大学物理1.2 质点的位移、速度和加速度

合集下载

大学物理简程 张三慧主编第1章 质点运动学

大学物理简程  张三慧主编第1章 质点运动学
2 2
at
a

R
an
o
a rc ta n
an at
14
1.7
y
相对运动
y
E
V
S:小球
V:马车
B
rS E A0 rV E
A
E:地面
rS V
o
o
x
rS E rS V rV E v S E v S V vV E
a lim
v t
t 0
lim
vn t
t 0
lim
vt t
t 0
an at
12
切向加速度:
vt v (t t ) v (t ) v
a t lim v t dv dt d ( R ) dt R d dt
v B A y v B y v A y v B sin 30 v A 600 km / h
v BA v B A x v B A y 9 1 7 km / h
2 2
v AB v A v B
23
0
16
dv dt

dv dt

du dt
若两个参考系相对做匀速直线运动,即 a r 则
a a
矢量合成的平行四边形法则:
A
A
B
C
B
C
矢量合成的三角形法则:
A A
C
B
C
B
17
矢量的分解:
A B B
y
A
第1章 质点运动学

中国矿业大学(北京)《大学物理》课件 第1章 质点运动学

中国矿业大学(北京)《大学物理》课件 第1章 质点运动学

y 0.22 152 9.115 30 57m
r 66i 57 j
r
的大小
r的方向
r 662 (57)2 87m
arctan y arctan 57 41
x
66
(2) 速度沿坐标轴 x、y 的投影为
vx
dx dt
d dt
(0.31t 2
7.2t
28)
0.62t 7.2
物体平动时可视为质点。 物体上任一点的运动都可以代表物体的运动。
➢ 研究汽车突然刹车“前倾”或转弯 涉及转动问题,汽车各部分运动情况不同,各
车轮受力差异很大,不能把汽车作质点处理。
质点是从客观实际中抽象出的理想模型,研 究质点运动可以使问题简化而又不失客观真实性。
二、确定质点位置的方法
静止和运动是相对的 地心学说被日心说取代,让人们明白,判断物体
求 船的运动方程。
解 取坐标系
v
依题意有
l0
l(t) l0 v t
h l(t)
坐标表示为
O
x
x(t) (l0 v t)2 h2
x(t)
说明
质点运动学的基本问题之一 , 是确定质点运动 学方程。 为正确写出质点运动学方程, 先要选定参 考系、坐标系, 明确起始条件等, 找出质点坐标随时 间变化的函数关系。
x 0.31t2 7.2t 28 y 0.22t 2 9.1t 30
试求 t =15s时小田鼠的 (1)位矢;(2)速度; (3)加速度。
解 (1)根据已知条件,小田鼠的位矢可写成
r
(0.31t
2
7.2t
28)i
(0.22t 2 9.1t 30) j
t = 15s 时

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dvdt =和0d v dt=各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出22r x y =+drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

大 学 物 理 质点运动学

大 学 物 理  质点运动学

dr
dx
i
dy
j 3i 8tj (m/s)
dt dt dt
(3)由加速度的定义得
a
d
8 j (m/s2 )
dt
x
22

例2: 一质点沿半径为1 m的圆周运动,它通过的弧长 s按s=t+2t2的规律变化。问它在2 s末的速率、法向 加速度和切向加速度各是多少?
解 (1)由速率定义,有 ds 1 4t dt
小球的切向加速度量值 a,法向加速度量值an和轨道
的曲率半径 。
解:由图可知
a
g sin
gy
a g
gt
2 0
g 2t 2
g2t
02 g2t 2
an θ
x= 0
θ
a
y=gt
an
g cos
gx
g
an
g0 02 g2t 2
2
2 x
2 y
(02
g 2t 2 )3 / 2
an
an
g0
21
§1.4 运动学中的两类问题
r


r
r2

位置矢量的增量 ◆位矢增量的模 ◆位矢模的增量
r r2 r1 | r|| r2 r1 | r | r2 | | r1 |
位移在直角坐标系中的表示式
r
xi
yj
zk
9
路程 s t 时间内质点在空间内实际运行的路径距离。
注意
• s与 r的区别
s为标量, r为矢量
s r
d
s
dr
将t =2代入上式,得2 s末的速率为
=1+4×2=9 (m·s-1)
(2)法向加速度的大小 (3)切向加速度的大小

大学物理质点运动学(老师课件)

大学物理质点运动学(老师课件)
如图,一般情况下 r r
r
rB
r
r r
讨论2:
s AB
比较位移和路程
A
s
B
t 时间内质点运动路径的长度 路程:
r
r AB
位移:是矢量,表示质点位置变化的净效果,与质点 运动轨迹无关,只与始末点有关。 路程:是标量,是质点通过的实际路径的长,与质点 运动轨迹有关。 例如质点运动一周,位 r s 移为零,路程为周长。 r s
v v(t + t ) v(t) a t t
方向: v 的方向
2、(瞬时) 加速度
2 v d d r 2 a lim t 0 t dt dt
加速度等于速度对时间的一阶导数。 方向:v 的极限方向, 指向曲线凹的一侧 一般 a 与 v 方向不同。
质点
没有大小和形状,只具有物体全部质量 的一点。 物理学中有很多抽象模型:
理想化的 物理模型
质点、刚体、理想气体、点电荷、…
把物体当作质点是有条件的、相对的:当物体的大
小和形状对运动没有影响或影响可以忽略。
研究地球
r
S
R 10 m s E 6
8
r 10 m Rs , RE << r
11
RE 10 m
vA
B'
B
A
速度的方向: 质点所在处轨迹的切线指向前进的方向。
e.g. 设
2 r (t ) i t j t k ( SI )
j 2 tk
t 1 t 1
dr dt
j 2k m / s
则t=1s 末的速度
一维情形,设x=6t–t2(SI),则在t=4s末的速度:

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理教程1.2 质点的位矢、位移和速度

大学物理教程1.2 质点的位矢、位移和速度
第11章 静电场 第1章 质点运动学
1.2 质点的位矢、位移和速度 11-1 电荷
说明 运动方程之所以可以在具体坐标系写成分量形 式,实际上是建立在运动的可叠加性基础上的。 例如:平抛物体时,物体的运动可以分解为在 水平方向上的匀速直线运动和竖直方向上的匀加速 直线运动。
第11章 静电场 第1章 质点运动学
位置矢量在直角坐标系中可用单位矢量表示为:
r xi yj zk
大小 r
方向 可由 三个 方向 余弦 表示
z
k

x2 y2 z2

r

P(x,y,z)
x cos r y cos r z cos r
j
y
O i
x
方向余 cos2 cos2 cos2 1 弦满足
1.2 质点的位矢、位移和速度 11-1 电荷
注意 速度为矢量! (1) 方向
t 0 时,
B A , r
沿A点处轨道的切线方向
第11章 静电场 第1章 质点运动学
1.2 质点的位矢、位移和速度 11-1 电荷
(2) 大小
dr v v dt
s
lim
t 0
r t
同信息。
也就是说,平均速率和瞬时速率有不同的物理
意义,它们强调质点运动过程中关于运动快慢的不同 方面。 (1)平均速率更强调在一有限时间段内的总体 运动效果;
(2)瞬时速率更强调运动过程中的细节。
第11章 静电场 第1章 质点运动学
1.2 质点的位矢、位移和速度 11-1 电荷
某些典型速度大小的量级 单位:(m·-1) s 光 已知类星体最快的退行 电子绕核的运动 太阳绕银河中心的运动 地球绕太阳的运动 第二宇宙速度 第一宇宙速度 子弹出口速度 地球的自转(赤道) 空气分子热运动的平均速度(室温) 3.0×108 2.7×108 2.2×108 2.0×105 3.0×104 1.1×104 7.8×103 ~7×102 4.6×102 4.5×102

大学物理1.2 质点的位移、速度和加速度

大学物理1.2 质点的位移、速度和加速度

vxi v y j vzk
vx
dx dt
vy
dy dt
速度的大小为 v
v2 x
v
2 y
v
2 z
速度的方向用方向余弦表示为
vz
dz dt
( dx )2 ( dy )2 ( dz )2 dt dt dt
cos α vx , cos β vy , cos γ vz
v
v
v
讨论 v v 吗?
周期内质点位移的大小 r 2R ,位矢大小的增量为
r R R 0
二、 速度Байду номын сангаас
1. 平均速度
v
r (t
t)
r (t)
r
t
t
2. 瞬时速度
r
(1) 匀速直线运动
瞬时速度
v
=
_
v
Δr
t
(2)变速曲线运动
瞬时速度
v lim
r
dr
t0 t dt
瞬时速度 = 平均速度
v2
Δ r2 t2
v v(t t) v(t) v v(t t) v(t)
a v b
c
v(t) v(t t)
在Ob上截取 oc oa

v cb
O
vvvtn
ac ac cb
cb
vn vt
速度方向变化 速度大小变化
1.3.a3加dd速2tr2度
d2 dt 2
(xi
yj
zk )
d2x d2y d2z
r1 xAi yA j r2 xBi yB j 位移 r r2 r1
y
yB A r
r y A 1
r2

大学物理位移、速度、加速度

大学物理位移、速度、加速度

加速度与速度、位移的关系
总结词
加速度的大小和方向决定了速度的变化量和 方向,同时加速度的大小和位移有关。
详细描述
加速度的方向决定了速度变化的方向,其大 小决定了速度变化量的大小。在匀变速直线 运动中,位移与初速度、加速度、运动时间 有关,可以通过公式$s = v_{0}t + frac{1}{2}at^{2}$进行计算。
位移与距离的关系
总结词
位移与距离不同,虽然它们在数值上相等,但概念和性质不 同。
详细描述
距离是物体运动轨迹的长度,没有方向属性,是一个标量。 而位移是起点和终点之间的直线距离,有方向性,是矢量。 在曲线运动中,位移大小可能与距离不同,因为它们所指的 路径不同。
位移与方向的重要性
总结词
位移不仅有大小,还有方向,方向对于确定物体的位置变化非常重要。
建筑和工程
在建筑和工程领域,位移是物体位置的变化,速度是物体在单位时间内产生的位移,加速 度是物体速度变化的快慢。这些物理量对于建筑物的设计和施工以及机械设备的运行和维 护都非常重要。
物理实验中位移、速度、加速度的测量
测量方法
在物理实验中,位移、速度和加速度的测量通常需要使用各种测量工具和方法。位移可以通过直接测量物体的位置变 化来获得;速度可以通过测量物体在单位时间内通过的距离来计算;加速度可以通过物体运动快慢的物理量, 其计算公式为速度=位移/时间。在物 理学中,速度具有矢量性,即有大小 和方向。
平均速度与瞬时速度
总结词
平均速度是物体在一段时间内位移与时间的比值,瞬时速度是物体在某一时刻的 速度。
详细描述
平均速度是指物体在一段时间内位移与时间的比值,表示物体在一段时间内的平 均运动快慢。瞬时速度是指物体在某一时刻的速度,表示物体在某一时刻的精确 运动状态。

(最新整理)大学物理质点运动学

(最新整理)大学物理质点运动学

化。另外我们在研究体系的微振动时引入了简正坐标(分
析力学第4章),使微振动方程的求解过程非常简单
坐标概念的第二次飞跃
4. 正则共轭坐标(分析力学第6章)
2021/7坐/26标概念的第三次飞跃
11
三、参考系
一个固定在参考物上的坐标系和相应的一套同步的钟 组成一个参考系。
同一质点的运动,若选择的参考系不同,对质点运 动的描述就会不同。
r0
v0t
1 at 2 2
—匀加速运动的位矢公式
29
特殊情况:匀变速直线运动(a 为常数)
设质点沿 X 轴做匀变速直线运动,t =0 时,v =v0,x =x0)
求v和x。
a dv dv adt dt
t 0 时,v v0
dx dx v dt dt v0 adt
t 0 时,x x0
32
例 一质点沿X 轴做直线运动,加速度 a =2t (m·s-2) ,
t =0 时,质点的位置坐标 x0=0,速度v0=0,试求 t=2s 时
质点的速度和位置。
解:已知a 2t dv dt
dv a 2t
v
t
dv 2tdt
dt
0
0
dx v t2
x
dx
t t 2dt
dt
0
0
轨道:质点运动时所经过的路线
路程:质点在一段时间内沿轨道经过的距离
2021/7/26
14
五、位移 —— 位置的改变
r r (t t) r (t)
P•
s r
P1

位移是矢量,有大小和方向 r (t)
直角坐标系中
r
(
x2
x1) i

01绪论,质点,参考系,位移,速度,加速度

01绪论,质点,参考系,位移,速度,加速度

Fan
3)多边形法则
有限个矢量 a1 , a 2 , L a n 相加可由矢量的三角形 求和 法则推广
开始, 自任意点 O 开始,依次引 OA1 = a1 , A1 A2 = a 2 , L , An − 1 An = a n , 由此得一折线 OA1 A2 L An , 于是矢量 OA n = a就是 n 个矢量 a1 , a 2 , L , a n的和,即 的和, OA = OA1 + A1 A2 + L + An − 1 An .
Fan
二、质点(mass point) 质点( ) 具有物体的质量,没有形状和大小的几何点。 具有物体的质量,没有形状和大小的几何点。 说明 如果我们研究某一物体的运动, 如果我们研究某一物体的运动,而可以忽略其大小和 形状对物体运动的影响,若不涉及物体的转动和形变, 形状对物体运动的影响,若不涉及物体的转动和形变, 我们就可以把物体当作是一个具有质量的点( 质点) 我们就可以把物体当作是一个具有质量的点(即质点) 来处理 . 相对性;理想模型; 相对性;理想模型;质点运动是研究物质运动的基础 一个物体能否看作质点,要根据问题的性质来决定。 一个物体能否看作质点,要根据问题的性质来决定。
Fan
1)矢量的表示: 矢量的表示:
常用黑体母或带箭头的字母表示。 常用黑体母或带箭头的字母表示。 矢量的几何表示: 矢量的几何表示:一个矢量可用一条有方向的线段来表示 v v v v A 矢量的代数表示: v 矢量的代数表示: = eA A = eA A
A
r A 矢量的大小或模: 矢量的大小或模: = A v A v eA = 矢量的单位矢量: 矢量的单位矢量: A
x cos α = , r y cos β = , r z cos γ = r

大学物理课后习题答案第一章

大学物理课后习题答案第一章

第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 的路程; (3)1s 末的瞬时加速度和第2s 的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t ,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k=+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v 3v 1v 12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。

大学物理(第四版)课后习题及答案质点

大学物理(第四版)课后习题及答案质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --⋅-⋅+= 。

求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。

题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=∆x x x(2)由0)s m 6()s m 12(d d 232=⋅-⋅=--t t tx得知质点的换向时刻为s2=P t (t = 0不合题意) 则:m 0.8021=-=∆x x xm 40x 242-=-=∆x x所以,质点在4.0 s 时间间隔内的路程为m 4821=∆+∆=x x s题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。

设0=t 时,0=x 。

试根据已知的图t v -,画出t a -图以及t x -图。

题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2A B A B AB s m 20-⋅=--=t t vv a (匀加速直线运动)0BC =a (匀速直线)2CD CD CD s m 10-⋅-=--=t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图在匀变速直线运动中,有20021at t v x x ++= t /s 0 0.5 1 1.5 2 4 4.5 5 5.5 6 x /m5.7-10-5.7-4048.75558.760间内,质点是作v = 201s m -⋅的匀速直线运动,其x -t 图是斜率k = 20的一段直线。

题1.3:如图所示,湖中有一小船。

岸上有人用绳跨过定滑轮拉船靠岸。

设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?题1.3解1:取如图所示的直角坐标系,船的运动方程为 ()()()j i r h t x t -+= 船的运动速度为()i i i r v tr r h h r tt t x t d d 1d d d d d d 2/12222-⎪⎪⎭⎫ ⎝⎛-=-===' 而收绳的速率trv d d -=,且因vt l r -=0,故 ()i v 2/12021-⎪⎪⎭⎫ ⎝⎛---='vt l hv题1.3解2:取图所示的极坐标(r ,θ),则θr r r d d d d d d d d d d e e e e r v tr t r t r t r t θ+=+==' r d d e t r 是船的径向速度,θd d e tr θ是船的横向速度,而trd d 是收绳的速率。

大学物理教案-第1章 质点运动学

大学物理教案-第1章 质点运动学

x
t
dx
v0
dt ,
0
0 1 v0kt
可得
x
1 k
ln(v0kt
1)

② 根据 dv dv dx v dv kv2 ,可得 dt dx dt dx
dv kdx , v
代入初始条件,进行积分
v dv x kdx ,
v v0
0
可得 ln v kx v0
v v0ekx
例 4:一质点沿 x 轴运动,其中加速度与位置的关系式为 a 2 bx2 ,设质点
y
例 1: 如质点作圆周运动时,有
x = rcos t ,y = r sin t
消去时间 t,就得轨道方程
x2 y2 r2 。
\r
t
Y0
x
X例 1-1 图
2、位移和路程
位移 r
2
大学物理
大学物理简明教程教案
(1)定义: r r2 r1 ,
A
B
注意:
(1)增量的模 r 与模的增量 r 不是同一个量;
(2)位移在直角坐标系中的表示式为
r xi + y j + z k 。
路程 s :t 时间内质点在空间内实际运行的路径距离位移和路程的比较与联
系:
a. 矢量与标量,
b. r 仅由始未位置决定与轨道形状无关;
(1) 不同处
s 与轨道形状及往返次数有关;
c. 在一般情况下 r s.
(2) 联系在 t →0 时, dr ds ,但仍然 dr dr 。
教学内容
备注
一、力学基础
力学的研究对象──机械运动
第 1 章 质点运动学
§1.1 参考系、坐标系、物理模型

大学物理1-2质点运动的描述之二

大学物理1-2质点运动的描述之二

vB v A at = = 23.3m s 2 t 2 vB 2 an = = 106 m s r
在点 B 的加速度
AB = 3.5km
vA
B
β
r a n θ
o
at
a=
2 at
2 + an
= 109m s
2
a
a 与法向之间夹角 β 为
vB
at β = arctan = 12 . 4 an
18
§1-2 质点运动的描述之二
已知: 已知: v A = 1940km h
1
vB = 2192km h 1
t = 3s
AB = 3.5km
(2)在时间 内矢径 )
t
1 2 θ = ω At + αt 2
A
r 所转过的角度θ 为
飞机经过的路程为
vA
B
β
r a n θ
o
§1-2 质点运动的描述之二
at
法向加速度 加速度
2
dv aτ = = kR dt 2 2 v ( kRt ) 2 2 an = = = k Rt r R
2 n
a = aτ + a
=
§1-2 质点运动的描述之二
(kR ) + (k Rt )
2 2
2 2
8
*补充: 补充:
s
自然坐标系
P

s Q e τ
O
以动点为坐标原点,以切向单位矢量和法向 以动点为坐标原点, 单位矢量作为坐标轴 作为坐标轴. 单位矢量作为坐标轴.
o
解:(1)
v0
x
θ
an y
§1-2 质点运动的描述之二

大学物理运动学第一章第二节 位失 速度 加速度课件

大学物理运动学第一章第二节 位失 速度 加速度课件

et
当质点做曲线运动时, 质点在某一点的速度方向就是沿该 点曲线的切线方向.
若质点在二维空间中运动,其速度为
v

dx
i

dy
j
v
dt
vx
i
dt
vy
j
y v y
若质点在三维空间中运动,其速度为
v

dx
i

dy
j

dz
k
o
dt dt dt
v
v x
x
瞬时速率:速度 v 的大小称为速率
dvx dt

d2x dt 2
ay

dv y dt

d2 y dt 2
az

dvz dt

d2z dt 2
说明 (1) 加速度反映速度的变化(大小和方向)情况。 (2) 加速度的方向总是指向轨迹曲线凹的一面。
通过积分求位移和速度:
a


dv dt

v(t)

v0

t

0
adt

v


dr dt

r(t)

r0

t 0
vdt
例已知质点作匀加速直线运动,加速度为a,求该质
点的运动方程。
解:已知a速 度或ddv加t 速度求d运v 动方a程d,t 采用积分法:
对于作直线运动的质点,采用标量形式
dv adt
两端积分可得到速度
v
v0
d
v

0ta
平均速度大小
v ( x )2 ( y )2
t

1.2 质点的位移、速度和加速度

1.2 质点的位移、速度和加速度
O
所以
dv ≡0 dt
v v (t + d t )
v v(t ) v dv dv

v a =a≠0
dv 所以 a ≠ dt
r g
r v
v
r g
2、加速度描述速度的变化,它只与 加速度描述速度的变化, 而与速度本身的大小无关。 关,而与速度本身的大小无关。
r 的改变有 ∆v
v ∆ v = ∆ v 吗? 讨论 v v v ∆v = v(t + ∆t ) − v(t )
v v v v ∆v = v(t + ∆t ) − v(t ) = ab v(t )
y
v r (t1 )
O
r P ∆r 1
v r (t2 )
∆s
P 2
∆r
注意
z
v ∆r ≠ ∆r
2
P1 ( x1 , y1 , z1 ) P2 ( x 2 , y 2 , z 2 )
x
位矢长度的变化
2 2
x2 +y2 +z2 − x + y + z ∆r =
2 1 2 1
2 1
讨论
位移与路程
(A)P1P2 两点间的路程是 不唯一的, 不唯一的, 可以是 ∆s 或 r是唯一的. ∆s′ ,而位移 ∆ r是唯一的. 一般情况, (B) 一般情况, 位移大小 不等于路程. 不等于路程.
时,
v ds v v= τ dt dt
当质点做曲线运动时,质点在某一点的速度方 当质点做曲线运动时,质点在某一点的速度方 向就是沿该点曲线的切线方向 . 速度是反映质点运动快慢和方向的物理量
v 瞬时速率: 瞬时速率:速度 v
的大小称为速率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1 位移
y
A r r1 r2
y
B
yB yA
A r r1 r2
xA xB x A
B
yB yA
o
x
o
xB
x
把 由始点 A 指向终点 B 的有向线段 r 称为点 A 到 B 的位移矢量 , 简称位移. r r2 r1
经过时间间隔 t 后, 质点位置矢量发生变化,
1.2 质点的位移、速度和加速度
一、 位移 (反映物体位置的变化)
位移 位矢 r 在t 时间内的增量
O

P
r (t )
s
r
Q

r (t t ) 说明 (1) r是矢量, s 是标量,且大小一般不等 Δr r s r 位矢增量的大小与Δr ( r )位矢大小的增量的区别 (2) 分清
A
r (t )
o
dt
x
三、 加速度
1. 速度增量 v v (t t ) v (t )
v (t )
B
v (t t )
A

2 . 平均加速度
v a t
r (t )
r (t t )
3. 瞬时加速度
a lim v t dv dt
dr dt v
r
r
0
t dr (6i 16t j )dt 0

r0 8k
2 r 6t i 8t j 8k
1.4 用自然坐标表示平面曲线运动中 的速度和加速度
一、 速度
s s (t t ) s (t ) r s r lim ( ) v lim t 0 s t t 0 t r s ( lim )( lim ) t 0 s t 0 t r ds ds τ ( lim ) t 0 s dt dt
2.变速圆周运动
v v v n v 反映速度大小的变化 v n 反映速度方向的变化 v v n v lim lim a lim t 0 t t 0 t t 0 t
A
v (t )
v B v n
dv v a a an τ n dt R
3. 变速曲线运动
P
an
2
v

dv v a τ n dt
a a a n
2 2
2

a
v dv dt
2
1
2
2
曲率圆
a 与 的夹角 tg
d r
2
O

v (t )
v
t 0
dt
2
v (t t )
讨论 (1) 加速度是速度的一阶导数,是位矢的二阶导数
(2) 根据运动方程 r r (t ) 或 v v (t ),可确定任意时刻的加速度 a
r r (t )
求导
v v (t )
在Ob上截取

a
v (t )
v
v (t t )
b
c
oc oa
O v cb v ac cb v n v t v n ac 速度方向变化 速度大小变化 v t cb
1.3.3 加速度
a d r
2
p2
z
x
(D)位移是矢量, 路程是标量.
不改变方向的直线运动; 当 t 0 时 r s . ds d r
注意:
1、位移和路程的区别
s r ,
但 ds dr ;
2、位移大小和位矢大小增量的区别
r r , d r d r
3、 要分清 r 、 r 、 r 等的几何意义。
t 0
A
R
v
B

r

O

Q v (t t )
a 的方向 沿v (t0 时)方向
v 法向加速度 an n R
2
v (t )
v
反映速度方 向变化快慢
速度大小
A


B
v (t t )

O
讨论 加速度
反映 速 度矢量
变化的快慢
速度方向
dv dt 0
O
v (t d t )
v (t ) dv

a a 0
所以
a
dv dt
三、 运动学的两类问题
v , a 1. 第一类问题 已知运动学方程,求 2 例 已知一质点运动方程 r 2t i ( 2 t ) j
求 (1) t =1 s 到 t =2 s 质点的位移 (3) 轨迹方程
r x y z
2 2 2
y
r ( t1 )
O
P r 1
r (t 2 )
s
P2

r
P1 ( x1 , y 1 , z 1 )
x
P2 ( x 2 , y 2 , z 2 )
注意
r r
2
位矢长度的变化
2 2
r
x 2 y 2 z 2 x1 y 1 z 1
a lim
v t
v (t )
P

t | v | v OABAPQ | r | R 2 v v r | r | v a lim ( ) | lim | t 0 R t R R t 0 t
t 0
a lim
| v |
2
d y dt
2
2

dv y dt
2

dv z dt
大小为
ax a y az
2
方向用方向余弦表示为
ax cos α a ay cos β a az cos γ a
讨论

dv a a 吗? dt
例 匀速率圆周运动
因为 所以
v (t ) v (t d t )
r1 x A i y A j r2 x B i y B j
位移 r r2 r1
y
yB yA
( x B x A )i ( y B y A ) j
o
A r r1 r2
xA xB x A
B
yB yA
1.3.2 速度
v dr
dx dy dz ( x i yj z k ) i j k dt dt dt dt dt d
v xi v y j v z k
vx dx dt
2 x
vy
2 y
dy dt
2 z
vz
( dx dt
解 (1) 由运动方程得 r1 2i j
(2) t =2 s 时,v , a
r2 4i 2 j
r r2 r1 2i 3 j dv dr a 2 j (2) v 2i 2t j dt dt a 2 2 j t =2 s 时 v 2 2 i 4 j
求导
a a (t )
v v (t ) 和 r r (t ) (3) 根据 a a (t ) 以及初始条件,可确定 a a (t )
积分 积分 v v (t )
r r (t )
1.3 用直角坐标表示位移、速度和加速度
xB
x
若质点在三维空间中运动
r ( x B x A )i ( y B y A ) j ( z B z A )k
位移的大小为
r x y z
2 2 2
位移的物理意义 A) 确切反映物体在空间 位置的变化, 与路径无关,只 决定于质点的始末位置. B)反映了运动的矢量 性和叠加性. r xi yj zk z
an a
例 一汽车在半径R=200 m 的圆弧形公路上行驶,其运动学 方程为s =20t 0.2 t 2 (SI) . 求 汽车在 t = 1 s 时的速度和加速度大小。 解 速度
(2) 速度 与 r ( t 0时 ) 方向相同 ,沿轨迹切线方向
v
P

趋向切线方向
Q
r
L
(3) 根据运动方程 r r (t ),可确定任意时刻的速度 v
例如:作业1.8
平均速率 v 瞬时速率 v
s t ds
y
B
r (t t )
s r
dt
2
2 2 2 d x d y d z 2 ( xi yj zk ) i j 2 k 2 2 dt dt dt dt
d
2
axi a y j az k
az d z dt
2 2
ax
d x dt
2
2

dv x dt
a
ay

O

P
v
v (t t )
a a n
2
v a n 反映速度方向变化的快慢 ,指向圆心. 法向加速度 第二项: n R vτ 切向加速度 反映速度大小变化的快慢 第一项:aτ lim t 0 t | v τ | v dv v τ v (t t ) v (t ) v 大小 aτ lim lim t 0 t 0 t t dt 方向 t 0 时, 0,则 vτ 沿切线方向
相关文档
最新文档