正丁烷异构化制异丁烷

正丁烷异构化制异丁烷
正丁烷异构化制异丁烷

项目:正丁烷异构化制异丁烷

一、正丁烷异构化制异丁烷反应

正丁烷异构化是石化工业中一个很重要的反应, 其产物异丁烷是生产高辛烷值汽油的

原料之一,异丁烷的脱氢产物异丁烯可用于生产无铅汽油添加剂甲基叔丁基醚和乙基叔丁基醚.正丁烷的异构化反应机理与催化剂的类型有关。目前, 工业上正丁烷异构化反应主要使用Pt/Cl-Al2O3 类催化剂, 在此类催化剂上, 反应所需温度(400~460 K) 较低, 但催化剂

易中毒, 对水和芳烃敏感, 而且在使用过程中需不断加入含氯化合物以保持反应所需的酸强度, 存在一定的腐蚀和环境污染问题。而现在固体酸催化剂. 沸石分子筛、杂多酸盐和SO42?促进的金属氧化物催化剂是目前研究较多的三大类烷烃异构化催化剂,

二、产物异丁烷的主要用途

正丁烷异构化产物异丁烷是烷基化反应的主要原料和合成甲基叔丁基醚(MTBE)等汽油添加剂的重要前驱体。广泛用于染料、化学合成致冷剂、合成橡胶、航空汽油、照明等。其重要性有:(1)脱氢制成异丁烯,是合成MTBE 和乙基叔丁基醚(ETBE)等无铅汽油添加剂的主要原料。(2)生产丁基橡胶、聚异丁烯、甲基丙烯酸甲酯和异戊二烯等精细化工产品的原料。(3)异丁烷与异丁烯经烃化而制得异辛烷,作为汽油辛烷值的改进剂。

三、异构化技术的发展

我国的直馏汽油和催化裂化汽油所占比例较大,而适合环保需要的清洁汽油组分所占比例很小。这使得我国成品汽油的普遍存在苯、烯烃和芳烃等含量超标现象,因此发展环境友好汽油组分的生产已成为必然。

在国外异构化工艺已得到广泛应用,异构化加工能力,全球均呈上升趋势,其中在北美应用最广泛,而且仍在迅速发展。美国车用汽油中异构化油的加入量已超过10%,2000年平均加入量已达12%,个别炼厂达20%。

四、异构化催化剂及工艺

异构化工艺改进的关键在于催化剂。

化工工艺按操作温度可分为高温异构化(高于320 ℃)、中温异构化(200~320 ℃)和低温异构化过程(低于200 ℃)三种,其中高温异构化应用条件较苛刻,故不作介绍。低温异构化工艺采用卤化铂/ 氧化铝型催化剂,以γ- Al2O3作载体,操作过程中需要在原料中不断加入适量的氯化物助剂。反应仍然在临氢条件下进行催化剂可进行再生,但再生设备昂贵。对原料中水和硫的含量有较严格的要求,使其应用受限制;中温异构化工艺,,在2 MPa 临氢的条件下进行异构化反应,反应温度250~280 ℃,采用贵金属/ 改性分子筛为催化剂。该工艺的优点是对原料的要求不太严格,其缺点是其平衡转化率不高。

目前的异构化催化剂的开发更注重于提高其对原料的适应性,从而不需要配套的原料处理系统,以减少装置投资、降低操作费用。目前从投产的装置数量上看,中温型的装置占多数。

目前,国外异构化技术主要掌握在美国UOP公司和法国IFP公司手中,产品辛烷值在80以上,最高可达92(C6循环+全异构化工艺)。低温型催化剂反应活性较高;中温型LPI-100催化剂活性比传统的沸石催化剂高,其产物的辛烷值较高,可达80~82,反应温度约为220 ℃。UOP开发的HS-10沸石催化剂比IFP 的同类型催化剂的性能差一些。美国UOP和法国IFP公司技术保密性较强,转化

率,选择性不明。

五、我国异构化催化剂及工艺

目前我国含Pt 的H-MOR 催化剂是目前广泛使用的正丁烷异构化工业催化剂,但其活

性较低。(工艺流程,转化率,选择性?)

中国科学院院大连化学物理研究所、抚顺石油化工公司研究院研究出专利:一种正丁

烷异构化制异丁烷反应分子筛超强酸型催化剂,是含Ti或Zr元素的氢型ZSM-5,ZSM-1或β分子筛与粘结剂和造孔剂成型,再经室温~120℃干燥,300℃~700℃焙烧而得。这种催化剂在100~300℃温度下,将正丁烷异构化成异丁烷,其正丁烷转化率可达53%,异丁烷的选择性可达85%。该反应过程适于在工业中应用。

另外金飙(辽宁化工)等制备了担载Pt 的分子筛催化剂,评价了不同载Pt 量对催化剂活性的影响。分子筛Pt 含量的变化对反应结果影响很大,载Pt 量为催化剂总量的

0.2%Pt/HZSM- 5 催化剂,能使正丁烷转化率>40%、异丁烷选择性>80%。同时考察了反应温度、反应压力H2/nC4o 对正丁烷异构化反应转化率及选择性的影响,结果表明:反应温

度350~450 ℃、反应压力1.0~2.0 MPa、H2/nC4o=1~3 等工艺条件较适合于正丁烷异构化反应。

六、投资分析

湛江东兴石油企业有限公司采用异构化流程于2001年4月建成第一套工

业应用试验异构化装置,并已顺利投产。其装置规模为180 kt/a,投资300万元(包括一部分利旧设备)。

硫酸氧化锆催化正庚烷异构化

摘要 过渡金属氧化物作为固体酸多相催化剂在催化研究中占有重要的地位。氧化锆由于具有酸性和碱性表面活性中心,作为催化剂和催化剂载体受到广泛关注。硫酸氧化锆因其具有超强酸性,在正庚烷异构化反应上有着很好的催化活性。然而硫酸氧化锆却存在着比表面不高,硫组易流失等问题,限制其在工业中的应用。通过掺杂金属元素的方法可以提高氧化锆的稳定性,增强酸性和相关的反应性能。本论文致力于用溶胶-凝胶法制备掺铝介孔硫酸氧化锆,并通过引入助剂等,力争获得在正庚烷异构化反应中具有高催化性能的硫酸氧化锆催化剂。 本论文主要开展了以下几个方面的工作。 1.通过溶胶-凝胶法制备掺铝介孔硫酸氧化锆催化剂,并考察不同铝含量对催化剂性能的影响。 2.在铝含量为5%的情况下考察不同焙烧温度对催化剂性能的影响,寻找最佳的焙烧温度。 3.在催化剂中掺入稀土元素,考察稀土元素的影响。 4.通过红外,XRD等表征技术研究催化剂的结构。 关键词:氧化锆;介孔;溶胶-凝胶;硫酸化;正庚烷异构化

Abstract Transition-metal oxides play an important role in catalysis as solid acid catalyst.Among them,zirconia has been paid much attention and has been used as acidic catalyst and catalyst support because of the presence of acidic and basic surface active center.As a strong acidic catalyst .SO42-/ZrO2 exhibit unique catalytic performance on n-heptane isomerization.However,SO42-/ZrO2 has main disadvantages of loss of sulfur species and relative low surface area,which limits its industrial process.Doping other metal species can improve the stability of zirconia to enhance the performance of the acid and related reactions.In this thesis ,the research work was mainly focused on the preparation of Al-SO42-/ZrO2with intracystalline mesopore by sol-gel method and the exploration of catalysis with high performance over n-heptane isomerization through lead into assistant. The major work may be summarized as the follows: 1.composing Al-SO42-/ZrO2 with intracystalline mesopore by sol-gel method and considering the effect of the proportion of Al on the performance of catalyst.2.considering the effect of different calcination temperature on the performance of catalyst when the content of aluminium was 5%. 3.leading rare earth into catalyst and observe the change of the performance of catalyst. 4.Characterization by XRD,IR Techniques. Key words:zirconia ;mesoporous ;sol-gel ;sulfated ;n-heptane isomerization

正丁烷异构化制异丁烷

正丁烷异构化制异丁烷 一、正丁烷异构化制异丁烷反应 正丁烷异构化是石化工业中一个很重要的反应, 其产物异丁烷是生产高辛烷值汽油的原料之一,异丁烷的脱氢产物异丁烯可用于生产无铅汽油添加剂甲基叔丁基醚和乙基叔丁基醚. 正丁烷的异构化反应机理与催化剂的类型有关。目前, 工业上正丁烷异构化反应主要使用Pt/Cl-Al2O3类催化剂, 在此类催化剂上, 反应所需温度(400~460 K) 较低, 但催化剂易中毒, 对水和芳烃敏感, 而且在使用过程中需不断加入含氯化合物以保持反应所需的酸强度, 存在一定的腐蚀和环境污染问题。而现在固体酸催化剂. 沸石分子筛、杂多酸盐和SO42?促进的金属氧化物催化剂是目前研究较多的三大类烷烃异构化催化剂, 二、产物异丁烷的主要用途 正丁烷异构化产物异丁烷是烷基化反应的主要原料和合成甲基叔丁基醚(MTBE)等汽油添加剂的重要前驱体。广泛用于染料、化学合成致冷剂、合成橡胶、航空汽油、照明等。其重要性有:(1)脱氢制成异丁烯,是合成MTBE 和乙基叔丁基醚(ETBE)等无铅汽油添加剂的主要原料。(2)生产丁基橡胶、聚异丁烯、甲基丙烯酸甲酯和异戊二烯等精细化工产品的原料。(3)异丁烷与异丁烯经烃化而制得异辛烷,作为汽油辛烷值的改进剂。 三、异构化技术的发展 我国的直馏汽油和催化裂化汽油所占比例较大,而适合环保需

要的清洁汽油组分所占比例很小。这使得我国成品汽油的普遍存在苯、烯烃和芳烃等含量超标现象,因此发展环境友好汽油组分的生产已成为必然。 在国外异构化工艺已得到广泛应用,异构化加工能力,全球均呈上升趋势,其中在北美应用最广泛,而且仍在迅速发展。美国车用汽油中异构化油的加入量已超过10%,2000年平均加入量已达12%,个别炼厂达20%。 四、异构化催化剂及工艺 异构化工艺改进的关键在于催化剂。 化工工艺按操作温度可分为高温异构化(高于320 ℃)、中温异构化(250~280 ℃)和低温异构化过程(115~150 ℃)三种,其中高温异构化应用条件较苛刻,故不作介绍。 低温异构化工艺采用卤化铂/ 氧化铝型催化剂,以γ- Al2O3作载体,操作过程中需要在原料中不断加入适量的氯化物助剂。反应仍然在临氢条件下进行催化剂可进行再生,但再生设备昂贵。对原料中水和硫的含量有较严格的要求,使其应用受限制; 中温异构化工艺,在2 MPa 临氢的条件下进行异构化反应,反应温度250~280 ℃,采用贵金属/ 改性分子筛为催化剂。该工艺的优点是对原料的要求不太严格,其缺点是其平衡转化率不高。 目前的异构化催化剂的开发更注重于提高其对原料的适应性,从而不需要配套的原料处理系统,以减少装置投资、降低操作费用。目前从投产的装置数量上看,中温型的装置占多数。

丁烷车间车间级安全教育

丁烷车间车间级安全教育 一、装置简介 山东玉皇化工有限公司20万吨/年正丁烷异构化装置是以 液化气为主要原料进行加工的装置,年处理能力20万吨。主要产品为异丁烷。 (一)萃取分离单元 本装置是山东盛荣化工有限公司20万吨/年正丁烷异构化 项目中的一个单元——萃取分离单元,装置主要包括丁烯萃取塔、丁烯解吸塔、溶剂再生、化学试剂注入和排出、制冷系统 等部分。 (二)丁烷饱和加氢单元 丁烷饱和加氢单元是以通过加氢的方式将碳四原料中的烯烃、炔烃加氢饱和为烷烃,年处理能力为20万吨,主要产品为饱和碳四。装置由加氢系统、汽提塔系统、精脱硫系统三部分 组成。 (三)丁烷异构化单元 丁烷异构化装置是以精制碳四为主要原料进行加工的装置,年处理能力为20万吨,主要产品为异丁烷,正丁烷在临氢条件下,在铂催化剂作用下发生异构反应,异构化为异丁烷。其主要由异丁烷分离塔、氢气干燥、丁烷干燥、丁烷异构反应、稳定塔及碱洗塔等部分组成。 二、工艺原理 (一)萃取分离单元 混合碳四的萃取分离工艺是基于混合碳四中各组份的下列 物性用萃取精馏来实现分离的:

丁烯、丁烷的沸点非常接近或形成共沸物,不能用普通精 馏的方法分离,但它们在 NMP中的溶解性有很大差别,因此, 通过萃取精馏的方法能较容易地将它们分离出来:丁烷在NMP 溶剂中的溶解度较丁烯小,因此,丁烷在丁烯萃取塔(T‐7201)顶以气相的形式分离出来,而丁烯与NMP的混合液从丁烯萃取 塔底送至丁烯解吸塔(T‐7202),丁烯则从丁烯解吸塔顶采出。这样,就实现了丁烷和丁烯的分离。 (二)丁烷饱和加氢单元 通过加氢的方式将碳四原料中的烯烃、炔烃加氢饱和为烷烃,使碳四中的烯烃残余量最低,同时将含硫化合物、含氧化 合物、含氮化合物分别转化 为H2S、NH3、H2O,含氯化合物部分转化为HCl,产物进入汽提塔,脱除氢气等轻组分,送入燃气管网。塔底产品进入脱羰基 硫罐进行羰基硫转化,而后进入精脱硫罐将含硫组分脱除,精 制碳四进入丁烷异构化单元。 (三)丁烷异构化单元 DIB塔通过精馏的方法分离其中的正丁烷、异丁烷和碳五组分。烷烃异构催化剂要求水含量小于1wppm,因此要对正丁烷原 料和氢气进行干燥。干燥采用干燥剂吸水的方式进行。当干燥 剂吸水饱和后就要对其进行脱附再生,脱附采用原料进行汽化 和加热后送入干燥器,通过高温物流把吸附剂内的水带出,从 而实现了干燥剂的再生。 正丁烷异构催化剂在反应时要不断的补入HCl,以保证氯中 心的存在,由于其过量,在后续碱洗塔通过碱液进行吸收除去。正丁烷在临氢条件下,在铂催化剂作用下发生异构反应,异构 化为异丁烷。 二:安全生产的定义: 安全生产是指:为预防在生产及施工过程中发生人身、设备等 各类事故,保护人员安全和健康而采取的各种措施。它既是对

正丁烷异构化制异丁烷

项目:正丁烷异构化制异丁烷 一、正丁烷异构化制异丁烷反应 正丁烷异构化是石化工业中一个很重要的反应, 其产物异丁烷是生产高辛烷值汽油的 原料之一,异丁烷的脱氢产物异丁烯可用于生产无铅汽油添加剂甲基叔丁基醚和乙基叔丁基醚.正丁烷的异构化反应机理与催化剂的类型有关。目前, 工业上正丁烷异构化反应主要使用Pt/Cl-Al2O3 类催化剂, 在此类催化剂上, 反应所需温度(400~460 K) 较低, 但催化剂 易中毒, 对水和芳烃敏感, 而且在使用过程中需不断加入含氯化合物以保持反应所需的酸强度, 存在一定的腐蚀和环境污染问题。而现在固体酸催化剂. 沸石分子筛、杂多酸盐和SO42?促进的金属氧化物催化剂是目前研究较多的三大类烷烃异构化催化剂, 二、产物异丁烷的主要用途 正丁烷异构化产物异丁烷是烷基化反应的主要原料和合成甲基叔丁基醚(MTBE)等汽油添加剂的重要前驱体。广泛用于染料、化学合成致冷剂、合成橡胶、航空汽油、照明等。其重要性有:(1)脱氢制成异丁烯,是合成MTBE 和乙基叔丁基醚(ETBE)等无铅汽油添加剂的主要原料。(2)生产丁基橡胶、聚异丁烯、甲基丙烯酸甲酯和异戊二烯等精细化工产品的原料。(3)异丁烷与异丁烯经烃化而制得异辛烷,作为汽油辛烷值的改进剂。 三、异构化技术的发展 我国的直馏汽油和催化裂化汽油所占比例较大,而适合环保需要的清洁汽油组分所占比例很小。这使得我国成品汽油的普遍存在苯、烯烃和芳烃等含量超标现象,因此发展环境友好汽油组分的生产已成为必然。 在国外异构化工艺已得到广泛应用,异构化加工能力,全球均呈上升趋势,其中在北美应用最广泛,而且仍在迅速发展。美国车用汽油中异构化油的加入量已超过10%,2000年平均加入量已达12%,个别炼厂达20%。 四、异构化催化剂及工艺 异构化工艺改进的关键在于催化剂。 化工工艺按操作温度可分为高温异构化(高于320 ℃)、中温异构化(200~320 ℃)和低温异构化过程(低于200 ℃)三种,其中高温异构化应用条件较苛刻,故不作介绍。低温异构化工艺采用卤化铂/ 氧化铝型催化剂,以γ- Al2O3作载体,操作过程中需要在原料中不断加入适量的氯化物助剂。反应仍然在临氢条件下进行催化剂可进行再生,但再生设备昂贵。对原料中水和硫的含量有较严格的要求,使其应用受限制;中温异构化工艺,,在2 MPa 临氢的条件下进行异构化反应,反应温度250~280 ℃,采用贵金属/ 改性分子筛为催化剂。该工艺的优点是对原料的要求不太严格,其缺点是其平衡转化率不高。 目前的异构化催化剂的开发更注重于提高其对原料的适应性,从而不需要配套的原料处理系统,以减少装置投资、降低操作费用。目前从投产的装置数量上看,中温型的装置占多数。 目前,国外异构化技术主要掌握在美国UOP公司和法国IFP公司手中,产品辛烷值在80以上,最高可达92(C6循环+全异构化工艺)。低温型催化剂反应活性较高;中温型LPI-100催化剂活性比传统的沸石催化剂高,其产物的辛烷值较高,可达80~82,反应温度约为220 ℃。UOP开发的HS-10沸石催化剂比IFP 的同类型催化剂的性能差一些。美国UOP和法国IFP公司技术保密性较强,转化

有机化合物

有机化合物 【甲烷】分子式CH4,分子量16.04。是最简单的有机化合物。在自然界分布很广,是天然气、煤气等的主要成分,无色无味、难溶于水 的可燃性气体,和空气组成适当比例时,遇火花会发生爆炸。 甲烷的化学性质稳定,在一般条件下不与其它物质反应,但在适当条件下能发生氧化、卤代、热解等反应。工业上主要用于制造乙炔、或经转化制取氢气、合成氨及有机合成的原料。也用来制备炭黑、一氯甲烷、二氯甲烷、氯仿、四氯化碳等。甲烷可直接用作燃料。工业上 主要由天然气获得。实验室中可用无水醋酸钠和碱石灰共热制得。 【乙烷】分子式C2H6,结构简式CH3CH3,分子量30.068无色无味气体,密度是1.357。微溶于水。与空气形成爆炸性混和物,爆炸极限为:3.2~12.5%(体积)。在石化工业中,乙烷主要作为生产乙烯的原料,也可作为燃料。 【丙烷】分子式C3H3,结构简式CH3CH2CH3,分子量:44.094,无色气体。微溶于水。化学性质很稳定,不易发生化学反应。与空气形成爆炸性混和物,爆炸极限2.4~9.5%(体积)。丙烷经裂解可制取乙烯和丙烯等有机合成的原料。也可用作燃料。 【丁烷】分子式C4H10分子量:58.12。有正丁烷和异丁烷两种异构体。 【正丁烷】结构简式CH3CH2CH2CH3。存在于石油气、天然气和催化裂化气中、无色气体。与空气形成爆炸性混和物,爆炸极限1.6~8.5% (体积)。主要用途是经脱氢制取丁二烯。 然气及裂化气中。正丁烷经异构化也可生成异丁烷。无色气体。微溶于水,化学性质稳定、与空气形成爆炸性混和物,爆炸极限为1.9~8.4%(体积)。主要用于与异丁烯经烃化制取异辛烷,作为汽油辛烷值的改进剂。也可做冷冻剂。 【戊烷】分子式C5H12分子量:72.146。有正戊烷、异戊烷、新戊烷三种异构体。 【正戊烷】结构简式CH3CH2CH2CH2CH3。无色易燃液体,熔点-129.7℃,沸点36.1℃。不溶于水,微溶于乙醇,溶于烃类和乙醚。 甲基丁烷。无色易燃液体。熔点-159.6℃,沸点是27.9℃。不溶于水,微溶于乙醇,溶于烃类和乙醚。 无色气体或易挥发液体。熔点-20℃,沸点9.5℃。不溶于水,溶于乙醇。 戊烷存在于石油和天然气中,是汽油的主要成分。正戊烷在氯化铝和氯化氢存在下经异构化生成异戊烷,异戊烷经脱氢可制异戊二烯,异 戊二烯是重要的有机合成原料。 【庚烷】分子式C7H16。分子量:100.2,有九种同分异构体。正庚烷CH3CH2CH2CH2CH2CH2CH3,无色可燃液体,在气缸里燃烧爆炸时震动很剧烈。它的辛烷值假定为零,它和异辛烷(辛烷值假定为100)的混和物常用作测定汽油的辛烷值的标准。 【辛烷】分子式C8H18,分子量,114.22。有十八种同分异构体。其中以异辛烷最重要。 【异辛烷】亦称2.2.4-三甲基戊烷。结构简式:无色易燃液体。在内燃机气缸里燃烧时抗震性较好,是优良的发动机燃料。它的辛烷值假定为100,它与正庚烷(辛烷值假定为零)的混和物常用来作为测定汽油的辛烷值的标准。 【2,2,3-三甲基丁烷】是庚烷的一种异构体。无色易燃液体,其结构简式:熔点-24.96℃、沸点81.0℃。不溶于水,溶于乙醇。具有极高的抗震性,比许多高辛烷值组分,甚至比异辛烷都好。用作高辛烷值航空燃料的组分。 【环丙烷】分子式C3H6,分子量42.08,无色易燃气体,有石油醚的气味。熔点-126.6℃,沸点-33℃。标况下每升重1.879克。在192~588千帕(4~6个大气压)下可液化。稍溶于水,易溶于乙醇、乙醚等有机溶剂。与空气形成爆炸性混和物,爆炸极限为2.4~10.3%(体积)。其性质不稳定,容易变为开链化合物,易为浓硫酸吸收,加氢时开链生成丙烷,与溴反应开链生成1,3-二溴丙烷。环丙烷可用于有机合成,医药上用作麻醉剂。可由1,3-二溴丙烷或1,3-二氯丙烷与钠或锌作用而制得。 【环丁烷】分子式C4H8,分子量56.10,无色气体,燃烧时有火焰。熔点为-80℃,沸点11℃。液化点-15℃。不溶于水,溶于乙醇、丙酮。用作纤维素醚溶剂。环丁烷的制备可由环丁烯在加热并用镍作催化剂氢化制得,也可用环丁烷羧酸脱羧制得,或者用1.4-二溴丁烷与金属 锌在醇溶液中进行反应而制得。 【环戊烷】分子式C5H10,分子量70.13,存在于某些石油裂化副产物的馏分中。无色流动液体,是性质最稳定的环烷烃。熔点-94.4℃,沸点49.3℃。不溶于水,与乙醇、乙醚及其它烃类混溶。可由环戊二烯经氢化制得,或以克里门森法还原环戊酮制得。 【环己烷】分子式C6H12,分子量84.16,无色流动性液体,有汽油气味。存在于某些石油中。熔点6.47℃,沸点80.7℃,易挥发,易燃烧,其蒸气与空气形成爆炸性混和物,爆炸极限1.3~8.4%,不溶于水,溶于乙醇、乙醚、丙酮、苯、四氯化碳等有机溶剂。环己烷有“椅式”和“船式”两种构象存在(如右图),在涂料工业中广泛地用作溶剂,也是树脂、脂肪、石蜡油类的良好溶剂。更重要的是环己烷经氧化可生成环己醇、环己酮和己二酸等生产尼龙-6或尼龙-66的原料。环己烷可由石油馏分中回收或苯经催化氢化而制得。 【乙烯】分子式C2H4,分子量28.05,是最简单的烯烃。结构简式CH2=CH2,存在于成熟的水果、焦炉煤气及热裂石油气中。是无色带有甜香味的气体。熔点-169.4℃,沸点-103.9℃。临界温度9.6℃,临界压力4968.6千帕(50.7大气压),微溶于水,溶于乙醚、丙酮、苯等。与空气形成爆炸性混和物,爆炸极限为3.02~34%。分子中含有不饱和的碳碳双键,故可与氢气、卤素、卤化氢、水等发生加成反应,也可以在一定条件下发生加聚反应。工业上用于制造乙醇、乙醛、橡胶、塑料、合成纤维、环氧乙烷等。 可由裂化石油气或由乙醇用氧化铝催化脱水制成。

异构化 isomerization

化合物分子进行结构重排而其组成和分子量不发生变化的反应过程。烃类分子的结构重排主 要有烷基的转移、双键的移动和碳链的移动。反应通常在催化剂作用下进行。 40年代以前,异构化过程主要用于生产高辛烷值汽油调合组分。40年代以后,由于对航空汽油的大量需求,由异丁烷烷基化生产高辛烷值汽油调合组分的过程迅速发展,同时广泛开展 了用三氯化铝作催化剂(见固体酸催化剂)的正丁烷异构化研究,并实现了工业化,扩大了 烷基化的原料来源。1960年,美国大西洋炼油公司将异构化过程应用于芳烃的转换,开发了 以氧化铝或氧化铝-氧化硅为载体的铂催化剂的二甲苯异构化工艺过程,随后日本三菱瓦斯 化学公司又开发了用氟化氢-氟化硼作催化剂的液相二甲苯异构化过程。1976年和1978年 美国莫比尔化学公司先后开发了使用新型ZSM-5分子筛催化剂的二甲苯气相和液相异构化 过程。 反应类型主要有气相法和液相法两种。按工业中最有代表性的原料,又分为: ①烷烃的异构化,如C4、C5、C6烷烃的异构化: ②烯烃的异构化,如1-丁烯的异构化: ③芳烃的异构化,如二甲苯、乙苯的异构化: ④环烷烃的异构化,如甲基环戊烷的异构化:环烷烃的异构化是催化重整过程的重要反应之一。 ⑤甲酚的异构化: 催化剂主要有下列几类:①弗瑞德-克来福特型催化剂,常用的有三氯化铝-氯化氢、氟 化硼-氟化氢等。这类催化剂活性高,所需反应温度低,用于液相异构化,如正丁烷异构化为异丁烷,二甲苯的异构化等。②以固体酸为载体的贵金属催化剂,如铂-氧化铝、铂-分子筛、钯-氧化铝等。这类催化剂属于双功能催化剂,其中金属组分起加氢和脱氢作用,固体酸起异构化作用。采用这类催化剂时,反应需在氢存在下进行,故也称临氢异构化催化剂,用于气 相异构化。烷烃、烯烃、芳烃、环烷烃的异构化也可采用。尤其是乙苯异构化为二甲苯和环 烷烃的异构化只有这类催化剂有效。其优点是结焦少,使用寿命长。③以固体酸为载体的非 贵金属催化剂,如镍-分子筛等,一般也需有氢存在,用于气相异构化,但不能使乙苯异构化成二甲苯。④ZSM-5分子筛催化剂,主要用于二甲苯的气相或液相异构化。 过程条件异构化是可逆反应,反应常常可进行到接近平衡转化率。由于反应热效应很小, 温度对平衡组成影响不甚显著,但低温操作有利于减少副反应。液相异构化反应温度一般为90~150°C。气相异构化反应温度则为300~500°C。气相非临氢异构化可在低压(约0.3MPa)下进行,气相临氢异构化则需较高压力(2.0~2.5Mpa)下进行。氢烃摩尔比为5~20:1,过量 氢气可循环使用。气相异构化可采用固定床反应器,液相均相异构化可用塔式反应器,非均

异构化催化剂

一、异构化原理 芳烃异构化反应是指在一定的温度、压力,临氢状态和催化剂作用下,将含贫对二甲苯(PX〈1%)的混合二甲苯转化为二甲苯的四种异构体(PX、MX、OX、EB)接近平衡的催化异构过程。其目的是为了降低吸附塔进料中乙苯的含量,提高对二甲苯的浓度,多生产对二甲苯产品。 二、催化剂性能介绍 二甲苯异构化采用法国Exxon Mobil的XyMax工艺。催化剂型号为EM-4500T/B,它是由氧化铝和丝光沸石为载体的载铂双功能催化剂。催化剂上层酸性比较强,主要是乙苯脱乙基转化成苯;下层金属功能比较强,主要是二甲苯异构。反应过程中乙苯转化率比较高,二甲苯损失率比较小。 主反应: 二甲苯异构化;乙苯加氢脱乙基生成苯和乙烷;乙苯通过环烷桥转化成二甲苯 副反应(造成C8A环损): 二甲苯歧化反应生成甲苯/C9或C10/苯;二甲苯加氢脱烷基生成甲苯与甲烷;加氢开环裂解 异构化反应条件: 三、EM-4500与SKI-100A性能对比 石科院研制的SKI-100A乙苯脱乙基催化剂2005年7月应用在洛阳石化芳烃装置上,2006年5月对催化剂进行了标定。两种催化剂标定情况对比如下:

从表中的数据对比可以看出进口催化剂有以下几点优势: 1、空速高:装置负荷一定的情况下,催化剂装填量少,反应器体积小。 2、轻烃比小:循环氢量少,循环氢压缩机体积小。 3、EB转化率高、C8A环损低:二甲苯产量大,PX产率高。 与国产异构化催化剂相比,使用进口催化剂,最大的优势是设备及管线规格小,可以减少了设备大型化的难度并节约投资。催化剂价格虽然贵,但是装填量少,而且二甲苯产率高。 但是使用Exxon Mobil的催化剂,反应压力比较高,反应温度也高一些,能耗高一些。 四、催化剂硫化 异构化催化剂在使用初期,要进行预硫化和钝化。预硫化的目的是通过向反应器内注硫来抑制催化剂的金属功能,控制开工阶段的反应温升,防止床层飞温;钝化是通过缓慢提高反应苛刻度,使催化剂少量积炭来抑制其酸性功能,减少芳环损失,提高C8A产率。 对于EM4500催化剂而言硫是暂时性毒物,硫化使催化剂暂时中毒,降低新鲜催化剂的初始活性,降低加氢和裂解反应、控制反应器温升。催化剂上的硫随着装置的运行会逐渐从高分顶部排出。钝化时间短,钝化完成以后,应尽快调整到正常的操作条件。预硫化和钝化对催化剂的寿命影响很小。

正丁烯骨架异构化催化剂研究进展

专论与综述 正丁烯骨架异构化催化剂研究进展 焦宁宁 (兰化公司化工研究院 兰州73006) 论述了正丁烯骨架异构化活性位的性质、骨架异构化的主导机理和异构催化剂的最新进展。 指出正丁烯骨架异构化的主导机理是单分子性的,Br o nsted酸(OH)活性位是必需的位点。沸石的形状选择性和沸石类型对催化剂的选择性和稳定性有很大影响。 关键词:骨架异构化 异丁烯 催化剂 活性位 分子筛 0 前 言 异丁烯是重要的有机化工原料,能否充分利用异丁烯是C4烃类综合利用的关键所在。而异丁烯的主要用途是生产甲基叔丁基醚(MT BE)、丁基橡胶、聚异丁烯和甲基丙烯酸甲酯等。特别是近年来M TBE需求在全球范围迅猛增长,导致异丁烯需求量剧增。传统来源的异丁烯已不能满足M TBE对异丁烯的巨大需求,因而将正丁烯转化成异丁烯的技术对生产低公害的汽油添加剂M TBE是十分有价值的。此外,全球范围内正丁烯过剩,环境保护法又禁止将其直接用于汽油,故正丁烯转化成异丁烯具有现实意义。 1 正丁烯骨架异构化的活性位 C4烃类骨架异构化的催化剂有多种,但仅有少数几种能高效引发骨架异构化反应。正丁烯骨架异构化的最佳催化剂是金属氧化物。探索性研究表明〔1〕,只有氧化钨、氧化钼和氧化铝几种单正离子氧化物具有发展前景。特别是氧化铝表面经过热处理或用卤素改性后具有非常高的活性〔2-4〕。上述几种氧化物表面上呈现不同性质的活性位:(1)路易斯酸(LA)位点;(2)路易斯碱(LB)位点,以某种方式与LA位点呈缔合状态;(3) Br onsted酸(BA)位点,与LA位点呈缔合状态。这就需要确定哪类位点对正丁烯骨架异构化是最关键的。早期文献〔4〕给出了关于位点问题的某些有用信息,指出了BA位点的重要作用。而一些最新文献〔5〕则强调LA 位点或LA-LB双位点的重要作用。 Po nec〔5〕没有直接测定最重要的位点的数目和酸性强度,而是在氢气中对催化剂进行退火处理,有选择地使某些类型的位点中毒,并将氧化铝的卤化效应与早期报道的在活性位上的卤化效应进行比较,发现早期研究对BA位点的重要性估计不足。 为验证BA位点的作用,Ho uzv icka等〔6〕采用由H3PO4和SiO2制成的无孔隙催化剂 收稿日期:1998-06-20

异构化

异构化 中文名称:异构化 英文名称:isomerization 定义:一种同分异构体与另一种同分异构体相互转化的作用或过程。 改变化合物的结构而不改变其组成和分子量的过程。一般指有机化合物分子中原子或基团的位置的改变。常在催化剂的存在下进行。 催化剂 主要有下列几类:①弗瑞德-克来福特型催化剂,常用的有三氯化铝-氯化氢、氟化硼-氟化氢等。这类催化剂活性高,所需反应温度低,用于液相异构化,如正丁烷异构化为异丁烷,二甲苯的异构化等。②以固体酸为载体的贵金属催化剂,如铂-氧化铝、铂-分子筛、钯-氧化铝等。这类催化剂属于双功能催化剂,其中金属组分起加氢和脱氢作用,固体酸起异构化作用。采用这类催化剂时,反应需在氢存在下进行,故也称临氢异构化催化剂,用于气相异构化。烷烃、烯烃、芳烃、环烷烃的异构化也可采用。尤其是乙苯异构化为二甲苯和环烷烃的异构化只有这类催化剂有效。其优点是结焦少,使用寿命长。③以固体酸为载体的非贵金属催化剂,如镍-分子筛等,一般也需有氢存在,用于气相异构化,但不能使乙苯异构化成二甲苯。④ZSM-5分子筛催化剂,主要用于二甲苯的气相或液相异构化。 过程条件 异构化是可逆反应,反应常常可进行到接近平衡转化率。由于反应热效应很小,温度对平衡组成影响不甚显著,但低温操作有利于减少副反应。液相异构化反应温度一般为90~150°C。气相异构化反应温度则为300~500°C。气相非临氢异构化可在低压(约0.3MPa)下进行,气相临氢异构化则需较高压力(2.0~2.5Mpa)下进行。氢烃摩尔比为5~20:1,过量氢气可循环使用。气相异构化可采用固定床反应器,液相均相异构化可用塔式反应器,非均相异构化则可用涓流床反应器。

分子筛催化剂上正十六烷的临氢异构化反应_黄卫国

收稿日期:2002-12-27. 第一作者:黄卫国,男,1970年生,博士. 联系人:黄卫国.Tel :(010)62327551-3164;Fax :(010)62311290;E -mail :huangwg @ripp -sinopec .com . 文章编号:0253-9837(2003)09-0651-07 研究论文:651~657 分子筛催化剂上正十六烷的临氢异构化反应 黄卫国1, 李大东1, 石亚华1, 康小洪1, 孟宪波1, 王 奎1 , 董维正1 , 聂 红1 , 李 灿 2 (1中国石油化工股份有限公司石油化工科学研究院,北京100083;2中国科学院大连化学物理研究所催化基础国家重点实验室,辽宁大连116023) 摘要:对分子筛催化剂上正十六烷的临氢异构化反应进行了研究,考察了不同分子筛催化剂的活性和选择性,并对临氢异构化反应的产物分布进行了分析.在此基础上,对正十六烷的临氢异构化反应机理进行了初步探讨.结果表明,正十六烷在中 孔分子筛催化剂上的临氢异构化反应主要在分子筛外表面和孔口进行,分子筛的择形作用对异构选择性的影响有限.这与一般情况下低分子量正构烷烃在择形分子筛上的临氢异构化反应有所不同.临氢异构化反应的异构选择性主要取决于催化剂酸性组分的酸性质,弱酸和中等强度的酸对异构化反应有利,而催化剂的活性则由酸性组分中B 酸中心的数量和加氢组分的活性共同决定.关键词:铂,分子筛,氧化铝,正十六烷,临氢异构反应,反应机理中图分类号:O643 文献标识码:A Hydroisomerization of n -Hexadecane on Zeolite Catalysts HUANG Weiguo 1*,LI Da dong 1,SHI Yahua 1,KANG Xiaohong 1,MENG Xianbo 1, WANG Kui 1,DONG Weizheng 1,NIE Hong 1,LI Can 2 (1Res earch Institute of Petroleum Pro ces sing ,S INOPEC ,Beijing 100083,China ;2State K ey Laboratory of Catalysis , Dalian Institute of Chemical Physics ,The Chinese Academy of Sciences ,Dalian 116023,Liaoning ,China ) A bstract :Hydroisomerization of n -hexadecane on zeolite cataly sts w as studied and the reaction mechanism was discussed ,w hich may provide new clues to developing hydroisomerization catalysts with high selectivity .The catalysts w ere prepared as follows :zeolite and alumina were mixed and then extruded to make a support ,after drying and calcination ,platinum was loaded on by wet im pregnation with Pt (NH 3)4Cl 2solutio n .The hydroiso -merization of n -hexadecane w as carried out in a continuous fixed -bed reactor with dow n -flow .The catalysts w ere loaded in the reactor and reduced for 4h .Then n -hexadecane w as pumped into the reactor at different temperatures .The reaction results indicated that Pt /MCM -22and Pt /ZSM -5cataly sts show higher activity but lower selectivity than Pt /H βand Pt /SAPO -11cataly sts .The selectivity of Pt /SAPO -11is the hig hest ,mo re than 90%at the conversion of 80%.From the cracked product distribution ,it could be seen that ,for Pt /ZSM -5and Pt /H β,the fractions of small molecule products ,such as C 3,C 4and C 5,are more than those of long chain products ,but fo r Pt /SAPO -11,the cracked product distribution is nearly symmetrical ,w hich means that there is secondary cracking occurred fo r Pt /ZSM -5and Pt /H βbut no for Pt /SAPO -11.The symmetrical distribution of cracked products is the characteristics of large -pore zeolites or amo rphous cataly sts ,so it can be concluded that the hydroisomerization takes place on the external surface or at the pore mouth of SAPO -11,but not in the po re channel .The different zeolites showed different behavior fo r the isomerization ,w hich can be attributed to their different acidity .The strong acidity of MCM -22and ZSM -5leads to poor isomerization selectivity .SAPO -11has high selectivity ,indicating that the w eak and mild acids are favorable to the isomerization .Key words :platinum ,zeolite ,alumina ,n -hexadecane ,hydroisomerization ,reaction mechanism 第24卷第9期 Vol .24N o .9  催 化 学 报 Chinese Journal of Catalysis   2003年9月  September 2003

正构烷烃临氢异构化反应的研究综述

正构烷烃临氢异构化反应的研究综述 摘要:综述了近年来正构烷烃在分子筛为载体的双功能催化剂上临氢异构化反应机理的研究进展,介绍了单分子机理、双分子机理、孔口机理及锁匙机理。同时,综述了近年来临氢异 构催化剂的发展,介绍了β分子筛、丝光沸石、SAPO 系列分子筛、固体超强酸等为载体的双 功能催化剂。最后,对反应机理在制备新型催化剂领域的应用以及新型复合材料在这一领域的 应用前景做了展望。 关键词:正构烷烃,临氢异构,反应机理,催化剂 1 前言 随着环保法规的要求日益严格以及人们环保意识的增强,石油产品的质量规格日益提高,人们对清洁汽油、柴油和润滑油等产品的需求不断增加,因而加氢异构化作为生产优质石油产品的技术越来越受到人们的重视。在汽油的生产中,利用加氢异构化技术可以提高辛烷值;在柴油和润滑油的生产中,通过加氢异构化可以降低凝点或倾点,改善润滑油的粘温性质,同时保持较高的产品收率。加氢异构化技术还可以改善产品的结构。现代炼油工业为了充分利用石油资源,对重质油的加工越来越多,在重油的加氢裂化工艺中,提高催化剂的异构化性能可以多产中间馏分油。因此,对于烷烃的临氢异构化反应进行深入的研究,了解异构化反应的途径,揭示反应规律,可为催化剂的设计提供更好的思路,具有十分重要的意义。 2 临氢异构反应机理 2.1 单分子反应机理 正构烷烃在双功能催化剂上进行加氢异构化反应,部分通过烷基正碳离子中间体进行。其中,异构化反应可通过两条途径来实现[1]:(1)烷基迁移,即A型异构化;(2)质子角-角迁移,即B型异构化,如图1所示。其中A型异构化机理能够改变侧链的位置,但不改变分子中伯、仲、叔和季碳的原子个数,经历了一个烷基正碳离子环化过程,生成角状质子化的环丙烷结构的中间体(简称CPCP),随后环丙烷开环;而B型异构化机理能够改变支链度,随之改变分子中伯、仲、叔和季碳的原子个数,通常发生在CPCP开环之前,质子先进行角-角迁移,然后经过取代质子化环丁烷(简称CPCB)生成乙基侧链的烃。由于角-角迁移需较高的能量,因此,B型异构化比A型反应慢。 图1 烷基正碳离子A型和B型异构化机理 通常认为,单分子异构化反应机理按照环丙烷正碳离子机理(PCP)进行,如图2所示。

相关文档
最新文档