普通物理学第五版普通物理学第五版 磁场课后习题答案

合集下载

程守洙《普通物理学》(第5版)(上册)课后习题-气体动理论(圣才出品)

程守洙《普通物理学》(第5版)(上册)课后习题-气体动理论(圣才出品)

.
5-12 设 N 个粒子系统的速率分布函数为
dNυ=Kdυ (υ0>υ>0,K 为常量)
dN=0
(υ>υ0)
(1)画出分布函数图;
(2)用 N 和υ0 定出常量 K;
(3)用υ0 表示出算术平均速率和方均根速率.
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 5 章 气体动理论
5-1 有一水银气压计,当水银柱为 0.76 m 高时,管顶离水银柱液面为 0.12 m.管的
截面积为 2.0×10-4 m2.当有少量氦气混入水银管内顶部,水银柱高下降为 0.60 m.此时温度
为 27℃,试计算有多少质量氦气在管顶?(氦的摩尔质量为 0.004 kg/mol,0.76 m 水银柱
2 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台

(1)平均速率;(2)方均根速率;(3)最概然速率. 解:(1)平均速率:
.
(2)方均根速率:
.
(3)由于速率 3 v0 的质点有 5 个,是各速率中拥有质点数最多的一个,因此最概然速
率为:
.
5-5 计算在 300 K 温度下,氢、氧和水银蒸气分子的方均根速率和平均平动动能.
1 / 14
圣才电子书 十万种考研考证电子书、题库视频学习平台

由理想气体物态方程,有:
根据道尔顿分压定律,可得容器内总压强: .
5-3 一个封闭的圆筒,内部被导热的、不漏气的可移动活塞隔为两部分.最初,活塞位
于筒中央,则圆筒两侧的长度 l1=l2.当两侧各充以 T1、P1 与 T2、P2 的相同气体后,问平衡 时活塞将在什么位置上(即 l1/l2 是多少)?已知 P1=1.013×105 Pa,T1=680 K,P2=2.026 ×105 Pa,T2=280K.

大学物理第五版课后答案(上)完整版

大学物理第五版课后答案(上)完整版

1-1 。

分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故tst ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1-2。

分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1-3 。

分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1-4 。

分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1-5 。

程守洙《普通物理学》(第5版)(上册)课后习题-恒定电流的磁场(圣才出品)

程守洙《普通物理学》(第5版)(上册)课后习题-恒定电流的磁场(圣才出品)

第8章恒定电流的磁场8-1已知导线中的电流按I=t2-0.5t+6的规律随时间t变化,式中电流和时间的单位分别为A和s.计算在t=1到t=3的时间内通过导线截面的电荷量.解:根据题意,积分可得通过导线截面的电荷量:.8-2在一个特制的阴极射线管中,测得其射线电流为60μA,求每10s有多少个电子打击在管子的荧屏上.解:由,可得:,即每10秒有个电子打到荧幕上.8-3一铜棒的横截面积为20×80mm2,长为2.0m,两端的电势差为50mV.已知铜的电导率γ=5.7×107S/m.求:(1)它的电阻;(2)电流;(3)电流密度;(4)棒内的电场强度.解:(1)根据电阻定义式,可得铜棒的电阻为:.(2)根据欧姆定律,有电流:.(3)铜棒内,电流密度的大小为:.(4)铜棒内,电场强度的大小为:.8-4一电路如图8-1所示,其中B 点接地,R 1=10.0Ω,R 2=2.5Ω,R 3=3.O Ω,R 4=1.0Ω,求:(1)通过每个电阻的电流;(2)每个电池的端电压;(3)A、D 两点间的电势差;(4)B、C 两点间的电势差;(5)A、B、C、D 各点的电势.图8-1解:(1)由图8-1可知1R ,2R 电阻并联,则并联总电阻:干路中电流:因此,,.(2)每个电池的端电压分别为:,.(3)A、D两点间的电势差为:.(4)B、C两点间的电势差为:.(5)A、B、C、D各点的电势分别为:,,.8-5在地球北半球的某区域,磁感应强度的大小为4×10-5T,方向与铅直线成60°角.求:(1)穿过面积为1m2的水平平面的磁通量;(2)穿过面积为1m2的竖直平面的磁通量的最大值和最小值.解:(1)由题意可知,穿过1m2水平平面的磁通量为:.(2)由=可知:BSθcos当时,;当时,.8-6设一均匀磁场沿Ox轴正方向,其磁感应强度值B=1Wb/m2.求在下列情况下,穿过面积为2m2的平面的磁通量:(1)平面与yz面平行;(2)平面xz面平行;(3)平面与Oy轴平行且与Ox轴成45°角.解:根据题意,如图8-2所示。

普通物理学第八章恒定电流的磁场课后思考题

普通物理学第八章恒定电流的磁场课后思考题

思考题9-1 为什么不能简单地定义B 的方向就是作用在运动电荷上的磁力方向? 答:运动电荷磁力的方向不仅与磁感应强度B 的方向有关,还与电荷的运动方向、电荷的正负有关。

如果电荷运动的方向与磁场方向在同一直线上,此时电荷受力为零,因此不能定义B 的方向就是作用在运动电荷上的磁力方向。

9-2 在电子仪器中,为了减小与电源相连的两条导线的磁场,通常总是把它们扭在一起。

为什么?答:可以将扭在一起的两条通电导线看成是交织在一起的两个螺线管。

管外的磁场非常弱;因两个螺线管的通电电流大小相等、方向相反,而且匝数基本相当,管内的磁场基本上可以相互抵消。

因此,与电源相连的两条导线,扭在一起时比平行放置时产生的磁场要小得多。

9-3 长为L 的一根导线通有电流I ,在下列情况下求中心点的磁感应强度:(1)将导线弯成边长为L /4的正方形线圈;(2)将导线弯成周长为L 的圆线圈,比较哪一种情况下磁场更强。

解:在本题图 (a)中,由于正方形线圈电流沿顺时针方向,线圈的四边在中心处产生的磁场大小相等,方向都是垂直纸面向里。

所以,正方形中心点的磁感应强度为四边直导线产生得磁感应强度的叠加。

由教材例题6-1可知,其大小应为0214(sin sin )4I B r μββπ=- 将/8r L =,1/4βπ=-,2/4βπ=代入上式得()00042sin 4 3.604I I IB r L Lμμπππ=== 在图6-2(b)中,通电线圈中心处产生的磁场方向也是垂直纸面向里,大小由教材例题6-2可知为0'2I B Rμ=其中,/2R L π=。

则00' 3.14I I B L Lμμπ==比较得'B B >。

9-4 在载有电流I 的圆形回路中,回路平面内各点磁场方向是否相同?回路内各点的B 是否均匀?答:根据毕奥一萨伐尔定律,用右手螺旋关系可以判定:载流圆形回路平面(a) (b)思考题9-3内各点的磁感应强度B 方向相同,都垂直于回路平面,但回路平面内各点.B 的大小不同,即B 的分布非均匀。

大学物理第五版(马文蔚)电磁学习题问题详解

大学物理第五版(马文蔚)电磁学习题问题详解

第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).5 -2 下列说确的是( )(A)闭合曲面上各点电场强度都为零时,曲面一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零,但不能肯定曲面一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).5 -3下列说确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域为常量,则电场强度在该区域必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*5 -4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).5 -5精密实验表明,电子与质子电量差值的最大围不会超过±10-21e,而中子电量与零差值的最大围也不会超过±10-21e,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 围时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r r e εr q q εe e e F N 78.3π41π412202210=== F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足4320232me E εk =v 其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有 2202π41r e εr m =v 由此出发命题可证.证 由上述分析可得电子的动能为re εm E K 202π8121==v 电子旋转角速度为3022π4mr εe ω= 由上述两式消去r ,得432022232π4me E εωK ==v 5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为N 1092.1π3π4920220212⨯===aεe r εq q F F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r-x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度rελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+= 积分得 02/004d cos sin 2εδθθθεδE π⎰== 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θer P cos 20=,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41xp εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩θer θP P cos 2cos 200==在电偶极矩延长线上30030030cos π1cos 4π412π41xθer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202,将上式化简并略去微小量后,得300cos π1x θe r εE = 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2 (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+iEF2π2rελλ-=-=+-显然有F+=F-,相互作用力大小相等,方向相反,两导线相互吸引.5 -13如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z的一点P的电场强度(假设z>>d).分析根据点电荷电场的叠加求P点的电场强度.解由点电荷电场公式,得()()kkkE222π41π412π41dzqεdzqεzqε++-+=考虑到z>>d,简化上式得()()kkkE42222222226π4...321...32112π4/11/1112π4zqdεqzdzdzdzdzzεqzdzdzzεq=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=通常将Q=2qd2称作电四极矩,代入得P 点的电场强度kE43π41zQε=5 -14设匀强电场的电场强度E与半径为R的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 解1 由于闭合曲面无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R πR E 22πcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为①()r θθθE e e e E sin sin cos sin cos ++=r θθR e S d d sin d 2=E RθθERθθERSS2ππ2222πdsindsinddsinsind===⋅=⎰⎰⎰⎰SEΦ5 -15边长为a的立方体如图所示,其表面分别平行于Oxy、Oyz和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度()12E kx E+E=i+j(k,E1,E2为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解如图所示,由题意E与Oxy面平行,所以任何相对Oxy面平行的立方体表面,电场强度的通量为零,即0==DEFGOABCΦΦ.而()[]()2221ABGFd aEdSEkxE=⋅++=⋅=⎰⎰jjiSEΦ考虑到面CDEO与面ABGF的外法线方向相反,且该两面的电场分布相同,故有22aEABGFCDEO-=-=ΦΦ同理()[]()2121AOEFd aEdSEE-=-⋅+=⋅=⎰⎰ijiSEΦ()[]()()2121BCDGd akaEdSEkaEΦ+=⋅++=⋅=⎰⎰ijiSE因此,整个立方体表面的电场强度通量3ka==∑ΦΦ5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理 ∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE单位面积额外电子数25cm 1063.6/-⨯=-=e σn5 -17 设在半径为R 的球体,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳激发的电场0d =E ,而在球壳外激发的电场r r εq e E 20π4d d = 由电场叠加可解得带电球体外的电场分布()()()()R r r r R r>=≤≤=⎰⎰ d R r 0 d 00E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体(0≤r ≤R ) ()400202πd π41π4r εk r r kr εr r E r ==⎰ ()r εkr r e E 024= 球体外(r >R )()400202πd π41π4r εk r r kr εr r E R ==⎰()r εkR r eE 024= 解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2由上述分析,球体(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰ 5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近n εσe E 012= n e 为沿平面外法线的单位矢量;圆盘激发的电场n r x x εσe E ⎪⎪⎭⎫ ⎝⎛+--=220212 它们的合电场强度为 n r x x εσe E E E 220212+=+=在圆孔中心处x =0,则 E =0在距离圆孔较远时x >>r ,则n n εσx r εσe e E 02202/112≈+= 上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计. 5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为a E 03ερ=分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 .证 带电球体部一点的电场强度为r E 03ερ= 所以 r E 013ερ=,2023r E ερ-= ()210213r r E E E -=+=ερ 根据几何关系a r r =-21,上式可改写为a E 03ερ= 5 -20 一个外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4rR R εR r Q E --= R 2 <r <R 3 ,高斯面电荷为Q 1 ,故 2013π4rεQ E = r >R 3 ,高斯面电荷为Q 1 +Q 2 ,故20214π4rεQ Q E +=电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B)所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量0230234π4ΔεσR εQ E E E ==-= 这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层外的电场强度也是连续变化的,本题中带电球壳外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 ,0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2yd εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQd εQ d εQ V 003010π2π4π4=+=将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 5 -23 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2=为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r rελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 5 -24 水分子的电偶极矩p 的大小为6.20 ×10-30 C · m.求在下述情况下,距离分子为r =5.00 ×10-9 m 处的电势.(1) 0θ=︒;(2) 45θ=︒;(3) 90θ=︒,θ 为r 与p 之间的夹角. 解 由点电荷电势的叠加2000P π4cos π4π4rεθp r εq r εq V V V =-+=+=-+-+ (1) 若o0=θ V 1023.2π4320P -⨯==rεpV (2) 若o45=θ V 1058.1π445cos 320oP -⨯==rεp V (3) 若o90=θ 0π490cos 20oP ==rεp V 5 -25 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为RqεV 0π41=当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1 =0.40 mm ,带有电量q 1 =1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2 =2q 1 ,雨滴表面电势V 5722π4113102==R q εV5 -26 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布,()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x2 00i E 电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E ()a x a εσV >-=⋅+⋅=⎰⎰ d d 0a-axl E l E 电势变化曲线如图(b)所示.5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=pp V lE d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQV 0π4=在球面电场强度为零,电势处处相等,等于球面的电势RεQV 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布. 解1 (1) 由高斯定理可求得电场分布()()()22021321201211π4π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ RεQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E当r ≥R 2 时,有rεQ Q V r02133π4d +=⋅=⎰∞l E(2) 两个球面间的电势差⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-==5 -28 一半径为R 的无限长带电细棒,其部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V εd 1d 0S E 可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰bab a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022=取棒表面为零电势,空间电势的分布有 当r ≤R 时()()22004d 2r R ερr εr ρr V Rr-==⎰当r ≥R 时()rRεR ρr r εR ρr V Rrln 2d 20202==⎰如图所示是电势V 随空间位置r 的分布曲线.5 -29 一圆盘半径R =3.00 ×10-2 m.圆盘均匀带电,电荷面密度σ=2.00×10-5 C ·m -2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布. 解 (1) 带电圆环激发的电势220d π2π41d x r rr σεV +=由电势叠加,轴线上任一点P 的电势的()x x Rεσxr r r εσV R-+=+=⎰22222d 2 (1)(2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 1691=V -1m V 5607⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεqV 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.5 -30 两个很长的共轴圆柱面(R 1 =3.0×10-2 m ,R 2 =0.10 m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题5 -21 的结果,可得两圆柱面之间的电场强度为rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 7475π2-⋅==rελE 5 -31 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的。

物理学答案(第五版)(可编辑)

物理学答案(第五版)(可编辑)

物理学答案(第五版)物理学答案第五版 --马文蔚txt人和人的心最近又最远真诚是中间的通道试金可以用火试女人可以用金试男人可以用女人--往往都经不起那么一试面向 21 世纪课程教材学习辅导书物理学第五版习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材《物理学》第五版一书中的习题而作的分析与解答与上一版相比本书增加了选择题更换了约25%的习题所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的《非大学物理课程教学基本要求讨论稿》中全部核心内容并选有少量扩展内容的习题所选习题尽可能突出基本训练和联系工程实际此外为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法本书还为力学电磁学波动过程和光学热物理相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法以期帮助学生启迪思维提高运用物理学的基本定律来分析问题和解决问题的能力物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的解题之前必须对所研究的物理问题建立一个清晰的图像从而明确解题的思路只有这样才能在解完习题之后留下一些值得回味的东西体会到物理问题所蕴含的奥妙和涵义通过举一反三提高自己分析问题和解决问题的能力有鉴于此重分析简解答的模式成为编写本书的指导思想全书力求在分析中突出物理图像引导学生以科学探究的态度对待物理习题初步培养学生即物穷理的精神通过解题过程体验物理科学的魅力和价值尝试做学问的乐趣因此对于解题过程本书则尽可能做到简明扼要让学生自己去完成具体计算编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助本书采用了1996 年全国自然科学名词审定委员会公布的《物理学名词》和中华人民共和国国家标准GB3100~3102 -93 中规定的法定计量单位本书由马文蔚教授主编由殷实沈才康包刚韦娜编写西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见在此编者致以诚挚的感谢由于编者的水平有限敬请读者批评指正编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科它研究物质运动的各种基本规律.由于不同运动形式具有不同的运动规律从而要用不同的研究方法处理.力学是研究物体机械运动规律的一门学科而机械运动有各种运动形态每一种形态和物体受力情况以及初始状态有密切关系.掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础.但仅仅记住一些公式是远远不够的.求解一个具体物理问题首先应明确研究对象的运动性质选择符合题意的恰当的模型透彻认清物体受力和运动过程的特点等等.根据模型条件和结论之间的逻辑关系运用科学合理的研究方法进而选择一个正确简便的解题切入点在这里思路和方法起着非常重要的作用.1.正确选择物理模型和认识运动过程力学中常有质点质点系刚体等模型.每种模型都有特定的含义适用范围和物理规律.采用何种模型既要考虑问题本身的限制又要注意解决问题的需要.例如用动能定理来处理物体的运动时可把物体抽象为质点模型.而用功能原理来处理时就必须把物体与地球组成一个系统来处理.再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说必须把它视为刚体并用角量和相应规律来进行讨论.在正确选择了物理模型后还必须对运动过程的性质和特点有充分理解如物体所受力矩是恒定的还是变化的质点作一般曲线运动还是作圆周运动等等以此决定解题时采用的解题方法和数学工具.2叠加法叠加原理是物理学中应用非常广泛的一条重要原理据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成.例如质点作一般平面运动时通常可以看成是由两个相互垂直的直线运动叠加而成而对作圆周运动的质点来说其上的外力可按运动轨迹的切向和法向分解其中切向力只改变速度的大小而法向力只改变速度的方向.对刚体平面平行运动来说可以理解为任一时刻它包含了两个运动的叠加一是质心的平动二是绕质心的转动.运动的独立性和叠加性是叠加原理中的两个重要原则掌握若干基本的简单运动的物理规律再运用叠加法就可以使我们化复杂为简单.此外运用叠加法时要注意选择合适的坐标系选择什么样的坐标系就意味着运动将按相应形式分解.在力学中对一般平面曲线运动多采用平面直角坐标系平面圆周运动多采用自然坐标系而对刚体绕定轴转动则采用角坐标系等等.叠加原理在诸如电磁学振动波动等其他领域内都有广泛应用是物理学研究物质运动的一种基本思想和方法需读者在解题过程中不断体会和领悟.3类比法有些不同性质运动的规律具有某些相似性理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性.而且还应在学习中善于发现并充分利用这种相似性以拓宽自己的知识面.例如质点的直线运动和刚体绕定轴转动是两类不同运动但是运动规律却有许多可类比和相似之处如与与其实它们之间只是用角量替换了相应的线量而已这就可由比较熟悉的公式联想到不太熟悉的公式.这种类比不仅运动学有动力学也有如与与与可以看出两类不同运动中各量的对应关系十分明显使我们可以把对质点运动的分析方法移植到刚体转动问题的分析中去.当然移植时必须注意两种运动的区别一个是平动一个是转动状态变化的原因一个是力而另一个是力矩.此外还有许多可以类比的实例如万有引力与库仑力静电场与稳恒磁场电介质的极化与磁介质的磁化等等.只要我们在物理学习中善于归纳类比就可以沟通不同领域内相似物理问题的研究思想和方法并由此及彼触类旁通.4.微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算在力学中较为突出也是初学大学物理课程时遇到的一个困难.要用好微积分这个数学工具首先应在思想上认识到物体在运动过程中反映其运动特征的物理量是随时空的变化而变化的.一般来说它们是时空坐标的函数.运用微积分可求得质点的运动方程和运动状态.这是大学物理和中学物理最显著的区别.例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数.另外对物理量数学表达式进行合理变形就可得出新的物理含义.如由借助积分求和运算可求得在t1 -t2 时间内质点速度的变化同样由也可求得质点的运动方程.以质点运动学为例我们可用微积分把运动学问题归纳如下第一类问题已知运动方程求速度和加速度第二类问题已知质点加速度以及在起始状态时的位矢和速度可求得质点的运动方程.在力学中还有很多这样的关系读者不妨自己归纳整理一下从而学会自觉运用微积分来处理物理问题运用时有以下几个问题需要引起大家的关注1 运用微积分的物理条件.在力学学习中我们会发现和等描述质点运动规律的公式只是式和式在加速度为恒矢量条件下积分后的结果.此外在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题而在大学物理中则主要研究在变力和变力矩作用下的力学问题微积分将成为求解上述问题的主要数学工具.2 如何对矢量函数进行微积分运算.我们知道很多物理量都是矢量如力学中的rvap 等物理量矢量既有大小又有方向从数学角度看它们都是二元函数在大学物理学习中通常结合叠加法进行操作如对一般平面曲线运动可先将矢量在固定直角坐标系中分解分别对xy 轴两个固定方向的分量可视为标量进行微积分运算最后再通过叠加法求得矢量的大小和方向对平面圆周运动则可按切向和法向分解对切线方向上描述大小的物理量atvs 等进行微积分运算.3 积分运算中的分离变量和变量代换问题.以质点在变力作用下作直线运动为例如已知变力表达式和初始状态求质点的速率求解本问题一条路径是由F =m a 求得a的表达式再由式dv = adt 通过积分运算求得v其中如果力为时间t 的显函数则a =a t 此时可两边直接积分即但如果力是速率v 的显函数则a = a v 此时应先作分离变量后再两边积分即又如力是位置x 的显函数则a=a x 此时可利用得并取代原式中的dt再分离变量后两边积分即用变量代换的方法可求得v x 表达式在以上积分中建议采用定积分下限为与积分元对应的初始条件上限则为待求量.5求解力学问题的几条路径综合力学中的定律可归结为三种基本路径即1 动力学方法如问题涉及到加速度此法应首选.运用牛顿定律转动定律以及运动学规律可求得几乎所有的基本力学量求解对象广泛但由于涉及到较多的过程细节对变力矩问题还将用到微积分运算故计算量较大.因而只要问题不涉及加速度则应首先考虑以下路径.2 角动量方法如问题不涉及加速度但涉及时间此法可首选.3 能量方法如问题既不涉及加速度又不涉及时间则应首先考虑用动能定理或功能原理处理问题.当然对复杂问题几种方法应同时考虑.此外三个守恒定律动量守恒能量守恒角动量守恒定律能否成立往往是求解力学问题首先应考虑的问题.总之应学会从不同角度分析与探讨问题.以上只是原则上给出求解力学问题一些基本思想与方法其实求解具体力学问题并无固定模式有时全靠悟性.但这种悟性产生于对物理基本规律的深入理解与物理学方法掌握之中要学会在解题过程中不断总结与思考从而使自己分析问题的能力不断增强.第一章质点运动学1 -1 质点作曲线运动在时刻t 质点的位矢为r速度为v 速率为vt 至 t +Δt 时间内的位移为Δr 路程为Δs 位矢大小的变化量为Δr 或称Δ|r|平均速度为平均速率为.1 根据上述情况则必有A |Δr|Δs ΔrB |Δr|≠Δs ≠Δr当Δt→0 时有|dr| ds ≠ drC |Δr|≠Δr ≠Δs当Δt→0 时有|dr| dr ≠ dsD |Δr|≠Δs ≠Δr当Δt→0 时有|dr| dr ds2 根据上述情况则必有A ||||B ||≠||≠C ||||≠D ||≠||分析与解 1 质点在t 至 t +Δt 时间内沿曲线从P 点运动到P′点各量关系如图所示其中路程Δs =PP′位移大小|Δr|=PP′而Δr =|r|-|r|表示质点位矢大小的变化量三个量的物理含义不同在曲线运动中大小也不相等注在直线运动中有相等的可能.但当Δt→0 时点P′无限趋近P点则有|dr|=ds但却不等于dr.故选 B .2 由于|Δr |≠Δs故即||≠.但由于|dr|=ds故即||=.由此可见应选 C .1 -2 一运动质点在某瞬时位于位矢r xy 的端点处对其速度的大小有四种意见即1 2 3 4 .下述判断正确的是A 只有 1 2 正确B 只有 2 正确C 只有 2 3 正确D 只有 3 4 正确分析与解表示质点到坐标原点的距离随时间的变化率在极坐标系中叫径向速率.通常用符号vr表示这是速度矢量在位矢方向上的一个分量表示速度矢量在自然坐标系中速度大小可用公式计算在直角坐标系中则可由公式求解.故选 D .1 -3 质点作曲线运动r 表示位置矢量 v表示速度a表示加速度s 表示路程 at表示切向加速度.对下列表达式即1 d v dt =a2 drdt =v3 dsdt =v4 d v dt|=at.下述判断正确的是A 只有 1 4 是对的B 只有 2 4 是对的C 只有 2 是对的D 只有 3 是对的分析与解表示切向加速度at它表示速度大小随时间的变化率是加速度矢量沿速度方向的一个分量起改变速度大小的作用在极坐标系中表示径向速率vr 如题1 -2 所述在自然坐标系中表示质点的速率v而表示加速度的大小而不是切向加速度at.因此只有 3 式表达是正确的.故选 D .1 -4 一个质点在做圆周运动时则有A 切向加速度一定改变法向加速度也改变B 切向加速度可能不变法向加速度一定改变C 切向加速度可能不变法向加速度不变D 切向加速度一定改变法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用而法向分量an起改变速度方向的作用.质点作圆周运动时由于速度方向不断改变相应法向加速度的方向也在不断改变因而法向加速度是一定改变的.至于at是否改变则要视质点的速率情况而定.质点作匀速率圆周运动时 at恒为零质点作匀变速率圆周运动时 at为一不为零的恒量当at改变时质点则作一般的变速率圆周运动.由此可见应选 B .1 -5 如图所示湖中有一小船有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0 收绳绳不伸长且湖水静止小船的速率为v则小船作A 匀加速运动B 匀减速运动C 变加速运动D 变减速运动E 匀速直线运动分析与解本题关键是先求得小船速度表达式进而判断运动性质.为此建立如图所示坐标系设定滑轮距水面高度为ht 时刻定滑轮距小船的绳长为l则小船的运动方程为其中绳长l 随时间t 而变化.小船速度式中表示绳长l 随时间的变化率其大小即为v0代入整理后为方向沿x 轴负向.由速度表达式可判断小船作变加速运动.故选 C .讨论有人会将绳子速率v0按xy 两个方向分解则小船速度这样做对吗1 -6 已知质点沿x 轴作直线运动其运动方程为式中x 的单位为mt 的单位为 s.求1 质点在运动开始后40 s内的位移的大小2 质点在该时间内所通过的路程3 t=4 s时质点的速度和加速度.分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到而在求路程时就必须注意到质点在运动过程中可能改变运动方向此时位移的大小和路程就不同了.为此需根据来确定其运动方向改变的时刻tp 求出0~tp 和tp~t 内的位移大小Δx1 Δx2 则t 时间内的路程如图所示至于t =40 s 时质点速度和加速度可用和两式计算.解 1 质点在40 s内位移的大小2 由得知质点的换向时刻为t=0不合题意则所以质点在40 s时间间隔内的路程为3 t=40 s时1 -7 一质点沿x 轴方向作直线运动其速度与时间的关系如图 a 所示.设t=0 时x=0.试根据已知的v-t 图画出a-t 图以及x -t 图.分析根据加速度的定义可知在直线运动中v-t曲线的斜率为加速度的大小图中ABCD 段斜率为定值即匀变速直线运动而线段BC 的斜率为0加速度为零即匀速直线运动.加速度为恒量在a-t 图上是平行于t 轴的直线由v-t 图中求出各段的斜率即可作出a-t 图线.又由速度的定义可知x-t 曲线的斜率为速度的大小.因此匀速直线运动所对应的x -t 图应是一直线而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x t 求出不同时刻t 的位置x采用描数据点的方法可作出x-t 图.解将曲线分为ABBCCD 三个过程它们对应的加速度值分别为匀加速直线运动匀速直线运动匀减速直线运动根据上述结果即可作出质点的a-t 图〔图 B 〕.在匀变速直线运动中有由此可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内质点是作的匀速直线运动其x -t 图是斜率k=20的一段直线〔图 c 〕.1 -8 已知质点的运动方程为式中r 的单位为mt 的单位为s.求1 质点的运动轨迹2 t =0 及t =2s时质点的位矢3 由t =0 到t =2s内质点的位移Δr 和径向增量Δr4 2 s内质点所走过的路程s.分析质点的轨迹方程为y =f x 可由运动方程的两个分量式x t 和y t 中消去t 即可得到.对于rΔrΔrΔs 来说物理含义不同可根据其定义计算.其中对s的求解用到积分方法先在轨迹上任取一段微元ds则最后用积分求s.解 1 由x t 和y t 中消去t 后得质点轨迹方程为这是一个抛物线方程轨迹如图 a 所示.2 将t =0s和t =2s分别代入运动方程可得相应位矢分别为图 a 中的PQ 两点即为t =0s和t =2s时质点所在位置.3 由位移表达式得其中位移大小而径向增量4 如图 B 所示所求Δs 即为图中PQ段长度先在其间任意处取AB 微元ds 则由轨道方程可得代入ds则2s内路程为1 -9 质点的运动方程为式中xy 的单位为mt 的单位为s.试求 1 初速度的大小和方向 2 加速度的大小和方向.分析由运动方程的分量式可分别求出速度加速度的分量再由运动合成算出速度和加速度的大小和方向.解 1 速度的分量式为当t =0 时 vox =-10 ms-1 voy =15 ms-1 则初速度大小为设vo与x 轴的夹角为α则α=123°41′2 加速度的分量式为则加速度的大小为设a 与x 轴的夹角为β则β=-33°41′或326°19′1 -10 一升降机以加速度122 ms-2上升当上升速度为244 ms-1时有一螺丝自升降机的天花板上松脱天花板与升降机的底面相距274 m.计算 1 螺丝从天花板落到底面所需要的时间 2 螺丝相对升降机外固定柱子的下降距离.分析在升降机与螺丝之间有相对运动的情况下一种处理方法是取地面为参考系分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动列出这两种运动在同一坐标系中的运动方程y1 =y1 t 和y2 =y2 t 并考虑它们相遇即位矢相同这一条件问题即可解另一种方法是取升降机或螺丝为参考系这时螺丝或升降机相对它作匀加速运动但是此加速度应该是相对加速度.升降机厢的高度就是螺丝或升降机运动的路程.解 1 1 以地面为参考系取如图所示的坐标系升降机与螺丝的运动方程分别为当螺丝落至底面时有y1 =y2 即2 螺丝相对升降机外固定柱子下降的距离为解2 1 以升降机为参考系此时螺丝相对它的加速度大小a′=g +a螺丝落至底面时有2 由于升降机在t 时间内上升的高度为则1 -11 一质点P 沿半径R =30 m的圆周作匀速率运动运动一周所需时间为200s设t =0 时质点位于O 点.按 a 图中所示Oxy 坐标系求 1 质点P 在任意时刻的位矢2 5s时的速度和加速度.分析该题属于运动学的第一类问题即已知运动方程r =r t 求质点运动的一切信息如位置矢量位移速度加速度.在确定运动方程时若取以点 03 为原点的O′x′y′坐标系并采用参数方程x′=x′ t 和y′=y′ t 来表示圆周运动是比较方便的.然后运用坐标变换x =x0 +x′和y =y0 +y′将所得参数方程转换至Oxy 坐标系中即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 1 如图 B 所示在O′x′y′坐标系中因则质点P 的参数方程为坐标变换后在Oxy 坐标系中有则质点P 的位矢方程为2 5s时的速度和加速度分别为1 -12 地面上垂直竖立一高200 m 的旗杆已知正午时分太阳在旗杆的正上方求在下午2∶00 时杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至200 m分析为求杆顶在地面上影子速度的大小必须建立影长与时间的函数关系即影子端点的位矢方程.根据几何关系影长可通过太阳光线对地转动的角速度求得.由于运动的相对性太阳光线对地转动的角速度也就是地球自转的角速度.这样影子端点的位矢方程和速度均可求得.解设太阳光线对地转动的角速度为ω从正午时分开始计时则杆的影长为s=htgωt下午2∶00 时杆顶在地面上影子的速度大小为当杆长等于影长时即s =h则即为下午3∶00 时.1 -13 质点沿直线运动加速度a=4 -t2 式中a的单位为ms-2 t的单位为s.如果当t =3s时x=9 mv =2 ms-1 求质点的运动方程.分析本题属于运动学第二类问题即已知加速度求速度和运动方程必须在给定条件下用积分方法解决.由和可得和.如a=a t 或v =v t 则可两边直接积分.如果a 或v不是时间t 的显函数则应经过诸如分离变量或变量代换等数学操作后再做积分.解由分析知应有得 1由得 2将t=3s时x=9 mv=2 ms-1代入 1 2 得v0=-1 ms-1x0=075 m.于是可得质点运动方程为1 -14 一石子从空中由静止下落由于空气阻力石子并非作自由落体运动现测得其加速度a=A -Bv式中AB 为正恒量求石子下落的速度和运动方程.分析本题亦属于运动学第二类问题与上题不同之处在于加速度是速度v 的函数因此需将式dv =a v dt 分离变量为后再两边积分.解选取石子下落方向为y 轴正向下落起点为坐标原点.1 由题意知 1用分离变量法把式 1 改写为2将式 2 两边积分并考虑初始条件有得石子速度由此可知当t→∞时为一常量通常称为极限速度或收尾速度.2 再由并考虑初始条件有得石子运动方程1 -15 一质点具有恒定加速度a =6i +4j式中a的单位为ms-2 .在t =0时其速度为零位置矢量r0 =10 mi.求 1 在任意时刻的速度和位置矢量 2 质点在Oxy 平面上的轨迹方程并画出轨迹的示意图.分析与上两题不同处在于质点作平面曲线运动根据叠加原理求解时需根据加速度的两个分量ax 和ay分别积分从而得到运动方程r的两个分量式x t 和y t .由于本题中质点加速度为恒矢量故两次积分后所得运动方程为固定形式即和两个分运动均为匀变速直线运动.读者不妨自己验证一下.。

物理学(第五版)上册答案

物理学(第五版)上册答案

4-1 分析与解 力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).4-2 分析与解 刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).4-3 分析与解 如图所示,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位置,重力矩最大,当棒处于竖直位置时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C).4-4 分析与解 对于圆盘一子弹系统来说,并无外力矩作用,故系统对轴O 的角动量守恒,故L 不变,此时应有下式成立,即ωJ ωJ d m d m =+-00v v式中mv D 为子弹对点O 的角动量ω0 为圆盘初始角速度,J 为子弹留在盘中后系统对轴O 的转动惯量,J 0为子弹射入前盘对轴O 的转动惯量.由于J >J 0 ,则ω<ω0 .故选(C).4-5 分析与解 由于卫星一直受到万有引力作用,故其动量不可能守恒,但由于万有引力一直指向地球中心,则万有引力对地球中心的力矩为零,故卫星对地球中心的角动星守恒,即r ×mv =恒量,式中r 为地球中心指向卫星的位矢.当卫星处于椭圆轨道上不同位置时,由于|r |不同,由角动量守恒知卫星速率不同,其中当卫星处于近地点时速率最大,处于远地点时速率最小,故卫星动能并不守恒,但由万有引力为保守力,则卫星的机械能守恒,即卫星动能与万有引力势能之和维持不变,由此可见,应选(B).4-6 分析 这是刚体的运动学问题.刚体定轴转动的运动学规律与质点的运动学规律有类似的关系,本题为匀变速转动.解 (1) 由于角速度ω=2π n (n 为单位时间内的转数),根据角加速度的定义tωαd d =,在匀变速转动中角加速度为 ()200s rad 1.13π2-⋅=-=-=tn n t ωωα (2) 发动机曲轴转过的角度为()0020π221n n t ωωt αt ωθ-=-=+= 在12 s 内曲轴转过的圈数为3902π20=+==t n n θN 4-7 分析 与质点运动学相似,刚体定轴转动的运动学问题也可分为两类:(1) 由转动的运动方程,通过求导得到角速度、角加速度;(2) 在确定的初始条件下,由角速度、角加速度通过积分得到转动的运动方程.本题由ω=ω(t )出发,分别通过求导和积分得到电动机的角加速度和6.0 s 内转过的圈数.解 (1) 根据题意中转速随时间的变化关系,将t =6.0 s 代入,即得()10/0s 6.895.01--==-=ωe ωωηt(2) 角速度随时间变化的规律为 ()22//0s rad e 5.4e d d ---⋅===t ηt ηωt ωα (3) t =6.0 s 时转过的角度为()rad 9.36d 1d /60060=-==-⎰⎰t e ωt ωθηt 则t =6.0 s 时电动机转过的圈数87.5π2/==θN 圈4-8 分析 如将原子视为质点,则水分子中的氧原子对AA ′轴和BB ′ 轴的转动惯量均为零,因此计算水分子对两个轴的转动惯量时,只需考虑氢原子即可.解 由图可得θd m J H A A 22sin 2='θd m J H B B 22cos 2='此二式相加,可得22d m J J H B B A A =+'' 则 m 1059.9211-''⨯=+=HB B A A m J J d 由二式相比,可得θJ J B B A A 2tan /='' 则 o 3.521.141.93arctan arctan===''B B A A J J θ 4-9 分析 根据转动惯量的可叠加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;而匀质圆盘、圆柱体对轴的转动惯量的计算可查书中公式,或根据转动惯量的定义,用简单的积分计算得到.解 根据转动惯量的叠加性,由匀质圆盘、圆柱体对轴的转动惯量公式可得2424122221121m kg 136.021π161 2212212⋅=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯=+=ad ld ρd m d m J J J4-10 分析 由于转动惯量的可加性,求解第一问可有两种方法:一是由定义式m r J d 2⎰=计算,式中d m 可取半径为r 、宽度为d r 窄圆环;二是用补偿法可将剩余部分的转动惯量看成是原大圆盘和挖去的小圆盘对同一轴的转动惯量的差值.至于第二问需用到平行轴定理.解 挖去后的圆盘如图(b)所示.(1) 解1 由分析知22/3222/2203215d 2 d π2πd mR r r R m r r R m r m r J R R RR ====⎰⎰⎰ 解2 整个圆盘对OO 轴转动惯量为2121mR J =,挖去的小圆盘对OO 轴转动惯量2222232122ππ21mR R R R m J =⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=,由分析知,剩余部分对OO 轴的转动惯量为 22103215mR J J J =-= (2) 由平行轴定理,剩余部分对O ′O ′轴的转动惯量为22222032392ππ3215mR R R R m m mR J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅-+=' 4-11 分析 在运动过程中,飞轮和重物的运动形式是不同的.飞轮作定轴转动,而重物是作落体运动,它们之间有着内在的联系.由于绳子不可伸长,并且质量可以忽略.这样,飞轮的转动惯量,就可根据转动定律和牛顿定律联合来确定,其中重物的加速度,可通过它下落时的匀加速运动规律来确定.该题也可用功能关系来处理.将飞轮、重物和地球视为系统,绳子张力作用于飞轮、重物的功之和为零,系统的机械能守恒.利用匀加速运动的路程、速度和加速度关系,以及线速度和角速度的关系,代入机械能守恒方程中即可解得.解1 设绳子的拉力为F T,对飞轮而言,根据转动定律,有αJ R F T = (1)而对重物而言,由牛顿定律,有ma F mg T =- (2)由于绳子不可伸长,因此,有αR a = (3)重物作匀加速下落,则有221at h = (4) 由上述各式可解得飞轮的转动惯量为⎪⎪⎭⎫ ⎝⎛-=1222h gt mR J 解2 根据系统的机械能守恒定律,有0212122=++-ωJ m mgh v (1′) 而线速度和角速度的关系为ωR =v (2′)又根据重物作匀加速运动时,有at =v (3′)ah 22=v (4′)由上述各式可得⎪⎪⎭⎫ ⎝⎛-=1222h gt mR J 若轴承处存在摩擦,上述测量转动惯量的方法仍可采用.这时,只需通过用两个不同质量的重物做两次测量即可消除摩擦力矩带来的影响.4-12 分析 由于作用在飞轮上的力矩是恒力矩,因此,根据转动定律可知,飞轮的角加速度是一恒量;又由匀变速转动中角加速度与时间的关系,可解出飞轮所经历的时间.该题还可应用角动量定理直接求解.解1 在匀变速转动中,角加速度tωωα0-=,由转动定律αJ M =,可得飞轮所经历的时间 ()s 8.10200=-=-=n n MJ πJ M ωωt 解2 飞轮在恒外力矩作用下,根据角动量定理,有()00d ωωJ t M t-=⎰ 则 ()s 8.10π200=-=-=n n MJ J M ωωt 4-13 分析 该系统的运动包含圆柱体的转动和悬挂物的下落运动(平动).两种不同的运动形式应依据不同的动力学方程去求解,但是,两物体的运动由柔绳相联系,它们运动量之间的联系可由角量与线量的关系得到.解 (1) 分别作两物体的受力分析,如图(b).对实心圆柱体而言,由转动定律得αr m αJ r F T 2121== 对悬挂物体而言,依据牛顿定律,有a m F g m F P T T 222='-='-且F T =F T′ .又由角量与线量之间的关系,得 αr a =解上述方程组,可得物体下落的加速度21222m m g m a += 在t =1.0 s 时,B 下落的距离为m 45.222121222=+==m m gt m at s (2) 由式(2)可得绳中的张力为()N 2.3922121=+=-=g m m m m a g m F T4-14 分析 由于组合轮是一整体,它的转动惯量是两轮转动惯量之和,它所受的力矩是两绳索张力矩的矢量和(注意两力矩的方向不同).对平动的物体和转动的组合轮分别列出动力学方程,结合角加速度和线加速度之间的关系即可解得.解 分别对两物体及组合轮作受力分析,如图(b).根据质点的牛顿定律和刚体的转动定律,有111111a m F g m F P T T=-='- (1) 222222a m g m F P F T T =-=-' (2)()αJ J r F R F T T 2121+=- (3)11T T F F =',22T T F F =' (4)由角加速度和线加速度之间的关系,有αR a =1 (5)αr a =2 (6)解上述方程组,可得gR r m R m J J r m R m a 222121211+++-= gr rm R m J J r m R m a 222121212+++-= g m r m R m J J Rr m r m J J F T 1222121221211++++++= g m r m R m J J Rr m R m J J F T 2222121121212++++++=4-15 分析 这是连接体的动力学问题,对于这类问题仍采用隔离体的方法,从受力分析着手,然后列出各物体在不同运动形式下的动力学方程.物体A 和B 可视为质点,则运用牛顿定律.由于绳与滑轮间无滑动,滑轮两边绳中的张力是不同的,滑轮在力矩作用下产生定轴转动,因此,对滑轮必须运用刚体的定轴转动定律.列出动力学方程,并考虑到角量与线量之间的关系,即能解出结果来.解 作A 、B 和滑轮的受力分析,如图(b).其中A 是在张力F T1 、重力P 1 ,支持力F N 和摩擦力F f 的作用下运动,根据牛顿定律,沿斜面方向有11111cos sin a m θg m μθg m F T =-- (1)而B 则是在张力F T2 和重力P 2 的作用下运动,有2222a m F g m T =- (2)由于绳子不能伸长、绳与轮之间无滑动,则有αr a a ==21 (3)对滑轮而言,根据定轴转动定律有αJ r F r F T T ='-'12 (4)11T T F F =',22T T F F =' (5)解上述各方程可得22111221cos sin rJ m m θg m μθg m g m a a ++--== ()()22121211//cos sin cos sin 1rJ m m r gJ m θμθθμθg m m F T ++++++= ()22122212//cos sin 1rJ m m r gJ m θμθg m m F T +++++= 4-16 分析 飞轮的制动是闸瓦对它的摩擦力矩作用的结果,因此,由飞轮的转动规律可确定制动时所需的摩擦力矩.但是,摩擦力矩的产生与大小,是由闸瓦与飞轮之间的正压力F N 决定的,而此力又是由制动力F 通过杠杆作用来实现的.所以,制动力可以通过杠杆的力矩平衡来求出.解 飞轮和闸杆的受力分析,如图(b)所示.根据闸杆的力矩平衡,有()0121='-+l F l l F N而NN F F '=,则闸瓦作用于轮的摩擦力矩为 d μF l l l d μF d F M N 121f 2212+=== (1) 摩擦力矩是恒力矩,飞轮作匀角加速转动,由转动的运动规律,有 tn t ωt ωωαπ200==-= (2) 因飞轮的质量集中于轮缘,它绕轴的转动惯量4/2md J=,根据转动定律αJ M =,由式(1)、(2)可得制动力()N 1014.32211⨯=+=tl l μnmdl πF 4-17 分析 转动圆盘在平板上能逐渐停止下来是由于平板对其摩擦力矩作用的结果.由于圆盘各部分所受的摩擦力的力臂不同,总的摩擦力矩应是各部分摩擦力矩的积分.为此,可考虑将圆盘分割成许多同心圆环,取半径为r 、宽为d r 的圆环为面元,环所受摩擦力dF f =2πr μmgd r /πR 2 ,其方向均与环的半径垂直,因此,该圆环的摩擦力矩d M =r ×d F f ,其方向沿转动轴,则圆盘所受的总摩擦力矩M =∫ d M .这样,总的摩擦力矩的计算就可通过积分来完成.由于摩擦力矩是恒力矩,则由角动量定理M Δt =Δ(Jω),可求得圆盘停止前所经历的时间Δt .当然也可由转动定律求解得.解 (1) 由分析可知,圆盘上半径为r 、宽度为d r 的同心圆环所受的摩擦力矩为()k F r M 22f /d 2d R r mg μr d -=⨯=式中k 为轴向的单位矢量.圆盘所受的总摩擦力矩大小为 mgR μr R mg μr M M R32d 2d 022===⎰⎰(2) 由于摩擦力矩是一恒力矩,圆盘的转动惯量J =mR 2/2 .由角动量定理M Δt =Δ(Jω),可得圆盘停止的时间为gμR ωM ωJ t 43Δ== 4-18 分析 由于空气的阻力矩与角速度成正比,由转动定律可知,在变力矩作用下,通风机叶片的转动是变角加速转动,因此,在讨论转动的运动学关系时,必须从角加速度和角速度的定义出发,通过积分的方法去解.解 (1) 通风机叶片所受的阻力矩为M =-Cω,由转动定律M =Jα,可得叶片的角加速度为JωC t ωα-==d d (1) 根据初始条件对式(1)积分,有t J C ωωt ωωd d 00⎰⎰-= 由于C 和J 均为常量,得J Ct e ωω/0-= (2)当角速度由ω0 → 12 ω0 时,转动所需的时间为2ln CJ t = (2) 根据初始条件对式(2)积分,有 t e ωθJ Ct t θd d /000-⎰⎰= 即CωJ θ20= 在时间t 内所转过的圈数为 CωJ θN π4π20== 4-19 分析 由于棒的质量不计,该系统对z 轴的角动量即为两小球对z 轴的角动量之和,首先可求出系统对z 轴的转动惯量(若考虑棒的质量,其转动惯量为多少,读者可自己想一想),系统所受合外力矩既可以运用角动量定理,也可用转动定律来求解.相比之下,前者对本题更直接.解 (1) 两小球对z 轴的转动惯量为()()222sin 2sin 22αl m αl m mr J ===,则系统对z 轴的角动量为 ()αe ωml mr ωJ L t 2022sin 122--===此处也可先求出每个小球对z 轴的角动量后再求和.(2) 由角动量定理得 ()[]αe ωml t t L M t 202sin 12d d d d --==t e αωml -=202sin 2 t =0时,合外力矩为αωml M 202sin 2=此处也可先求解系统绕z 轴的角加速度表达式,即t e ωtωα-==0d d ,再由M =Jα求得M . 4-20 分析 盘边缘裂开时,小碎块以原有的切向速度作上抛运动,由质点运动学规律可求得上抛的最大高度.此外,在碎块与盘分离的过程中,满足角动量守恒条件,由角动量守恒定律可计算破裂后盘的角动量.解 (1) 碎块抛出时的初速度为R ω=0v由于碎块竖直上抛运动,它所能到达的高度为gR ωg h 222220==v (2) 圆盘在裂开的过程中,其角动量守恒,故有L L L '-=0 式中ωR m L 221'=为圆盘未碎时的角动量;ωmR L 2='为碎块被视为质点时,碎块对轴的角动量;L 为破裂后盘的角动量.则ωR m m L 221⎪⎭⎫ ⎝⎛-'= 4-21 分析 子弹与杆相互作用的瞬间,可将子弹视为绕轴的转动.这样,子弹射入杆前的角速度可表示为ω,子弹陷入杆后,它们将一起以角速度ω′ 转动.若将子弹和杆视为系统,因系统不受外力矩作用,故系统的角动量守恒.由角动量守恒定律可解得杆的角速度.解 根据角动量守恒定理()ωJ J ωJ '+=212式中()2222/l m J =为子弹绕轴的转动惯量,J 2ω为子弹在陷入杆前的角动量,ω=2v/l 为子弹在此刻绕轴的角速度.12/211l m J =为杆绕轴的转动惯量.可得杆的角速度为()1212212s 1.2936-=+=+='m m m J J ωJ ωv 4-22 分析 两伞型轮在啮合过程中存在着相互作用力,这对力分别作用在两轮上,并各自产生不同方向的力矩,对转动的轮Ⅰ而言是阻力矩,而对原静止的轮Ⅱ则是启动力矩.由于相互作用的时间很短,虽然作用力的位置知道,但作用力大小无法得知,因此,力矩是未知的.但是,其作用的效果可从轮的转动状态的变化来分析.对两轮分别应用角动量定理,并考虑到啮合后它们有相同的线速度,这样,啮合后它们各自的角速度就能求出.解 设相互作用力为F ,在啮合的短时间Δt 内,根据角动量定理,对轮Ⅰ、轮Ⅱ分别有()0111ΔωωJ t F r -=- (1)222ΔωJ t F r = (2)两轮啮合后应有相同的线速度,故有2211ωr ωr = (3)由上述各式可解得啮合后两轮的角速度分别为21022*******r ωJ r J r ωJ ω+= 4-23 分析 小孩与转台作为一定轴转动系统,人与转台之间的相互作用力为内力,沿竖直轴方向不受外力矩作用,故系统的角动量守恒.在应用角动量守恒时,必须注意人和转台的角速度ω、ω0 都是相对于地面而言的,而人相对于转台的角速度ω1 应满足相对角速度的关系式10ωωω+= .解 由相对角速度的关系,人相对地面的角速度为Rωωωωv +=+=010 由于系统初始是静止的,根据系统的角动量守恒定律,有()010100=++ωωJ ωJ式中J 0 、J 1 =mR 2 分别为转台、人对转台中心轴的转动惯量.由式(1)、(2)可得转台的角速度为122020s 1052.9--⨯-=+-=RmR J mR ωv 式中负号表示转台转动的方向与人对地面的转动方向相反.4-24 分析 对转动系统而言,随着砂粒的下落,系统的转动惯量发生了改变.但是,砂粒下落对转台不产生力矩的作用,因此,系统在转动过程中的角动量是守恒的.在时间t 内落至台面的砂粒的质量,可由其流量求出,从而可算出它所引起的附加的转动惯量.这样,转台在不同时刻的角速度就可由角动量守恒定律求出.解 在时间0→10 s 内落至台面的砂粒的质量为kg 10.0Qd s100==⎰t m 根据系统的角动量守恒定律,有()ωmr J ωJ 2000+=则t =10 s 时,转台的角速度 112000s π80.0-=+=J mrJ ωJ ω4-25 分析 将飞船与喷出的气体作为研究系统,在喷气过程中,系统不受外力矩作用,其角动量守恒.在列出方程时应注意:(1) 由于喷气质量远小于飞船质量,喷气前、后系统的角动量近似为飞船的角动量J ω;(2) 喷气过程中气流速率u 远大于飞船侧面的线速度ωr ,因此,整个喷气过程中,气流相对于空间的速率仍可近似看作是 u ,这样,排出气体的总角动量()mur m r ωu m≈+⎰d .经上述处理后,可使问题大大简化. 解 取飞船和喷出的气体为系统,根据角动量守恒定律,有0=-mur ωJ (1)因喷气的流量恒定,故有Qt m 2= (2)由式(1)、(2)可得喷气的喷射时间为s 67.22==QurωJ t 4-26 分析 对蜘蛛和转台所组成的转动系统而言,在蜘蛛下落至转台面以及慢慢向中心爬移过程中,均未受到外力矩的作用,故系统的角动量守恒.应该注意的是,蜘蛛爬行过程中,其转动惯量是在不断改变的.由系统的角动量守恒定律即可求解.解 (1) 蜘蛛垂直下落至转台边缘时,由系统的角动量守恒定律,有()b a ωJ J ωJ 100+= 式中2021R m J '=为转台对其中心轴的转动惯量,21mR J =为蜘蛛刚落至台面边缘时,它对轴的转动惯量.于是可得 a a b ωmm m ωJ J J ω2100+''=+= (2) 在蜘蛛向中心轴处慢慢爬行的过程中,其转动惯量将随半径r 而改变,即22mr J =.在此过程中,由系统角动量守恒,有()c a ωJ J ωJ 100+=4-27 分析 该题属于常见的刚体转动问题,可分为两个过程来讨论:(1) 瞬间的打击过程.在瞬间外力的打击下,棒受到外力矩的角冲量,根据角动量定理,棒的角动量将发生变化,则获得一定的角速度.(2) 棒的转动过程.由于棒和地球所组成的系统,除重力(保守内力)外无其他外力做功,因此系统的机械能守恒,根据机械能守恒定律,可求得棒的偏转角度.解 (1) 由刚体的角动量定理得120s m kg 0.2d -⋅⋅====⎰t ΔFl t M ωJ L Δ(2) 取棒和地球为一系统,并选O 处为重力势能零点.在转动过程中,系统的机械能守恒,即()θmgl ωJ cos 1212120-= 由式(1)、(2)可得棒的偏转角度为8388Δ31arccos o 222'=⎪⎪⎭⎫ ⎝⎛-=gl m t F θ 4-28 分析 当人造卫星在绕地球的椭圆轨道上运行时,只受到有心力———万有引力的作用.因此,卫星在运行过程中角动量是守恒的,同时该力对地球和卫星组成的系统而言,又是属于保守内力,因此,系统又满足机械能守恒定律.根据上述两条守恒定律可求出卫星在近地点和远地点时的速率.解 由于卫星在近地点和远地点处的速度方向与椭圆径矢垂直,因此,由角动量守恒定律有2211v v mr mr = (1)又因卫星与地球系统的机械能守恒,故有2221212121r Gmm m r Gmm m E E -=-v v (2) 式中G 为引力常量,m E 和m 分别为地球和卫星的质量,r 1 和r 2 是卫星在近地点和远地点时离地球中心的距离.由式(1)、(2)可解得卫星在近地点和远地点的速率分别为 ()1321121s m 1011.8-⋅⨯=+=r r r r Gm E v 131212s m 1031.6-⋅⨯==v v r r 4-29 分析 由于地球自转一周的时间为24 小时,由ω=2π/T 可确定地球的自转角速度和地球自转时的转动动能E k =12 Jω2 .随着自转周期的增加,相应自转的角速度将减小,因而转动动能也将减少.通过对上述两式微分的方法,可得到动能的减少量ΔE k 与周期的变化ΔT 的关系.根据动能定理可知,地球转动动能的减少是潮汐力矩作功的结果,因此,由K E θM W ΔΔ==,即可求出潮汐的平均力矩.解 (1) 地球的质量m E =5.98 ×1024 kg ,半径R =6.37 ×106 m ,所以,地球自转的动能J 1012.2/33.0221292222⨯=⨯==T R m πωJ E E K(2) 对式Tωπ2=两边微分,可得 T T ωd π2d 2-= 当周期变化一定量时,有T ωT T ωΔπ2Δπ2Δ22-=-= (1) 由于地球自转减慢而引起动能的减少量为T E ωT J ωωωJ E K K ΔπΔπ2ΔΔ3-=-== (2) 又根据动能定理K E θM W ΔΔ== (3)由式(2)、(3)可得潮汐的摩擦力矩为m N 1047.7π2Δ22⋅⨯==-nT ωE M K 式中n 为一年中的天数(n =365),ΔT 为一天中周期的增加量.4-30 分析 沿轴向的拉力对小球不产生力矩,因此,小球在水平面上转动的过程中不受外力矩作用,其角动量应保持不变.但是,外力改变了小球圆周运动的半径,也改变了小球的转动惯量,从而改变了小球的角速度.至于拉力所作的功,可根据动能定理由小球动能的变化得到.解 (1) 根据分析,小球在转动的过程中,角动量保持守恒,故有式中J 0 和J 1 分别是小球在半径为r 0 和12 r 0 时对轴的转动惯量,即1100ωJ ωJ =式中J 0 和J 1 分别是小球在半径为r 0 和1/2 r 0 时对轴的转动惯量,即200mr J =和20141mr J =,则 00014ωωJ J ω==(2) 随着小球转动角速度的增加,其转动动能也增加,这正是拉力作功的结果.由转动的动能定理可得拉力的功为2020200211232121ωmr ωJ ωJ W =-= 4-31 分析 转动定律M =Jα是一瞬时关系式,为求棒在不同位置的角加速度,只需确定棒所在位置的力矩就可求得.由于重力矩()θl mg θM cos 2=是变力矩,角加速度也是变化的,因此,在求角速度时,就必须根据角加速度用积分的方法来计算(也可根据转动中的动能定理,通过计算变力矩的功来求).至于棒下落到竖直位置时的动能和角速度,可采用系统的机械能守恒定律来解,这是因为棒与地球所组成的系统中,只有重力作功(转轴处的支持力不作功),因此,系统的机械能守恒.解 (1) 棒绕端点的转动惯量231ml J =由转动定律M =Jα可得棒在θ 位置时的角加速度为 ()lθg J θM α2cos 3== 当θ =60°时,棒转动的角加速度2s 418-=.α 由于θωωt ωαd d d d ==,根据初始条件对式(1)积分,有 ⎰⎰=o6000d d θαωωω则角速度为 1600s 98.7sin 3o-==l θg ω(2) 根据机械能守恒,棒下落至竖直位置时的动能为J 98.021==mgl E K (3) 由于该动能也就是转动动能,即221ωJ E K =,所以,棒落至竖直位置时的角速度为 1s 57.832-==='lg J E ωK 4-32 分析 两飞轮在轴方向啮合时,轴向力不产生转动力矩,两飞轮系统的角动量守恒,由此可求得B 轮的转动惯量.根据两飞轮在啮合前后转动动能的变化,即可得到啮合过程中机械能的损失.解 (1) 取两飞轮为系统,根据系统的角动量守恒,有()22111ωJ J ωJ +=则B 轮的转动惯量为2122112212m kg 0.20⋅=-=-=J n n n J ωωωJ (2) 系统在啮合过程中机械能的变化为 ()J 1032.12121Δ42112221⨯-=-+=ωJ ωJ J E式中负号表示啮合过程中机械能减少.4-33 分析 该题与习题3 -30 的不同之处在于:(1) 子弹与摆锤的相互作用过程不再满足动量守恒,而应属于角动量守恒,这是因为细棒和摆锤是一整体,子弹与摆锤相互作用时,轴对杆有水平方向的分力作用,因此,对子弹与摆组成的系统而言,不能满足动量守恒的条件.但是,轴对杆的作用力和杆所受的重力对转动都不产生力矩,系统角动量守恒的条件却能满足.(2) 摆在转动过程中,就地球与摆组成的系统而言,满足机械能守恒定律.摆锤恰能通过最高点所需的速度,可直接应用机械能守恒定律去解.摆是刚体,摆锤与轴心之间的距离不可能发生改变.摆锤开始转动时的动能必须大于或等于转至最高点处所增加的势能.解 取子弹与摆为系统,根据系统的角动量守恒,有()032112ωJ J l J l J ++⎪⎭⎫ ⎝⎛=v v (1) 式中21ml J =、22l m J '=和2331l m J '=分别为子弹、摆锤和杆对轴的转动惯量. 根据摆在转动过程中机械能守恒,有()()⎪⎭⎫ ⎝⎛'+'='++l g m l g m gl m ωJ J 23221212032 (2) 由式(1)、(2)可得子弹速度的最小值为gl nm 24'=v 4-34 分析 虽然小球在环中作圆周运动,但由于环的转动,使球的运动规律复杂化了.由于应用守恒定律是解决力学问题最直接而又简便的方法,故以环和小球组成的转动系统来分析.在小球下滑的过程中,重力是系统仅有的外力,由于它与转轴平行,不产生外力矩,因此,该系统对轴的角动量守恒.若以小球位于点A 、B 处为初、末两状态,由角动量守恒定律可解得小球在点B 时环的角速度ωB .在进一步求解小球在点B 处相对环的速度v B 时,如果仍取上述系统,则因重力(属外力)对系统要作功而使系统的机械能不守恒;若改取小球与地球为系统,也因环对小球的作用力在转动过程中作功,而使系统的机械能守恒仍不能成立;只有取环、小球与地球为系统时,系统才不受外力作用,而重力为保守内力,环与球的相互作用力虽不属保守内力,但这一对力所作功的总和为零,因此系统的机械能守恒.根据两守恒定律可解所需的结果.但必须注意:在计算系统的动能时,既有环的转动动能,又有小球对地的动能(它可视为小球随环一起转动的转动动能2221B ωmr 与小球相对于环运动的动能221B m v 之和). 解 以环和小球为转动系统,由系统的角动量守恒有()B ωmR J ωJ 2000+= (1)取环、小球与地球为系统时,由系统的机械能守恒可得()2220200212121B B m ωmR J mgR ωJ v ++=+ (2) 由式(1)、(2) 可解得小球在B 点时,环的角速度与小球相对于环的线速度分别为2000mR J ωJ ωB += 2022002mR J R ωJ gR B ++=v 小球在C 点时,由于总的转动惯量不变,用同样的方法可得环的角速度和小球相对于环的速度分别为 0ωωC =gR C 4=v4-35 分析 取飞船及两质点A 、B 为系统,在运行时,系统不受合外力矩作用,该系统的角动量守恒.若在运行过程中通过系统内的相互作用,改变其质量分布,使系统的角动量只存在于两质点上,此时,飞船的角动量为零,即飞船停止了转动.又因为在运行过程中合外力的功亦为零,且又无非保守内力作功,所以,系统也满足机械能守恒.当轻线恰好拉直时质点的角速度与飞船停止转动时质点的角速度相等时,连线的长度也就能够求出.解 飞船绕其中心轴的转动惯量为2121R m J '=,两质点在起始时和轻线割断瞬间的转动惯量分别为222mR J =和()222l R m J +='.由于过程中系统的角动量守恒,为使轻线沿径向拉直时,飞船转动正好停止,则有()()ωl R m ωJ J '+=+2212 (1)又根据过程中系统的机械能守恒,有()()2222122121ωl R m ωJ J '+=+ (2) 由上述两式可解得⎪⎪⎭⎫ ⎝⎛-'+=141m m R l 4-36 分析 该题可分两个过程来分析.(1)子弹与滑块撞击的过程.因滑块所系的是轻质弹簧(质量不计),因此,子弹射入滑块可视为质点系的完全非弹性碰撞过程.沿子弹运动方向上外力的冲量为零,所以,系统在撞击过程中满足动量守恒,由此,可求出它们碰撞后的速度 v ′.(2) 子弹与滑块碰后以共同速度运动时,由于弹簧不断伸长,滑块在受到指向固定点的弹力的作用下作弧线运动.对滑块的运动而言,该弹力为有心力,不产生力矩,因而滑块在运动中满足角动量守恒;与此同时,对滑块、弹簧所组成的系统也满足机械能守恒.这样,当弹簧伸长至l 时的滑块速度v 的大小和方向就可通过三条守恒定律求得.解 子弹射入滑块瞬间,因属非弹性碰撞,根据动量守恒定律有()v v '+'=m m m 0 (1)在弹簧的弹力作用下,滑块与子弹一起运动的过程中,若将弹簧包括在系统内,则系统满足机械能守恒定律,有。

普通物理学第五版第8章静电场答案

普通物理学第五版第8章静电场答案

2
代入得到:
x
=
q
(2π
2l 0 mg
)1
3
题号 结束
(1)若 l =1.20m, m =10g, x = 5.0cm
求: q
ε 解:
从式 x
=
(2πq
2l 0 mg
)1
3
得到:
ε q
=
(2π
0 mg x l
)3 1
2
=±2.38×10-8C
(2)若
dq dt
=1.0×10-9C/s
求:
dx dt
2.0 x2
5.0 + (x +0.10)2
(V/m)
题号 结束
(2)在-0.10<x <0区间
ε E2 =
1

0
q2 (x +0.10)2
q1 x2
=
9×104
5.0 (x +0.10)2
2.0 x2
(V/m)
(3)在<x <-0.10区间
ε E3 =
1

0
q1 x2
q2 (x +0.10)2
q2
C
B
题号 结束
已知: q1 =1.8×10-9C,q2= -4.8×10-6C、 BC = 0.04m,AC = 0.03m。
求:Ec 。
A
ε E1
=

q1 0 (AC
)2
q1
=
9×109×(
1.8×10-9 3.0×10-2
)
2
C
E2
q2 B
=1.8×104 V/m
E1

程守洙《普通物理学》(第5版)笔记和课后习题(含考研真题)详解(静止电荷的电场)【圣才出品】

程守洙《普通物理学》(第5版)笔记和课后习题(含考研真题)详解(静止电荷的电场)【圣才出品】
旋度处处为零的场称为无旋场,否则就是有源场。 综合静电场的高斯定理和环路定理可知,静电场是有源无旋场。
三、电场叠加原理、电势叠加原理 1..电场叠加原理 电场叠加原理是指点电荷在空间任一点所激发的总电场强度等于各个点电荷单独存在 时在该点各自所激发的电场强度的矢量和,即
说明:电场叠加原理的得出是根据力叠加的结果,一般利用该原理来求某点的总场强,
异号电荷相吸,数学形式可表示为
式中,真空介电常数为
2.高斯定理 高斯定理是指在静电场中,通过任一闭合曲面的 E 通量,等于该曲面内电荷量的代数
和除以 0 ,即
说明:当电荷分布具有某些特殊的对称性,从而使相应的电场的分布也具有一定的对 称性时,就有可能应用高斯定理来计算电场强度。
有介质时静电场的高斯定理:在有介质存在的静电场中,通过任意闭合曲面 S 的电位 移通量(D 通量)等于该曲面包围的自由电荷的代数和,即
高斯定理的微分形式 (1)真空中静电场
5 / 100
圣才电子书

十万种考研考证电子书、题库视频学习平

gE qi
0
(2)介质中
gD 0
3.静电场中环路定理 静电场环路定理是在静电场中,静电场力做功与路径无关,场强沿任一闭合路径的线 积分恒等于零,即
微分形式为
E 0
3 / 100
圣才电子书
十万种考研考证电子书、题库视频学习平


①若源电荷为有限大小的电荷,一般规定无限远处的电势为零,这样,正电荷产生的
电场中各点的电势均为正值,负电荷产生的电场均为负值;
②若对于无限扩展的源电荷(如无限长直导线等),不能将电势零点选在无限远处,只
能选择在有限区域内的任一点(直导线外的任一点);

程守洙《普通物理学》(第5版)(上册)课后习题-电磁感应 电磁场理论(圣才出品)

程守洙《普通物理学》(第5版)(上册)课后习题-电磁感应 电磁场理论(圣才出品)

第9章电磁感应电磁场理论9-1如图9-1所示,通过回路的磁感应线与线圈平面垂直,且指向图面,设磁通量依如下关系变化:φ=6t2+7t+1式中φ的单位为mWb,t的单位为s.求t=2时,回路中的感生电动势的量值和方向.图9-1解:由题意可知,回路中的感生电动势为:当时,电动势为:,方向为逆时针方向(即与设定的回路绕行t s2方向相反).9-2在两平行导线的平面内,有一矩形线圈,如图9-2所示.如导线中电流,随时间变化,试计算线圈中的感生电动势.图9-2解:根据题意建立坐标系,取坐标轴Ox,如图9-3所示.图9-3两电流在x处的磁感应强度大小为:,方向垂直纸面向里.取顺时针为回路的绕行方向,通过面元dS=l1dx的磁通量为:通过矩形线圈的磁通量为:矩形线圈中的感生电动势为:.9-3如图9-4所示,具有相同轴线的两个导线回路,小的回路在大的回路上面距离y 处,y远大于回路的半径R,因此当大回路中有电流,按图示方向流过时,小回路所围面积πr2之内的磁场几乎是均匀的.现假定y以匀速v=dy/dt而变化.(1)试确定穿过小回路的磁通量φ和y之间的关系;(2)当y=NR时(N为整数),小回路内产生的感生电动势;(3)若v>0,确定小回路内感应电流的方向.图9-4解:(1)根据导电线圈轴线上的磁感应强度分布,可得大回路在小回路处产生的磁感应强度:.由题意知,因此在距离大线圈平面y处的磁场可近似为均匀磁场,其次感应强度,则穿过小回路中的磁通量和y之间的关系为:.(2)小回路内产生的感生电动势为:.(3)由榜次定律可判定,当从上向下看时小回路的感应电流为逆时针方向.9-4PM和MN两段导线,其长均为10cm,在M处相接成30°角,若使导线在均匀磁场中以速度v=15m/s运动,方向如图9-5所示,磁场方向垂直纸面向内,磁感应强度为B=25×10-2T,问P、N两端之间的电势差为多少?哪一端电势高?图9-5解:由题意可知,P、N两端之间产生的动生电动势为:即运动导线上P端的电势高,N端电势低.9-5一均匀磁场与矩形导体回路面法线单位矢量e n间的夹角为θ=π/3(如图9-6),已知磁感应强度B随时间线性增加,即B=kt(k>0),回路的MN边长为l,以速度V向右运动,设t=0时,MN边在x=0处.求任意时刻回路中感应电动势的大小和方向.图9-6解:如图9-6所示,回路的面法线e n表明,回路的绕行方向为逆时针,则回路中感应电动势为:.又由题意知:则回路中感应电动势:方向由M指向N,即沿顺时针方向.9-6如图9-7所示,一长直导线通有电流,I=0.5A,在与其相距d=5.0cm处放有一矩形线圈,共1000匝.线圈以速度v=3.0m/s沿垂直于长导线的方向向右运动时,线圈中的动生电动势是多少?(设线圈长l=4.0cm,宽b=2.0cm.)图9-7解:由题意可知,线圈中的动生电动势为:.9-7如图9-8所示,导线MN在导线架上以速度V向右滑动.已知导线MN的长为50cm,V=4.0m/s,R=0.20Ω,磁感应强度B=0.50T,方向垂直于回路平面.试求:(1)MN运动时所产生的动生电动势;(2)电阻R上所消耗的功率;(3)磁场作用在MN上的力.图9-8解:(1)导线上产生的电动势为:.(2)电阻R上所消耗的功率为:.(3)由安培定理,可得回路中电流:导线MN上的安培力:,方向向左.9-8如图9-9所示,PQ和MN为两根金属棒,各长1m,电阻都是R=4Ω,放置在均匀磁场中,已知B=2T,方向垂直纸面向里.当两根金属棒在导轨上分别以v1=4m/s 和v2=2m/s的速度向左运动时,忽略导轨的电阻,试求:(1)两棒中动生电动势的大小和方向,并在图上标出;(2)金属棒两端的电势差;(3)两金属棒中点O1和O2之间的电势差.。

大学普通物理学习题答案-第十一章-恒定电流与恒定磁场

大学普通物理学习题答案-第十一章-恒定电流与恒定磁场

第十一章恒定电流与恒定磁场一、选择题1.如图11-1所示,有两根载有相同电流的无限长直导线,分别通过x1=1m、x2=3m的点,且平行于y轴,则磁感应强度B等于零的地方是()。

A.x=2m的直线上B.在x>2m的区域C.在x<1m的区域D.不在x、y平面上图11-11.【答案】A。

解析:根据对称性可得,两条载流导线在x=2m的直线上产生的磁感应强度大小相等;用右手螺旋定则可判断两磁感应强度的方向相反,相互抵消,合磁感应强度为零,故选A。

2.图11-2中6根无限长导线互相绝缘,通过电流均为I,区域Ⅰ、Ⅰ、Ⅰ、Ⅰ均为全等的正方形,哪一个区域指向纸内的磁通量最大()。

A. Ⅰ区域B. Ⅰ区域C. Ⅰ区域D. Ⅰ区域2.【答案】B。

解析:通过Ⅰ区域的磁通量为0,通过Ⅰ区城的磁通量最大且指向纸内,通过Ⅰ区域的磁通量最大但指向纸外,通过IV区域的磁通量为0。

故选B。

3.如图11-3所示,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知()。

A.d 0LB l ⋅=⎰,且环路上任意一点B =0 B.d 0LB l ⋅=⎰,且环路上任意一点B ≠0 C.d 0LB l ⋅≠⎰,且环路上任意一点B ≠0 D.d 0LB l ⋅≠⎰,且环路上任意一点B =常量3.【答案】B 。

解析:根据安培环路定理,闭合回路内没有电流穿过,所以环路积分等于0.但是由于圆形电流的存在,环路上任意一点的磁感应强度都不等于0。

故选B 。

4.无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r>R )的磁感应强度为B e ,则有:()。

A.B i 、B e 均与r 成正比B.B i 、B e 均与r 成反比C.B i 与r 成反比,B e 与r 成正比D.B i 与r 成正比,B e 与r 成反比4.【答案】B 。

解析:导体横截面上的电流密度2πR I J =,以圆柱体轴线为圆心,半径为r 的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=;当r <R ,I r B e ⋅=⋅0π2μ,rIB e π20μ=;所以选D 。

普通物理学第五版第9章导体和电介质中的静电场章答案

普通物理学第五版第9章导体和电介质中的静电场章答案
´ EΔ S = EΔ S
结束 目录
在静电平衡时,内侧的合场强(导体内 部)应为零。 E内 = E1 + EΔ S = E1 EΔ S =0 ´
1E E1 = EΔ S = 2
F =σ Δ S E1 = σ Δ S eFra bibliotek202
结束 目录
9-4 一质量为 m、面积为S 的均质薄金 属盘 ,放置在一无限大导体平板上,平板 水平放置,最初盘和平板都不带电,然后逐 渐使它们带电。问电荷面密度增加到何值 时,金属盘将离开平板。
2
结束 目录
证:在导体表面取面元 Δ S 面元上电荷面密度为: σ
ΔS
σ 面元外侧场强为:E = e 0
E 内 =0 内侧场强: 面元外侧场强可视为面元Δ S在外侧所产 生的场强和导体其余部分电荷所产生的场 强E1之和,即: E = E1 + EΔ S
σ
面元Δ S还将在内侧所产生场强 EΔ S ´ 且
结束 目录
解:(1)内球电势为 1 q1 q1 q1+Q U1 = 4pe0 R1 R2 + R2
1×10-10 1×10-10 12×10-10 = 9.0×109 1×10-2 3×10-2 + 4×10-2 =3.3×102(V)
外球电势
q1 +Q 12×10-10 U2 = = 9.0×109× 4×10-2 4pe0 R3 =2.7×102(V)
q
q
d +q
结束 目录
q E+ =E = 4pe0 r2 E表面 = 2E+ cosq 2q cosq = 2 4pe0 r
E 表面
E+ E q r
q
σ E .dS = E表面 S cos1800 s E表面 Sσ =e 0 e0 E表面 = e0 q 2 cosq σ = 2pe0 r q d =r cosq = cos3q 2pd2

程守洙《普通物理学》(第5版)辅导系列(课后习题-13-15章)【圣才出品】

程守洙《普通物理学》(第5版)辅导系列(课后习题-13-15章)【圣才出品】

解:由光电效应方程
,可得光电子的最大初动能为:
由最大初动能与遏止电势差的关系可得遏止电势差:
由逸出功与红限关系
,可得铝的红限波长

13-10 能引起人眼视觉的最小光强约为 10-12 W/m2,如瞳孔的面积约为 0.5×10-4 m2,计算每秒平均有几个光子进入瞳孔到达视网膜上。设光的平均波长为 550 nm。
解:设钨丝灯的辐射面积(黑体辐射面积)为 S,由斯特藩-玻尔兹曼定律,可得钨丝

(3)曲线与横坐标轴的交点为该金属的红限频率,即
时,
可得红限频率
,红限波长
。 。
7 / 104
圣才电子书 十万种考研考证电子书、题库视频学习平台

13-9 铝的逸出功为 4.2 eV。今用波长为 200 nm 的紫外光照射到铝表面上,发射的
光电子的最大初动能为多少?遏止电势差为多大?铝的红限波长是多大?
画出遏止电势差与入射光频率的曲线,并求出: (1)普朗克常量 h;(2)该金属的逸出功;(3)该金属的光电效应红限和频率。 解:(1)利用真空中 关系,将实验数据转换为关系,如表 13-1 所示,画出的实验 曲线如图 13-1 所示。
表 13-1
6 / 104
圣才电子书 十万种考研考证电子书、题库视频学习平台
试求在 500~501 nm 的微小波长范围内单位时间从小孔辐射出来的能量。
解:由普朗克公式,在
波长范围内,小圆孔单位面积的辐出度为:
4 / 104
圣才电子书 十万种考研考证电子书、题库视频学习平台

设 S 为小圆孔的面积,则从小圆孔辐射的功率(单位时间辐射的能量) 其中,
解:设最小光强为 I,瞳孔的面积为 S,每秒平均进入瞳孔的光子数为 N,单位时间内 垂直进入瞳孔单位面积的平均光子数为 n。

物理学答案(第五版,上册)马文蔚

物理学答案(第五版,上册)马文蔚

7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。

7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π (C )αB r cos π22(D ) αB r cos π2分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( ) (A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B =(B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B =(C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠(D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。

普通物理学第13章习题答案

普通物理学第13章习题答案

13-14
13-22 13-30 13-38
13-15
13-23 13-31 13-39
13-13
13-24 13-32 13-40
结束
习题总目录
13-1 AB和BC两段导线,其长均为10 cm,在B处相接成300角,若使导线在均匀 磁场中以速度v =1.5m/s运动,方向如图, 磁场方向垂直纸面向内,磁感应强度为B = 2.5×10-2 T。问A、C 两端之间的电势差为 多少?哪一端电势高。
× A ×
× ×
× C ×
× ×
× ×× 1
×
×
×
×
o1
×
× B
×
v× 2
×
×
×
×
×
×
×
×
× D
o2
×
×

×
×
×
8 4 I= = =1(A) R R 4 4 1 R R´= = × 4 =2(W) 2 2
结束 目录
(2) UA + eAB I R´ = UB UBA = eAB I R´ =8-2=6(V) UDC = eCD + I R´ =4+2=6(V) (3) Δ UO1O2 =0
0 0 0 0 0
结束 目录
13-6 如图所示,导线AB在导线架上以 速度 v 向右滑动。已知导线AB 的长为50 cm, v =4.0m/s, R = 0.20 W,磁感应强度B =0.50T,方向垂直回路平面。试求: (1)AB运动时所产生的动生电动势; (2)电阻R上所 × × × × × × × × A 消耗的功率 × × × × × × × × (3)磁场作用在 × × × × × × × × B R AB上的力。 × × × × × × ×v ×

普通物理学第五版普通物理学第五版10恒定电流课后习题答案

普通物理学第五版普通物理学第五版10恒定电流课后习题答案
结束 目录
解:r1=0.5cm ,r2=1.0cm,L=1000m,
r =1.0×1012C/m3
dR =ρ
dr 2prL
R =
ρ
2pL
r2 r1
dr r
=
ρ
2pL
ln
r2 r1
=
1.0×1012
2p×1000
ln 1.0
0.5
=1.1×108 (W)
结束 目录
10-9 为了节约用铜,将导线改用铝线, 由于铝线的强度不够,通常以铜作为“芯 线”。设有铜芯铝皮的电缆1000m,已知
结束 目录
解: L2 = 10L1
L1S1 = L2S2 = 10L1S2
S1=10S2
R1=ρ
L1 S1
R2=ρ
L2 S2
R1 R2
=
L1S2 L2S1
=
L1S2 10L1 ×10S2
=
1 100
R1 =
R2 100
=
75 100
=
0.75
(W)
Hale Waihona Puke 结束 目录10-8 电缆的芯线是半径为r1=0.5cm的铜线, 在铜线外面包一层同轴的绝缘层,绝缘层的外半
(1)在2=24,内有恒定电流通过导线; (2)在2=245内电流均匀地减少到零; (3)电流按每经过245减小一半的规律一 直减到零。
= +
×
(
R2 R2r 2 r2 e0 er 12×12×12×=12×102(m2/m2)
a bc d e fg h i jk l m no pq r s t u v w x yz
如尸·=LOOA,U',=2·loV,作同样的计算, (2)按图(b)的接法,安培计的读数为乃=2·40 A,伏特计的读数为叭二7·20V·试求由于在计 算电阻值时因未将通过伏特计申的电流计算

物理学(第五版)马文蔚重点习题答案

物理学(第五版)马文蔚重点习题答案

1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有((B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r )(2) 根据上述情况,则必有( (C) |v |= v ,|v |≠ v )1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是((D) 只有(3)(4)正确 )1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是(D) 只有(3)是对的 )1 -4 一个质点在做圆周运动时,则有( )(B) 切向加速度可能不变,法向加速度一定改变1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x (2) 由0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意) 则m 0.8Δ021=-=x x x m 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v vv得石子速度 )1(Bt e BA --=v 由此可知当,t →∞时,BA →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t eB A y t Bt y d )1(d 00⎰⎰--=得石子运动方程)1(2-+=-Bt e BA tB A y a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2 y =2t 2 消去参数t ,可得运动的轨迹方程 3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度 j i r r 0.60.2ΔΔ1212-=--==t t t r v(3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv 1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈? 解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v ==1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n 2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t 此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足h l αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan221v v v -= 而要使hlαarctan ≥,则h l θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v2-1(D)g cot θ2 -2 (A) 不为零,但保持不变2 -3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率(C 不得大于 )2 -4 (B) 它受到的轨道的作用力的大小不断增加2 -5 (A) 5\8 mg2 -8 如图(a)所示,已知两物体A 、B 的质量均为m =3.0kg 物体A 以加速度a =1.0 m·s-2 运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有m A g -F T =m A a (1)F ′T1 -F f =m B a ′ (2)F ′T -2F T1 =0 (3) 考虑到m A =m B =m , F T =F′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N a m m mg F 2724f .=+-=2 -10 如图(a)所示,在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析 维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力F N 的分力来提供的,由于支持力F N 始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底的高度.解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程θωmR ma θF n N sin sin 2== (1)mg θF N =cos (2) 且有 ()Rh R θ-=cos (3) 由上述各式可解得钢球距碗底的高度为2ωg R h -= 可见,h 随ω的变化而变化. 2 -14 一质量为10 kg 的质点在力F 的作用下沿x 轴作直线运动,已知F =120t +40,式中F 的单位为N,t 的单位的s.在t =0 时,质点位于x =5.0 m 处,其速度v 0=6.0 m·s-1 .求质点在任意时刻的速度和位置.解 因加速度a =d v /d t ,在直线运动中,根据牛顿运动定律有tm t d d 40120v =+ 依据质点运动的初始条件,即t 0 =0 时v 0 =6.0 m·s-1 ,运用分离变量法对上式积分,得()⎰⎰+=tt t 0d 0.40.12d 0v v v v =6.0+4.0t+6.0t 2又因v =d x /d t ,并由质点运动的初始条件:t 0 =0 时x 0 =5.0 m,对上式分离变量后积分,有()⎰⎰++=t x x t t t x 020d 0.60.40.6dx =5.0+6.0t+2.0t 2 +2.0t 32 -18 一质量为m 的小球最初位于如图(a)所示的A 点,然后沿半径为r 的光滑圆轨道ADCB 下滑.试求小球到达点C 时的角速度和对圆轨道的作用力.解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得tm αmg F t d d sin v =-= (1) Rm m αmg F F N n 2cos v =-= (2) 由tαr t s d d d d ==v ,得v αr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有()⎰⎰-=αααrg o 090d sin d vv v v得 αrg cos 2=v 则小球在点C 的角速度为r αg rω/cos 2==v 由式(2)得 αmg αmg rm m F N cos 3cos 2=+=v 由此可得小球对圆轨道的作用力为αmg F F N Ncos 3-=-=' 负号表示F ′N 与e n 反向.2 -22 质量为m 的摩托车,在恒定的牵引力F 的作用下工作,它所受的阻力与其速率的平方成正比,它能达到的最大速率是v m .试计算从静止加速到v m /2所需的时间以及所走过的路程.解 设摩托车沿x 轴正方向运动,在牵引力F 和阻力F r 同时作用下,由牛顿定律有tm k F d d 2v v =- (1) 当加速度a =d v /d t =0 时,摩托车的速率最大,因此可得k =F/v m 2 (2)由式(1)和式(2)可得t m F m d d 122v v v =⎪⎪⎭⎫ ⎝⎛- (3) 根据始末条件对式(3)积分,有⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m tF m t v v v v 2101220d 1d则 3ln 2F m t m v =又因式(3)中xm t m d d d d v v v =,再利用始末条件对式(3)积分,有 ⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m x F m x v v v v 2101220d 1d则 Fm F m x m m 22144.034ln 2v v ≈= 3 -1 对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.3 -2 有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则( D) 物块和斜面组成的系统水平方向上动量守恒3 -3 对功的概念有以下几种说法:(2) 质点运动经一闭合路径,保守力对质点作的功为零;3 -4 (D) 动量守恒,机械能不一定守恒3 -5 (C) 子弹动能的减少等于子弹克服木块阻力所作的功3 -8 F x =30+4t (式中F x 的单位为N,t 的单位为s)的合外力作用在质量m =10 kg 的物体上,试求:(1) 在开始2s 内此力的冲量;(2) 若冲量I =300 N·s,此力作用的时间;(3) 若物体的初速度v 1 =10 m·s -1 ,方向与Fx 相同,在t =6.86s 时,此物体的速度v 2 .解 (1) 由分析知()s N 68230d 43020220⋅=+=+=⎰t t t t I (2) 由I =300 =30t +2t 2 ,解此方程可得t =6.86 s(另一解不合题意已舍去)(3) 由动量定理,有I =m v 2- m v 1由(2)可知t =6.86 s 时I =300 N·s ,将I 、m 及v 1代入可得112s m 40-⋅=+=mm I v v 3 -12 一作斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距离地面为19.6 m .爆炸1.00 s 后,第一块落到爆炸点正下方的地面上,此处距抛出点的水平距离为1.00×102 m .问第二块落在距抛出点多远的地面上.(设空气的阻力不计)解 取如图示坐标,根据抛体运动的规律,爆炸前,物体在最高点A 的速度的水平分量为hg x t x x 21010==v (1)物体爆炸后,第一块碎片竖直落下的运动方程为21121gt t h y --=v 当该碎片落地时,有y 1 =0,t =t 1 ,则由上式得爆炸后第一块碎片抛出的速度12121t gt h -=v (2) 又根据动量守恒定律,在最高点处有 x x m m 2021v v = (3) y m m 2121210v v +-= (4) 联立解式(1)、(2)、(3) 和(4),可得爆炸后第二块碎片抛出时的速度分量分别为1102s m 100222-⋅===hg x x x v v 112112s m 7.1421-⋅=-==t gt h y v v 爆炸后,第二块碎片作斜抛运动,其运动方程为2212t v x x x += (5)2222221gt t h y y -+=v (6) 落地时,y 2 =0,由式(5)、(6)可解得第二块碎片落地点的水平位置x 2 =500 m3 -19 一物体在介质中按规律x =ct 3 作直线运动,c 为一常量.设介质对物体的阻力正比于速度的平方.试求物体由x 0 =0 运动到x =l 时,阻力所作的功.(已知阻力系数为k )解 由运动学方程x =ct 3 ,可得物体的速度23d d ct tx ==v 按题意及上述关系,物体所受阻力的大小为3/43/242299x kc t kc k F ===v则阻力的功为⎰⋅=xF W d 3/73/23/403/20727d 9d 180cos d l kc x x kc x W l o l -=-==⋅=⎰⎰⎰x F 3 -20 一人从10.0 m 深的井中提水,起始桶中装有10.0 kg 的水,由于水桶漏水,每升高1.00 m 要漏去0.20 kg 的水.水桶被匀速地从井中提到井口,求所作的功.解 水桶在匀速上提过程中,a =0,拉力与水桶重力平衡,有F +P =0在图示所取坐标下,水桶重力随位置的变化关系为P =mg -αgy其中α=0.2 kg/m,人对水桶的拉力的功为()J 882d d 1000=-=⋅=⎰⎰y agy mg W l y F3 -24 如图(a)所示,有一自动卸货矿车,满载时的质量为m′,从与水平成倾角α=30.0°斜面上的点A 由静止下滑.设斜面对车的阻力为车重的0.25 倍,矿车下滑距离l 时,与缓冲弹簧一道沿斜面运动.当矿车使弹簧产生最大压缩形变时,矿车自动卸货,然后矿车借助弹簧的弹性力作用,使之返回原位置A 再装货.试问要完成这一过程,空载时与满载时车的质量之比应为多大?解 取沿斜面向上为x 轴正方向.弹簧被压缩到最大形变时弹簧上端为坐标原点O .矿车在下滑和上行的全过程中,按题意,摩擦力所作的功为W f =(0.25mg +0.25m′g )(l +x ) (1)式中m ′和m 分别为矿车满载和空载时的质量,x 为弹簧最大被压缩量. 根据功能原理,在矿车运动的全过程中,摩擦力所作的功应等于系统机械能增量的负值,故有W f =-ΔE =-(ΔE P +ΔE k )由于矿车返回原位时速度为零,故ΔE k=0;而ΔE P =(m -m′) g (l +x ) sin α,故有W f =-(m -m′) g (l +x ) sin α (2)由式(1)、(2)可解得31='m m 3 -26 一质量为m 的地球卫星,沿半径为3R E 的圆轨道运动,RE 为地球的半径.已知地球的质量为m E .求:(1) 卫星的动能;(2) 卫星的引力势能;(3) 卫星的机械能.解 (1) 卫星与地球之间的万有引力提供卫星作圆周运动的向心力,由牛顿定律可得()E 22E E 33R m R m m G v = 则 EE 2K 621R m m G m E ==v (2) 取卫星与地球相距无限远(r→∞)时的势能为零,则处在轨道上的卫星所具有的势能为EE P 3R m m GE -= (3) 卫星的机械能为 EE E E E E P K 636R m m G R m m G R m m G E E E -=-=+= 3 -33 如图所示,一质量为m ′的物块放置在斜面的最底端A 处,斜面的倾角为α,高度为h ,物块与斜面的动摩擦因数为μ,今有一质量为m 的子弹以速度v 0 沿水平方向射入物块并留在其中,且使物块沿斜面向上滑动.求物块滑出顶端时的速度大小.解 在子弹与物块的撞击过程中,在沿斜面的方向上,根据动量守恒有()10cos v m m αmv '+= (1)在物块上滑的过程中,若令物块刚滑出斜面顶端时的速度为v 2 ,并取A 点的重力势能为零.由系统的功能原理可得()αh αg m m μsin cos '+- ()()()21222121v v m m gh m m m m '+-'++'+=(2) 由式(1)、(2)可得 ()1cot 2cos 202+-⎪⎭⎫ ⎝⎛'+=αμgh αm m m v v 4 -1 有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零. 对上述说法下述判断正确的是(B(1)、(2)正确,(3)、(4)错误 ) 4 -2 关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;4 -3 (C ) 角速度从小到大,角加速度从大到小(C ) L 不变,ω减小4 -6 一汽车发动机曲轴的转速在12 s 内由1.2×103 r·min -1均匀的增加到2.7×103 r·min -1.(1) 求曲轴转动的角加速度;(2) 在此时间内,曲轴转了多少转?解 (1) 由于角速度ω=2π n (n 为单位时间内的转数),根据角加速度的定义tωαd d =,在匀变速转动中角加速度为 ()200s rad 1.13π2-⋅=-=-=tn n t ωωα (2) 发动机曲轴转过的角度为()0020π221n n t ωωt αt ωθ-=-=+= 在12 s 内曲轴转过的圈数为3902π20=+==t n n θN 圈 4 -13 如图(a ) 所示,质量m 1 =16 kg 的实心圆柱体A ,其半径为r =15 cm ,可以绕其固定水平轴转动,阻力忽略不计.一条轻的柔绳绕在圆柱体上,其另一端系一个质量m 2 =8.0 kg 的物体B .求:(1) 物体B 由静止开始下降1.0 s 后的距离;(2) 绳的张力F T .解 (1) 分别作两物体的受力分析,如图(b ).对实心圆柱体而言,由转动定律得αr m αJ r F T 2121== 对悬挂物体而言,依据牛顿定律,有a m F g m F P T T 222='-='- 且F T =F T′ .又由角量与线量之间的关系,得αr a =解上述方程组,可得物体下落的加速度 21222m m g m a += 在t =1.0 s 时,B 下落的距离为m 45.222121222=+==m m gt m at s (2) 由式(2)可得绳中的张力为()N 2.3922121=+=-=g m m m m a g m F T 4 -14 质量为m 1 和m 2 的两物体A 、B 分别悬挂在图(a )所示的组合轮两端.设两轮的半径分别为R 和r ,两轮的转动惯量分别为J 1 和J 2 ,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计.试求两物体的加速度和绳的张力.解 分别对两物体及组合轮作受力分析,如图(b ).根据质点的牛顿定律和刚体的转动定律,有111111a m F g m F P T T =-='- (1)222222a m g m F P F T T =-=-' (2)()αJ J r F R F T T 2121+=- (3)11T T F F =',22T T F F =' (4)由角加速度和线加速度之间的关系,有αR a =1 (5)αr a =2 (6)解上述方程组,可得gR rm R m J J r m R m a 222121211+++-= gr r m R m J J r m R m a 222121212+++-= g m rm R m J J Rr m r m J J F T 1222121221211++++++= g m rm R m J J Rr m R m J J F T 2222121121212++++++= 4 -21 在光滑的水平面上有一木杆,其质量m 1 =1.0 kg ,长l =40cm ,可绕通过其中点并与之垂直的轴转动.一质量为m 2 =10g 的子弹,以v =2.0×102 m · s -1 的速度射入杆端,其方向与杆及轴正交.若子弹陷入杆中,试求所得到的角速度.解 根据角动量守恒定理 ()ωJ J ωJ '+=212式中()2222/l m J =为子弹绕轴的转动惯量,J 2ω为子弹在陷入杆前的角动量,ω=2v/l 为子弹在此刻绕轴的角速度.12/211l m J =为杆绕轴的转动惯量.可得杆的角速度为 ()1212212s 1.2936-=+=+='m m m J J ωJ ωv 4 -27 一质量为1.12 kg ,长为1.0 m 的均匀细棒,支点在棒的上端点,开始时棒自由悬挂.以100 N 的力打击它的下端点,打击时间为0.02 s .(1) 若打击前棒是静止的,求打击时其角动量的变化;(2) 棒的最大偏转角.解 (1) 由刚体的角动量定理得120s m kg 0.2d -⋅⋅====⎰t ΔFl t M ωJ L Δ(2) 取棒和地球为一系统,并选O 处为重力势能零点.在转动过程中,系统的机械能守恒,即()θmgl ωJ cos 1212120-= 由式(1)、(2)可得棒的偏转角度为8388Δ31arccos o 222'=⎪⎪⎭⎫ ⎝⎛-=gl m t F θ 4 -30 如图所示,一质量为m 的小球由一绳索系着,以角速度ω0 在无摩擦的水平面上,作半径为r 0 的圆周运动.如果在绳的另一端作用一竖直向下的拉力,使小球作半径为r 0/2 的圆周运动.试求:(1) 小球新的角速度;(2) 拉力所作的功.解 (1) 根据分析,小球在转动的过程中,角动量保持守恒,故有式中J 0 和J 1 分别是小球在半径为r 0 和12 r 0 时对轴的转动惯量,即1100ωJ ωJ =式中J 0 和J 1 分别是小球在半径为r 0 和1/2 r 0 时对轴的转动惯量,即200mr J =和20141mr J =,则 00014ωωJ J ω== (2) 随着小球转动角速度的增加,其转动动能也增加,这正是拉力作功的结果.由转动的动能定理可得拉力的功为2020200211232121ωmr ωJ ωJ W =-= 4 -31 质量为0.50 kg ,长为0.40 m 的均匀细棒,可绕垂直于棒的一端的水平轴转动.如将此棒放在水平位置,然后任其落下,求:(1) 当棒转过60°时的角加速度和角速度;(2) 下落到竖直位置时的动能;(3) 下落到竖直位置时的角速度.解 (1) 棒绕端点的转动惯量231ml J =由转动定律M =Jα可得棒在θ 位置时的角加速度为 ()lθg J θM α2cos 3== 当θ =60°时,棒转动的角加速度2s 418-=.α 由于θωωt ωαd d d d ==,根据初始条件对式(1)积分,有 ⎰⎰=o 6000d d θαωωω则角速度为 1600s 98.7sin 3o-==l θg ω(2) 根据机械能守恒,棒下落至竖直位置时的动能为J 98.021==mgl E K (3) 由于该动能也就是转动动能,即221ωJ E K =,所以,棒落至竖直位置时的角速度为1s 57.832-==='lg J E ωK 5 -2 下列说法正确的是(B )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 5 -3 下列说法正确的是( D )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C ) 电势为零的点,电场强度也一定为零(D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零 5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为N 1092.1π3π4920220212⨯===aεe r εq q F F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r QεE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r QεE +=若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d证 (1) 延长线上一点P 的电场强度⎰'=L r πεqE 202d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εqαE L d π4d sin 2⎰'=利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41Lr rεQrx L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度rελL r L Q r εE l 0220π2 /41/π21lim=+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()ii E E E x r x r ελx r x ελ-=⎪⎪⎭⎫⎝⎛-+=+=+-00000π211π2(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+-显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引. 5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度()12E kx E +E =i +j (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即0==DEFG OABC ΦΦ.而()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有22a E ABGF CDEO -=-=ΦΦ同理 ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E因此,整个立方体表面的电场强度通量3ka ==∑ΦΦ5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面内无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4rR R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故2013π4r εQ E =r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故20214π4rεQ Q E +=电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量230234π4ΔεσR εQ E E E ==-=这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .解 作同轴圆柱面为高斯面,根据高斯定理 ∑=⋅0/π2εq rL Er <R 1 ,0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,L λq =∑rελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===这与5 -20 题分析讨论的结果一致.5 -27 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?解1 (1) 由高斯定理可求得电场分布()()()22021321201211π4π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r+=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞lE l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r+=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞lE l E当r ≥R 2 时,有rεQ Q V r02133π4d +=⋅=⎰∞l E(2) 两个球面间的电势差⎪⎪⎭⎫⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-==5 -29 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.解 (1) 带电圆环激发的电势220d π2π41d xr rr σεV +=由电势叠加,轴线上任一点P 的电势的()x x Rεσxr r r εσV R-+=+=⎰22222d 2 (1)(2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 1691=V -1m V 5607⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεqV 1-20m V 5649π4⋅==xεq E由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.5 -30 两个很长的共轴圆柱面(R 1 =3.0×10-2 m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题5 -21 的结果,可得两圆柱面之间的电场强度为rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 7475π2-⋅==rελE 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( A )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结束
目录
再计算两半无限长
z
直线电流的磁场B ´
sinβ 1 =
a x 2+ a 2
I aβ 1 x
sinβ 2 = sin900 =1
B´x = B´y=0
B ´= B´z=

m 0I
4πx
(sinβ
2
sinβ 1 )
=
m 0I
2πx
(1
a) x 2+ a 2
= 15.2×10-7 T
y
.
P
x
结束 目录
=
10×10×4π×10-7
2×0.2
=31.4×10-5 T
BB
=
NB m 0IB 2RA
=
20×5×4π×10-7
2×0.1
=6.28×10-5 T
B = BA2 +BB2 =7.0×10-4 T
q
=
arc
tg
Ba BB
=
26.60
结束 目录
11-13 电流均匀地流过宽度为 b 的无限 长平面导体薄板,电流为 I ,沿板长方向流 动。求:
(1)通过立方体上阴影面积的磁通量; (2)通过立方体六面的总通量。
y B
ol
lx
z
l
结束 目录
已知:l =0.15m B = ( 6i +3j +1.5k ) T
求:Φ
y
解:(1) B = ( 6i +3j +1.5k )
B
S = l 2 i = 0.15 2 i
Φ= B.S
o
l lx
z
l
=( 6i +3j +1.5k ). ( 0.15 2 i )
=
3 3m0I
4πh
B
0
=
3B
1
=
9 3m
4πh
0
I
结束 目录
11-7 一正方形的线圈边长为 l,载有电 流I
(1)求线圈轴线上离线圈中心为 x 处的 磁感应强度;
(2)如果 l = 8.0cm, I = 5.0A, x =10 cm, 则 B 值是多少?
P.
x
l
I
结束 目录
已知:I , l , x 解:
= 0.135Wb
(2) Φ´= 0
结束 目录
11-4 两根长直导线互相平行地放置在 真空中,如图所示,其中通以同向的电流 I1 = I2 =10A 。试求:P点的磁感应强度。 已知 PI1 =PI2 =0.5m ,PI1垂直于PI2。
P
I1
I2
结束 目录
已知:I1 = I2 = 10A 求:B P 解:
x 2+ l 2 2
B1=
m 0I
4πa
(sinβ
2
sinβ 1 )
=
m 0I

1 x 2+ l 2
×2× 4
l2 x 2+ l 2 2
=

x
2+
m0I l l2 4 .
x 2+ l 2 2
结束 目录
B1 =

x
2+
m0I l l2 4 .
x 2+ l 2 2
sinq
=
l2 a
=
l2 x 2+ l 2
2 m 0I
2πl
×4m
R 0I
=
82
π2
l
I
P1 (b) 目录
11-11 一密绕的圆形线圈,直径是0.4 m,线圈中通有电流 2.5A 时,在线圈中心 处的 B =1.26×10-4 T。问线圈有多少匝?
结束 目录
解:
B
=
Nm0 2R
I
N
=
2RB m0I
=
2× 0.2×1.26×10-4 4π×10-7×2.5
BP=19.8×10-7 T
a
=atc
tg
Bx Bz+B z´
=5.70
结束 目录
11-9 两根长直导线沿半径方向引到铁环 上A、B 两点,并与很远的电源相连,如图 所示。求:环中心的磁感应强度。
AI
O
BI
结束 目录
解:
π B
1=
m 4
I0 1 r2
l 1dl
0
π B
2=
m 4
I0 2 r2
结束 目录
已知:B = 1 Wb/m2 S =2m 2
求:Φ
解:
(1)Φyz = B . S = BS =1×2=2Wb
(2)Φxz = B . S = BS cos 900 (3)Φy = B . S = BS cos 45 0
=1×2 ×
2 2
=1.41Wb z
y n
450 x
结束 目录
11-3 一边长为l =0.15m 的立方体如图 放置,有一均匀磁场B = (6i +3j +1.5k) T 通过立方体所在区域,计算
结束
目录
dBy
=
μ oI
4π r
3
x
a
sinq
d
q
By
=μ4πoI
a r
x
3
π
π2 sinqdq = 0
2
dBz =
μ oI
4π r
3
x
acosq
d
q
Bz =
μ oI a x
4π r 3
π
2
π
cosq
d
q
2
=
μ oI a x
4π r 3
×2
=
μ oI a x
2π x 2+a2 3
2 =-4.5×10-7 T
(2) Φ´= B . S = BS cos 300
= 4×10-5×1×
3 2
= 3.46×10-5 Wb
Φ´´= 3.46×10-5 Wb
结束 目录
11-2 设一均匀磁场沿x 轴正方向,其磁 感应强度值B =1 Wb/m2。求:在下列情况 下,穿过面积为2m2的平面的磁通量。
(1)面积与 y~z 平面平行; (2)面积与 x~z 平面平行; (3)面积与 y 轴平行又与 x 轴成450角。
I
P
结束 目录
解:
由对称性 By = 0
dI
=
dq
π
I
dB=
m 0dI
2πR
=
m0I
2π2R
dq
y
..
.
. .
R
..
q
.d. l
cos2q dq +
2
π
2
sin2q dq
=
μ oI a2
4π r 3
q
2
+
1 2
sinq
cosq
π
2
π
2
μ oI a2 q
4πr 3 2
1 2
sinq
cosq
π
2
π
2
=
μ oI a2
4π r 3
π
2
+π2
=
μ oI a2 4r 3
=
μ oI a2 4 x 2+a 2 3
2
=-1.79×10-7 T
l 2dl
0
I1 I2
=
R2 R1
=
l2 l1
I1 O l1
A
l2 I 2
B
I1l 1 =I2l2
B = B1 B2= 0
结束 目录
11-10 一段导线先弯成图 (a) 所示的形 状,然后将同样长的导线再弯成图 (b) 所示 的形状。当导线中通以电流 I 后,求:P1和 P2两点磁感应强度之比B1/B2。
B 1P =B 2P = 2mπ0 aI1
P I1 P I2 a = 0.5m
B 2P
BP I1 a
P B 2P
a
I2
BP =
B2 1P
+B
2
2P
=
2B 1P
=
2 × 4π×10-7×10 2π× 0.50
= 5.66×10-6 T
q
=
arc
tg
B 2P B 1P
=
45 0
结束 目录
11-5 如图所示的被折成钝角的长导线 中通有20A的电流。求:A点的磁感应强度。
磁场习题
12345678
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53
结束 习题总目录
11-1 在地球北半球的某区域,磁感应强 度的大小为4×10-5 T,方向与铅直线成600角 求:
=
μ oI
4π r 3
(
a2cos2q dq
a 2sin2q dq ) i
+ x asinqdq j x acosq dq k
= dBx i +dBy j + dBzk
结束 目录
dBx =
μ oI
4π r
(
3
a2cos2q dq
π
a 2sin2q dq )
π
Bx =
μ oI a2
4π r 3
2
π
2
4
B1
相关文档
最新文档