人工神经网络概述
《人工神经网络》课件
![《人工神经网络》课件](https://img.taocdn.com/s3/m/0326e3cf690203d8ce2f0066f5335a8103d26656.png)
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
人工神经网络是什么
![人工神经网络是什么](https://img.taocdn.com/s3/m/d5a9d294ed3a87c24028915f804d2b160b4e86e7.png)
⼈⼯神经⽹络是什么⽬录⼀、⼈⼯神经⽹络⼈⼯智能的主流研究⽅法是连接主义,通过⼈⼯构建神经⽹络的⽅式模拟⼈类智能。
⼈⼯神经⽹络(Artificial Neural Network,即ANN ),是20世纪80 年代以来⼈⼯智能领域兴起的研究热点。
它从信息处理⾓度对⼈脑神经元⽹络进⾏抽象,建⽴某种简单模型,按不同的连接⽅式组成不同的⽹络。
⼈⼯神经⽹络借鉴了⽣物神经⽹络的思想,是超级简化版的⽣物神经⽹络。
以⼯程技术⼿段模拟⼈脑神经系统的结构和功能,通过⼤量的⾮线性并⾏处理器模拟⼈脑中众多的神经元,⽤处理器复杂的连接关系模拟⼈脑中众多神经元之间的突触⾏为。
⼆、⽣物神经⽹络⼈脑由⼤约千亿个神经细胞及亿亿个神经突触组成,这些神经细胞及其突触共同构成了庞⼤的⽣物神经⽹络每个神经元伸出的突起分为树突和轴突。
树突分⽀⽐较多,每个分⽀还可以再分⽀,长度⼀般⽐较短,作⽤是接受信号。
轴突只有⼀个,长度⼀般⽐较长,作⽤是把从树突和细胞表⾯传⼊细胞体的神经信号传出到其他神经元。
⼤脑中的神经元接受神经树突的兴奋性突触后电位和抑制性突触后电位,产⽣出沿其轴突传递的神经元的动作电位。
⽣物神经⽹络⼤概有以下特点:1. 每个神经元都是⼀个多输⼊单输出的信息处理单元,神经元输⼊分兴奋性输⼊和抑制性输⼊两种类型2. 神经细胞通过突触与其他神经细胞进⾏连接与通信,突触所接收到的信号强度超过某个阈值时,神经细胞会进⼊激活状态,并通过突触向上层神经细胞发送激活细号3. 神经元具有空间整合特性和阈值特性,较⾼层次的神经元加⼯出了较低层次不具备的“新功能”4. 神经元输⼊与输出间有固定的时滞,主要取决于突触延搁外部事物属性⼀般以光波、声波、电波等⽅式作为输⼊,刺激⼈类的⽣物传感器。
三、硅基智能与碳基智能⼈类智能建⽴在有机物基础上的碳基智能,⽽⼈⼯智能建⽴在⽆机物基础上的硅基智能。
碳基智能与硅基智能的本质区别是架构,决定了数据的传输与处理是否能够同时进⾏。
人工神经网络技术在机器人中的应用
![人工神经网络技术在机器人中的应用](https://img.taocdn.com/s3/m/2fd906c70342a8956bec0975f46527d3250ca662.png)
人工神经网络技术在机器人中的应用随着人工智能技术的发展,人工神经网络技术在机器人中的应用逐渐得到了广泛的关注和应用。
人工神经网络是模拟人脑的神经网络结构而构建的一种算法模型,具有记忆、学习、推理等特点。
在机器人领域中,人工神经网络技术能够帮助机器人快速适应环境变化、完成复杂任务,使机器人更加智能化。
1. 人工神经网络技术概述人工神经网络(Artificial Neural Network,ANN)是一种建立在神经元之间相互作用上的数学模型。
其主要特点是由多个神经元相互连接而成,通过一定的运算规则来处理输入的信息,最终得出输出结果。
在机器人中,人工神经网络可以用来完成语音识别、图像识别和智能导航等多种任务。
2. 机器人的语音识别技术针对机器人语音识别技术的要求,人工神经网络技术可以进行模型训练,将机器人所需要识别的语音信号输入到神经网络中进行学习,得出相应的输出结果。
通过大量的训练和调试,机器人可以逐渐掌握不同语音的识别能力,从而实现语音交互。
3. 机器人的图像识别技术图像识别是机器人视觉能力的核心,人工神经网络技术可以通过大量的训练和学习,将机器人在不同环境下看到的图像进行分类和识别。
例如,在工业自动化生产中,机器人能够通过图像识别技术来检测和分类生产线上的不良品或者缺陷品,提高产品质量和生产效率。
4. 机器人的智能导航技术机器人的智能导航技术可以使其在不同的环境中快速适应,并且能够自动避免障碍物。
人工神经网络技术可以通过训练机器人在环境中不同位置的感知输入和导航行为的输出进行学习,从而使得机器人能够自主地感知周围环境,制定最优的导航路线,完成任务。
5. 机器人的机器学习技术机器学习是机器人实现自主行动的基础,人工神经网络技术可以实现对机器学习模型进行训练,从而使得机器人能够逐渐掌握的复杂任务的执行能力。
例如,在工业生产中,机器人可以通过机器学习技术来逐渐掌握装配和组装不同产品的技术,从而实现更高的自动化生产水平。
人工神经网络简介
![人工神经网络简介](https://img.taocdn.com/s3/m/d102c3fc0b4e767f5bcfce3f.png)
人工神经网络简介1 人工神经网络概念、特点及其原理 (1)1.1人工神经网络的概念 (1)1.2人工神经网络的特点及用途 (2)1.3人工神经网络的基本原理 (3)2 人工神经网络的分类及其运作过程 (5)2.1 人工神经网络模式的分类 (5)2.2 人工神经网络的运作过程 (6)3 人工神经网络基本模型介绍 (6)3.1感知器 (7)3.2线性神经网络 (7)3.3BP(Back Propagation)网络 (7)3.4径向基函数网络 (8)3.5反馈性神经网络 (8)3.6竞争型神经网络 (8)1 人工神经网络概念、特点及其原理人工神经网络(Artificial Neural Networks,简记作ANN),是对人类大脑系统的一阶特征的一种描述。
简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究的一种方法。
1.1人工神经网络的概念利用机器模仿人类的智能是长期以来人们认识自然、改造自然的理想。
自从有了能够存储信息、进行数值运算和逻辑运算的电子计算机以来,其功能和性能得到了不断的发展,使机器智能的研究与开发日益受到人们的重视。
1956年J.McCart冲等人提出了人工智能的概念,从而形成了一个与神经生理科学、认知科学、数理科学、信息论与计算机科学等密切相关的交叉学科。
人工神经网络是人工智能的一部分,提出于50年代,兴起于80年代中期,近些年已经成为各领域科学家们竞相研究的热点。
人工神经网络是人脑及其活动的一个理论化的数学模型,它由大量的处理单元通过适当的方式互联构成,是一个大规模的非线性自适应系统,1998年Hecht-Nielsen曾经给人工神经网络下了如下定义:人工神经网络是一个并行、分层处理单元及称为联接的无向信号通道互连而成。
这些处理单元(PE-Processing Element)具有局部内存,并可以完成局部操作。
每个处理单元有一个单一的输出联接,这个输出可以根据需要被分支撑希望个数的许多并联联接,且这些并联联接都输出相同的信号,即相应处理单元的信号。
人工神经网络简介
![人工神经网络简介](https://img.taocdn.com/s3/m/ae13bedf5ebfc77da26925c52cc58bd630869347.png)
人工神经网络简介本文主要对人工神经网络基础进行了描述,主要包括人工神经网络的概念、发展、特点、结构、模型。
本文是个科普文,来自网络资料的整理。
一、人工神经网络的概念人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。
该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。
它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。
神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。
每个节点代表一种特定的输出函数,称为激活函数(activation function)。
每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。
网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。
而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
神经网络的构筑理念是受到生物的神经网络运作启发而产生的。
人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。
另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。
人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。
网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。
输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。
神经网络简介
![神经网络简介](https://img.taocdn.com/s3/m/ff764128876fb84ae45c3b3567ec102de2bddf12.png)
神经网络简介神经网络(Neural Network),又被称为人工神经网络(Artificial Neural Network),是一种模仿人类智能神经系统结构与功能的计算模型。
它由大量的人工神经元组成,通过建立神经元之间的连接关系,实现信息处理与模式识别的任务。
一、神经网络的基本结构与原理神经网络的基本结构包括输入层、隐藏层和输出层。
其中,输入层用于接收外部信息的输入,隐藏层用于对输入信息进行处理和加工,输出层负责输出最终的结果。
神经网络的工作原理主要分为前向传播和反向传播两个过程。
在前向传播过程中,输入信号通过输入层进入神经网络,并经过一系列的加权和激活函数处理传递到输出层。
反向传播过程则是根据输出结果与实际值之间的误差,通过调整神经元之间的连接权重,不断优化网络的性能。
二、神经网络的应用领域由于神经网络在模式识别和信息处理方面具有出色的性能,它已经广泛应用于各个领域。
1. 图像识别神经网络在图像识别领域有着非常广泛的应用。
通过对图像进行训练,神经网络可以学习到图像中的特征,并能够准确地判断图像中的物体种类或者进行人脸识别等任务。
2. 自然语言处理在自然语言处理领域,神经网络可以用于文本分类、情感分析、机器翻译等任务。
通过对大量语料的学习,神经网络可以识别文本中的语义和情感信息。
3. 金融预测与风险评估神经网络在金融领域有着广泛的应用。
它可以通过对历史数据的学习和分析,预测股票价格走势、评估风险等,并帮助投资者做出更科学的决策。
4. 医学诊断神经网络在医学领域的应用主要体现在医学图像分析和诊断方面。
通过对医学影像进行处理和分析,神经网络可以辅助医生进行疾病的诊断和治疗。
5. 机器人控制在机器人领域,神经网络可以用于机器人的感知与控制。
通过将传感器数据输入到神经网络中,机器人可以通过学习和训练来感知环境并做出相应的反应和决策。
三、神经网络的优缺点虽然神经网络在多个领域中都有着广泛的应用,但它也存在一些优缺点。
人工神经网络知识概述
![人工神经网络知识概述](https://img.taocdn.com/s3/m/9cb809f677a20029bd64783e0912a21614797f0c.png)
人工神经网络知识概述人工神经网络(Artificial Neural Networks,ANN)系统是20世纪40年代后出现的。
它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。
BP(Back Propagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。
BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。
而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。
人工神经元的研究起源于脑神经元学说。
19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。
人们认识到复杂的神经系统是由数目繁多的神经元组合而成。
大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。
神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。
但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。
细胞体内有细胞核,突起的作用是传递信息。
树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。
树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。
在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。
突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。
每个神经元的突触数目正常,最高可达10个。
各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。
什么是人工神经网络
![什么是人工神经网络](https://img.taocdn.com/s3/m/f7177fb9dc88d0d233d4b14e852458fb760b3878.png)
什么是人工神经网络人工神经网络是一种基于机器学习的人工智能技术,它可以让计算机学习如何识别与处理复杂的数据,比如图像、音频和视频。
本文将专注介绍人工神经网络,深入讨论它的构成、工作原理以及它如今所扮演的角色。
人工神经网络是一种仿照生物神经系统的架构和功能而开发的计算机技术。
它最初的概念可以追溯到1957年,由包括Frank Rosenblatt、Marvin Minsky和John McCarthy等在内的几位科学家在系统思想和计算机科学领域开发,它实际上是受到脑神经网络结构启发而发展出来的一种技术。
人工神经网络能够以一种类似于人类“思考”的方式从大量数据中获取结果,比如分析情感、视觉识别、语音识别等。
它可以通过学习过去的经验和观察,来推断当前和未来的情况。
人工神经网络的组成主要有神经元,连接和权重。
每个神经元都有输入、激活函数和输出。
神经元是网络中不同组件的基本部分,它们可以接受、处理和转发信号,以触发期望输出。
连接则用于把不同的神经元连接起来传输信息,这些连接可以赋予不同的权值,影响输入信号的最终输出。
最后,人工神经网络的工作原理,是通过迭代输入数据,调整权重使输出更接近期望结果,并且能够通过反馈机制自我调整参数和权重,以达到期望的训练结果。
人工神经网络如今已经被许多公司和组织使用,用于处理各种任务,包括复杂的图像识别、语音识别、语言建模、自动驾驶以及计算机视觉等。
它们已经成为机器学习和自然计算中最流行的方法之一,并广泛应用于商业、政府以及军事等众多领域。
比如,人工神经网络用于语音识别,top07机器人使用神经网络解析语音,帮助用户进行语音识别;或者用于机器视觉,Google等公司使用深度学习神经网络识别图像,可以对不同的图像进行分类,有效地提升图像浏览的用户体验。
总的来说,人工神经网络是一项设计用来处理繁杂任务的数据处理技术,可以重现生物神经系统架构和功能以及学习能力。
它是一种可以从大量数据中快速获取结果的技术,如今已经得到了普遍应用,被用于各种场景中。
NNP的名词解释
![NNP的名词解释](https://img.taocdn.com/s3/m/c81a8a87ba4cf7ec4afe04a1b0717fd5360cb23d.png)
NNP的名词解释NNP,即人工神经网络(Artificial Neural Network),是一种受到生物神经系统启发而设计的计算模型。
它模拟了人脑神经元的结构和功能,通过学习和适应来处理信息。
NNP被广泛应用于机器学习、图像识别、语音处理等领域,在科学研究和商业应用中发挥着重要作用。
一、NNP的原理和基本结构NNP的原理基于人脑神经元的运作方式。
神经元是生物神经网络的基本单元,它通过轴突和树突之间的连接传递信号。
在NNP中,神经元被称为节点或单元(unit),而连接被称为权重(weight)。
NNP的基本结构由输入层、隐藏层和输出层组成。
输入层接收外部输入信息,例如图像的像素值或文本的单词向量。
隐藏层是计算的主要层,它通过加权和激活功能对输入进行处理。
每个隐藏层的节点都将输入和权重相乘,并通过非线性激活函数(如Sigmoid函数或ReLU函数)进行处理。
最后,输出层将处理后的结果呈现出来,例如分类结果或回归值。
二、NNP的学习过程NNP的学习过程是通过调整权重来模仿人脑的学习方式。
具体而言,它使用一种称为反向传播(Backpropagation)的算法进行学习。
反向传播算法通过计算预测输出与实际输出之间的误差,并将误差从输出层反向传播到隐藏层,以调整权重。
在每次学习中,NNP将输入数据传递到前向传播中,得到预测输出。
然后,计算误差,并使用反向传播算法更新权重。
这个过程重复多次,直到NNP的预测输出与实际输出接近为止。
这样,NNP能够从经验中提取特征,并根据新的输入进行预测。
三、NNP的应用领域NNP在许多领域中得到了广泛的应用,并取得了显著的成果。
1. 机器学习NNP是机器学习中最常用的算法之一。
它可以从大量数据中学习并自动提取特征,为分类、回归、聚类等任务提供高效的解决方案。
例如,在图像分类中,NNP可以识别图像中的物体或场景,并进行准确的分类。
2. 语音处理NNP在语音识别和语音合成方面也功不可没。
人工神经网络概述
![人工神经网络概述](https://img.taocdn.com/s3/m/49215e0e32687e21af45b307e87101f69e31fbe9.png)
参考内容二
人工神经网络(Artificial Neural Network,简称ANN)是一种模拟人类 神经系统运作的数学模型,由多个简单计算单元(即神经元)组成,通过学习方 式从数据中提取模式并预测未来数据。
一、人工神经网络的基本结构
人工神经网络的基本结构包括输入层、隐藏层和输出层。输入层负责接收外 部输入的数据,隐藏层通过一系列复杂的计算将输入转化为有意义的特征,最后 输出层将隐藏层的结果转化为具体的输出。在隐藏层中,每个神经元都通过权重 和激活函数来对输入进行转换,以产生更有意义的输出。
根据任务的不同,人工神经网络可以分为监督学习、无监督学习和强化学习 三种。监督学习是指通过输入输出对之间的映射关系来训练模型;无监督学习是 指通过聚类或降维等方式来发现数据中的潜在规律;强化学习是指通过与环境的 交互来学习策略,以达到在给定的情况下采取最优行动的目标。
四、人工神经网络的未来发展
随着深度学习技术的不断发展,人工神经网络的性能和应用范围也在不断扩 大。未来的人工神经网络将更加注重模型的可解释性和鲁棒性,同时也将更加注 重跨领域的研究和应用。此外,随着计算机硬件的不断升级和算法的不断优化, 人工神经网络的训练速度和精度也将不断提高。
三、人工神经网络的种类
根据连接方式的不同,人工神经网络可以分为前馈神经网络和反馈神经网络 两种。前馈神经网络是一种层次结构,其中每个节点只与前一层的节点相连,每 个节点的输出都是前一层的加权输入。而反馈神经网络则是一种循环结构,其中 每个节点都与前一层的节点和后一层的节点相连,每个节点的输出不仅取决于前 一层的输入,还取决于后一层的输出。
反向传播算法是一种监督学习算法,它通过比较网络的输出和真实值来计算 误差,然后将这个误差反向传播到网络中,调整每个神经元的权重以减小误差。
人工神经网络
![人工神经网络](https://img.taocdn.com/s3/m/c37c2dcfad51f01dc281f134.png)
人工神经网络人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model)目录[隐藏]∙ 1 人工神经网络概述∙ 2 人工神经网络的特点∙ 3 人工神经网络的特点与优越性∙ 4 人工神经网络的主要研究方向∙ 5 人工神经网络的应用分析人工神经网络概述人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。
人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。
国际著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。
” 这一定义是恰当的。
人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型(Perceptron) 。
它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。
直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。
目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。
人工神经网络是在现代神经科学的基础上提出来的。
它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。
人工神经网络简介
![人工神经网络简介](https://img.taocdn.com/s3/m/892b2419866fb84ae45c8d68.png)
Page 4
神经网络模型
神经元模型
输入输出关系:
xi jiu j i
j 1 n
ω是连接神经元的权值
θ是神经元的阈值
x可认为是神经元的净输入
5
yi f ( xi )
Page 5
神经网络模型
f ( x) 是传递函数,或称为激励函数,其作用有:
1. 控制输入对输出的激活作用; 2. 对输入输出进行函数转换; 3. 将可能的无限域输入转换成有限域的输出;
Page 17
17
BP神经网络
总结
BP网络实现了一个从输入到输出的非线性映射,即F: Rn→Rm,f(x)=y。对于样本集合:输入xi(xi∈Rn)和yi(yi∈Rm), 可认为存在某一映射g,使得: g(xi)=yi i=1,2,...n BP神经网络就是寻找逼近映射g的最佳映射f过程。
人工神经网络简介
刘章
人工神经网络
人工神经网络(artificial neural network,缩写 ANN),简称神经网络(neural network,缩 写NN),是一种模仿生物神经网络的结构 和功能的数学模型或计算模型。神经网络由 大量的人工神经元联结进行计算。大多数情 况下人工神经网络能在外界信息的基础上改 变内部结构,是一种自适应系统。
Page 10
10
神经网络的学习方式
神经网络的学习方法
2.无监督学习方法 神经网络仅仅是根据其输入调整神经元连接间的权
重和阈值,此时的学习评价标准隐含在内部。
Page 11
11
BP神经网络
反向传播网络(Back-Propagation Network),简称BP网络。
人工神经网络技术简介
![人工神经网络技术简介](https://img.taocdn.com/s3/m/3c42ce33f342336c1eb91a37f111f18583d00cfb.png)
人工神经网络技术简介人工神经网络(Artificial Neural Network,简称ANN)是一种模拟人类神经系统的计算模型,它基于大脑神经元之间相互连接的原理,用于模拟和解决各类复杂问题。
本文将对人工神经网络技术进行简要介绍。
一、神经网络的基本原理神经网络是由大量的人工神经元组成的集合,这些神经元通过互相连接的权重来模拟神经系统中的突触传递信息。
神经网络通常分为输入层、隐藏层和输出层三个部分。
输入层接收外界输入的信号,通过隐藏层的计算和处理,最终得到输出层的结果。
神经网络的运作类似于人脑对信息的处理。
每个神经元接收到来自其他神经元传递过来的信息,并通过激活函数对这些信息进行处理后传递给下一层的神经元。
激活函数可以是简单的线性函数或者非线性函数,常用的有Sigmoid、ReLU等。
二、神经网络的应用领域1. 图像识别与处理:神经网络在计算机视觉领域有着广泛的应用,例如人脸识别、图像分类、目标检测等。
2. 自然语言处理:神经网络在文本分类、语音识别和机器翻译等方面的应用已经取得了显著的成果。
3. 金融预测:神经网络可以通过对历史数据的学习和分析,对未来的股市指数、汇率等进行预测。
4. 药物发现:神经网络可以对大量的药物分子进行模拟和筛选,提高新药研发的效率。
5. 游戏智能:神经网络可以用于训练游戏智能体,使其能够自主学习和适应不同的游戏环境。
三、神经网络的训练方法神经网络的训练是指通过已知输入和输出数据,通过调整神经元之间的连接权重,使得网络能够正确地预测输出结果。
常用的训练方法有:1. 反向传播算法:反向传播是神经网络中最常用也是最基本的训练算法。
它通过将网络的预测输出与真实输出进行比较,然后根据误差计算梯度并反馈给网络,以更新权重。
2. 遗传算法:遗传算法通过模拟生物的进化过程,通过选择、交叉和变异等操作,不断改进网络的性能。
3. 支持向量机:支持向量机在训练神经网络时可以作为一种辅助方法,用于优化分类问题。
人工神经网络算法(基础精讲)
![人工神经网络算法(基础精讲)](https://img.taocdn.com/s3/m/71aa4f063a3567ec102de2bd960590c69fc3d86a.png)
*
1.6激活函数
神经元的描述有多种,其区别在于采用了不同的激活函数,不同的激活函数决定神经元的不同输出特性,常用的激活函数有如下几种类型:
*
1.6激活函数
当f(x)取0或1时,
阈值型激活函数 阈值型激活函数是最简单的,前面提到的M-P模型就属于这一类。其输出状态取二值(1、0或+1、-1),分别代表神经元的兴奋和抑制。
突触结构示意图
1
2
1.3生物神经元的信息处理机理
神经元的兴奋与抑制 当传入神经元冲动,经整和使细胞膜电位升高,超过动作电位的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出。当传入神经元的冲动,经整和,使细胞膜电位降低,低于阈值时,为抑制状态,不产生神经冲动。
*
1.4生物神经元的特点
*
2.2学习方法
无导师学习也称无监督学习。在学习过程中,需要不断地给网络提供动态输入信息(学习样本),而不提供理想的输出,网络根据特有的学习规则,在输入信息流中发现任何可能存在的模式和规律,同时能根据网络的功能和输入调整权值。
②无导师学习
灌输式学习是指将网络设计成记忆特别的例子,以后当给定有关该例子的输入信息时,例子便被回忆起来。灌输式学习中网络的权值不是通过训练逐渐形成的,而是通过某种设计方法得到的。权值一旦设计好,即一次性“灌输给神经网络不再变动,因此网络对权值的”“学习”是“死记硬背”式的,而不是训练式的。
*
1.6激活函数
概率型激活函数 概率型激活函数的神经元模型输入和输出的关系是不确定的,需要一种随机函数来描述输出状态为1或为0的概率,设神经元输出(状态)为1的概率为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 感知器
单层感知器的学习法:
2.1 感知器
多层感知器:
在输入层和输出层之间加入一层或多层隐单元,构成 多层感知器。提高感知器的分类能力。
两层感知器可以解决“异或”问题的分类及识别任一凸 多边形或无界的凸区域。
更多层感知器网络,可识别更为复杂的图形。
2.2 BP网络
多层前馈网络的反向传播 (BP)学习算法,简称BP 算法,是有导师的学习,它 是梯度下降法在多层前馈网 中的应用。
基本感知器
是一个具有单层计算神经元的两层网络。 只能对线性可分输入矢量进行分类。
n个输入向量x1,x2, …, xn 均为实数,w1i,w2i,…,wni 分别是n个输入 的连接权值,b是感知器的阈值,传递函数f一般是阶跃函数,y 是感 知器的输出。通过对网络权值的训练,可以使感知器对一组输入矢量 的响应成为0或1的目标输出,从而达到对输入矢量分类识别的目的。
网络结构 见图,u、y是网络的输
入、输出向量,神经元用节 点表示,网络由输入层、隐 层和输出层节点组成,隐层 可一层,也可多层(图中是 单隐层),前层至后层节点 通过权联接。由于用BP学习 算法,所以常称BP神经网络 。
2.2 BP网络
已知网络的输入/输出样本,即导师信号 。
BP学习算法由正向传播和反向传播组成 :
net.trainparam.goal=0.00001;
网络可能根本不能训
% 进行网络训练和仿真:
练或网络性能很差;
[net,tr]=train(net,X,Y);
若隐层节点数太多,
% 进行仿真预测
虽然可使网络的系统
XX1=[0.556 0.556 0.556 0.556 0.556 0.556 0.556] 误差减小,但一方面
这样每一步都能保证
从而使J最终可收敛到最小。这就是梯度下降算法,也是BP学习算法的 基本思想。
2.2 BP网络
BP学习算法步骤:
① 设置初始权系数w0为较小的随机非零值; ② 给定输入/输出样本对,计算网络输出, 完成前向
传播
③ 计算目标函数J。如J<ε, 训练成功,退出;否则 转入④
④ 反向传播计算 由输出层,按梯度下降法将误差 反向传播,逐层调整权值。
1.3 生物神经网络
• 生物神经元结构 细胞体:处理 树突: 输入 轴突: 输出 突触: 接口
1.3 生物神经网络
生物神经元状态
Hale Waihona Puke 静息极化兴奋
去极化
抑制
超极化
兴奋与抑制:
当传入神经元的冲动,经整和 ,使细胞膜电位升高,超过动作电 位的阈值时,为兴奋状态,产生神 经冲动,由轴突经神经末稍传出。
当传入神经元的冲动,经整和 ,使细胞膜电位降低,低于阈值时 ,为抑制状态,不产生神经冲
•输入
•神经网络1
•神经网络 2
•环
•输出
境
1.6 常用的神经网络
• 常用的前向神经网络 感知器 BP网络(误差向后传播神经网络) 径向基函数网络(RBF神经网络)
• 常用的反馈神经网络 Hopfield网络 Boltzmann机网络 Kohonen网络(自组织特征映射模型)
2 感知器与BP网络 2.1 感知器
其特有的结构和学习规则,进行联接权系数的调整,此 时,网络的学习评价标准隐含于其内部
•输入
•神经网络
•实际输出
1.5 人工神经网络的学习
(3)再励学习(强化学习)
把学习看为试探评价过程,学习机制选择一个输出 作用于环境,环境的状态改变,并产生再励信号反馈至 学习机,学习机依据再励信号与环境当前的状态,再选 择下一个输出作用于环境,选择的原则是使受到奖励的 可能性增大
• T.Koholen的定义:“人工神经网络是由具 有适应性的简单单元组成的广泛并行互连 的网络,它的组织能够模拟生物神经系统 对真实世界物体所作出的交互反应。
1.1 人工神经网络的定义
• 美国神经网络学者Nielsen的定义
– 人工神经网络是一个并行、分布处理结构,它 由处理单元及其称为联接的无向讯号通道互连 而成。
YY=sim(net,XX)
perf=sse(e)
•网络训练误差曲 线
{u1,t1}, {u2,t2},…{uQ,tQ} 即共Q个样本。或记为{uq,tq}, q=1,…Q
网络训练的目的,是使对每一个输入样本,调整网络参数 ,使输出均方误差最小化。
2.2 BP网络
BP学习算法基本思想:
考虑迭代算法,设初始权值为w0, k时刻权值为wk, 则使用泰勒级数展开, 有:
问题:如何选择 ,使J最小? 最直接的方法就是选择
XX2=[-15 -15 -15 -15 -15 -15 -15]
使网络训练时间延长
XX3=[ 85 85 85 85 85 85 85]
,另一方面,训练容
XX4=[1.5167 1.23333 0.9500 0.6667 0.3833 0.1 1.8] XX=[XX1;XX2;XX3;XX4]
易陷入局部极小点而 得不到最优点
2.2 BP网络
• 优点
– 学习完全自主; – 可逼近任意非线性函数;
• 缺点
– 算法非全局收敛; – 收敛速度慢;
3 例子:BP神经网络优化化学反应 条件
• 问题描述:过碳酸钠是一种强氧化剂,其 水溶液可用作医疗杀菌剂、口腔消毒剂。 由于过碳酸钠对湿度和温度很敏感,容易 分解,其有效氧含量和稳定性还有待提高 。为改进过碳酸钠的工艺,筛选出新的复 合稳定剂,利用BP神经网络对其工艺参数 进行考察,并利用仿真结果进行预测,其 方法及步骤如下:
• 能力特征:自学习 自组织 自适应性
1.2 神经网络的基本特征和应用
在各个行业均有应用,擅长的有: 模式识别 人工智能 控制工程 优化分析和联想记忆 信号处理
1.3 生物神经网络
• 人类的大脑大约有 1.41011个神经细胞( 神经元)。每个神经元 有数以千计的通道同其 它神经元广泛相互连接 ,形成复杂的生物神经 网络。
人工神经网络概述
内容
1、神经网络的基本概念 2、感知器与BP网络 3、例子:BP神经网络优化化学反应条件
1 神经网络的基本概念
•1.1人工神经网络的定义
• 以数学和物理方法以及信息处理的角度对 人脑神经网络进行抽象,并建立某种简化 模型,就称为人工神经网络(Artificial Neural Network,缩写 ANN)。
1.5 人工神经网络的学习
(1)有导师学习(有监督学习) 在学习过程中,网络根据实际输出与
期望输出的比较,进行联接权系的调整 ,将期望输出称导师信号是评价学习的 标准。
•输入
•神经网络
•实际输出
•比较
•期望输出
1.5 人工神经网络的学习
(2)无导师学习(无监督学习) 无导师信号提供给网络,网络能根据
步骤1:确定影响过碳酸钠工艺条件的主要因素及考 察范围
• 步骤2:确定BP神经网络结构 采用3层BP网络模型,即输入层、输出层和隐含 层配。比4、个反输应入温向度量、X反1、应X时2、间X、3稳、定X4剂分加别入对量应四原个料 考数察收因率素 和, 活性2个氧输含出量向,量其Y拓1 、扑Y结2分构别如对图应。目标函
1.5 人工神经网络的学习
• 网络运行一般分为训练阶段和工作阶段。 训练的目的是为了从训练的数据中提取隐 含的知识和规律,并存储于网络中供工作 阶段使用。
• 神经网络能够通过对样本的学习训练,不 断改变网络的连接权值以及拓扑结构,以 使网络的输出不断地接近期望的输出。这 一过程称为神经网络的学习或训练,其本 质是可变权值的动态调整。
① 正向传播是输入信号从输入层经隐层 ,传向输出层,若输出层得到了期望 的输出,则学习算法结束;否则,转 至反向传播。
② 反向传播是将误差(样本输出与网络输 出之差)按原联接通路反向计算,由 梯度下降法调整各层节点的权值和阈 值,使误差减小。
•正向传播 •反向传播
2.2 BP网络
BP学习算法基本思想: 设算法的输入输出样本(导师信号)为
% 构建BP神经网络、定义网络训练次数、显示方式、误差要求
net=newcf(minmax(X),[10,2],{'tansig','purelin'},'trainlm');
net.trainparam.epochs=3000;
net.trainparam.show=100;
•若隐层节点数太少,
1.4 人工神经元模型
常用的转移函数(激发函数 )
(1)阈值型转移函数 (硬限幅函数)
1.4 人工神经元模型
(2)非线性转移函数 单极性Sigmoid函数
双极性Sigmoid函数
1.4 人工神经元模型
(3)分段线性转移函数
1.5 人工神经网络模型
• 根据连接关系分类 层次型结构 互联型结构
• 根据信息流向分类 前馈型网络 反馈型网络
步骤3:用Matlab仿真
% 定义输入向量X和输出向量Y(训练样本) X1=[0.416 0.454 0.50 0.556 0.625 0.769 1.0] X2=[-10 0 10 -15 -5 5 15] X3=[40 85 25 70 10 55 100] X4=[1.5167 1.23333 0.9500 0.6667 0.3833 0.1 1.8] Y1=[81.4 93.6 95.0 98.0 78.1 87.3 96.3] Y2=[13.5 13.9 14.1 14.5 10.0 13.7 14.2] X=[X1;X2;X3 ;X4] Y=[Y1;Y2]
– 这些处理单元具有局部内存,可以完成局部操 作,即它必须仅仅依赖于经过输入联接到达处 理单元的所有输入信号的当前值和存储在处理 单元局部内存中的值。