用导数研究函数单调性(一)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知函数f (x )=x -1+a e
x (a ∈R),求函数f (x )的单调区间.
(),()kx f x xe f x =2.设函数求函数的单调区间。
3.已知函数f (x )=(ax 2+x+a )e -x 若a ≥0,求函数f (x )的单调区间.
4.设f (x )=e x (ax 2+x +1)(a >0),试讨论f (x )的单调性
. 1.设函数f (x )=e mx +x 2-mx.
证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增
2.已知函数f (x )=x e x -⎪⎭⎫ ⎝⎛+x x a 221(a >0).求函数f (x )的单调区间.