静电场电场;电场强度;点电荷的电场;任意带电体的场强计算公式;场强迭加原理;电通量;高斯定理;高斯定理的应用;静电场的环路定理电势;电势差;电势迭加原理;点电荷的电势;任意带电体的电势计算公式;场强与电势的关系静电场中的导体和电介质静电场中的导体;静电平衡条件;静电平衡时导体上电荷分布;静电平衡时导体表面场强;导体的电容电容器;电容器的能量公式;电场的能量密度;电场的能量稳恒磁场磁场对电流的作用磁场磁感应强度;磁通量;磁场的高斯定理;毕奥—萨伐尔定律;安培环路定理及应用;安培力安培定律;均匀磁场中载流线圈的磁力矩;磁力的功;洛仑兹力;霍耳效应;电磁感应电磁感应定律;感应电动势;楞次定律;动生电动势;感生电动势;自感和互感;磁场的能量电磁场理论的基本概念电磁振荡位移电流;位移电流的磁场;麦克斯韦方程组的积分形式;平面电磁波及性质;电磁波速度;电磁波的能量蜜度第五篇光学光的干涉相干光及获得光程差;杨氏双缝干涉;薄膜干涉劈尖干涉牛顿环;迈克尔逊干涉仪光的衍射惠更斯—菲涅耳原理;夫琅和费单缝衍射;光栅衍射;圆孔衍射光学仪器的分辨率光的偏振自然光和偏振光;部分偏振光;马吕斯定律;布儒斯特定律第六篇近代物理基础狭义相对论基础伽利略变换经典力学的时空观;狭义相对论的相对性原理;光速不变原理;洛仑兹坐标变换;洛仑兹速度变换;长度收缩;时间膨胀;同时性的相对性;狭义相对论的时空观;狭义相对论的动力学基础量子光学基础热辐射基尔霍夫定律;斯特藩玻尔兹曼定律;维恩位移定律;能量量子化;光电效应爱因斯坦方程;康普顿效应原子的量子理论玻尔的氢原子理论;实物粒子的波粒二象性;测不准关系;波函数薛定谔方程;一维无限深势阱;参考教材:《普通物理学》(1-3册)(第五版),程守洙、江之永主编,高等教育出版社;《普通物理学》(1-3册)(第四版),马文蔚主编,高等教育出版社;。

883普通物理 (1)

883普通物理 (1)

杭州电子科技大学全国硕士研究生招生考试业务课考试大纲考试科目名称:普通物理科目代码:883一、质点运动学掌握描述质点运动和运动变化的物理量。

能计算质点在平面内运动时的速度、加速度及运动方程、轨道、圆周运动时的角速度、角加速度、切向加速度和法向加速度,掌握运动学中角量与线量之间的转换关系。

会分析相对运动。

二、质点动力学掌握牛顿三定律及其适用条件。

能用微积分方法求解一维变力作用下的简单质点动力学问题。

掌握功的概念,能计算直线运动情况下变力的功。

掌握动能定理。

理解保守力作功的特点及势能的概念,会计算重力、弹性力和万有引力势能。

掌握功能原理和机械能守恒定律。

掌握冲量、质点动量概念、动量定理和动量守恒定律。

能综合运用上述定律分析、解决质点在平面内运动时的力学问题。

三、刚体的转动理解刚体模型。

理解力矩概念和刚体绕定轴转动的转动定律。

了解转动动能和转动惯量的概念。

了解力矩的功和刚体定轴转动中的动能定理。

理解质点在平面内运动的角动量、力矩概念,刚体绕定轴转动情况下的角动量概念和角动量守恒定律,能应用角动量定律分析、计算刚体系统和质点-刚体系统的有关问题。

四、气体动理论理解气体分子热运动的图象和掌握描述气体状态的物理参量、理解理想气体的状态方程的物理意义、理解理想气体的压强和温度的统计意义,能从宏观和统计意义上理解压强、温度、内能等概念,了解气体分子平均碰撞频率和平均自由程。

了解气体分子的麦克斯韦速率分布律及速率分布函数和速率分布曲线的物理意义。

了解气体分子热运动的算术平均速率、方均根速率。

理解气体分子能量均分定理,并会应用该定理计算理想气体的定压热容、定容热容和内能。

五、热力学基础掌握功、热量、内能等概念,理解热力学第一定律的意义。

能分析、计算理想气体在等压、等容、等温过程和绝热过程中的功、热量和内能,理解热容的物理意义、了解绝热过程的特点,能正确分析卡诺循环等简单循环过程,计算热机循环效率、了解制冷系数。

了解可逆过程和不可逆过程。

普通物理学考研程守洙《普通物理学》考研复习笔记

普通物理学考研程守洙《普通物理学》考研复习笔记

普通物理学考研程守洙《普通物理学》考研复习笔记一、第1章力和运动1.1复习笔记本章回顾了力学部分的基础内容,主要知识点包括质点与参考系、运动学的基本概念、基础机械运动(直线运动、抛体运动、圆周运动和一般曲线运动)的基本特征、牛顿运动定律、常见力及其特征、相对运动、伽利略相对性原理和伽利略变换,以及经典力学的时空观,其中,质点与参考系、运动学的基本概念和常见力及其特征是所有力学问题的根基,物体以及系统的受力分析、基础机械运动及其组合运动是力学问题的常见研究对象,牛顿运动定律是经典力学以及研究力学问题的核心,在复习本章内容时,每个知识点都要充分理解和掌握,为之后章节的复习奠定坚实的基础。

一、质点运动的描述1质点(见表1-1-1)表1-1-1质点2参考系与坐标系(见表1-1-2)表1-1-2参考系与坐标系3空间与时间(见表1-1-3)表1-1-3空间与时间4运动学基本概念(见表1-1-4至表1-1-7)表1-1-4位矢与运动学方程表1-1-5位移表1-1-6速度表1-1-7加速度速度的大小为:5质点运动学的两类问题(见表1-1-8)表1-1-8运动学的两类问题及解法二、圆周运动和一般曲线运动1自然坐标系、速度、加速度(见表1-1-9)表1-1-9自然坐标系、速度、加速度2圆周运动的角量描述(见表1-1-10)表1-1-10圆周运动的角量描述3一般平面曲线运动中的加速度(见表1-1-11)表1-1-11一般平面曲线运动中的加速度4抛体运动的矢量描述(见表1-1-12)一般地,在研究抛体运动时,通常取抛射点为坐标原点,沿水平方向和竖直方向分别引Ox轴和Oy轴,建立笛卡尔直角坐标系。

表1-1-12抛体运动的矢量描述三、相对运动常见力和基本力1相对运动(见表1-1-13)表1-1-13相对运动2常见力(见表1-1-14至表1-1-16)表1-1-14万有引力、重力、弹力表1-1-15弹力的几种常见形式表1-1-16摩擦力3基本力(见表1-1-17)表1-1-17基本相互作用四、牛顿运动定律(见表1-1-18)表1-1-18牛顿运动定律五、伽利略相对性原理非惯性系惯性力(见表1-1-19)表1-1-19伽利略相对性原理非惯性系惯性力。

普通物理学

普通物理学

普通物理学物理学是自然科学中的一种,它研究物质、能量、时空、运动等的基本规律。

在科学发展史上,物理学被誉为“自然科学的基础”,也是人类理解世界和改变世界的重要工具之一。

普通物理学是物理学的基础学科,主要涉及物质、力、能以及它们之间的相互作用规律。

本文将从力学、热力学、电磁学、光学和量子力学五个方面介绍普通物理学的基本内容。

一、力学力学是物理学中的一个重要分支,它研究物体的运动和力的作用规律。

力学主要包括牛顿力学、相对论力学和量子力学等方面。

在这里我们主要介绍牛顿力学的内容。

1. 牛顿运动定律牛顿运动定律是牛顿力学的基础,它表明物体的运动状态取决于物体所受的力和它的质量。

牛顿运动定律有三个,分别是:- 第一定律:物体静止或做匀速直线运动时,所受合力为零。

- 第二定律:物体运动状态的变化率正比于物体所受的合于力,与物体的质量成反比。

- 第三定律:任何两个物体之间作用力的大小相等,方向相反,作用时间相等。

2. 牛顿引力定律牛顿引力定律是揭示万有引力规律的基础。

该定律表明两个物体间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

牛顿引力定律使得人们能够解释日常生活中的天文现象,比如行星运动和引力在微观粒子间的作用等。

二、热力学热力学是物理学中研究温度、热能和热量流动等热现象规律的一门学科。

热力学是研究物质热性质的学科,它以热力学主定律为核心。

下面我们将介绍热力学的基本内容。

1. 热力学主定律热力学主定律是热力学的基础原理,它表明所有物体或系统都有热力学状态函数,而热力学状态函数是恒定的。

其中最常见的热力学状态函数是内能和焓。

2. 热力学第二定律热力学第二定律是另一重要定律,它揭示了热力学中不可逆进程的本质。

该定律包括反熵原理和克劳修斯定理。

三、电磁学电磁学是研究电荷、电流、电磁场等电现象规律的一门学科。

电磁学是物理学中最广泛应用的学科之一。

现代科技、通信网络、能源技术和微电子学等众多领域都离不开电磁学。

大学普通物理复习资料【附答案】

大学普通物理复习资料【附答案】

1、原在空气中的杨氏双缝干涉实验装置,现将整个装置浸入折射率为n的透明液体中,则相邻两明条纹的间距为原间距的倍。

2、波长为500nm的光垂直照射在牛顿环装置上,在反射光中观察到第二级暗环半径为2.23mm,则透镜的曲率半径R= 。

3、在照相机的镜头上镀有一层介质膜,已知膜的折射率为1.38,镜头玻璃的折射率为1.5,若用黄绿光(550nm)垂直入射,使其反射最小,则膜的最小厚度为。

4、为了使单色光(λ=600nm)产生的干涉条纹移动50条,则迈克尔逊干涉仪的动镜移动距离为。

5、远处的汽车两车灯分开1.4m,将车灯视为波长为500nm的点光源,若人眼的瞳孔为3mm,则能分辨两车灯的最远距离为。

6、一束由线偏振光与自然光混合而成的部分偏振光,当通过偏振片时,发现透过的最大光强是最小光强的3倍,则入射的部分偏振光中,自然光与线偏振光光强之比为。

7、布儒斯特定律提供了一种测定不透明电介质的折射率的方法。

今在空气中测得某一电介质的起偏振角为57 ,则该电介质的折射率为。

1、一双缝距屏幕为1m,双缝间距等于0.25mm,用波长为589.3nm的单色光垂直照射双缝,屏幕上中央最大两侧可观察到干涉条纹,则两相邻明纹中心间距等于。

2、波长为λ的平行光垂直地照射在由折射率为1.50的两块平板玻璃构成的空气劈尖上,当劈尖的顶角α减小时,干涉条纹将变得(填“密集”或“稀疏”)λ)垂直照射单缝,缝宽0.1mm,紧靠缝后放一焦距3、用平行绿光(nm546=为50cm的会聚透镜,则位于透镜焦平面处的屏幕上中央明纹的宽度为。

4、波长为500nm的光垂直照射到牛顿环装置上,若透镜曲率半径为5m,则在反射光中观察到的第四级明环的半径=r。

45、一架距地面200公里的照相机拍摄地面上的物体,如果要求能分辨地面上相距1m的两物点。

镜头的几何象差已很好地消除,感光波长为400nm,那么照相机镜头的孔径D= 。

6、一束曲线偏振光与自然光混合而成的部分偏振光,当通过偏振片时,发现透过的最大光强是最小光强的3倍,则在入射的部分偏振光中,线偏振光的光强点占总光强的。

普通物理学(第七版)上册第一章PPT

普通物理学(第七版)上册第一章PPT
年)到微观粒子的最短寿命10-24 s。
物理理论指出,空间和时间都有下限:分别为
普朗克长度10-35 m和普朗克时间10-43 s 。
返回 退出
莱布尼兹时空观 :没有具体的物质和 物质的运动就没有空间和时间。
莱布尼兹
牛顿的绝对时空观 :空间和时 间是不依赖于物质的独立的客观 存在。
爱因斯坦
牛顿
爱因斯坦的相对论时空观 :相对 论时空观,时间与空间客观存在, 与运动密不可分。
返回 退出
三、质点的位矢 在坐标系中,用来确定质点所在位置的矢量,叫做
位 原置 点矢指量向(质po点si所tio在n v位ec置to的r),有简向称线位段矢。。用位矢矢量是r从表坐示标
直角坐标系中 表示 为 r xi yj zk
位矢的大小为
r r
x2 y2 z2
位矢的方向余弦:
cos x cos y cos z
Δr
dr
ds
v
Δt0 Δt dt dt
瞬时速率(instantaneous speed): v ds
dt
速度的方向是沿着轨道上质点所在处的切向,并
指向质点前进的方向。(瞬时)速度的大小等于
(瞬时)速率。
返回 退出
直角坐标系中:
v
dr dt
d dt
( xi
yj
zk )
vxi
vy
j
返回 退出
§1.1 质点运动的描述 一、质点
把物体看作质点来处理的条件: •两相互作用着的物体,如果它们之间的距离远大 于本身的线度。 •做平动的物体(各点的运动情况相同);
质点(mass point,particle):物体的形状和大小可 以忽略不计,简化为具有质量的几何点。

普通物理学(科目代码 802)考试大纲

普通物理学(科目代码 802)考试大纲

普通物理学(科目代码802)考试大纲Ⅰ、考查范围质点力学、刚体转动及机械振动和机械波,约25%;气体动理论和热力学基础,约18%;电磁学,约25%;波动光学,约17%;相对论和量子力学,约15%Ⅱ、考查要求考查要求分为三级:掌握、理解、了解。

掌握:属较高要求。

对于要求掌握的内容多应比较透彻明了,并能熟练地用以分析和计算工科普通物理课水平的有关问题,对于那些能由基本定律导出的定理要求会推导。

理解:属一般要求。

对于要求理解的内容都应明了,并能用以分析和计算工科普通物理课水平的有关问题。

了解:属较低要求。

对于要求了解的内容,应知道所涉及问题的现象和有关实验,并能对它们进行定性解释,还应知道与问题直接有关的物理量和公式的物理意义。

对于要求了解的内容,在经典物理部分一般不要求定量计算,在近代物理部分要求能作代公式性质的一类计算。

Ⅲ、考查形式及试卷结构1.考试方式:闭卷,笔试2.考试时间:180分钟3.试卷分值:满分150分4.题型结构:选择题约占35%填空题约占30%计算题约占35%Ⅳ、考查内容(一)质点运动学【考试目标】1.掌握位矢、位移、速度、加速度、角速度和角加速度等描述质点运动和运动变化的物理量。

2.能借助于直角坐标系计算质点在平面内运动的速度、加速度,能计算质点作圆周运动时的角速度、角加速度、切向加速度和法向加速度。

3.理解伽利略坐标变换和速度变换。

【考试内容】1.位矢、位移、速度、加速度、角速度、角加速度、切向加速度、法向加速度。

2.加速度为恒矢量时的运动方程、圆周运动。

3.相对运动、伽利略坐标变换和速度变换。

(二)牛顿定律【考试目标】1.掌握牛顿三定律及其适用条件,能用微积分方法求解一维力作用下简单的质点动力学问题。

2.了解力学量的单位和量纲。

3.理解伽利略相对性原理及惯性参考系、非惯性系和惯性力的概念。

【考试内容】1.牛顿运动定律及其应用。

2.力学量的单位和量纲。

3.几种常见的力。

4.惯性参考系、力学相对性原理。

普通物理课程标准

普通物理课程标准

普通物理课程标准
1.理解物理学的基本概念和原理,包括力、能量、运动和电磁学等方面的知识。

2. 能够运用数学和科学方法来解决物理学问题,例如使用向量、微积分和代数等数学工具,以及实验设计和数据分析等科学方法。

3. 能够独立思考和分析物理学问题,并在实验和理论研究中运
用所学知识。

4. 能够有效地沟通和表达自己的物理学观点和研究成果,包括
口头和书面表达。

5. 能够理解物理学在现代科学和技术中的重要性,以及应用物
理学知识解决实际问题的能力。

根据该标准,普通物理课程应包括以下内容:
1. 力学:包括运动学、动力学、静力学和弹性力学等方面的知识。

2. 热学:包括热传递、热力学和状态方程等方面的知识。

3. 电磁学:包括电场、电势、电路和磁场等方面的知识。

4. 光学:包括几何光学和波动光学等方面的知识。

5. 现代物理学:包括相对论、量子力学和粒子物理学等方面的
知识。

普通物理课程的教学应注重培养学生的实验能力和科学思维能力,鼓励学生进行自主学习和探究。

同时,教师应根据学生的实际情况和能力水平进行差异化教学,以确保每个学生都能够达到标准要求。

大学普通物理习题详解

大学普通物理习题详解

大学普通物理习题详解普通物理试题库一、选择题:1、在双缝干涉实验中,若单色光源S到两缝S1、S2距离相等,则观察屏上中央明条纹位于图中O处.现将光源S向下移动到示意图中的S?位置,则(A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变.(C) 中央明条纹向下移动,且条纹间距增大.(D) 中央明条纹向上移动,且条纹间距增大.[]2、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变.(D) 向上平移,且间距改变.[]3、在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为D(D>>d).波长为?的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2?D / d. (B) ? d / D.(C) dD / ?.(D) ?D /d.[]4把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D (D >>d),所用单色光在真空中的波长为?,则屏上干涉条纹中相邻的明纹之间的距离是(A) ?D / (nd) (B) n?D/d.(C) ?d / (nD).(D) ?D / (2nd).[]5、一束波长为?的单色光由空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) ????? . (B) ? / (4n).(C) ????? .(D) ? / (2n).[]6、在牛顿环实验装置中,曲率半径为R的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为?,则反射光形成的干涉条纹中暗环半径rk的表达式为(A) rk =k?R. (B) rk =k?R/n.(C) rk =knR. (D) rk =k/nR.[]7、在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n-1 ) d. (B) 2nd.(C) 2 ( n-1 ) d+? / 2. (D) nd.(E) ( n-1 ) d.[]8、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长?,则薄膜的厚度是(A) ? / 2. (B) ? / (2n).(C) ? / n. (D) ?2n?1.[]9、在单缝夫琅禾费衍射实验中,波长为?的单色光垂直入射在宽度为a=4??的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.1(注:文档可能无法思考全面,请浏览后下载,供参考。

普通物理考研试题及答案

普通物理考研试题及答案

普通物理考研试题及答案一、选择题(每题3分,共30分)1. 牛顿第三定律指出,作用力和反作用力的大小相等,方向相反,作用在不同的物体上。

以下哪个选项正确描述了这一定律?A. 作用力和反作用力作用在同一物体上B. 作用力和反作用力大小不相等C. 作用力和反作用力方向相同D. 作用力和反作用力作用在不同的物体上答案:D2. 光在真空中的传播速度是3×10^8米/秒。

以下哪个选项正确表示了光速?A. 3×10^5米/秒B. 3×10^6米/秒C. 3×10^7米/秒D. 3×10^8米/秒答案:D3. 根据热力学第一定律,能量守恒定律,系统内能的增加等于系统吸收的热量与系统对外做的功之和。

以下哪个选项正确描述了这一定律?A. 系统内能的增加等于系统吸收的热量减去系统对外做的功B. 系统内能的增加等于系统吸收的热量加上系统对外做的功C. 系统内能的增加等于系统对外做的功减去系统吸收的热量D. 系统内能的增加等于系统对外做的功加上系统吸收的热量答案:B4. 电磁波谱中,波长最长的是:A. 无线电波B. 微波C. 红外线D. 可见光答案:A5. 根据欧姆定律,电流I等于电压V除以电阻R。

以下哪个选项正确表示了欧姆定律?A. I = V + RB. I = V - RC. I = V/RD. I = VR答案:C6. 在经典力学中,物体的动量P等于其质量m乘以速度v。

以下哪个选项正确表示了动量的定义?A. P = m * aB. P = m * vC. P = v * aD. P = m / v答案:B7. 根据开普勒第三定律,行星绕太阳公转的周期的平方与其轨道半长轴的立方成正比。

以下哪个选项正确描述了这一定律?A. 行星公转周期的平方与轨道半长轴的立方成反比B. 行星公转周期的立方与轨道半长轴的平方成正比C. 行星公转周期的平方与轨道半长轴的立方成正比D. 行星公转周期与轨道半长轴成正比答案:C8. 根据麦克斯韦方程组,变化的磁场会产生电场。

普通物理学公式大全

普通物理学公式大全

普通物理学公式大全力学:1.速度(v)=位移(s)/时间(t)2.加速度(a)=(终速度(v)-初始速度(u))/时间(t)3.加速度(a)=力(F)/质量(m)4.力(F)=质量(m)×加速度(a)5.力(F)=流体的压强(P)×表面积(A)6.力(F)=弹性常数(k)×形变长度(x)7.动能(KE)=1/2×质量(m)×速度的平方(v²)8.动能(KE)=力(F)×位移(s)9.动量(p)=质量(m)×速度(v)10.动量(p)=力(F)×时间(t)11.动量守恒:质量1(m₁)×速度1(v₁)+质量2(m₂)×速度2(v₂)=质量1(m₁)×速度2(v₁)+质量2(m₂)×速度2(v₂)热学:1.热能(Q)=质量(m)×热容(c)×温度变化(ΔT)2.热传导率(k)=热传导量(Q)/(导热系数(A)×温度差(ΔT))3.热膨胀量(ΔL)=初始长度(L₀)×线膨胀系数(α)×温度变化(ΔT)4.理想气体状态方程:PV=nRT,其中P是压强,V是体积,n是摩尔数,R是气体常数,T是温度(开氏温标)光学:1.光速(c)=光的频率(f)×波长(λ)2.照射角(i)=折射角(r)3.真实深度(d₀)=折射到介质中的深度(d)/折射率(n)4.像的放大率(m)=像的高度(h₁)/物体的高度(h₀)5. 光的折射定律:折射率 (n₁) × 正弦入射角 (sin i) = 折射率(n₂) × 正弦折射角 (sin r)电磁学:1.电流(I)=电量(Q)/时间(t)2.电阻(R)=电压(V)/电流(I)3.电阻(R)=电阻系数(ρ)×长度(L)/截面积(A)4.电功(P)=电压(V)×电流(I)5.电场强度(E)=电力(F)/电荷(q)6.电场强度(E)=电势差(V)/距离(d)7.电场强度(E)=电势梯度(ΔV/Δx)8.磁感应强度(B)=磁力(F)/电荷(q)×速度(v)9.法拉第电磁感应定律:感应电动势(ε)=磁感应强度(B)×导线长度(l)×速度(v)以上是一些普通物理学中的重要公式,涵盖了力学、热学、光学和电磁学的一些基本概念和原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《普通物理》考试大纲和参考书
参考教材:《普通物理学·第六版》程守洙、江之永编,高教出版社
参考用书:《大学物理·第三版》张三慧编清华大学出版社
考试范围:
一、力学
1.掌握位矢、位移、速度、加速度、角速度和角加速度等描述质点运动和运动变化的物理量。

能借助于直角坐标系计算质点在平面内运动时的速度、加速度。

能计算质点作圆周运动时的角速度、角加速度、切向加速度和法向加速度。

理解质点在不同参照系中相对运动规律。

2.掌握牛顿三定律及其适用条件。

能用微积分方法求解一维变力作用下简单的质点动力学问题。

3.掌握功的概念,能计算直线运动情况下变力的功。

理解保守力作功的特点及势能的概念,会计算重力、弹性力和万有引力势能。

4.掌握质点的动能定理和动量定理,通过质点在平面内的运动情况理解角动量(动量矩)和角动量守恒定律,并能用它们分析、解决质点在平面内运动时的简单力学问题。

掌握机械能守恒定律、动量守恒定律,掌握运用守恒定律分析问题的思想和方法。

5.了解转动惯量概念。

理解刚体转动中的功和能的概念。

理解刚体绕定轴转动的转动定律和刚体在绕定轴转动情况下的角动量守恒定律。

了解进动的概念。

6.理解伽利略相对性原理,理解伽利略坐标、速度变换。

二、气体动理论及热力学
1.理解统计的概念。

了解气体分子热运动的图象。

理解理想气体的压强公式和温度公式。

通过推导气体压强公式,了解从提出模型、进行统计平均、建立宏观量与微观量的联系到阐明宏观量的微观本质的思想和方法。

能从宏观和统计意义上理解压强、温度、内能等概念。

了解系统的宏观性质是微观运动的统计表现。

2.了解气体分子平均碰撞频率及平均自由程。

3.了解麦克斯韦速率分布律及速率分布函数和速率分布曲线的物理
意义。

了解气体分子热运动的算术平均速率、方均根速率。

了解玻耳兹曼能量分布律。

4.通过理想气体的刚性分子模型,理解气体分子平均能量按自由度均分定理,并会应用该定理计算理想气体的定压热容、定容热容和内能。

5.掌握功和热量的概念。

理解准静态过程。

掌握热力学第一定律。

能分析、计算理想气体等容、等压、等温过程和绝热过程中的功、热量、内能改变量及卡诺循环等简单循环的效率。

了解卡诺定理。

6.了解可逆过程和不可逆过程。

了解热力学第二定律及其统计意义。

了解熵的玻耳兹曼表达式,了解克劳修斯表达式。

三、电磁学
1.掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。

掌握电势与电场强度的积分关系。

能计算一些简单问题中的电场强度和电势。

2.理解静电场的规律:高斯定理和环路定理。

理解用高斯定理计算电场强度的条件和方法。

3.掌握磁感应强度的概念。

理解毕奥-萨伐尔定律。

能计算一些简单问题中的磁感应强度。

4.理解稳恒磁场的规律:磁场高斯定理和安培环路定理。

理解用安培环路定理计算磁感应强度的条件和方法。

5.理解安培定律和洛伦兹力公式。

了解电偶极矩和磁矩的概念。

能计算电偶极子在均匀电场中,简单几何形状载流导体和载流平面线圈在均匀磁场中或在无限长直载流导线产生的非均匀磁场中所受的力和力矩。

能分析点电荷在均匀电场和均匀磁场中的受力和运动。

6.了解导体的静电平衡条件。

了解介质的极化、磁化现象及其微观解释。

了解铁磁质的特性。

了解各向同性介质中D和E、H和B之间的关系和区别。

了解介质中的高斯定理和安培环路定理。

7.理解电动势的概念。

8.掌握法拉第电磁感应定律。

理解动生电动势及感生电动势。

9.了解电容、自感系数和互感系数。

10.了解电能密度、磁能密度的概念。

11.了解涡旋电场、位移电流的概念以及麦克斯韦方程组(积分形式)的物理意义。

了解电磁波的性质,了解电磁场的物质性。

四、振动和波动
1.掌握描述简谐振动和简谐波的各物理量(特别是相位)及各量间的关系。

2.理解旋转矢量法。

3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义。

了解阻尼振动、受迫振动和共振。

4.理解同方向、同频率的两个简谐振动的合成规律。

了解相互垂直的简谐振动的合成。

5.理解机械波产生的条件。

掌握由已知质点的简谐振动方程得出平面简谐波的波函数的方法及波函数的物理意义。

理解波形图线。

了解波的能量传播特征及能流、能流密度概念。

6.了解惠更斯原理和波的叠加原理。

理解波的相干条件,能应用相位差和波程差分析、确定相干波叠加后振幅加强和减弱的条件。

7.理解驻波及其形成条件。

了解驻波和行波的区别。

8.了解机械波的多普勒效应及其产生原因。

五、波动光学
1.理解获得相干光的方法。

掌握光程的概念以及光程差和相位差的关系。

能分析、确定杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置,了解迈克耳孙干涉仪的工作原理。

2.了解惠更斯-菲涅耳原理。

理解分析单缝夫琅和费衍射暗纹分布规律的方法。

会分析缝宽及波长对衍射条纹分布的影响。

了解圆孔衍射及分辨率。

3.理解光栅衍射公式。

会确定光栅衍射谱线的位置。

会分析光栅常
量及波长对光栅衍射谱线分布的影响。

4.理解自然光和线偏振光。

理解布儒斯特定律及马吕斯定律。

了解双折射现象。

了解线偏振光的获得方法和检验方法。

了解圆偏振光、椭圆偏振光及偏振光的干涉。

六、近代物理
1.狭义相对论:伽里略变换与经典力学的时空观;狭义相对论的两条基本假设,洛伦兹变换;狭义相对论的时空观;相对论动力学基础。

2.量子物理基础:黑体辐射与普朗克量子假设;光电效应,爱因斯坦光子理论;康普顿效应;光的波粒二象性;氢原子光谱的实验规律,玻尔的氢原子理论;实物粒子的波粒二象性,测不准关系。

相关文档
最新文档