数字信号处理(第三版)高西全西安电子科技大学出版社答案

合集下载

数字信号处理第三版西安电子(高西全丁美玉)2356课后答案

数字信号处理第三版西安电子(高西全丁美玉)2356课后答案
解:
(1)
上式中指数函数的傅里叶变换不存在,引入奇异函数 函数,它的傅里叶变换可以
表示成:
(2)
(3)
式中
式中
上式推导过程中,指数序列的傅里叶变换仍然不存在,只有引入奇异函数函数,才能写出它的傅里叶变换表达式。
14.求以下序列的Z变换及收敛域:
(2) ;
(3) ;
(6)
解:
(2)
(3)
(6)
16.已知:
y(n)的波形如题8解图(二)所示.
(3)
y(n)对于m的非零区间为 。



最后写成统一表达式:
11.设系统由下面差分方程描述:
;
设系统是因果的,利用递推法求系统的单位取样响应。
解:
令:
归纳起来,结果为
12.有一连续信号 式中,
(1)求出 的周期。
(2)用采样间隔 对 进行采样,试写出采样信号 的表达式。
解:
(1)x(n)的波形如题2解图(一)所示。
(2)
(3) 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4) 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画 时,先画x(-n)的波形,然后再右移2位, 波形如题2解图(四)所示。
3.判断下面的序列是否是周期的,若是周期的,确定其周期。
按照上式可以有两种级联型结构:
(a)
画出级联型结构如题2解图(二)(a)所示。
(b)
画出级联型结构如题2解图(二)(b)所示●。
3.设系统的系统函数为

试画出各种可能的级联型结构。
解:
由于系统函数的分子和分母各有两个因式,可以有两种级联型结构。

数字信号处理西安电子高西全课后习题答案

数字信号处理西安电子高西全课后习题答案

T[ax1(n)+bx2(n)]=ax1(n) sin(ωn)+bx2(n) sin(ωn) =aT[x1(n)]+bT[x2(n)]
故系统是线性系统。
第 1 章 时域离散信号和时域离散系统
6. 给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明 理由。
(1) y(n)=
1x(Nn-1 k)
最后结果为 0
n<0或n>7
y(n)= n+1 0≤n≤3 8-n 4≤n≤7
y(n)的波形如题8解图(一)所示。 (2) y(n) =2R4(n)*[δ(n)-δ(n-2)]=2R4(n)-2R4(n-2)
=2[δ(n)+δ(n-1)-δ(n+4)-δ(n+5) y(n)的波形如题8解图(二)所示
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
0≤m≤3
-4≤m≤n
非零区间如下:
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0
3
mn4

数字信号处理西安电子高西全丁美玉第三版课后习题答案全1-7章

数字信号处理西安电子高西全丁美玉第三版课后习题答案全1-7章
=y′(n)
第 1 章 时域离散信号和时域离散系统
故该系统是非时变系统。 因为 y(n)=T[ax1(n)+bx2(n) =ax1(n)+bx2(n)+2[ax1(n-1)+bx2(n-1)] +3[ax1(n-2)+bx2(n-2)] T[ax1(n)]=ax1(n)+2ax1(n-1)+3ax1(n-2) T[bx2(n)]=bx2(n)+2bx2(n-1)+3bx2(n-2)
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
=aT[x1(n)]+mbT0 [x2(n)]
故系统是线性系统。
n
m0
第 1 章 时域离散信号和时域离散系统
(8) y(n)=x(n) sin(ωn)
令输入为
输出为
x(n-n0)
y′(n)=x(n-n0) sin(ωn) y(n-n0)=x(n-n0) sin[ω(n-n0)]≠y′(n) 故系统不是非时变系统。 由于
(5) 画x3(n)时, 先画x(-n)的波形(即将x(n)的波形以纵轴为中心翻转180°), 然后再右移2位, x3(n)波形如题2解图(四)所示。
第 1 章 时域离散信号和时域离散系统
题2解图(一)
第 1 章 时域离散信号和时域离散系统

西安电子(高西全丁美玉第三版)数字信号处理课后答案第1章

西安电子(高西全丁美玉第三版)数字信号处理课后答案第1章
题1图
第 1 章 时域离散信号和时域离散系统
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)
+2δ(n-2)+4δ(n-3)+0.5δ(n-4)+2δ(n-6)
2. 给定信号:
2n+5
-4≤n≤-1
(x(n)= 6 0
0≤n≤4 其它
(1) 画出x(n)序列的波形, 标上各序列值;
x(n-n0)=x(n)*δ(n-n0)
(3)

n
(
j
)

1 T

X
k
a
(
j

jks
)
这是关于采样定理的重要公式, 根据该公式要求对
信号的采样频率要大于等于该信号的最高频率的两倍以上,
才能得到不失真的采样信号。
xa
(t
)

n
xa
(nt
)
sin[π(t π(t
nT ) /T nT ) /T
这是一个线性卷积公式, 注意公式中是在-∞~∞之间 对m求和。 如果公式中x(n)和h(n)分别是系统的输入和单位 脉冲响应, y(n)是系统输出, 则该式说明系统的输入、 输出和单位脉冲响应之间服从线性卷积关系。
第 1 章 时域离散信号和时域离散系统
(2)
x(n)=x(n)*δ(n)
该式说明任何序列与δ(n)的线性卷积等于原序列。
(2) 0≤n≤3时,
n
y(n) 1 n 1 m0
第 1 章 时域离散信号和时域离散系统
(3) 4≤n≤6时,
n

数字信号处理第三版西安科大出版高西全丁玉美课后答案第3与4章

数字信号处理第三版西安科大出版高西全丁玉美课后答案第3与4章

x 6 ( n ) ID [X ( k F ),]n T 0 ,1 ,2 , ,5
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
解:直接根据频域采样概念得到
x6(n ) x(n 6 l)R 6(n )R 6(n )R 2(n ) l
[例3.4.3] 令X(k)表示x(n)的N点DFT, 分别证明: (1) 如果x(n)满足关系式
yc(1)
x(1)
x(0)
x(L1)
x(2)
h(1)
yc(2)
x(2)
x(1)
x(0) x(3) h(2)
yc(L1) x(L1) x(L2) x(L3) x(0)h(L1)
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
循环卷积定理: 若
yc(n)=h(n) L x(n) 则
~xN(n) x(niN) n
会发生时域混叠, xN(n)≠x(n)。
通过频率域采样得到频域离散序列xN(k), 再对xN(k)进行 IDFT得到的序列xN(n)应是原序列x(n)以采样点数N为周期进行 周期化后的主值区序列, 这一概念非常重要。
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
(FFT)
3.1.2 重要公式
1) 定义
N1
X(k)DF [x(T n)N ] x(n)W N k n k=0, 1, …, N-1 n0
x(n)ID[X F(kT )N ]N 1N k 0 1X(k)W N kn
2) 隐含周期性
k=0, 1, …, N-1
N 1
N 1
X (k m ) N x (n ) W N (k m )n N x (n ) W N k nX (k )

西安电子(高西全丁美玉第三版)数字信号处理课后答案第2章

西安电子(高西全丁美玉第三版)数字信号处理课后答案第2章
Y (e j ) X (e j )H (e j )
这是时域卷积定理。
第2章 时域离散信号和系统的频域分析
(5) 若y(n)=x(n)h(n), 则
Y (e j ) 1 H (e j ) X (e j ) 2π
这是频域卷积定理或者称复卷积定理。
(6)
xe
(n)

1 2
[x(n)
滤波器是高通还是低通等滤波特性, 也可以通过分析极、 零点分布确定, 不必等画出幅度特性再确定。 一般在最靠近 单位圆的极点附近是滤波器的通带; 阻带在最靠近单位圆的 零点附近, 如果没有零点, 则离极点最远的地方是阻带。 参 见下节例2.4.1。
第2章 时域离散信号和系统的频域分析
2.4 例
[例2.4.1] 已知IIR数字滤波器的系统函数
c (Rx , Rx )
这两式分别是序列Z变换的正变换定义和它的逆Z变 换定义。
第2章 时域离散信号和系统的频域分析
(8)
x(n) 2 1
X (e j ) 2d
n
2π 2
x(n) y(n) 1
n

c
X
(v)Y

(
1 v
)
dv v
max[Rx ,
H(z) 1 1 0.9z 1
试判断滤波器的类型(低通、 高通、 带通、 带阻)。 (某
解: 将系统函数写成下式:
H(z) 1 = z 1 0.9z 1 z 0.9
第2章 时域离散信号和系统的频域分析
系统的零点为z=0, 极点为z=0.9, 零点在z平面的原点, 不影响频率特性, 而惟一的极点在实轴的0.9处, 因此滤波 器的通带中心在ω=0处。 毫无疑问, 这是一个低通滤波器。

西安电子(高西全丁美玉第三版)数字信号处理部分课后答案Word版 - 副本

西安电子(高西全丁美玉第三版)数字信号处理部分课后答案Word版 - 副本

第一章习题解答2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解: (1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

(5)2()()y n x n =; (6)y (n )=x (n 2)解:(5) 2()()y n x n = 令:输入为0()x n n -,输出为'20()()y n x n n =-,因为2'00()()()y n n x n n y n -=-=故系统是时不变系统。

又因为21212122212[()()](()()) [()][()] ()()T ax n bx n ax n bx n aT x n bT x n ax n bx n +=+≠+=+因此系统是非线性系统。

(6) y (n )=x (n 2) 令输入为x (n -n 0) 输出为y ′(n )=x ((n -n 0)2)y (n -n 0)=x ((n -n 0)2)=y ′(n)故系统是非时变系统。

《数字信号处理》第三版课后实验答案_西安电子科技大学出版社

《数字信号处理》第三版课后实验答案_西安电子科技大学出版社

程序清单及波形显示: clc;close all;clear all;%======内容1:调用filter 解差分方程,由系统对u(n)的响应判断稳定性======A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B 和A x1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n) x2n=ones(1,128); %产生信号x2(n)=u(n)y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n) n=0:length(y1n)-1;subplot(2,2,1);stem(n,y1n,'.'); title('(a) 系统对R8(n)的响应y1(n)');xlabel('n');ylabel('y1(n)');y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n) n=0:length(y2n)-1;subplot(2,2,2);stem(n,y2n,'.'); title('(b) 系统对u(n)的响应y2(n)');xlabel('n');ylabel('y2(n)');hn=impz(B,A,58); %求系统单位脉冲响应h(n) n=0:length(hn)-1;subplot(2,2,3);y=hn;stem(n,hn,'.'); title('(c) 系统单位脉冲响应h(n)');xlabel('n');ylabel('h(n)');(a) 系统对R8(n)的响应y1(n)ny 1(n )(b) 系统对u(n)的响应y2(n)ny 2(n )(c) 系统单位脉冲响应h(n)nh (n )%===内容2:调用conv 函数计算卷积============================x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n) h1n=ones(1,10); h2n=[1 2.5 2.5 1 ];y21n=conv(h1n,x1n); y22n=conv(h2n,x1n); figure(2)n=0:length(h1n)-1;subplot(2,2,1);stem(n,h1n); title('(d) 系统单位脉冲响应h1n');xlabel('n');ylabel('h1(n)'); n=0:length(y21n)-1;subplot(2,2,2);stem(n,y21n); title('(e) h1(n)与R8(n)的卷积y21n');xlabel('n');ylabel('y21(n)'); n=0:length(h2n)-1;subplot(2,2,3);stem(n,h2n); title('(f) 系统单位脉冲响应h2n');xlabel('n');ylabel('h2(n)'); n=0:length(y22n)-1;subplot(2,2,4);stem(n,y22n); title('(g) h2(n)与R8(n)的卷积y22n');xlabel('n');ylabel('y22(n)');nh 1(n )ny 21(n )(f) 系统单位脉冲响应h2nnh 2(n)(g) h2(n)与R8(n)的卷积y22nny 22(n )%=========内容3:谐振器分析======================== un=ones(1,256); %产生信号u(n) n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B 和Ay31n=filter(B,A,un); %谐振器对u(n)的响应y31(n) y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n) figure(3)n=0:length(y31n)-1;subplot(2,1,1);stem(n,y31n,'.'); title('(h) 谐振器对u(n)的响应y31n');xlabel('n');ylabel('y31(n)'); n=0:length(y32n)-1;subplot(2,1,2);stem(n,y32n,'.'); title('(i) 谐振器对正弦信号的响应y32n');xlabel('n');ylabel('y32(n)');050100150200250300(h) 谐振器对u(n)的响应y31nny 31(n )(i) 谐振器对正弦信号的响应y32nny 32(n )程序清单及波形显示:% DTMF 双频拨号信号产生6位电话号码 %clear all;clc;tm=[1,2,3,65;4,5,6,66;7,8,9,67;42,0,35,68]; % DTMF 信号代表的16个数N=205;K=[18,20,22,24,31,34,38,42];f1=[697,770,852,941]; % 行频率向量 f2=[1209,1336,1477,1633]; % 列频率向量 TN=input('键入6位电话号码= '); % 输入6位数字TNr=0; %接收端电话号码初值为零for l=1:6;d=fix(TN/10^(6-l)) TN=TN-d*10^(6-l); for p=1:4; for q=1:4;if tm(p,q)==abs(d); break,end % 检测码相符的列号q endif tm(p,q)==abs(d); break,end % 检测码相符的行号p endn=0:1023; % 为了发声,加长序列x = sin(2*pi*n*f1(p)/8000) + sin(2*pi*n*f2(q)/8000);% 构成双频信号sound(x,8000); % 发出声音 pause(0.1)% 接收检测端的程序X=goertzel(x(1:205),K+1); % 用Goertzel 算法计算八点DFT样本val = abs(X); % 列出八点DFT向量subplot(3,2,l);stem(K,val,'.');grid;xlabel('k');ylabel('|X(k)|') % 画出DFT(k)幅度axis([10 50 0 120])limit = 80; %for s=5:8;if val(s) > limit, break, end % 查找列号endfor r=1:4;if val(r) > limit, break, end % 查找行号endTNr=TNr+tm(r,s-4)*10^(6-l);enddisp('接收端检测到的号码为:') % 显示接收到的字符disp(TNr)显示结果:键入6位电话号码= 123456d = 1d = 2d = 3d = 4d = 5d = 6接收端检测到的号码为:123456050100|X (k )||X (k )|050100k|X (k )|050100k|X (k )|050100k|X (k )|050100k|X (k )|% DTMF 双频拨号信号产生8位电话号码 %clear all;clc;tm=[1,2,3,65;4,5,6,66;7,8,9,67;42,0,35,68]; % DTMF 信号代表的16个数 N=205;K=[18,20,22,24,31,34,38,42];f1=[697,770,852,941]; % 行频率向量 f2=[1209,1336,1477,1633]; % 列频率向量 TN=input('键入8位电话号码= '); % 输入8位数字TNr=0; %接收端电话号码初值为零for l=1:8;d=fix(TN/10^(8-l)) TN=TN-d*10^(8-l); for p=1:4; for q=1:4;if tm(p,q)==abs(d); break,end % 检测码相符的列号q endif tm(p,q)==abs(d); break,end % 检测码相符的行号p endn=0:1023; % 为了发声,加长序列 x = sin(2*pi*n*f1(p)/8000) + sin(2*pi*n*f2(q)/8000);% 构成双频信号 sound(x,8000); % 发出声音 pause(0.1)% 接收检测端的程序X=goertzel(x(1:205),K+1); % 用Goertzel 算法计算八点DFT 样本val = abs(X); % 列出八点DFT 向量 subplot(4,2,l);stem(K,val,'.');grid;xlabel('k');ylabel('|X(k)|') % 画出DFT(k)幅度axis([10 50 0 120])limit = 80; % for s=5:8;if val(s) > limit, break, end % 查找列号 endfor r=1:4;if val(r) > limit, break, end % 查找行号 endTNr=TNr+tm(r,s-4)*10^(8-l); enddisp('接收端检测到的号码为:') % 显示接收到的字符 disp(TNr) 显示结果:键入8位电话号码= 12345678 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8接收端检测到的号码为:12345678|X (k )||X (k )||X (k )||X (k )||X (k )||X (k )|k|X (k )|k|X (k )|程序清单及波形显示: % 时域采样理论验证程序Tp=64/1000; %观察时间Tp=64微秒Fs=1000;T=1/Fs; M=Tp*Fs;n=0:M-1;t=n*T;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xat=A*exp(-alph*t).*sin(omega*t);Xk=T*fft(xat,M); %M点FFT[xat)]subplot(3,2,1); stem(n,xat,'.'); xlabel('n');ylabel('x1(n)'); title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz');xlabel('\omega/hz');ylabel('(H1(ejw))');axis([0,Fs,0,1.2*max(abs(Xk))]);Fs=300;T=1/Fs; M=Tp*Fs;n=0:M-1;t=n*T;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xat=A*exp(-alph*t).*sin(omega*t);Xk=T*fft(xat,M); %M点FFT[xat)]subplot(3,2,3); stem(n,xat,'.'); xlabel('n');ylabel('x2(n)'); title('(b)Fs=300Hz');k=0:M-1;fk=k/Tp;subplot(3,2,4);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=300Hz');xlabel('\omega/hz');ylabel('(H2(ejw))');axis([0,Fs,0,1.2*max(abs(Xk))]);Fs=200;T=1/Fs; M=Tp*Fs;n=0:M-1;t=n*T;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xat=A*exp(-alph*t).*sin(omega*t);Xk=T*fft(xat,M); %M点FFT[xat)]subplot(3,2,5); stem(n,xat,'.'); xlabel('n');ylabel('x3(n)'); title('(c) Fs=200Hz');k=0:M-1;fk=k/Tp;subplot(3,2,6);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=200Hz');xlabel('\omega/hz');ylabel('(H3(ejw))');axis([0,Fs,0,1.2*max(abs(Xk))])nx 1(n )(a) Fs=1000Hz(a) T*FT[xa(nT)],Fs=1000Hzω/hz(H 1(e j w ))nx 2(n )(b) Fs=300Hz(a) T*FT[xa(nT)],Fs=300Hzω/hz(H 2(e j w ))nx 3(n )(c) Fs=200Hz(a) T*FT[xa(nT)],Fs=200Hzω/hz(H 3(e j w ))%频域采样理论验证程序 clc;clear;close all; M=27;N=32;n=0:M; xa=0:(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb]; %产生M 长三角波序列x(n) Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的TF X32k=fft(xn,32) ;%32点FFT[x(n)] x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n) X16k=X32k(1:2:N); %隔点抽取X32k 得到X16(K) x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n) subplot(3,2,2);stem(n,xn,'.'); title('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20]) k=0:1023;wk=2*k/1024; subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]'); xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200]) k=0:N/2-1; subplot(3,2,3);stem(k,abs(X16k),'.'); title('(c) 16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200]) n1=0:N/2-1; subplot(3,2,4);stem(n1,x16n,'.'); title('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]); k=0:N-1; subplot(3,2,5);stem(k,abs(X32k),'.'); title('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200]);n1=0:N-1; subplot(3,2,6);stem(n1,x32n,'.');box on title('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])(b) 三角波序列x(n)nx (n )0100200(a)FT[x(n)]ω/π|X (e j ω)|(c) 16点频域采样k|X 16(k)|102030(d) 16点IDFT[X 16(k)]nx 16(n)(e) 32点频域采样k|X 32(k )|(f) 32点IDFT[X 32(k)]nx 32(n )程序清单及波形显示:% 用FFT 对信号作频谱分析 clear all;close all %实验内容(1)=================================================== x1n=[ones(1,4)]; %产生序列向量x1(n)=R4(n) M=8;xa=1:(M/2); xb=(M/2):-1:1; x2n=[xa,xb]; %产生长度为8的三角波序列x2(n) x3n=[xb,xa]; X1k8=fft(x1n,8); %计算x1n 的8点DFT X1k16=fft(x1n,16); %计算x1n 的16点DFT X2k8=fft(x2n,8); %计算x1n 的8点DFT X2k16=fft(x2n,16); %计算x1n 的16点DFT X3k8=fft(x3n,8); %计算x1n 的8点DFT X3k16=fft(x3n,16); %计算x1n 的16点DFT %以下绘制幅频特性曲线 subplot(1,2,1);stem(X1k8,'.'); %绘制8点DFT 的幅频特性图 title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度'); subplot(1,2,2);stem(X1k16,'.'); %绘制16点DFT 的幅频特性图 title('(1b)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');figure(2)subplot(2,2,1);stem(X2k8,'.'); %绘制8点DFT 的幅频特性图 title('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,2);stem(X2k16,'.'); %绘制16点DFT 的幅频特性图 title('(2b)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,3);stem(X3k8,'.'); %绘制8点DFT 的幅频特性图 title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,4);stem(X3k16,'.'); %绘制16点DFT 的幅频特性图 title('(3b)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');-2.5-2-1.5-1-0.500.511.522.5(1a) 8点DFT[x 1(n)]ω/π幅度-2.5-2-1.5-1-0.500.511.522.5(1b)16点DFT[x 1(n)]ω/π幅度2468-4-2024(2a) 8点DFT[x 2(n)]ω/π幅度5101520-20-1001020(2b)16点DFT[x 2(n)]ω/π幅度2468-4-2024(3a) 8点DFT[x 3(n)]ω/π幅度-10-50510(3b)16点DFT[x 3(n)]ω/π幅度%实验内容(2) 周期序列谱分析==================================N=8;n=0:N-1; %FFT 的变换区间N=8 x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n); %计算x4n 的8点DFT X5k8=fft(x5n); %计算x5n 的8点DFT N=16;n=0:N-1; %FFT 的变换区间N=16 x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k16=fft(x4n); %计算x4n 的16点DFT X5k16=fft(x5n); %计算x5n 的16点DFT figure(3)subplot(2,2,1);stem(X4k8,'.'); %绘制8点DFT 的幅频特性图 title('(4a) 8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,3);stem(X4k16,'.'); %绘制16点DFT 的幅频特性图 title('(4b)16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,2);stem(X5k8,'.'); %绘制8点DFT 的幅频特性图 title('(5a) 8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,4);stem(X5k16,'.'); %绘制16点DFT 的幅频特性图title('(5b)16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');2468-1012x 10-15(4a) 8点DFT[x 4(n)]ω/π幅度5101520-4-2024x 10-15(4b)16点DFT[x 4(n)]ω/π幅度2468-4-2024(5a) 8点DFT[x 5(n)]ω/π幅度5101520-4-2024x 10-15(5b)16点DFT[x 5(n)]ω/π幅度%实验内容(3) 模拟周期信号谱分析=============================== figure(4) Fs=64;T=1/Fs; N=16;n=0:N-1; %FFT 的变换区间N=16 x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)16点采样 X6k16=fft(x6nT); %计算x6nT 的16点DFT X6k16=fftshift(X6k16); %将零频率移到频谱中心 Tp=N*T;F=1/Tp; %频率分辨率F k=-N/2:N/2-1;fk=k*F; %产生16点DFT 对应的采样点频率(以零频率为中心) subplot(3,1,1);stem(fk,abs(X6k16),'.');box on %绘制8点DFT 的幅频特性图 title('(6a) 16点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度'); axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k16))])N=32;n=0:N-1; %FFT的变换区间N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)32点采样X6k32=fft(x6nT); %计算x6nT的32点DFTX6k32=fftshift(X6k32); %将零频率移到频谱中心Tp=N*T;F=1/Tp; %频率分辨率Fk=-N/2:N/2-1;fk=k*F; %产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,2);stem(fk,abs(X6k32),'.');box on %绘制8点DFT的幅频特性图title('(6b) 32点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k32))])N=64;n=0:N-1; %FFT的变换区间N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)64点采样X6k64=fft(x6nT); %计算x6nT的64点DFTX6k64=fftshift(X6k64); %将零频率移到频谱中心Tp=N*T;F=1/Tp; %频率分辨率Fk=-N/2:N/2-1;fk=k*F; %产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,3);stem(fk,abs(X6k64),'.'); box on%绘制8点DFT的幅频特性图title('(6a) 64点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64))])-30-20-1001020300510(6a) 16点|DFT[x 6(nT)]|f(Hz)幅度010(6b) 32点|DFT[x 6(nT)]|f(Hz)幅度020(6a) 64点|DFT[x 6(nT)]|f(Hz)幅度程序清单及波形显示: clc;clear all;close all;fc1=250; fm1=15; fc2=500; fm2=50; fc3=1000; fm3=100;N=800; Fs=10000;Ts=1/Fs; n=[0:N-1];t=n*Ts;x11=cos(2*pi*fc1*t); x12=cos(2*pi*fm1*t); x1=x11.*x12; subplot(3,1,1);plot(t,x11,'g');plot(t,x12,'r');plot(t,x1,'b'); legend('载波','调制波 ','已调 ');xlabel('t/s');ylabel('波形')x=cos(2*pi*fc1*t).*cos(2*pi*fm1*t)+cos(2*pi*fc2*t).*cos(2*pi*fm2*t)+cos(2*pi*fc3*t).*cos(2*pi*fm3*t); subplot(3,1,2);plot(t,x);X=fft(x)subplot(3,1,3)k=[0:(N-1)/2]stem(k*2/N,abs(X(k+1))/max(abs(X(k+1))),'.');axis([0,0.3,0,1]);xlabel('\omeg a/\pi');ylabel('幅度');wp=[0.04,0.06];ws=[0.03,0.07];rp=0.1;rs=60;[N1,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N1,rp,rs,wp);y1=filter(B,A,x);figuresubplot(3,1,1);plot(t,x);xlabel('t/s');title('3路混合信号波形')subplot(3,1,2);[H1,w1]=freqz(B,A,N);plot(w1/pi,20*log10(abs(H1)));axis([0,0.5,-80,1]);xlabel('\omega/\pi');ylabel('|H(e^j\omega)|');title('中心频率为250Hz的频率响应');subplot(3,1,3);plot(t,y1);xlabel('t/s');ylabel('y1(t)');title('中心频率为250H的滤波信号')wp=[0.08,0.12];ws=[0.07,0.13];rp=0.1;rs=60;[N1,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N1,rp,rs,wp);y1=filter(B,A,x);figuresubplot(3,1,1);plot(t,x);xlabel('t/s');title('3路混合信号波形');subplot(3,1,2)[H1,w1]=freqz(B,A,N);plot(w1/pi,20*log10(abs(H1)));axis([0,0.5,-90,2]);xlabel('\omega/\pi');ylabel('|H(e^j\omega)|');title('中心频率为500Hz的频率响应')subplot(3,1,3);plot(t,y1);xlabel('t/s');ylabel('y1(t)');title('中心频率为500H的滤波信号')wp=[0.17,0.23];ws=[0.16,0.24];rp=0.1;rs=60;[N1,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N1,rp,rs,wp);y1=filter(B,A,x);figuresubplot(3,1,1);plot(t,x);xlabel('t/s');title('3路混合信号波形');subplot(3,1,2);[H1,w1]=freqz(B,A,N);plot(w1/pi,20*log10(abs(H1)));axis([0,0.5,-100,10]);xlabel('\omega/\pi');ylabel('|H(e^j\omega)|');title('中心频率为1000Hz的频率响应')subplot(3,1,3);plot(t,y1);xlabel('t/s');ylabel('y1(t)');title('中心频率为1000H的滤波信号')00.010.020.030.040.050.060.070.08-101t/s波形00.010.020.030.040.050.060.070.08-505ω/π幅度-505t/s3路混合信号波形-80-60-40-200ω/π|H (e j ω)|中心频率为250Hz 的频率响应-202t/sy 1(t )中心频率为250H 的滤波信号0.010.020.030.040.050.060.070.08-505t/s3路混合信号波形0.050.10.150.20.250.30.350.40.450.5-80-60-40-200ω/π|H (e j ω)|中心频率为500Hz 的频率响应0.010.020.030.040.050.060.070.08-202t/sy 1(t )中心频率为500H 的滤波信号0.010.020.030.040.050.060.070.08-505t/s3路混合信号波形0.050.10.150.20.250.30.350.40.450.5-100-500ω/π|H (e j ω)|中心频率为1000Hz 的频率响应0.010.020.030.040.050.060.070.08-202t/sy 1(t )中心频率为1000H 的滤波信号程序清单及波形显示: clc;clear;clear allN=1000; Fs=1000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T;fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10; mt=cos(2*pi*f0*t); %产生单频正弦波调制信号mt ,频率为f0 ct=cos(2*pi*fc*t); %产生载波正弦波信号ct ,频率为fc xt=mt.*ct; %相乘产生单频调制信号xt nt=2*rand(1,N)-1; %产生随机噪声ntfp=150; fs=200;Rp=0.1;As=70; % 滤波器指标fb=[fp,fs];m=[0,1]; % 计算remezord 函数所需参数f,m,devdev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];[n,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez 函数所需参数hn=remez(n,fo,mo,W); % 调用remez 函数进行设计,用于滤除噪声nt 中的低频成分yt=filter(hn,1,10*nt); %滤除随机噪声中低频成分,生成高通噪声yt xt=xt+yt; %噪声加信号 fst=fft(xt,N);k=0:N-1;f=k/Tp;subplot(2,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');axis([0,Tp/5,min(xt),max(xt)]);title('(a) 信号加噪声波形')subplot(2,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b) 信号加噪声的频谱')axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度')-10-50510t/sx (t )(a) 信号加噪声波形0501001502002503003504004505000.51(b) 信号加噪声的频谱f/Hz幅度%==调用xtg 产生信号xt, xt 长度N=1000,并显示xt 及其频谱,========= N=1000;xt=xtg(N);fp=120; fs=150;Rp=0.2;As=60;Fs=1000; % 输入给定指标% (1) 用窗函数法设计滤波器wc=(fp+fs)/Fs; %理想低通滤波器截止频率(关于pi归一化)B=2*pi*(fs-fp)/Fs; %过渡带宽度指标Nb=ceil(11*pi/B); %blackman窗的长度Nhn=fir1(Nb-1,wc,blackman(Nb));Hw=abs(fft(hn,1024)); % 求设计的滤波器频率特性ywt=fftfilt(hn,xt,N); %调用函数fftfilt对xt滤波subplot(4,1,1);plot(f,Hw);xlabel('f/Hz');ylabel('幅度'); title('(a)低通滤波器幅频特性');subplot(4,1,2);plot(t,ywt); title('(b)滤除噪声后的信号波形');xlabel('t/s');ylabel('ywt');% (2) 用等波纹最佳逼近法设计滤波器fb=[fp,fs];m=[1,0]; % 确定remezord函数所需参数f,m,dev dev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];[Ne,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数hn=remez(Ne,fo,mo,W); % 调用remez函数进行设计Hw=abs(fft(hn,1024)); % 求设计的滤波器频率特性yet=fftfilt(hn,xt,N); % 调用函数fftfilt对xt滤波subplot(3,1,1);plot(f,Hw);xlabel('f/Hz');ylabel('幅度'); title('(c)低通滤波器幅频特性');subplot(3,1,2);plot(t,yet);title('(d)滤除噪声后的信号波形');xlabel('t/s');ylabel('yet');。

数字信号处理西安电子高西全课后答案

数字信号处理西安电子高西全课后答案

因果系统
因果系统是指系统的输出仅与输入的时间点有关,与输入的时间点无关。
信号与系统的关系
01
系统对信号的作用
系统对信号的作用可以改变信号 的幅度、频率和相位等基本属性 。
02
信号在系统中的传 播
信号在系统中传播时,会受到系 统的特性影响,从而改变信号的 基本属性。
03
系统对信号的响应
系统对信号的响应可以反映系统 的特性,从而可以用来分析和设 计系统。
02 离散傅里叶变换的定义
离散傅里叶变换是针对离散时间信号和系统的傅 里叶变换,它将离散时间信号分解成不同频率的 正弦波的叠加。
03 离散傅里叶变换的性质
离散傅里叶变换具有周期性、对称性和Parseval 等重要性质。
快速傅里叶变换算法
1 2 3
快速傅里叶变换算法的定义
快速傅里叶变换是一种高效计算离散傅里叶变换 的算法,它利用了循环卷积和分治的思想来降低 计算的复杂度。
03
数字信号处理技术能够提高通信系统的抗干扰性能、
传输效率和可靠性。
数字信号处理在通信中的应用
调制解调技术
调制是将低频信号转换为适 合传输的高频信号,解调是 将高频信号还原为原始的低
频信号。
通过调制解调技术,可以实 现信号的多路复用和高效传 输。
数字信号处理在通信中的应用
01
信道编码技术
02
信道编码是在发送端对信号进行编码,以增加信号的冗余 度,提高信号的抗干扰能力。
FIR数字滤波器的优 点
FIR数字滤波器具有稳定性好、易 于实现、没有递归运算等优点, 因此在一些需要稳定的系统中得 到广泛应用。
08
信号处理的应用
数字信号处理在通信中的应用

数字信号处理-西安电子科技大学出版(_高西全丁美玉)第三版_课后习题答案(全)

数字信号处理-西安电子科技大学出版(_高西全丁美玉)第三版_课后习题答案(全)

18
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
28
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
第 1 章 时域离散信号和时域离散系统
解法(二) 采用解析法。 按照题7图写出x(n)和h(n)的表达式分别为
5. 设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系统输入和输 出, 判断系统是否是线性非时变的。
(1)y(n)=x(n)+2x(n-1)+3x(n-2) (2)y(n)=2x(n)+3 (3)y(n)=x(n-n0) n0 (4)y(n)=x(-n)
15
第 1 章 时域离散信号和时域离散系统
非零区间如下:
0≤m≤3 -4≤m≤n
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0

数字信号处理上机答案(含程序及图片)第三版高西全著

数字信号处理上机答案(含程序及图片)第三版高西全著

数字信号处理上机答案(含程序及图片)第三版高西全丁玉美著数字信号处理实验一内容一a=0.8;ys=0;A=[1,-0.9];B=[0.05,0.05];xn=[1,zeros(1,50)];x1n=[1 1 1 1 1 1 1 1 zeros(1,50)];x2n=ones(1,128);xi=filtic(B,A,ys);hn=filter(B,A,xn,xi)n=0:length(hn)-1;subplot(2,2,1);stem(n,yn,'.')title('(a) 系统单位脉冲响应h(n)');xlabel('n');ylabel(hn);y1n=filter(B,A,x1n,xi);n=0:length(y1n)-1;subplot(2,2,2);y='y1(n)'; stem(n,y1n,'.')title('(b) 系统对R8(n)的响应y1(n)');xlabel('n');ylabel(yn);y2n=filter(B,A,x2n,xi);n=0:length(y2n)-1;subplot(2,2,4);y='y2(n)'; stem(n,y2n,'.')title('(c) 系统对u(n)的响应y2(n)');xlabel('n');ylabel(yn);20400.020.040.060.080.1nh (n )(a) 系统单位脉冲响应h(n)020400.20.40.6ny 1(n )(b) 系统对R8(n)的响应y1(n)501000.20.40.60.81ny 2(n )(c) 系统对u(n)的响应y2(n)内容二x1n=[1 1 1 1 1 1 1 1 ];h1n=[ones(1,10) zeros(1,10)]; h2n=[1 2.5 2.5 1 zeros(1,10)]; y21n=conv(h1n,x1n); y22n=conv(h2n,x1n); M1=length(y21n)-1; M2=length(y22n)-1; n1=0:1:M1; n2=0:1:M2;n11=0:length(h1n)-1; n22=0:length(h2n)-1;subplot(2,2,1); tstem(n11,h1n); title('(d) 系统单位脉冲响应h1(n)'); xlabel('n');ylabel(h1(n));subplot(2,2,2); stem(n1,y21n,'fill'); title('(e) h1(n)与R8(n)的卷积y21(n)'); xlabel('n');ylabel(y21(n));subplot(2,2,3); tstem(n22,h2n); title('(f) 系统单位脉冲响应h2(n)'); xlabel('n');ylabel(h2(n));subplot(2,2,4); stem(n1,y22n,'fill'); title('(g) h2(n)与R8(n)的卷积y22(n)'); xlabel('n');ylabel(y22(n));5101500.51nh 1(n )(d) 系统单位脉冲响应h1(n)010202468ny 21(n )(e) h1(n)与R8(n)的卷积y21(n)510123nh 2(n )(f) 系统单位脉冲响应h2(n)510152002468ny 22(n )(g) h2(n)与R8(n)的卷积y22(n)内容三谐振器对u(n)的响应a=0.8;ys=0;xn=[1,zeros(1,250)];B=[1/100.49,-1/100.49];A=[1,-1.8237,0.9801]; xi=filtic(B,A,ys); yn=filter(B,A,xn,xi) n=0:length(yn)-1;subplot(1,1,1);stem(n,yn,'.')谐振器对正弦信号的响应a=0.8;ys=0;xsin=sin(0.014*n)+sin(0.4*n);B=[1/100.49,-1/100.49];A=[1,-1.8237,0.9801]; xi=filtic(B,A,ys); yn=filter(B,A,xsin,xi) n=0:length(yn)-1;subplot(1,1,1);stem(n,yn,'.')50100150200250-0.01-0.008-0.006-0.004-0.00200.0020.0040.0060.0080.0150100150200250-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5数字信号处理实验三实验(1)x1n=[ones(1,4)]; X1k8=fft(x1n,8); X1k16=fft(x1n,16); N=8;f=2/N*(0:N-1); figure(1);subplot(1,2,1);stem(f,abs(X1k8),'.'); title('(la) 8µãDFT[x_1(n)]');xlabel('\omega/\pi¡¯);ylabel(¡®|(e^j^\omega)|'); N=16;f=2/N*(0:N-1);subplot(1,2,2);stem(f,abs(X1k16),'.'); title('(la) 16µãDFT[x_1(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|');实验(1-2,1-3)M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];x3n=[xb,xa];X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);figure(2);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X2k8),'.');title('(2a) 8µãDFT[x_2(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); subplot(2,2,3);stem(f,abs(X3k8),'.');title('(3a) 8µãDFT[x_3(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X2k16),'.');title('(2a) 16µãDFT[x_2(n)]');xlabel('');ylabel('');subplot(2,2,4);stem(f,abs(X3k16),'.');title('(3a) 16µãDFT[x_3(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|');实验(2-1,2-2)N=8;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n,8);X4k16=fft(x4n,16);X5k8=fft(x5n,8);X5k16=fft(x5n,16);figure(3);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X4k8),'.');title('(4a) 8µãDFT[x_4(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); subplot(2,2,3);stem(f,abs(X5k8),'.');title('(5a) 8µãDFT[x_5(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X4k16),'.');title('(4a) 16µãDFT[x_4(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); subplot(2,2,4);stem(f,abs(X5k16),'.');title('(5a) 16µãDFT[x_5(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|');实验(3)Fs=64;T=1/Fs;N=16;n=0:N-1;nT=n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT); X8k16=fft(x8n,16);N=16;f=2/N*(0:N-1);figure(4);subplot(2,2,1);stem(f,abs(X8k16),'.');title('(8a) 16µãDFT[x_8(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); N=32;n=0:N-1;nT=n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT); X8k32=fft(x8n,32);N=32;f=2/N*(0:N-1);figure(4);subplot(2,2,2);stem(f,abs(X8k32),'.');title('(8a) 32µãDFT[x_8(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); N=64;n=0:N-1;nT=n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT); X8k64=fft(x8n,64);N=64;f=2/N*(0:N-1);figure(4);subplot(2,2,3);stem(f,abs(X8k64),'.');title('(8a) 64µãDFT[x_8(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|');数字信号处理实验四内容一function st=mstgN=800Fs=10000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T;k=0:N-1;f=k/Tp; fc1=Fs/10; fm1=fc1/10; fc2=Fs/20; fm2=fc2/10; fc3=Fs/40; fm3=fc3/10;xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); st=xt1+xt2+xt3; fxt=fft(st,N); subplot(3,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形') subplot(3,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')0.0010.0020.0030.0040.0050.0060.0070.0080.0090.01-10123t/ss (t )(a) s(t)的波形20040060080010001200140016001800200000.51(b) s(t)的频谱f/Hz幅度内容二Fs=10000;T=1/Fs;st=mstg;%低通滤波器设计与实现fp=280;fs=450;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N,rp,rs,wp);y1t=filter(B,A,st);figure(2);subplot(3,1,1);[H,w]=freqz(B,A,1000);m=abs(H);plot(w/pi,20*log(m/max(m)));grid on;title('低通滤波损耗函数曲线'); xlabel('w/pi ');ylabel('幅度'); axis([0,1,0,1.2*max(H)])yt='y1(t)'; subplot(3,1,2); plot(t,y1t);title('低通滤波后的波形');xlabel('t/s');ylabel(y1(t));%带通滤波器设计与实现fpl=440;fpu=560;fsl=275;fsu=900;wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N,rp,rs,wp);y2t=filter(B,A,st);figure(3);subplot(3,1,1);[H,w]=freqz(B,A,1000);m=abs(H);plot(w/pi,20*log(m/max(m)));grid on;title('带通滤波损耗函数曲线'); xlabel('w/pi ');ylabel('幅度'); axis([0,1,0,1.2*max(H)])yt='y2(t)'; subplot(3,1,2); plot(t,y2t);title('带通滤波后的波形');xlabel('t/s');ylabel(y2(t));%高通滤波器设计与实现fp=890;fs=600;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N,rp,rs,wp,'high');y3t=filter(B,A,st);figure(4);subplot(3,1,1);[H,w]=freqz(B,A,1000);m=abs(H);plot(w/pi,20*log(m/max(m)));grid on;title('高通滤波损耗函数曲线'); xlabel('w/pi ');ylabel('幅度'); axis([0,1,0,1.2*max(H)])yt='y3(t)'; subplot(3,1,2); plot(t,y3t);title('高通滤波后的波形');xlabel('t/s');ylabel(y3(t));低通滤波器损耗函数及其分离出的调幅信号y1(t)带通滤波器损耗函数及其分离出的调幅信号y2(t)高通滤波器损耗函数及其分离出的调幅信号y3(t)数字信号处理实验五1、function xt=xtg(N)Fs=1000;T=1/Fs;Tp=N*T;t=0:T:(N-1)*T;fc=Fs/10;f0=fc/10;mt=cos(2*pi*f0*t);ct=cos(2*pi*fc*t);xt=mt.*ct;nt=2*rand(1,N)-1;fp=150; fs=200;Rp=0.1;As=60;fb=[fp,fs];m=[0,1];dev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];[n,fo,mo,W]=remezord(fb,m,dev,Fs);hn=remez(n,fo,mo,W);yt=filter(hn,1,10*nt);xt=xt+yt;fst=fft(xt,N);k=0:N-1;f=k/Tp;subplot(3,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');axis([0,Tp/5,min(xt),max(xt)]);title('(a) 信号加噪声波形')subplot(3,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b) 信号加噪声的频谱')axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度')2、xt=xtg;N=1000;Fs=1000;T=1/Fs;Tp=N*T;k=0:N-1;f=k/Tp;t=0:T:(N-1)*T;fp=120;fs=150;Rp=0.1;As=60;Fs=1000;wc=(fp+fs)/Fs;B=2*pi*(fs-fp)/Fs;M=ceil(11*pi/B);hn=fir1(M-1,wc,blackman(M));Hw=abs(fft(hn,N));ywt=fftfilt(hn,xt,N);figure;subplot(2,1,1);plot(f,20*log10(Hw)/max(Hw));grid onxlabel('f/Hz');ylabel('幅度(dB )');title('(a)低通滤波器的幅频特性')axis([0,500,-160,5]);subplot(2,1,2);plot(t,ywt);grid onxlabel('t/s');ylabel('y_1(t)');title('(b)滤除噪声后的信号波形')050100150200250300350400450500-150-100-500f/Hz幅度(d B )(a)低通滤波器的幅频特性00.10.20.30.40.50.60.70.80.91-1-0.50.51t/s y 1(t )(b)滤除噪声后的信号波形。

数字信号处理第三版西安科大出版高西全丁玉美课后答案第3与4章

数字信号处理第三版西安科大出版高西全丁玉美课后答案第3与4章

m 0
循环卷积的矩阵表示:
yc(0) x(0) x(L1) x(L2) x(1) h(0)
yc(1)
x(1)
x(0)
x(L1)
x(2)
h(1)
yc(2)
x(2)
x(1)
x(0) x(3) h(2)
yc(L1) x(L1) x(L2) x(L3) x(0)h(L1)
(FFT)
3.4 例
[例3.4.1] 设x(n)为存在傅里叶变换的任意序列, 其Z 变换为X(z),X(k)是对X(z)在单位圆上的N点等间隔采样, 即
j2 k
X (k ) X (z )|z eN,
k 0 ,1 , ,N 1
求X(k)的N点离散傅里叶逆变换(记为xN(n))与x(n)的 关系式。
解: 由题意知
x(n)2
1N1X(k)2
பைடு நூலகம்
n0
Nk0
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
7)
(1) 长度为N的共轭对称序列xep(n)与反共轭对称序列
xop(n):
xep(n)xep(Nn)
xop(n)xop(Nn)
序列x(n)的共轭对称分量与共轭反对称分量:
xep(n)1 2[x(n)x(Nn)]

X(k)=Xr(k)+jXi(k)

Xr(k)=DFT[xep(n)], jXi(k)=DFT[xop(n)]
(4) 实序列DFT及FT的特点: 假设x(n)是实序列,
X(k)=DFT[x(n)], 则
X(k)=X*(N-k)
|X(k)|=|X(N-k)|, θ(k)=-θ(N-k)
第3章 离散傅里叶变换(DFT)及其快速算法

数字信号处理第三版西安科大出版高西全丁玉美课后答桉第3和4章

数字信号处理第三版西安科大出版高西全丁玉美课后答桉第3和4章
x(n) 2
1
N 1
X (k) 2
n0
N k0
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
7)
(1) 长度为N的共轭对称序列xep(n)与反共轭对称序列
xop(n):
xep(n) xep(N n)
xop (n) xop (N n)
序列x(n)的共轭对称分量与共轭反对称分量:
xep (n)
所以
~xN (n)
x(n rN )
r
即 ~xN (n) 是x(n)的周期延拓序列, 由DFT与DFS的关系
可得出
xN (n) IDFT[ X (k)] ~xN (n)RN (n) x(n rN )RN (n) r
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
xN(n)=IDFT[X(k)]为x(n)的周期延拓序列(以N为延拓周期) 的主值序列。 以后这一结论可以直接引用。
DFT[x(n m)N RN (n)] WNkm X (k)
5) 频域循环移位性质
DFT[WNnm x(n)] X ((k m)) N RN (k)
第3章
6) 循环卷积:
离散傅里叶变换(DFT)及其快速算法 (FFT)
L1
yc (n) h(m)x((n m))L RL (n)=h(n) L x(n)
(1)在h(n)的尾部加L-N个零点, 在x(n)的尾部加L-M
(2)计算L点的H(k)=FFT[h(n)]和L点的X(k)=FFT [x(n)];
(3) 计算Y(k)=H(k)X(k) (4) 计算Y(n)=IFFT[Y(k)], n=0,1,2,3,…,L-1。 但当h(n)和x(n)中任一个的长度很长或者无限长时, 需用 书上介绍的重叠相加法和重叠保留法。

《数字信号处理》第三版高西全版课后习题答案详解

《数字信号处理》第三版高西全版课后习题答案详解

数字信号处理课后答案 高西全、丁美玉版1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将x(n)的表达式代入上式,得到
8. 设线性时不变系统的单位取样响应和输入分别有以下三种情况,分别求出输出。
(1);
(2);
(3)。
解:
(1)
先确定求和域,由和确定对于m的非零区间如下:
根据非零区间,将n分成四种情况求解:




最后结果为
或者这样分析,C内有极点0.5,2,0,但0是一个n阶极点,改成求c外极点留数,c外无极点,所以x(n)=0。
最后得到
17. 已知,分别求:
(1)的Z变换;
(2)的Z变换;
(3)的z变换。
解:
(1)
(2)
(3)
18. 已知,分别求:
(1)收敛域对应的原序列;
(2)收敛域对应的原序列。
(1)求出的周期。
(2)用采样间隔对进行采样,试写出采样信号的表达式。
(3)画出对应的时域离散信号(序列) 的波形,并求出的周期。
————第二章————
教材第二章习题解答
1. 设和分别是和的傅里叶变换,试求下面序列的傅里叶变换:
(1);
(2);
(3);
(4)。
解:
(1)
令,则
(1);
(2)
解:
(1)
(2)
3. 长度为N=10的两个有限长序列
作图表示、和。
解:
、和分别如题3解图(a)、(b)、(c)所示。
14. 两个有限长序列和的零值区间为:
对每个序列作20点DFT,即
如果
试问在哪些点上,为什么?
解:
如前所示,记,而。
(3);
(5)。
解:
(1)只要,该系统就是因果系统,因为输出只与n时刻的和n时刻以前的输入有关。如果,则,因此系统是稳定系统。
(3)如果,,因此系统是稳定的。系统是非因果的,因为输出还和x(n)的将来值有关.
(5)系统是因果系统,因为系统的输出不取决于x(n)的未来值。如果,则,因此系统是稳定的。
(5);
(7)。
解:
(1)令:输入为,输出为
故该系统是时不变系统。
故该系统是线性系统。
(3)这是一个延时器,延时器是一个线性时不变系统,下面予以证明。
令输入为,输出为,因为
故延时器是一个时不变系统。又因为
故延时器是线性系统。
(5)
(2)当收敛域时,
,C内有极点0.5;
,C内有极点0.5,0,但0是一个n阶极点,改成求c外极点留数,c外极点只有一个,即2,
最后得到
(3)当收敛域时,
,C内有极点0.5,2;
n<0,由收敛域判断,这是一个因果序列,因此x(n)=0。
(8);
(10)。
解:
(2)
(4)
(6)
(8)解法1 直接计算
解法2 由DFT的共轭对称性求解
因为
所以

结果与解法1所得结果相同。此题验证了共轭对称性。
(10)解法1
上式直接计算较难,可根据循环移位性质来求解X(k)。
下面说明,对128点的循环卷积,上述结果也是正确的。我们知道
因为长度为
N+M-1=50+100-1=149
所以从n=20到127区域, ,当然,第49点到第99点二者亦相等,所以,所取出的第51点为从第49到99点的。
综上所述,总结所得结论
V=49,B=51
选取中第49~99点作为滤波输出。
25. 已知网络的输入和单位脉冲响应分别为

试:
(1)用卷积法求网络输出;
(2)用ZT法求网络输出。
解:
(1)用卷积法求
,,
,,
最后得到
(2)用ZT法求

,c内有极点
因为系统是因果系统,,,最后得到
28. 若序列是因果序列,其傅里叶变换的实部如下式:
求序列及其傅里叶变换。
解:
12. 设系统的单位取样响应,输入序列为,完成下面各题:
(1)求出系统输出序列;
(2)分别求出、和的傅里叶变换。
解:
(1)
(2)
13. 已知,式中,以采样频率对进行采样,得到采样信号和时域离散信号,试完成下面各题:
(1)写出的傅里叶变换表示式;
(2)写出和的表达式;
(3)分别求出的傅里叶变换和序列的傅里叶变换。
长度为27,长度为20。已推出二者的关系为
只有在如上周期延拓序列中无混叠的点上,才满足所以
15. 用微处理机对实数序列作谱分析,要求谱分辨率,信号最高频率为1kHZ,试确定以下各参数:
(1)最小记录时间;
(2)最大取样间隔;
(3)最少采样点数;
(4)在频带宽度不变的情况下,将频率分辨率提高一倍的N值。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1),A是常数;
(2)。
解:
(1),这是有理数,因此是周期序列,周期是T=14;
(2),这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,与分别表示系统输入和输出,判断系统是否是线性非时变的。
(1);
(3),为整常数;
(1)求V;
(2)求B;
(3)确定取出的B个采样应为中的哪些采样点。
解:
为了便于叙述,规定循环卷积的输出序列的序列标号为0,1,2,…,127。
先以与各段输入的线性卷积考虑,中,第0点到48点(共49个点)不正确,不能作为滤波输出,第49点到第99点(共51个点)为正确的滤波输出序列的一段,即B=51。所以,为了去除前面49个不正确点,取出51个正确的点连续得到不间断又无多余点的,必须重叠100-51=49个点,即V=49。
解:
(1)当收敛域时,,内有极点0.5,
,
c内有极点0.5,0,但0是一个n阶极点,改求c外极点留数,c外极点只有2,
,
最后得到
(2(当收敛域时,
c内有极点0.5,2,
c内有极点0.5,2,0,但极点0是一个n阶极点,改成求c外极点留数,可是c外没有极点,因此, 最后得到
解:
(1)已知
(2)
(3)
(4)频带宽度不变就意味着采样间隔T不变,应该使记录时间扩大一倍为0.04s实现频率分辨率提高一倍(F变为原来的1/2)
18. 我们希望利用长度为N=50的FIR滤波器对一段很长的数据序列进行滤波处理,要求采用重叠保留法通过DFT来实现。所谓重叠保留法,就是对输入序列进行分段(本题设每段长度为M=100个采样点),但相邻两段必须重叠V个点,然后计算各段与的L点(本题取L=128)循环卷积,得到输出序列,m表示第m段计算输出。最后,从中取出B个,使每段取出的B个采样点连接得到滤波输出。
。 解Biblioteka 假设输入信号,系统单位脉冲相应为h(n),系统输出为
上式说明,当输入信号为复指数序列时,输出序列仍是复指数序列,且频率相同,但幅度和相位决定于网络传输函数,利用该性质解此题。
上式中是w的偶函数,相位函数是w的奇函数,
4. 设将以4为周期进行周期延拓,形成周期序列,画出和的波形,求出的离散傅里叶级数和傅里叶变换。
y(n)的波形如题8解图(一)所示。
(2)
y(n)的波形如题8解图(二)所示.
(3)
y(n)对于m的非零区间为。



最后写成统一表达式:
11. 设系统由下面差分方程描述:

设系统是因果的,利用递推法求系统的单位取样响应。
解:
令:
归纳起来,结果为
12. 有一连续信号式中,
解:
(1)
上式中指数函数的傅里叶变换不存在,引入奇异函数函数,它的傅里叶变换可以
表示成:
(2)
(3)
式中
式中
上式推导过程中,指数序列的傅里叶变换仍然不存在,只有引入奇异函数函数,才能写出它的傅里叶变换表达式。
14. 求以下序列的Z变换及收敛域:
(2);
(3);
(6)
解:
(2)
(3)
(6)
16. 已知:
求出对应的各种可能的序列的表达式。
解:
有两个极点,因为收敛域总是以极点为界,因此收敛域有以下三种情况:
三种收敛域对应三种不同的原序列。
(1)当收敛域时,

,因为c内无极点,x(n)=0;
,C内有极点0,但z=0是一个n阶极点,改为求圆外极点留数,圆外极点有,那么
7. 设线性时不变系统的单位脉冲响应和输入序列如题7图所示,要求画出输出输出的波形。
解:
解法(1):采用图解法
图解法的过程如题7解图所示。
解法(2):采用解析法。按照题7图写出x(n)和h(n)的表达式:
因为
所以
令:输入为,输出为,因为
故系统是时不变系统。又因为
因此系统是非线性系统。
(7)
令:输入为,输出为,因为
故该系统是时变系统。又因为
故系统是线性系统。
6. 给定下述系统的差分方程,试判断系统是否是因果稳定系统,并说明理由。
(1);
(5)令,试画出波形。
解:
(1)x(n)的波形如题2解图(一)所示。
(2)
(3)的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
相关文档
最新文档